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Abstract

Dialogue Aspect-based Sentiment Quadruple
(DiaASQ) analysis aims to identify all quadru-
ples (i.e., <target, aspect, opinion, sentiment>)
from the dialogue. This task is challenging as
different elements within a quadruple may man-
ifest in different utterances, requiring precise
handling of associations at both the utterance
and word levels. However, most existing meth-
ods tackling it predominantly leverage prede-
fined dialogue structure (e.g., reply) and word
semantics, resulting in a surficial understand-
ing of the deep sentiment association between
utterances and words. In this paper, we propose
a novel Multi-level Association Refinement
Network (MARN) designed to achieve more
accurate and comprehensive sentiment associ-
ations between utterances and words. Specif-
ically, for utterances, we dynamically capture
their associations with enriched semantic fea-
tures through a holistic understanding of the
dialogue, aligning them more closely with sen-
timent associations within elements in quadru-
ples. For words, we develop a novel cross-
utterance syntax parser (CU-Parser) that fully
exploits syntactic information to enhance the as-
sociation between word pairs within and across
utterances. Moreover, to address the scarcity
of labeled data in DiaASQ, we further intro-
duce a multi-view data augmentation strategy
to enhance the performance of MARN under
low-resource conditions. Experimental results
demonstrate that MARN achieves state-of-the-
art performance and maintains robustness even
under low-resource conditions.

1 Introduction

In recent years, Aspect-based Sentiment Analysis
(ABSA) has become a key research focus, benefit-
ing downstream tasks like emotional conversation
generation (Zhao et al., 2023; Wang et al., 2023;
Lu et al., 2023) and recommendation systems (Wei
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Figure 1: Examples of DiaASQ task from the real-world
dataset. “Target”, “Aspect”, and “Opinion” are high-
lighted in green, blue, and red, respectively. “ui” de-
notes an utterance, while the avatar icons and arrows
represent the speakers and reply relationships.

et al., 2019; Liu et al., 2022; Zou et al., 2024). How-
ever, much of this research focuses on isolated texts,
limiting its broader use, especially in multi-turn di-
alogues on real-world social media platforms (e.g.,
Twitter, Facebook, TikTok). To overcome this chal-
lenge, Li et al. (2023a) pioneered the development
of Dialogue Aspect-based Sentiment Quadruple
(DiaASQ) analysis, which extends single text-level
ABSA to a dialogue context. As shown in Figure 1,
DiaASQ aims to identify all sentiment quadruples
within a given dialogue, encompassing the target,
associated aspect, opinion, and sentiment polarity,
which may appear across various utterances.

Unlike single sentence-based ABSA, DiaASQ
encounters markedly greater challenges due to the
dispersion of sentiment elements across diverse ut-
terances, necessitating a meticulous grasp of the
intricate associations between utterances and words.
To address this, existing frameworks (Li et al.,
2023a, 2024a,b; Zhou et al., 2024) often exploit pre-
defined dialogue structural features (DSF) shown
Figure 1 (b) to determine utterance-level associa-
tions and leverage word semantics to capture word-
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level associations. Despite their success, they still
face substantial limitations. From an utterance-
level perspective, irrelevant and implicit associa-
tions brought by seemingly intuitive DSF often dis-
tort quadruple extraction. For example, as shown in
Figure 1 (a), although u5 is a response to u1, the dis-
cussion topics (“iPhone 14” and “iPhone 14 Plus”)
are entirely different (irrelevant). While u1 and u4
share the sentiment target “iPhone 14” but do not
have a direct DSF that emphasizes their association
(implicit). Therefore, while DSF modestly pro-
vides clues about sentiment associations between
utterances, its inherent limitations compel existing
solidified paradigms that solely rely on DSF, fail-
ing to filter out irrelevant associated utterances and
overlooking broader utterance associations beyond
predefined relationships. From a word-level per-
spective, the relatively extended length of dialogue
texts complicates the establishment of long-range
associations between words (Liu et al., 2024). Un-
fortunately, previous studies overlook the effective
construction of cross-utterance syntax information
between words in complex dialogues, which stays
valid in the long-distance dependency problem.

Moreover, in practical applications, the DiaASQ
task faces significant challenges in acquiring large-
scale annotated datasets due to both the difficulty
and cost involved. Li et al. (2023a) successfully
curated a high-quality set of 1,000 tree-structured
dialogues from an initial pool of approximately 9
million dialogues, following a rigorous screening
process (e.g., abusive filtering, ethical reviews) and
fine-grained annotation. Consequently, it is crucial
to explore strategies for maintaining model perfor-
mance under conditions of limited labeled data.

To solve the above-mentioned issues and chal-
lenges, we propose a novel Multi-level Association
Refinement Network (MARN). For the utterance
level, we propose a DSF Optimization Module
(DOM) to refine the inherently flawed utterance-
level associations provided by DSF, aligning them
more closely with sentiment associations. Specif-
ically, DOM enriches utterance representations
through a thorough understanding of the overar-
ching dialogue semantics, autonomously filtering
out explicit associations with sentiment-irrelevant
utterances in DSF while explicitly modeling the
implicit associations between sentiment-relevant
utterances. For the word level, we develop a novel
Cross-Utterance Syntax Parser (CU-Parser) that es-
tablishes syntax relations for word pairs not only
within but also across utterances. Given their profi-

ciency in tracking and integrating non-sequential
syntactic relationships (Sun et al., 2019; Tian et al.,
2021b; Liang et al., 2022), the application of CU-
Parser in dialogues enhances the associations be-
tween words and improves the mutual perception
of sentiment elements, particularly for those ex-
hibiting long-range dependencies across disparate
utterances. Additionally, to mitigate the constraint
imposed by limited labeled data in DiaASQ, we
develop a cost-effective multi-view data augmen-
tation scheme to address low-resource scenarios
without extensive manual fine-grained annotations.

Our main contributions are as follows:
(1) We identified the inherent flaws in previous

works, specifically the solidified handling of DSF
and insufficient consideration of word dependen-
cies, leading to irrelevant and implicit associations
between utterances and weak word associations.

(2) We propose a novel Multi-level Association
Refinement Network (MARN). Specifically, it em-
ploys the DOM to dynamically capture the senti-
ment associations between utterances and utilizes
a carefully designed CU-Parser to establish syntax
associations between words both across and within
utterances. Furthermore, it incorporates a multi-
view data augmentation strategy to alleviate the
challenges posed by limited resources.

(3) Experimental results show that MARN sur-
passes previous state-of-the-art methods on bench-
mark datasets, while consistently maintaining ro-
bust performance in low-resource settings.

2 Related Works

2.1 Aspect-based Sentiment Analysis

Aspect-based Sentiment Analysis (ABSA) primar-
ily forecasts various sentiment elements or com-
binations. The most three basic subtasks are As-
pect Term Extraction (ATE) (Ma et al., 2019; Yang
et al., 2020), Opinion Term Extraction (OTE) (Wan
et al., 2020; Veyseh et al., 2020) and Aspect Sen-
timent Classification (ASC) (Tian et al., 2021a;
Wang et al., 2021; Zhou et al., 2021). Recently,
research has shifted to compound tasks like aspect-
based sentiment triplet or quadruple extraction, in-
volving multiple sentiment elements. Some mile-
stone solution paradigms have emerged, such as
table-tagging methods (Wu et al., 2020; Chen et al.,
2022a), span-based methods (Xu et al., 2021; Chen
et al., 2022b), machine reading comprehension-
based method (Zhang et al., 2020a; Mao et al.,
2021) and generative-based method (Zhang et al.,
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2021; Gou et al., 2023). However, renowned ABSA
benchmarks such as SemEval (Pontiki et al., 2016),
MAMS (Jiang et al., 2019), and Twitter (Dong
et al., 2014) are annotated solely at the single sen-
tence level, limiting the seamless adaptation of ex-
isting frameworks to the broader and more practi-
cally significant multi-utterance dialogue scenarios.

To address the above limitations, Li et al. (2023a)
first introduced the DiaASQ task and proposed a
baseline model that leverages predefined DSF (i.e.,
replies, by the same speaker, in the same thread) to
manage utterance associations through three paral-
lel attention matrices. Building on this, subsequent
works have adopted similar approaches to DSF
usage while introducing optimizations and innova-
tions from perspectives such as initial encoding (Li
et al., 2024b), final decoding (Li et al., 2024a), and
efficiency (Zhou et al., 2024). However, these ap-
proaches overlook the inherent incompleteness of
DSF, making them susceptible to irrelevant infor-
mation and incapable of deeply exploring implicit
associations. To tackle these issues, this paper pro-
poses a novel DOM to refine DSF, enabling com-
prehensive and precise information aggregation.

