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Abstract

Text-based Large Language Models (LLMs)
have recently gained significant attention, pri-
marily for their capabilities in text-based inter-
actions. However, natural human interaction
often relies on speech, highlighting the need
for voice-based models. In this context, Speech
Language Models (SpeechLMs)—foundation
models designed to understand and generate
speech—emerge as a promising solution for
end-to-end speech interaction. This survey of-
fers a comprehensive overview of recent ap-
proaches to building SpeechLMs, outlining
their core architectural components, training
methodologies, evaluation strategies, and the
challenges and potential directions for future
research in this rapidly advancing field.1

1 Introduction

Text-based Large Language Models (LLMs) have
demonstrated remarkable capabilities in generating
text and performing a wide array of natural lan-
guage processing tasks (Zhao et al., 2023; Minaee
et al., 2024), serving as powerful foundation mod-
els for AI language understanding and generation.
Their success has also spurred numerous applica-
tions in other domains, yet the reliance solely on
text-based modalities presents a significant limi-
tation. This leads to the development of speech-
based generative models, which allow to interact
with humans more naturally and intuitively.

Given the extensive mutual information between
text and speech, it is natural to modify existing
LLMs to enable speech interaction capabilities.
A straightforward approach is to adopt an “Auto-
matic Speech Recognition (ASR) + LLM + Text-
to-Speech (TTS)" framework (Figure 1a) (Huang
et al., 2024b; Shen et al., 2024). In this setup,
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the user’s spoken input is first converted into text
by the ASR module, the LLM then generates a
text response based on this transcription, and the
TTS module transforms the text response back into
speech. However, this naive solution mainly suffers
from the following three problems. 1) Informa-
tion loss. Speech signals not only contain seman-
tic information (i.e., the meaning of the speech)
but also paralinguistic information (e.g., pitch, tim-
bre, tonality, etc.). Putting a text-only LLM in the
middle will cause the complete loss of paralinguis-
tic information in the input speech (Zhang et al.,
2023a). 2) Significant latency. Combining ASR,
LLM, and TTS leads to considerable delays due
to their complex structural designs. (Xie and Wu,
2024a; Défossez et al., 2024; Fang et al., 2024). For
instance, ASR often includes an additional text de-
coder (Radford et al., 2023; Le et al., 2020), which
increases computational demands. 3) Cumulative
error. A staged approach like this can easily lead
to cumulative errors throughout the pipeline, partic-
ularly during the transition between ASR and LLM
(Fathullah et al., 2024; Tang et al., 2024).

The limitations of this naive framework have led
to the development of Speech Language Models
(SpeechLMs, Figure 1b). Specifically, SpeechLMs
encode speech waveforms directly into speech to-
kens (Section 3.1). This enables them to cap-
ture both semantic and paralinguistic information
from audio, thereby minimizing information loss.
SpeechLMs then model these tokens autoregres-
sively (Section 3.2), without solely relying on text
input. This allows them to use the additional par-
alinguistic information to generate more expressive
and nuanced speech. Finally, the generated tokens
are synthesized back to speech (Section 3.3). This
integrated approach eliminates the need to chain
three separate modules, significantly reducing la-
tency. By working directly with the encoded speech
tokens, SpeechLMs effectively mitigate the cumu-
lative errors, as their training is integrated with
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Figure 1: Architectures of the “ASR + LLM + TTS" framework and a SpeechLM. SpeechLMs are designed with
end-to-end speech interaction capabilities, complemented by optional cross-modality interaction capabilities.

the speech encoding, whereas the training of the
three modules is completely independent in the
naive framework. Furthermore, SpeechLMs have
the potential to enable real-time voice interactions,
allowing the model to be interrupted by users or to
speak simultaneously with them, mimicking natu-
ral human conversation patterns more closely.

In this survey, we provide the first thorough
overview of recent advancements in SpeechLMs
and introduce a comprehensive taxonomy (Figure
2). We explore the various components that con-
stitute their architecture (Section 3) and the train-
ing recipes (Section 4) involved in their develop-
ment. we aim to elucidate the current state of the
field by analyzing these models from the above
perspectives. We then classify metrics to evaluate
SpeechLMs (Section 5) and discuss the challenges
and future directions in this area, hoping to provide
valuable insights that could drive further advance-
ments in SpeechLM technology (Section 6).