2.2 Syntactic Dependency Analysis

Syntactic Dependency Analysis (SDA) aims to ex-
ploit the linguistic features of a sentence by identi-
fying the dependencies between words (Gu et al.,
2022; Xiao et al., 2020; Zhu et al., 2023). By lever-
aging such non-sequential information, SDA ef-
fectively shortens paths between syntactically re-
lated words, provides an essential complement to
semantic features for long-text understanding, thus
remains valid in downstream tasks involving long-
distance dependency problems, like ABSA (Liang
et al., 2022; Chen et al., 2022a, 2021), Relation
Extraction (Tian et al., 2021c, 2022; Cheng et al.,
2021; Zhu et al., 2021). However, traditional SDA
is constrained to single-sentence and fails to cap-
ture word associations across utterances, which
motivates us to propose a novel CU-Parser to estab-
lish more effective connections between sentiment
elements across utterances.

3 Preliminary

3.1 Problem Statement

Given the input dialogue D = {(ui, si, ri)}n,
where n is the number of utterances contained in
the dialogue. Here, ui = {wi1, wi2, . . . , wim} de-
notes the i-th utterance consisting of tokens wij .

The variable si denotes the speaker associated with
ui and ri signifies that the i-th utterance responds to
the ri-th utterance. The goal of DiaASQ task is to
extract all target-aspect-opinion-sentiment quadru-
ples, denoted as Q = {(t, a, o, p)q}

|Q|
q=1. Here, t,

a, and o represent the target, aspect, and opinion
found within the dialogue, respectively, and p repre-
sents sentiment polarity in {pos, neg, neu, other}.

3.2 Dialogue Structural Features

Following the previous research (Li et al., 2024b),
to represent the initial dialogue structural features,
we define two adjacency sets for each utterance:
R and S. Here, Ri denotes the set of indices of
utterances that reply to ui, and Si represents the set
of indices of utterances from the same speaker as
ui, formally expressed as:

Ri = {k | rk = i}, Si = {j | sj = si}. (1)

We define matrix A to denote the initial associa-
tion between utterances:

Aij =

{
1

|Ri|+|Si|+1 if j ∈ Ri ∪ Si or i = j

0 Otherwise
.

(2)

4 Methodology

This section comprehensively explains our pro-
posed MARN, as illustrated in Figure 2. The
encoder first generates contextualized representa-
tions. Subsequently, the DSF Optimization Mod-
ule (DOM) refines the associations between utter-
ances, transforming the original DSF into DSF′ to
better reveal sentiment associations. Feature ag-
gregation is then conducted by incorporating both
utterance-level associations and word-level seman-
tic and syntax associations. Finally, MARN de-
codes all quadruples using a grid-tagging scheme.

4.1 Dialogue Encoder

We leverage a Pretrained Language Model (PLM)
to obtain contextualized word embeddings. For
utterances in D, we concatenate them sequentially,
and inserting [SEP] to delimit adjacent sentences:

H =PLM ({u1, [SEP], u2, . . . , un}) ,
=[{h1j},hsep, {h2j}, . . . , {hnj}],

(3)

where hij is the contextual embedding of the j-th
word in the i-th utterance.
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Figure 2: Overall architecture. First, PLM is used to generate contextual representations. Next, DOM refines
the original DSF to obtain refined utterance association, while CU-Parser provides refined cross-utterance syntax.
Subsequently, MGAT integrates the refined utterance and word level associations, performing feature aggregation in
parallel based on semantic and syntactic information. Finally, MARN decodes quadruples based on grid-tagging.

4.2 DSF Optimization Module
The DSF Optimization Module (DOM) is designed
to dynamically refine utterance associations, ensur-
ing closer alignment with the conditions necessary
for sentiment quadruple extraction through a holis-
tic understanding of the dialogue. First, we form
the utterances representations by:

U = [u1,u2, . . . ,un], (4)

ui =Max-Pooling
(
{hij}|ui|

j=1

)
. (5)

We now update and enrich the representation for
each utterance to achieve a comprehensive under-
standing of the dialogue using the Relation Graph
Convolutional Network (RGCN) as follows:

ul
i = σ(

∑

r∈F

∑

j∈ri

1

|ri|
Wl

ru
l−1
j +Wl

0u
l−1
i ). (6)

Here, F = {R,S}, and the output of the last layer
of RGCN is defined as û for simplicity. We next
compute the association of each utterance pair in
DSF′ by the following self-attention mechanism:

A′ =Softmax(WqÛ(WkÛ)⊤/
√
d), (7)

where A′ represents the associations between ut-
terances in DSF′. Finally, we combine the original
DSF with the optimized version DSF′ as follows:

Â = (1− λ)A+ λA′, (8)

here, λ represents the optimized confidence weight.

4.3 CU-Parser

To refine the word-level associations and strengthen
the perceptual connections between sentiment el-
ements both within and across utterances, we pro-
pose the CU-Parser. This advanced framework ex-
tends conventional single-sentence syntactic depen-
dency parsing to the more complex multi-utterance
dialogues, as demonstrated in Figure 2.

• Internal Connection. Each single utterance
is parsed independently by the syntax parser.

• External Connection. For any two utter-
ances, we concatenate them using the conjunc-
tion “and”, which is then processed by the syn-
tax parser and preserves the inter-sentential
connections as the syntax link between utter-
ances. We also proposed other semantic-based
connection methods, detailed in Appendix E.

We denote N syn
ij as words directly syntactically

connected to wij , which is then combined with the
DOM output, as discussed in the next subsection.

4.4 Semantic and Syntax-based Aggregation

Upon refining associations at the utterance and
word levels, we propose a Multi-level Graph Atten-
tion Network (MGAT) to combine these multi-level
associations for aggregating information-rich and
concise word representations, formulated as:

hl
ab = δ(

∑

cd∈Nab

αl
ab,cdW

l
gh

l−1
cd ), (9)
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αl
ab,cd =

Âac · ef(h
l−1
ab ,hl−1

cd )

∑
c′d′∈Nab

Âac′ · ef(h
l−1
ab ,hl−1

c′d′)
, (10)

where αab,cd carries the multi-view association be-
tween words wab and wcd, with Âac representing
the utterance-level association between ua and uc,
and f capturing the word-level association, δ is an
activation function. Final output is ĥ for simplicity.

This aggregation process is applied twice: in the
semantic-based aggregation, N encompasses all
words in the dialogue, whereas in the syntax-based
aggregation, N is initialized by N syn. Finally, we
form the final token representation by,

sij = ĥsem
ij ⊕ ĥsyn

ij , (11)

where ⊕ means vector concatenation.

4.5 Multi-view Data Augmentation

To address the resource constraints in the DiaASQ
task, we propose a cost-effective multi-view data
augmentation approach that enhances overall per-
formance by improving the robustness of DSF op-
timization. This method automatically applies sim-
ple semantic similarity transformations to the origi-
nal data from two perspectives:

• Word Level. To mitigate the overfitting of
specific words, we prompt large language
models (LLMs) to rephrase key backbone
words of part of utterances with synonyms.

• Utterance Level. To mitigate the overfitting
of specific utterance expressions, we prompt
LLMs to rephrase part of the utterances in
the dialogue, preserving the overall semantic
meaning while varying the expressions.

We denote the augmented dataset for each dialogue
as U = {Di}k. Note that U is solely used for op-
timizing DSF to prevent excessive training time.
Further examples and detailed explanations of the
data augmentation process can be found in Ap-
pendix H. Similarly, we use DOM to obtain the
inter-utterance associations for each Di:

Aug = [Â(1), Â(2), . . . , Â(k)]. (12)

To ensure the model robustly optimizes DSF across
similar expressions, we introduce a diversity loss
based on the Jensen-Shannon (JS) divergence,
which minimizes the discrepancies in utterance as-
sociations across semantically similar expressions:

LJS-div =
1

k

k∑

i=1

JS
(
Â||Â(i)

)
. (13)

By minimizing the JS divergence, the model can
avoid over-reliance on specific expressions, ensur-
ing the robustness of the DSF optimization process.

It is worth noting that this component is optional,
and removing the data augmentation part does not
impact the progression of MARN.

4.6 Quadruple Decoding

After obtaining the final word representations, we
streamline quadruple extraction by decomposing
the decoding task into three subtasks: sentiment
element extraction (ele), relation matching (rel),
and sentiment polarity classification (pol). The
word pair label set for each subtask is denoted as
tagC , where C ∈ {ele, rel, pol}.

• Element. tagele ∈ {T,A,O,N}, where T ,
A, and O denote the first and last words of a
valid target, aspect, and opinion, respectively,
and N represents an invalid word pair.

• Relation. tagrel ∈ {h2h, t2t,N}, where
h2h denotes a headword pair within a match-
ing sentiment element pair, and t2t marks a
tail word pair. For example, for the aspect-
opinion pair (storage capacity, not sufficient),
the head words “storage” and “not” are la-
beled as h2h, while the tail words “capacity”
and “sufficient” are labeled as t2t.

• Polarity. tagpol ∈ {Pos,Neg,Neu,N},
where Pos, Neg, and Neu indicate word
pairs with positive, negative, or neutral po-
larities, and N denotes an invalid word pair.

For each subtask, we use the grid labeling method
to classify each word pair, which is formulated as,

vab,cd = sab ⊕ scd, (14)

where ⊕ represents the vector concatenation. This
is then passed through a fully connected layer with
a softmax activation function to produce the prob-
ability distribution for each label in each subtask.

pC
ab,cd = Softmax (Wcvab,cd + bc) , (15)

where C ∈ {ele, rel, pol} represents the set of
tasks, and Wc and bc are trainable parameters. We
combine the predicted labels of the three subtasks
to output quadruples. Appendix D gives a more
detailed decoding process.

4.7 Training Objective

The final loss of each subtask is defined as the
cross-entropy loss between the ground truth labels
and the predicted distributions for all word pairs:
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LC = − 1

N2

∑

ab

∑

cd

yC
ab,cd log(p

C
ab,cd), (16)

where N is the total number of words in the di-
alogue, yC

ab,cd and pC
ab,cd is the ground-truth and

prediction of the corresponding subtask C. The
overall loss L is computed as the weighted sum of
the losses for all subtasks and JS-divergence loss:

L = Lele + βLrel + ηLpol + γLJS-div. (17)
Here, Lele, Lrel, and Lpol denote the losses for the
three subtasks, respectively.

5 Experiment

5.1 Dataset and Implementation Detail
We conducted experiments on English and Chi-
nese datasets from Li et al. (2023a) to evaluate our
model, focusing on the mobile phone domain. Each
data point consists of an initial post followed by
sequential responses from multiple individuals.

Following the previous studies, we employ
RoBERTa-Large (Liu et al., 2019) for the En-
glish dataset and Chinese-RoBERTa-wwm-ext (Cui
et al., 2020) for the Chinese dataset to initialize our
PLMs. SuPar (Zhang et al., 2020b) is adopted as
the syntax parser in CU-Parser. “Micro F1” is the
evaluation metric consistent with prior work. Ap-
pendix A details the datasets and implementation.
We also provide efficiency analysis in Appendix B.

5.2 Baselines
We compare MARN with the following baselines,
which can be briefly grouped into three categories:

• ABSA Baselines. EC-ACOS (Cai et al.,
2021) first extracts aspect-opinion pairs and
then predicts category-sentiment. SpERT
(Eberts and Ulges, 2020) is a span-based
model for joint entity and relation extraction.
Span-ASTE (Xu et al., 2021) captures span-
to-span interactions for relation extraction.
ParaPhrase (Zhang et al., 2021) generatively
predicts sentiment quadruples in one step.

• DiaASQ Baselines. Meta-WP (Li et al.,
2023a), H2DT (Li et al., 2024a), STS (Zhou
et al., 2024) and DMCA (Li et al., 2024b)
incorporate prior predefined DSF and word
semantics to extract sentiment quadruples.

• LLMs. Given the advancement of large lan-
guage models (LLMs) in various tasks (Xie
et al., 2024; Zhang et al., 2024), we employed
ChatGPT1 with in-context learning (ICL) as

1We used the ChatGPT model gpt-4-turbo-2024-04-09
in our experiments.

baselines. We also deployed other series and
fine-tuned LLMs, detailed in the Appendix G.

5.3 Main Results
Table 1 presents the main results. Observations are:

(1) Our MARN model outperforms all base-
lines, confirming its superiority. It introduces an
effective multi-level association refinement method
for the DiaASQ task, enabling better use of both
utterance-level DSF and word-level syntax for se-
lecting sentiment-related information.

(2) Overall, the DiaASQ baseline utilizing the
predefined DSF surpasses the ABSA baseline with-
out DSF. This observation suggests that DSF offers
valuable cues for sentiment quadruple extraction.
However, the solidified application of DSF, along
with its inherent irrelevant and implicit association
limitations, constrains further performance gains.

(3) MARN shows the most significant perfor-
mance improvement in compound subtasks (e.g.,
T -A, T -O, A-O, T -A-O) of DiaASQ. While the
model provides only modest improvements in the
extraction of individual sentiment elements, it sig-
nificantly enhances the matching performance be-
tween elements, thereby improving the overall ac-
curacy of sentiment quadruple extraction.

(4) Although LLMs can perform few-shot in-
ference, they perform much worse than fine-tuned
small PLMs, suggesting that LLMs like ChatGPT
may not be suitable for complex DiaASQ tasks. We
believe this is due to natural language prompts not
effectively incorporating DSF, which limits their
ability to capture contextual dependencies. Ap-
pendix G presents additional experimental results
and analysis for various and fine-tuned LLMs, in-
cluding LLaMa, Qwen, and Mistral.

5.4 Ablation Study
We conduct an ablation study (Table 2) to evaluate
model components. Observations are:

(1) MARN w/o DSF, which removes the initial
DSF connection from Â. This leads to a 4.99%
and 4.80% decrease in F1 for quadruple extraction
on the two datasets. This result suggests that the
original DSF provides useful cues for sentiment el-
ement matching, especially for sentiment elements
across utterances with explicit associations.

(2) MARN w/o DSF′, which removes the op-
timized DSF′ connection from Â. This leads to
a 2.96% and 2.81% decrease in F1 for quadruple
extraction on the two datasets. This proves that
the optimized DSF′ refines and complements the
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Model
English Chinese

T A O T -A T -O A-O T -A-O Q T A O T -A T -O A-O T -A-O Q
EC-ACOS (2021) 88.31 71.71 47.90 34.31 20.94 19.21 12.80 11.59 91.11 75.24 50.06 32.47 26.78 18.90 9.25 8.81

SpERT (2020) 87.82 74.65 54.17 28.33 21.39 23.64 13.38 13.07 90.69 76.81 54.06 38.05 31.28 21.89 14.19 13.00
Span-ASTE (2021) / / / 42.19 30.44 45.90 28.34 26.99 / / / 44.13 34.46 32.21 30.85 27.42
ParaPhrase (2021) / / / 37.22 32.19 30.78 26.76 24.54 / / / 37.81 34.32 27.76 27.98 23.27

Meta-WP (2023a) 89.56 74.56 60.06 47.91 45.58 44.27 37.85 33.72 91.79 78.92 59.15 48.61 43.31 45.44 38.78 35.21
STS (2024) 89.00 75.09 63.57 55.12 53.11 56.52 47.61 43.80 91.49 77.10 61.24 53.56 50.29 53.26 42.82 40.59

DMCA (2024b) 88.11 73.95 63.47 53.08 50.99 52.40 41.00 37.96 92.03 77.07 60.27 56.88 51.70 52.80 45.36 42.68
H2DT (2024a) 88.69 73.81 62.61 48.69 48.84 52.47 42.19 39.01 91.72 76.93 61.87 50.48 48.80 52.40 42.81 40.34

ChatGPT (0-shot) 48.62 33.71 42.25 23.68 21.11 22.78 18.88 16.21 34.32 34.90 45.12 28.01 28.24 24.87 20.04 17.19
ChatGPT (5-shot) 52.54 39.93 47.56 30.29 26.65 24.49 22.45 19.59 44.21 50.62 47.33 30.75 28.29 26.90 22.10 19.76

MARN 89.53 76.22 61.75 55.17 55.82∗ 58.72∗ 48.89 44.95∗ 92.34 77.20 61.94 58.02∗ 53.55∗ 55.24∗ 48.23∗ 45.41∗

Table 1: Main results. “T /A/O” represents “target/aspect/opinion” respectively. “Q” represents the sentiment
quadruple. Appendix J details the prompt used for ChatGPT. The best results are highlighted in bold, and the
second-best results are underlined. All the scores are averaged values over five runs under different random seeds.
Significant improvements compared to the best baseline are marked with * (t-test, p ≤ 0.05).

Model
English Chinese

T -A-O Q T -A-O Q

MARN 48.89 44.95 48.23 45.41

- w/o DSF 43.29(↓5.60) 39.97(↓4.99) 42.27(↓5.96) 40.61(↓4.80)

- w/o DSF′ 43.90(↓4.98) 41.99(↓2.96) 43.87(↓4.36) 42.60(↓2.81)

- w/o CU-Parser 45.01(↓3.88) 41.12(↓3.83) 44.25(↓3.98) 41.70(↓3.71)

- w/o JS-div loss 48.08(↓0.81) 44.45(↓0.50) 47.30(↓0.93) 44.72(↓0.69)

- w/o Augw 48.24(↓0.65) 44.51(↓0.44) 47.69(↓0.54) 44.79(↓0.62)

- w/o Augu 48.29(↓0.70) 44.53(↓0.42) 47.49(↓0.74) 44.39(↓1.02)

Table 2: Ablation results. The notation “w/o” signifies
excluding the corresponding component from MARN.
Augw and Augw represent the processes of word-level
and utterance-level data augmentation.

original DSF. Using overall utterance semantics,
DSF′ mitigates irrelevant associations and captures
implicit relationships that DSF fails to model.

(3) MARN w/o CU-Parser, which removes the
syntax-based aggregation. The removal of cross-
utterance syntactic dependency structures leads to
performance degradation, as this non-sequential
information reveals critical associations between
words across and within utterances, which are es-
sential for accurate sentiment element matching.