2 Problem Formulation

This section provides the formal definition
of Speech Language Models (SpeechLMs).
SpeechLMs are autoregressive foundation mod-
els that perform end-to-end speech interaction2.
They leverage contextual understanding for coher-
ent sequence generation, enabling various down-
stream tasks through speech modality. While
SpeechLMs are required to perform speech inter-

2We are aware of similar concepts such as Vision Language
Models (VLMs), which typically refer to models that process
images as input and generate text as output. In contrast, we
define SpeechLMs specifically as models capable of both
receiving and generating speech.

actions (speech-in-speech-out), they can also inte-
grate text, supporting cross-modal operations such
as speech-in-text-out and vice versa. This distin-
guishes them from traditional text-based language
models (TextLMs), where the only modality being
processed within the model is text.

We offer a unified framework in which
SpeechLMs can process and generate speech data,
text data, or even interleaved speech and text
data. Specifically, an audio waveform a =
(a1, a2, . . . , aQ) consists of a sequence of audio
samples ai ∈ R of length Q, where 1 ≤ q ≤
Q. Similarly, a text span t = (t1, t2, . . . , tK)
consists of a sequence of text tokens tj (word,
subword, character, etc.) of length K. Let
M = (M1,M2, . . . ,MN ) denote a multimodal se-
quence of length N , where each element Mi ∈
{ai, tj}. We define Min = (M in

1 ,M in
2 , . . . ,M in

Nin
)

as the input multimodal sequence and Mout =
(Mout

1 ,Mout
2 , . . . ,Mout

Nout
) as the output multimodal

sequence, where Nin ≥ 0 and Nout ≥ 0. Then, A
SpeechLM parameterized by θ can then be repre-
sented as: Mout = SpeechLM(Min; θ).

3 Components in SpeechLM

SpeechLM consists of three key components:
speech tokenizer, language model, and token-to-
speech synthesizer (vocoder) (see Figure 1). The
speech tokenizer converts audio waveforms into
tokens, which the language model uses for next-
token prediction. The vocoder then converts
these predicted tokens back into audio waveforms.
This three-stage architecture enables autoregressive
speech modeling using traditional language model
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architectures like decoder-only transformers. Table
1 shows common choices for the three SpeechLM
components in various SpeechLM papers.

3.1 Speech Tokenizer

Speech tokenizer is the first component in
SpeechLMs, which converts audio waveforms into
tokens. It processes audio segment by segment,
producing either discrete tokens (using indices)
or continuous tokens (using embeddings). Both
token types can serve as input for language mod-
els in autoregressive modeling, with the main goal
of capturing essential audio features while reduc-
ing dimensionality. This section classifies speech
tokenizers by how they model raw audio.

3.1.1 Semantic Understanding Objective
Speech tokenizers with a semantic understanding
objective convert speech waveforms into tokens
that accurately capture the meaning of the speech.
These tokenizers extract semantic features from the
waveforms, which enhances tasks like ASR.

A semantic understanding speech tokenizer typ-
ically comprises a speech encoder and a quan-
tizer. The speech encoder (fE(·)) transforms
waveform input into continuous embeddings (v =
fE(a; θfE )), where v = (v1, v2, . . . , vP ). A quan-
tizer (d(·)) can be added to convert these embed-
dings into discrete indexes. The speech tokens
s = (s1, s2, . . . , sP ) can be derived either from the
original waveform or the embeddings: s = d(v; θd)
or s = d(a; θd) for discrete tokens, or s = v for
continuous tokens. These tokens can then be used
as target labels for training the tokenizer or subse-
quent language models.

The key design choices lie in how to effectively
encode (and quantize) speech into tokens. Wav2vec
2.0 (Baevski et al., 2020b) combines convolutional
encoding with product quantization (Jegou et al.,
2010) for waveform discretization, using masked
contrastive learning. W2v-BERT (Chung et al.,
2021) extends this by adding the Masked Language
Modeling (MLM) loss (Devlin et al., 2019). Hu-
BERT (Hsu et al., 2021) uses k-means clustering
to derive speech units and uses MLM loss in train-
ing. Google USM (Zhang et al., 2023b) incorpo-
rates text-injection loss (Chen et al., 2022b) to bet-
ter align text and speech representations. WavLM
(Chen et al., 2022a) introduces speech denoising
during pre-training, proving beneficial for both se-
mantic tasks (ASR, TTS) and non-semantic tasks
(speaker verification, speech separation).