(4) MARN w/o JS-div loss, Augw, and Augu,
which removes the corresponding augmentation
processes. This component provides only mod-
est improvements when trained on the full dataset.
In other words, even without data augmentation,
MARN remains SOTA and does not introduce ad-
ditional API calls. Nevertheless, it proves highly
effective under low-resource conditions, as detailed
in the experiments presented in Section 6.1.

In summary, each module of MARN contributes
to the overall performance.
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Figure 3: Evaluation results in low-resource scenarios,
where the model is trained under different dataset usage
ratios from 100% to 20%. The blue and orange shaded
areas represent the upper and lower bounds of MARN
and MARN w/o JS-div loss. The line represent average
results from five runs with different random seeds.

6 Analysis

6.1 Effects of Data Augmentation in
Low-Resource Scenario

To further evaluate the effectiveness of the multi-
view data augmentation strategy proposed in
MARN, we deployed the model under more ex-
treme low-resource conditions. The experimental
results are illustrated in Figure 3. Observations are:

(1) Without augmented data, the model’s per-
formance declines sharply with smaller datasets
and becomes unstable due to data distribution vari-
ations. In contrast, data augmentation enables
MARN to effectively capture inter-utterance re-
lationships, even with limited resources, easing
the challenge of filtering sentiment information in
complex dialogues. For example, with only 20%
of the dataset, the F1 score for quadruple extrac-
tion reached 36% on English and 37% on Chinese
datasets. This phenomenon underscores the crit-
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ical importance of data augmentation techniques
in enhancing model robustness, particularly in nat-
ural language processing tasks where contextual
understanding is paramount.

(2) Both word-level and utterance-level data aug-
mentation contribute significantly to the overall
performance. We infer that this stems from their
ability to simulate real-world dialogue scenarios
from different perspectives, preventing the model
from overfitting specific words or expressions dur-
ing training. Since the data augmentation is solely
designed to reinforce DOM, this indirectly high-
lights that accurately assessing inter-utterance asso-
ciations is critical in the DiaASQ task, particularly
in low-resource scenarios. More analysis about its
effectiveness is given in Appendix H.3.

6.2 Cross Utterance Quadruples Extraction
We evaluated the model’s performance in extracting
sentiment quadruples across utterances. As shown
in Figure 4, we evaluated our MARN model, its
variant without the optimized DSF′ and CU-Parser,
and the relatively strongest DiaASQ baseline STS.
Observations are:

(1) The refinement of associations at the utter-
ance level and the cross-utterance syntactic infor-
mation at the word level contribute significantly to
the extraction of cross-utterance sentiment quadru-
ples. Together, these mechanisms prevent the ex-
traction performance from declining linearly as the
cross-utterance level increases, maintaining an F1
score of approximately 30% even at levels ≥ 3.
This demonstrates that MARN indeed strengthens
the associations between utterances and words. The
utterance-level association refinement enables the
model to focus on sentiment-relevant utterances by
excluding sentiment interference from irrelevant
associations and uncovering implicit associations.
At the same time, the word-level association refine-
ment strengthens the model’s ability to perceive
connections between sentiment elements.

(2) Our approach outperforms strong DiaASQ
baseline STS in cross-utterance scenarios, with no-
table gains at higher levels (cross ≥ 3). This under-
scores the effectiveness of MARN in addressing
extraction challenges in multi-turn dialogues. For
a more transparent and intuitive illustration, case
studies are provided in Appendix I.

6.3 Effects of CU-Parser
We also undertake experiments to investigate vari-
ous methods for modeling cross-utterance syntax.
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Figure 4: Results of extracting quadruples across dif-
ferent utterances. “Cross” denotes the cross-utterance
level of the most distant pair within a quadruple.

Category Method English Chinese

MARN CU-Parser 44.95 45.41

Connection Word

Root-Root 43.37(↓1.58) 43.88(↓1.53)

V-V 43.34(↓1.61) 43.62(↓1.79)

N-N 42.03(↓2.92) 43.11(↓2.30)

ADJ-ADJ 42.40(↓2.55) 42.98(↓2.43)

Connection Type
Internal Only 42.53(↓2.42) 42.85(↓2.56)

External Only 42.65(↓2.30) 42.83(↓2.58)

Parser Stanford Parser 44.39(↓0.56) 44.71(↓0.70)

Table 3: Comparison of different methods for construct-
ing cross-utterance syntax. “Root” represents the root
word obtained after syntactic dependency parsing.

The results are shown in Table 3. Observations are:
(1) We attempted to heuristically establish cross-

utterance connections using other key terms within
utterances, such as linking the root words, nouns
(N), adjectives (ADJ), and verbs (V) between two
utterances. However, these approaches resulted
in performance degradation. We infer that such
heuristic methods significantly disrupt utterance
dependencies, leading to an increased introduction
of noise and a tendency to focus on irrelevant in-
formation. In contrast, the CU-Parser dynamically
achieves a balanced fusion of dependency informa-
tion both within and across utterances.

(2) Both internal and external syntactic associa-
tions are crucial. One possible explanation is that
these syntactic connections shorten the dependency
distance between sentiment elements, as detailed in
Appendix F. Further analysis in Appendix F shows
that CU-Parser most reduces the dependency dis-
tance for the A-O relationship against T -A and
T -O, leading to the greatest improvement in A-O
matching, supporting our hypothesis.

(3) CU-Parser achieved good performance with
both SuPar and Stanford Parser. Overall, SuPar
outperformed Stanford Parser in parsing accuracy
(Liang et al., 2022), giving CU-Parser a slight per-
formance advantage when equipped with SuPar in
DiaASQ, which aligns with the parsers’ accuracy.
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7 Conclusion

In this study, we propose the MARN for the Di-
aASQ task. This framework enhances utterance-
level associations by leveraging holistic seman-
tics and improves word-level associations through
cross-utterance syntax captured by a newly devel-
oped CU-Parser. Additionally, MARN incorpo-
rates a multi-view data augmentation strategy for
low-resource settings. Experiments on benchmark
datasets demonstrate that MARN consistently out-
performs baselines. We hope our contributions will
offer meaningful insights into this field.

Limitations

To fully understand our scheme MARN, we also
analyze its limitations. Although MARN achieves
state-of-the-art performance in extensive experi-
mental settings, it still leaves potential improve-
ments for the future work:

• Type of connections obtained by CU-Parser.
We observed that CU-Parser not only pro-
vides connections between words but also in-
cludes the types of these connections (e.g.,
nsubj, conj in syntactic dependency trees),
which may carry valuable syntactic informa-
tion. Therefore, it is worth exploring the po-
tential contribution of these connection types
to the DiaASQ task, particularly for cross-
utterance word-pair relationships. We plan to
investigate this further in our future work.

• Improved utterance concatenation. In mod-
eling cross-utterance syntactic dependencies
at the word level, we heuristically concatenate
two utterances using the conjunction “and”.
While this serves as a practical approach, it
is worth investigating more refined methods
for sentence concatenation. We leave it as our
future work to explore more seamless and con-
textually appropriate concatenation strategies
to yield more reliable results.
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A Dataset and Implementation Detail

A.1 Dataset Statistic

We evaluate our models on both English and Chi-
nese datasets proposed by (Li et al., 2023a), which
mainly focus on the mobile phone domain. Dataset
statistics are shown in Table 5.

A.2 Implement Details of MARN

We conduct experiments on a Nvidia GeForce 4090
GPU, with CUDA 12.1 and PyTorch 1.13.1. The
model yielding the optimal performance on the
validation set is selected for testing. The total num-
ber of parameters of PLMs used in Chinese and
English datasets is about 110M and 350M, respec-
tively. We set the temperature to 0 for all LLMs.
The number of layers in the RGCN of the DOM
and the MGAT of the Syntax and Semantic-based
Aggregation are set to 3 and 2, respectively. Batch
size is set to 2. AdamW optimizer is adopted with
a linear warm-up for the first 10% of steps. The
learning rate is configured as 2e-5 for the PLM
and 1e-4 for the other modules. The function f
represents a two-layer fully connected network uti-
lizing LeakyReLU as the activation function, with
a dropout rate 0.4. To control the balance of various
loss, γ, β and η are set to 1, 3, and 5, respectively.
The optimization confidence weight λ is set to 0.7,
with the grid search process and analysis for this
hyperparameter detailed in Section A.4.

A.3 Implement Details of Baselines

We use the same backbone to compare our MARN
framework with other baselines, including ABSA
baselines (EC-ACOS, SpERT, Span-ASTE) and Di-
aASQ baselines (Meta-WP, H2DT, STS, DMCA).
Specifically, RoBERTa-Large is used for the En-
glish datasets, while Chinese-RoBERTa-wwm-ext
is employed for the Chinese datasets. For the gener-
ative ParaPhrase baseline, we use mT5-base (Xue
et al., 2021) as its backbone, following the configu-
rations outlined in other previous works (Li et al.,
2023a, 2024a; Zhou et al., 2024) to ensure a fair
comparison. All other hyperparameter settings are
consistent with the optimal configuration provided
in the original papers.

A.4 Parameter Study for λ

Figure 5 presents the results of varying the opti-
mization confidence threshold. As expected, set-
ting the confidence too low or too high leads to per-
formance degradation. When the confidence is too
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Method
English Chinese

S (Dialogue/s) F1 (%) S (Dialogue/s) F1 (%)
MARN 6.02 44.45 8.63 44.72
Vanilla 6.14 39.79 8.85 39.38

STS 5.76 43.80 8.32 40.59

Table 4: “P” represents the total number of parameters,
while “S” denotes the training speed, measured in ’Di-
a/s’, which indicates the number of dialogues processed
per second, and “F1” indicates the model’s performance
on the task of sentiment quadruple extraction (Q).

low, the model essentially relies on the traditional
DSF-provided utterance associations for sentiment
quadruple extraction, failing to address structural
irrelevant and implicit associations, as discussed
in the main body of this paper. Conversely, setting
the confidence too high results in the underutiliz-
ing of the valid associations provided by DSF. The
experimental results suggest that a threshold value
0.7 strikes an optimal balance.
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Figure 5: F1 scores on English and Chinese datasets
when using different optimization confidence weights.
The dotted lines represent the performance of the
strongest baseline on both datasets.

B Model Efficiency Analysis

To further analyze the model’s efficiency, we pro-
vide a detailed comparison of the training time
and final performance. As shown in Table 4, we
compare MARN with a version that excludes the
utterance and syntax-based word association com-
ponents (Vanilla), as well as with the relatively
strongest baseline STS. Compared to the vanilla
method, the incorporation of the associate refine-
ment component in MARN results in only a slight
increase in training time (≤ 3%). However, MARN
achieves a significant performance improvement
(from 39% to 44%). We believe this represents an
acceptable trade-off between model efficiency and
performance gain.

Dataset #Dia. #Utt. #Spk. #Q. #IQ. #CQ.

English
train 800 5947 3897 4414 3442 972
dev 100 748 502 555 423 132
test 100 757 503 545 422 123

Chinese
train 800 5974 3987 4607 3549 1013
dev 100 748 502 577 440 137
test 100 757 503 558 433 125

Table 5: “#Dia.”, “#Utt.”, and “#Spk.” denote the total
number of dialogues, the count of utterances, and the
total number of speakers within the corpus, respectively.
“#Q.” represents the total number of quadruples, while
“#IQ.” and “#CQ.” indicate the number of quadruples
contained within the same utterance and those spanning
across different utterances, respectively.

C Cross Utterance Relations of Sentiment
Quadruples

We also examined the distribution of various types
of cross-discourse relations within the three cate-
gories of cross-utterance sentiment element pairs.
As illustrated in Table 6, a significant majority of
the sentiment element pairs involve utterances that
belong to a reply relationship, representing about
75% of all cases, with a notable proportion also
originating from the same speaker. This under-
scores the importance of effectively incorporating
both relationships into the model, as they offer valu-
able utterance-level association information.

However, a significant portion of sentiment el-
ement relationships do not fall under either of
the aforementioned dialogue structural features
(“#Other.” in Table 6). In other words, it is chal-
lenging to construct utterance-level relations that
comprehensively capture all sentiment element con-
nections solely based on prior DSF. Since the joint
extraction of the sentiment quadruple requires accu-
rate prediction of the association between any two
sentiment elements, leveraging the holistic seman-
tic information of utterances to refine the original
DSF is crucial, as it enables the discovery of rela-
tionships beyond predefined rules.

D Quadruple Decoding Algorithm

This section provides a detailed explanation of the
quadruple decoding process, as outlined in Algo-
rithm 1. For the three sentiment elements extracted
in subtask 1, candidate triplets (t, a, o) are gener-
ated through three traversals. Subsequently, triples
are filtered based on whether their internal relation-
ship labels satisfy the matching conditions. Sen-
timent polarity is then assigned according to the
labels from subtask 3 to form valid quadruples. Fig-
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Figure 6: Decoding example for the sentiment quadruple (iPhone 14, camera quality, top notch, positive)

Dataset
T -A T -O A-O

#Rpy. #Spk. #Other. #Rpy. #Spk. #Other. #Rpy. #Spk. #Other.

English
train 72.3% 13.9% 13.8% 71.6% 14.1% 14.3% 85.2% 8.2% 6.6%
dev 75.2% 15.4% 9.4% 73.2% 18.1% 8.7% 71.4% 17.6% 11.0%
test 73.6% 12.5% 13.9% 77.8% 10.4% 11.8% 90.2% 2.1% 7.7%

Chinese
train 72.6% 13.9% 13.5% 71.6% 14.0% 14.4% 85.5% 8.4% 6.1%
dev 75.3% 15.3% 9.4% 74.2% 17.4% 8.4% 71.4% 17.6% 11.0%
test 74.4% 12.4% 13.2% 77.6% 10.2% 12.2% 92.3% 2.0% 7.7%

Table 6: The proportion of different types of cross-utterance relations for sentiment element pairs. “#Rpy.” and
“#Spk.” respectively represent that the two utterances corresponding to the two sentiment elements (i.e.,T -A, T -O,
A-O) belong to a reply relationship or belong to the same speaker. “#Other.” represents other types of relationships.

Method English Chinese

T -A T -O A-O T -A T -O A-O
MARN 55.17 55.82 58.72 58.02 53.55 55.24
- w/o CU-Parser 53.96 53.83 53.11 57.12 51.60 52.33

Table 7: Ablation results in cross-utterance linguistic
features in relation matching subtasks. The values show-
ing the most significant decline in performance across
the three relations (T -A, T -O, A-O) are highlighted
with an underscore.

Dataset Method T -A T -O A-O T -A-O Q

English
CU-Parser 55.17 55.82 58.72 48.89 44.95
- w SSA 55.34 56.13 58.56 49.12 45.09
- w LLM 55.78 56.22 59.44 49.65 45.42

Chinese
CU-Parser 58.02 53.55 55.24 48.23 45.41
- w SSA 58.31 53.19 55.23 48.30 45.46
- w LLM 58.66 53.17 55.94 48.87 46.04

Table 8: Experiment results of other semantic-based
connection methods used in CU-Parser.

ure 6 shows a decoding example for a quadruple.

E Further Exploration of CU-Parser

E.1 Semantic-based Method

In Section 4.3, we introduced the CU-Parser, which
connects two utterances using “and” to further con-
struct cross-utterance syntactic relations. Since
“and” is typically used to express coordination or
progression, it largely preserves the semantic co-

herence and logical relationships between the sen-
tences when their topics are consistent, thereby
facilitating overall parsing. In addition, we fur-
ther explored two more complex, semantics-based
connection methods for utterances: one based on
Sentence-Level Sentiment Analysis (SSA) and
the other based on LLMs:

• CU-Parser w SSA. To ensure that conjunc-
tions align with the overall emotional transi-
tions between utterances, we perform cross-
utterance connections based on their senti-
ment orientations. Since SSA is a well-
established task, we utilize pre-trained open-
source models 2 for SSA. Specifically, we
connect two utterances with “and” when
they share the same sentiment (e.g., positive-
positive), with “but” when they have opposing
sentiments (e.g., positive-negative), and con-
catenate them directly if both are neutral.

• CU-Parser w LLM. We directly use LLM
(GPT-3.5-turbo) to select appropriate conjunc-
tions for splicing based on the overall seman-
tics of the two utterances.

The experimental results are shown in Table
8. It is evident that using SSA or LLMs to se-
lect conjunctions based on the overall semantic

2https://huggingface.co/tabularisai/
multilingual-sentiment-analysis
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Algorithm 1 Decoding Algorithm for MARN
Input: Extraction results tagCab,cd of word pairs for the three
subtasks, where C ∈ {ele, rel, pol}.
Output: Targets T , Aspects A, Opinions O, Sentiment
Triplets S and QuadruplesQ.
1: Initialize the target set T , aspect set A, opinion set O,

entity relation setR, and quadruple setQ with ∅.
2: T = {(ab, ac)|tageleab,ac = T, b ≤ c}
3: A = {(ab, ac)|tagrelab,ac = A, b ≤ c}
4: O = {(ab, ac)|tagpolab,ac = O, b ≤ c}
5: RTA,RTO,RAO = Head-Tail(T ,A,O, tagrel)
6: while t ∈ T , a ∈ A and o ∈ O do
7: S ← ∅
8: if Tuple(t, a) ∈ RTA then
9: if Tuple(t, o) ∈ RTO then

10: if Tuple(a, o) ∈ RAO then
11: Senti = {tagpolt,a , tag

pol
t,o , tag

pol
a,o}. The sen-

timent label with the highest count will be
denoted as s.

12: S ← S ∪ {(t, a, o)}
13: Q ← Q∪ {(t, a, o, s)}
14: end if
15: end if
16: end if
17: end while
18: return the set T ,A,O,S,Q

Dataset
English Chinese

train valid test train valid test

h2h
T -A 2.85 2.74 2.89 3.51 3.67 3.61
T -O 2.75 2.75 2.71 3.43 3.59 3.45
A-O 2.20 2.13 2.06 2.12 2.25 2.04

t2t
T -A 3.19 3.22 3.21 3.57 3.75 3.62
T -O 3.06 2.98 3.06 3.77 3.85 3.70
A-O 2.68 2.60 2.67 3.08 3.07 3.07

Table 9: The average dependency distances of the three
sentiment elements. The terms “h2h” and “t2t” denote
the head-head and tail-tail word connections between
sentiment elements, respectively. The numbers in bold
represent the shortest distance in T -A, T -O, and A-O.

orientation of utterance does result in a slight per-
formance improvement, though the effect is not
significant (< 0.8%). It is expected, as the primary
task of a dependency parser is to establish syntac-
tic relationships between words, focusing more on
the grammatical connections between terms rather
than the deeper semantic structures between sen-
tences. Therefore, even with different conjunctions,
the parser may not differentiate significantly when
processing cross-utterance dependencies. Further-
more, these methods inevitably increase the time
required for data preprocessing or incur additional
API calls. Hence, we conclude that using “and”
for heuristic cross-utterance connections strikes a
balance between effectiveness and convenience.

E.2 Detailed Analysis
Traditional approaches to modeling syntactic de-
pendencies are confined to a single sentence. In
contrast, our method unifies the CU-Parser and
DOM to achieve joint and discriminative mod-
eling of word associations across multi-utterance.
This synergy enables two key capabilities:

• Joint Association Modeling. We extend con-
ventional sentence-level syntax parsing to cap-
ture cross-utterance links. A unified concate-
nation mechanism (Section 4.3) allows word
associations to span utterance boundaries.

• Discriminative Association Calibration.
The DOM provides utterance-level associ-
ation signals, which CU-Parser leverages
to dynamically adjust the salience of cross-
utterance word associations. Strong utterance-
level associations trigger amplified word de-
pendency connections, while weak associa-
tions suppress irrelevant dependency links, en-
suring context-aware prioritization.

To validate the effectiveness of these capabili-
ties for DiaASQ, we conducted the experiment in
Table 10. The results show a significant drop in
performance when CU-Parser is removed, confirm-
ing the effectiveness, as discussed in Section 5.4.
Similarly, removing the utterance association in-
formation from DOM also reduces performance,
highlighting the importance of the discriminative
association calibration achieved by integrating CU-
Parser with DOM. Thus, combining utterance-level
associations maximizes CU-Parser’s potential.

In summary, the core innovation lies in this
dual mechanism: CU-Parser establishes a holistic
word-level syntactic link graph, while discrimina-
tive refines it via DOM-guided attention. Together,
they transcend utterance-isolated analysis, enabling
cross-utterance word association that adaptively
emphasizes semantic and syntax relationships.

F Word Pair Dependency Distance

Table 7 reports the results of an ablation study eval-
uating the impact of syntactic features provided by
CU-Parser on the sentiment element relationship
matching subtask. Observations are:

(1) Removing syntactic features results in a no-
ticeable decline in model performance for rela-
tionship matching across both datasets, underscor-
ing their critical role, which enhances the mutual
perception of sentiment element pairs within and
across utterances.
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Model
English Chinese

T -A-O Q T -A-O Q

MARN 48.89 44.95 48.23 45.41

- w/o DOM in CU-Parser 46.99 42.35 47.26 43.74
- w/o CU-Parser 45.01 41.12 44.25 41.70

Table 10: Ablation results. “w/o CU-Parser” refers to
completely removing syntax-based MGAT, “w/o DOM
in CU-Parser” refers to the removal of the utterance-
level association information provided by DOM in the
syntax-based MGAT, while maintaining it unchanged in
the semantic-based MGAT.

(2) The most significant performance drop oc-
curs in the matching of Aspect-Opinion pairs. We
attribute this to the dependency distance, defined
as the number of connection edges between two
words in the syntactic dependency graph generated
by CU-Parser. As shown in Table 9, the average de-
pendency distance between aspect-opinion pairs is
shorter than that of other sentiment element pairs in
both the Chinese and English datasets, suggesting
that syntactic features are particularly beneficial
when dependency distances are shorter.

Moreover, we have observed that in many cases,
a target (e.g., a product) and its corresponding opin-
ion or aspect may not appear within the same syn-
tactic unit. To address this, we propose designing a
dedicated parser for syntactic relationships across
utterances to enhance the modeling of sentiment
element connections across sentences, which we
plan to explore in future work. Additionally, we
aim to investigate techniques beyond syntactic pars-
ing to identify when different parts of a sentence
or multiple sentences refer to the same entity. This
could improve the linking of targets with related
opinions or aspects, complementing syntactic meth-
ods and offering a more comprehensive approach
to extracting sentiment element pairs.

G Experiments with Other LLMs

G.1 Implement Detail and Results

To comprehensively evaluate the performance of
LLMs on the DiaASQ task, we conducted experi-
mental comparisons between MARN and various
families of LLMs (LLaMa3, Qwen4, and Mistral5).
Considering the substantial overhead of supervised
fine-tuning (SFT) (Lu et al., 2024) and to ensure

3https://huggingface.co/meta-llama
4https://huggingface.co/Qwen
5https://huggingface.co/mistralai

a fairer comparison, we compared MARN (350M
and 110M for English and Chinese datasets respec-
tively) with the LoRA (Hu et al., 2021) fine-tuning
performance of ~7B-scale LLMs and the in-context
learning (ICL) performance of ~70B-scale LLMs.
Appendix J details the prompt used for LoRA and
ICL. Table 12 gives experiment results. We can
observe that even when leveraging the full dataset
to perform LoRA fine-tuning on ~7B-scale LLMs
or utilizing larger ~70B-scale LLMs, these models
still face challenges compared to MARN.

G.2 Analysis and Further Improvement

As several existing studies have shown (Li et al.,
2024c; Zhou et al., 2024), LLMs still exhibit lim-
ited performance on complex information extrac-
tion tasks similar to the DiaASQ task. We hypothe-
size that the suboptimal performance of LLMs may
be attributed to two factors: the lack of intuitive-
ness in describing DSF and the complexity of the
output format. As shown in Table 15, the prompts
directly input the response and speaker information
from the DSF in a list format, which may hinder
the model’s ability to accurately capture the asso-
ciations between utterances, resulting in poor per-
formance. In addition, the output contains multiple
metrics, which may make the task too complex and
prevent the model from focusing solely on extract-
ing sentiment quadruples. Therefore, we tried the
following three methods to optimize the prompts
used when applying LLM:

• Prompt Optimization (PO). To make DSF
more intuitive, we optimize the prompts by
marking speaker information directly before
each utterance and appending the correspond-
ing reply information at the end of each utter-
ance, as shown in Table 16.

• Only Quadruple Extraction (OQE). We sim-
plify the extraction task by focusing exclu-
sively on extracting the sentiment quadruple.

• Code-style Prompt (Code). Inspired by pre-
vious works (Li et al., 2023b; Sainz et al.,
2024), we use code-style prompts to standard-
ize structured output and deploy the corre-
sponding code version of LLM.

The experimental results indicate that the optimized
prompts improve performance to some extent. Fur-
thermore, directly outputting the quadruple ex-
traction results and using code-style prompts also
yield notable improvements. Therefore, enhancing
LLM’s understanding of dialogue structural fea-
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Method Model
English Chinese

T A O T -A T -O A-O T -A-O Q T A O T -A T -O A-O T -A-O Q

- MARN 89.53 76.22 61.75 55.17 55.82 57.69 48.89 44.95 92.34 77.20 61.94 58.02 53.55 55.24 48.23 45.41

LoRA
LLaMa3.1-8B 74.60 51.35 44.03 43.23 40.25 35.91 27.93 25.36 77.46 68.28 51.57 41.09 34.92 31.03 28.05 27.49

Qwen2-7B 73.48 61.75 46.28 48.33 44.27 41.02 32.19 31.36 81.34 69.39 53.49 42.39 36.38 34.27 30.72 28.36
Mistral-7B 79.34 66.62 49.23 46.12 42.97 39.65 33.18 30.38 80.35 70.31 48.29 42.10 35.27 33.92 28.10 26.58

ICL
LLaMa3.1-70B 62.58 53.56 57.14 39.27 31.05 28.31 23.48 21.92 45.18 44.25 49.29 41.38 31.48 26.79 23.71 19.35

Qwen2-72B 63.46 41.36 51.26 29.93 26.09 31.29 22.76 22.36 50.98 48.55 52.05 50.55 30.32 27.71 25.37 22.11
Mistral-Large 60.33 42.11 52.93 33.47 31.84 25.31 22.34 19.59 49.27 49.02 49.34 47.28 34.29 25.38 22.93 20.49

Table 11: We compare our MARN against LLaMa, Qwen, and Mistral series LLMs, employing a 3-shot approach
for few-shot demonstrations.

Method Strategy
English Chinese

T A O T -A T -O A-O T -A-O Q T A O T -A T -O A-O T -A-O Q

- MARN 89.53 76.22 61.75 55.17 55.82 57.69 48.89 44.95 92.34 77.20 61.94 58.02 53.55 55.24 48.23 45.41

LoRA

Vanilla 73.48 61.75 46.28 48.33 44.27 41.02 32.19 31.36 81.34 69.39 53.49 42.39 36.38 34.27 30.72 28.36
PO 74.02 61.23 45.09 51.31 46.23 45.15 34.14 32.18 82.17 70.38 52.62 46.23 40.55 38.21 35.12 32.27

OQE / / / / / / / 32.89 / / / / / / / 32.65
Code 80.24 64.12 48.28 49.12 45.78 41.35 33.47 32.00 82.11 69.34 54.92 43.35 37.23 36.23 31.56 29.67

PO+OQE / / / / / / / 34.62 / / / / / / / 35.72

ICL

Vanilla 63.46 41.36 51.26 29.93 26.09 31.29 22.76 22.36 50.98 48.55 52.05 50.55 30.32 27.71 25.37 22.11
PO 65.74 43.21 55.39 34.34 32.35 35.04 27.45 24.10 49.23 51.09 53.46 52.14 34.92 31.39 28.35 26.05

OQE / / / / / / / 24.35 / / / / / / / 24.01
Code 64.66 43.38 54.38 32.10 30.33 34.36 25.99 23.93 49.39 50.11 52.59 51.63 33.29 30.81 26.35 24.29

PO+OQE / / / / / / / 26.39 / / / / / / / 26.94

Table 12: We compare the performance of MARN with the results of LLMs employing different optimization
strategies. Specifically, the LLMs utilizing the “PO” and “OQE” strategies are based on Qwen2-7B-Instruct, while
the LLM employing the “Code” strategy is based on Qwen2.5-Coder-7B-Instruct.

tures or refining the output format emerges as a
promising research direction, which will also be
the focus of our future work.

H Details about Multi-level Data
Augmentation

H.1 Implement Detail

In our experiments, the LLM used for data aug-
mentation was ChatGPT. The total number of aug-
mented instances, k, was set to 6, indicating that
both word-level and utterance-level augmentation
underwent 3 rounds each. For each round, 50% of
the utterances were randomly selected for augmen-
tation, and all the scores are averaged values over
five runs under different random seeds.

H.2 Prompt for Data Augmentation

Prompt for Word-level Augentation
Please replace the key backbone

words in the sentence with their

synonyms while keeping the overall

meaning and the other words

unchanged:

{Utterance}

Prompt for Utterance-level Augentation
Please help me rephrase the

following sentence while preserving

its original meaning:

{Utterance}

H.3 Detailed Analysis

This section conducts a more detailed analysis to
validate the efficacy of our data augmentation strat-
egy and explore the underlying reasons for its ef-
fectiveness. Specifically, it includes an analysis of
the impact of the JS divergence in utterance associ-
ations, as well as the influence of data distribution
and its differences on the results.

H.3.1 The Impact of JS Divergence

Data augmentation primarily strengthens the as-
sociations between utterances, and we use JS di-
vergence to quantify the difference in utterance
associations between the augmented data and the
corresponding original data. A larger JS divergence
indicates that the model finds it more challeng-
ing to align the utterance associations of the aug-
mented data with those of the original data in simi-
lar contexts, signaling computational instability at
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Dataset Augment Data
English (Batch of Train) Chinese (Batch of Train) English (Test) Chinese (Test)

BoW TF-IDF Cos_Sim BoW TF-IDF Cos_Sim BoW TF-IDF Cos_Sim BOW TF-IDF Cos_Sim

Batch 1
1st Performance 3rd 2nd 3rd 3rd 3rd 3rd 2nd 3rd 2nd 1st 2nd 2nd
2nd Performance 2nd 3rd 2nd 2nd 2nd 2nd 3rd 1st 3rd 3rd 3rd 3rd
3rd Performance 1st 1st 1st 1st 1st 1st 1st 2nd 1st 2nd 1st 1st

Batch 2
1st Performance 3rd 3rd 2nd 3rd 3rd 3rd 2nd 3rd 3rd 2nd 3rd 2nd
2nd Performance 2nd 2nd 1st 2nd 2nd 2nd 1st 1st 2nd 1st 2nd 1st
3rd Performance 1st 1st 3rd 1st 1st 1st 3rd 2nd 1st 3rd 1st 3rd

Batch 3
1st Performance 3rd 3rd 3rd 3rd 3rd 3rd 3rd 2nd 1st 2nd 1st 2nd
2nd Performance 2nd 2nd 2nd 2nd 2nd 2nd 1st 3rd 3rd 3rd 2nd 3rd
3rd Performance 1st 1st 1st 1st 1st 1st 2nd 1st 2nd 1st 3rd 1st

Table 13: The similarity rank between the augmented data with original data and test set. The “Augment Data”
column represents the performance ranking of the model on the quadruple extraction task after training with data
augmented three times per batch. The numbers in the table indicate the ranking of the similarity between the
augmented data and both the original data and the test data, computed after three augmentation steps for each batch.

the level of utterance associations. Specifically, we
conducted the following experiment to analyze the
specific impacts of this difference on model per-
formance: We randomly selected 20% of the data
from the training set three times to simulate three
batch low-resource conditions and trained using
this data to obtain preliminary test results. Subse-
quently, by varying the temperature parameter of
the LLMs three times, we generated three sets of
augmented data based on the selected data of each
batch. Using the trained model, we then calculated
the average JS divergence between the training data
and the augmented data of the association of ut-
terances. The augmented data was then merged
with the original data, and the combined dataset
was used for retraining from scratch. Finally, the
model’s performance trained on the merged dataset
was evaluated as shown in the Figure 8. We use
Min Div, Mid Div, and Max Div to represent the
average JS divergence rank between the utterance
association matrices of the augmented data and the
original data after each of the three data augmen-
tation processes for each batch. Observations are:
(1) Due to multi-granularity data augmentation, the
training processes that utilized augmented data con-
sistently demonstrated improved performance. (2)
Overall, the greater the difference in JS divergence
between the augmented data and the original data’s
utterance associations, the more significant the im-
provement (performance increases as the JS diver-
gence increases). We further infer that when the
JS divergence between the original and augmented
data is larger, the augmented data better simulates
a broader range of real-world dialogue scenarios.
This compensates for the shift in data distribution
and underrepresentation caused by the reduced size
of the original data in low-resource settings.

However, it is important to note that, since the
prompts used for LLMs during the data augmenta-
tion process already constrain the output to follow
the original dialogue information, the augmented
data does not deviate excessively from the real
distribution. In other words, this guides us to en-
sure that, during the data augmentation process,
the strategy should focus on increasing the JS di-
vergence while maintaining the overall semantic
consistency of the dialogue, avoiding significant
catastrophic deviation from the original data.

H.3.2 Generalization Ability Verification
To demonstrate that data augmentation improves
the model’s generalization ability rather than
merely overfitting the test set, we conducted the
experiment outlined in Table 13. Specifically, we
employed three metrics: Bag of Words (BoW), TF-
IDF, and cosine similarity of word embeddings6 to
calculate the similarity between the augmented data
with original and test data. For each augmented
sample, we matched it with the most similar in-
stance from the corresponding dataset and com-
puted the average similarity. The results reveal
that as the similarity between the augmented data
and the original data decreases, the performance
improves, which aligns with the conclusion in Ap-
pendix H.3.1. More importantly, data that is more
similar to the test set does not necessarily lead
to better performance. That is, better results can
be achieved without the augmented data closely
matching the test set. This suggests that the per-
formance improvement due to data augmentation
is not because the augmented data is more simi-
lar to the test set, but because data augmentation
effectively enhances the generalization capability.

6https://nlp.stanford.edu/projects/glove/
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:    Then there still should be more people buying pro.

:    This is our loser mentality, still have no money ... It does not mean that you are a loser, but it is a loser mentality. 

:    The battery is too small.

:     ... Since the first generation of max (xsmax), its sales have always been higher. So this year is still the same.

:    ... what does it have to do with the loser mentality ? ? ? ...

:    ... Then what about the mini's battery?

...
...

Dialogue

DSF+DSF'

MARN
H2DT

✅ ✅

✅

(pro, battery, too small, neg) (max, sales, higher, pos)Gold

(1)

:    Blogger , why does the 12pro consume so much power ?

:    I advise you ... My 11u battery life is poor , I really want to smash it when I charge it three times a day .

:    2k+120 high refresh rate . No wonder consume power quickly.

:     Large screen , high resolution ...

:    Ready to change to 12 , what do you say ?

:    How about Xiaomi 12 , I want to change mine .
Dialogue

:    I was so scared that I adjusted the refresh rate to 60 .

DSF+DSF'

MARN
H2DT

✅

❌

✅

(12pro, refresh rate, high, pos) (12pro, screen, large, pos)Gold (12pro, resolution, high, pos) (11u, battery life, poor, neg)

(2)

STS

✅ ✅

✅❌ ❌

❌

STS ✅❌ ❌

DMCA ✅❌ ❌

DMCA ✅ (pro, price, loser mentality, neg)❌

✅

✅

✅❌

✅

(pro, sales, higher, pos)❌

Figure 7: Example cases demonstrating the ground truth labels alongside the predictions generated by three baseline
models and our proposed model. Arrows represent reply relationships. Utterances belonging to the same speaker
are marked in the same color, such as u1, u3, and u6 in case 1.
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Figure 8: The model performance across four condi-
tions from data augmentation: w/o Aug represents the
method with no augmentation. Min Div refers to the
augmentation with the smallest JS-divergence in each
batch, indicating minimal change in utterance associa-
tions. Mid Div corresponds to the augmentation with
moderate divergence in each batch, while Max Div re-
flects the largest divergence in each batch, introducing
the most significant variation in utterance associations
compared to the original.

I Case Study

As shown in Figure 7, we present two examples to
help better understand our proposed model. Obser-
vations are:

(1) We provide visualization of the association
degree (DSF+DSF′) between u1 and other utter-
ances in two cases. It can be found that utterances
with shared sentiment elements are given higher
attention weights. For example, in case (1), u1
and u5’s discussion target is “pro”, so they are as-
signed the highest association value. Although u2
and u8 are also replying to u1, u2’s topic is not
discussing the sentiment element related to u1, and
u8 is discussing another target “max”, so they are
both assigned lower attention values.

(2) We show the sentiment quadruple extraction
cases of MARN and the other three baselines. We
present the results of sentiment quadruple extrac-
tion for MARN and three baseline models. It is
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observed that when all sentiment elements of a
quadruple are contained within a single utterance,
all models achieve accurate extraction. However,
when sentiment elements are dispersed across mul-
tiple utterances, only MARN successfully extracts
all elements of the quadruple. We infer this is due
to the model’s ability to handle complex contextual
semantics. Specifically, when the context is more
intricate, other models may be misled by irrele-
vant utterances or struggle to focus on sentiment-
relevant utterances. For instance, in case (1), the
DMCA model erroneously associates the target
“pro” from utterance u1 with an unrelated opinion
“loser mentality” presented in utterance u2. At the
same time, the H2DT overlooks sentiment-related
terms such as “battery” and “too small” in utterance
u5. Thus, MARN demonstrates a robust ability to
recognize and filter out key information even in
complex contextual settings.

J Prompt for LLM Baselines

In this section, as shown in the following three ta-
bles, we provide the prompts used with LLM in the
baseline, which are divided into three parts: zero-
shot prompts, few-shot prompts, and optimized
prompts that make DSF more intuitive for the Di-
aASQ task. For the few-shot setting, we randomly
select three examples from the training set to illus-
trate in-context learning. The ICL-based method
and the LoRA-based fine-tuning method use the
same few-shot prompt. We set the temperature to
0 for all LLMs across different experiments. To
assist the model in understanding the task objec-
tives and dialogue structure features, we provide
detailed guidelines for each sentiment element and
offer an in-depth explanation of the definitions for
each feature included in the original data.
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ZERO-SHOT

Q: Given a set of sentiment elements: {“Target”, “Aspect”, “Opinion”, “Sentiment”}, where the meaning of each sentiment
element is as follows:

(1) Target: The entity or subject being evaluated.

(2) Aspect: A specific feature or aspect of the target.

(3) Opinion: An evaluative or opinionated term related to the target or aspect.

(4) Sentiment: The overall evaluation or sentiment orientation (positive, negative, neutral) expressed.

Your task is to perform sentiment quadruple extraction at the dialogue level. The input is given in JSON format with the following
key components:

(1) Sentences: A list of utterances in the dialogue, where each entry corresponds to an individual utterance.

(2) Replies: An array indicating the reply relationships, where each number corresponds to the index of the reply discourse.

(3) Speakers: An array indicating the speaker for each utterance, where each number represents the speaker index.

Please extract the sentiment elements from the conversation, identify pairs of these elements, and construct the sentiment
quadruples. The output should be formatted in JSON as follows:

{
"Targets": [List of Targets],
"Aspects": [List of Aspects],
"Opinions": [List of Opinions],
"Target -Aspect": [List of (Target , Aspect)],
"Aspect -Opinion": [List of (Aspect , Opinion))],
"Target -Opinion": [List of (Target , Opinion))],
"Quadruples": [List of (Target , Aspect , Opinion , Sentiment))],

}

DIALOGUE:
{

"Sentences": ["What aspects of the configuration of the big detective ...",
...,
"To beat the Honor 60Pro casually"],

"Replies": [-1,0,1,2,0,4],
"Speakers": [0,1,2,3,4,0]

}

ANSWER:

Table 14: Zero-shot prompts for DiaASQ.
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FEW-SHOT

Q: Given a set of sentiment elements: {“Target”, “Aspect”, “Opinion”, “Sentiment”}, where the meaning of each sentiment
element is as follows:

(1) Target: The entity or subject being evaluated.

(2) Aspect: A specific feature or aspect of the target.

(3) Opinion: An evaluative or opinionated term related to the target or aspect.

(4) Sentiment: The overall evaluation or sentiment orientation (positive, negative, neutral) expressed.

Your task is to perform sentiment quadruple extraction at the dialogue level. The input is given in JSON format with the following
key components:

(1) Sentences: A list of utterances in the dialogue, where each entry corresponds to an individual utterance.

(2) Replies: An array indicating the reply relationships, where each number corresponds to the index of the reply discourse.

(3) Speakers: An array indicating the speaker for each utterance, where each number represents the speaker index.

Please extract the sentiment elements from the conversation, identify pairs of these elements, and construct the sentiment
quadruples. The output should be formatted in JSON as follows:

{
"Targets": [List of Targets],
"Aspects": [List of Aspects],
"Opinions": [List of Opinions],
"Target -Aspect": [List of (Target , Aspect)],
"Aspect -Opinion": [List of (Aspect , Opinion)],
"Target -Opinion": [List of (Target , Opinion)],
"Quadruples": [List of (Target , Aspect , Opinion , Sentiment)],

}

DIALOGUE:

{
"Sentences": ["I hope that x80pro will not use Orion anymore",

...,
"At present , X80 will only use the brother and Qualcomm"],

"Replies": [-1,0,1,2,0,0],
"Speakers": [0,1,0,1,2,3]

}

ANSWER:
{

"Targets": ["x80pro", "X70Pro", ... , "X80"],
"Aspects": ["charging", "price", ... , "signal"],
"Opinions": ["attracted", "poor", ... , "not satisfied"],
"Target -Aspect": [("X70Pro", "charging"), ("fruit", "price"), ...],
"Aspect -Opinion": [("charging", "always been bad"), ...],
"Target -Opinion": [("X70Pro", "not satisfied"), ...],
"Quadruples": [("x-series", "charging", "always been bad", "neg") ,...],

}

...
DIALOGUE:
{

"Sentences": ["What aspects of the configuration of the big detective ...",
...,
"To beat the Honor 60Pro casually"],

"Replies": [-1,0,1,2,0,4],
"Speakers": [0,1,2,3,4,0]

}

ANSWER:

Table 15: Few-shot prompts for DiaASQ.
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OPTIMIZED PROMPT FOR DIAASQ

Q: Given a set of sentiment elements: {“Target”, “Aspect”, “Opinion”, “Sentiment”}, where the meaning of each sentiment
element is as follows:

(1) Target: The entity or subject being evaluated.

(2) Aspect: A specific feature or aspect of the target.

(3) Opinion: An evaluative or opinionated term related to the target or aspect.

(4) Sentiment: The overall evaluation or sentiment orientation (positive, negative, neutral) expressed.

Your task is to perform sentiment quadruple extraction at the dialogue level. Please extract the sentiment elements from the
conversation, identify pairs of these elements, and construct the sentiment quadruples. The output should be formatted in JSON
as follows:

{
"Targets": [List of Targets],
"Aspects": [List of Aspects],
"Opinions": [List of Opinions],
"Target -Aspect": [List of (Target , Aspect)],
"Aspect -Opinion": [List of (Aspect , Opinion)],
"Target -Opinion": [List of (Target , Opinion)],
"Quadruples": [List of (Target , Aspect , Opinion , Sentiment)],

}

DIALOGUE:

{
...,
"Utterance_i": "Speaker j: {Utterance_context} (reply to utterance_k)",
...

}

ANSWER:
{

"Targets": ["x80pro", "X70Pro", ... , "X80"],
"Aspects": ["charging", "price", ... , "signal"],
"Opinions": ["attracted", "poor", ... , "not satisfied"],
"Target -Aspect": [("X70Pro", "charging"), ("fruit", "price"), ...],
"Aspect -Opinion": [("charging", "always been bad"), ...],
"Target -Opinion": [("X70Pro", "not satisfied"), ...],
"Quadruples": [("x-series", "charging", "always been bad", "neg") ,...],

}

...
DIALOGUE:
{

...,
"Utterance_i": "Speaker j: {Utterance_context} (reply to utterance_k)",
...

}

ANSWER:

Table 16: Optimized Prompt for DiaASQ.

14057