3.1.2 Acoustic Generation Objective
Speech tokenizers with an acoustic generation ob-
jective focus on preserving acoustic features for
high-quality speech synthesis. Their architecture
consists of an encoder fE(·), quantizer d(·), and
decoder fD(·). The encoder and quantizer convert
waveforms into tokens, while the decoder recon-
structs these tokens back into speech waveforms,
expressed as â = fD(s; θfE ). This approach priori-
tizes acoustic characteristics over semantic content,
optimizing for speech (re)synthesis tasks.

Neural audio codecs primarily serve as acous-
tic generation speech tokenizers (Zeghidour et al.,
2021; Défossez et al., 2023). They use deep neu-
ral networks to compress audio into discrete to-
kens. Their encoder-quantizer-decoder structure
works by: (1) encoding audio into latent represen-
tations, (2) discretizing these typically through Vec-
tor Quantization (VQ) (Van Den Oord et al., 2017)
or Residual Vector Quantization (RVQ) (Zeghidour
et al., 2021), and (3) decoding tokens back to audio.
Therefore, the encoder and quantizer components
function as the speech tokenizer.

3.1.3 Mixed Objective
Speech tokenizers with a mixed objective aim to
balance both semantic understanding and acous-
tic generation. Rather than creating new architec-
tures, most implementations modify acoustic tok-
enizers to incorporate semantic information. For
example, SpeechTokenizer (Zhang et al., 2024e)
uses RVQ-GAN (Défossez et al., 2023; Zeghidour
et al., 2021) architecture and distills HuBERT’s
(Hsu et al., 2021) semantic tokens into its first RVQ
layer, while Mimi (Défossez et al., 2024) distills
WavLM tokens (Chen et al., 2022a) into a single
VQ layer alongside the RVQ module.

3.2 Language Model

Following TextLMs’ success (Achiam et al., 2023;
Dubey et al., 2024), SpeechLMs typically adopt
transformer or decoder-only architectures for au-
toregressive speech generation. Formally, a text-
based decoder-only transformer language model
comprises: (1) An embedding matrix Et ∈ R|Vt|×h,
where |Vt| is vocabulary size and h is hidden di-
mension. (2) L transformer decoder blocks De =
{De1, De2, . . . , DeL}. (3) Output embedding ma-
trix E′

t ∈ Rh×|Vt|. Then, the language model can
be expressed as tout ∼ LM(tin, (Et,De, E′

t)).
To adapt the language model for speech gener-

ation, the text tokenizer can be replaced with a
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speech tokenizer. For discrete tokens, the text
embedding matrix Et ∈ R|Vt|×h becomes speech
embedding matrix Es ∈ R|Vs|×h, where |Vs| is
the speech tokenizer vocabulary size. Similarly,
output embedding changes from E′

t ∈ Rh×|Vt| to
E′

s ∈ Rh×|Vs|. The language model is thus repre-
sented as sout ∼ LM(sin, (Es,De, E′

s)).
Since SpeechLMs inherit the language model

architecture from TextLMs, it is possible for them
to handle both text and speech modalities. The
common approach is to expand the TextLM’s
vocabulary to include both text and speech to-
kens by appending the speech embedding matrix
to the text embedding matrix, creating Em ∈
R(|Vt|+|Vs|)×h. This allows the language model to
process combined token sequences m as mout ∼
LM(min, (Ej ,De, E′

j)), enabling joint text-speech
applications. Alternatively, when using continu-
ous tokens, the speech embeddings are fed directly
into the language model without changing the em-
bedding layer architecture.

Researchers predominantly favor the joint mod-
eling approach for two main reasons. First, in-
tegrating both speech and text tokens enables the
model to leverage pre-trained text language models,
effectively transferring text-based knowledge and
capabilities to speech-related tasks. Second, main-
taining the ability to process text tokens ensures
that the model can still perform text generation,
which is crucial for developing omni-modal LLMs
such as VITA (Fu et al., 2024) and EMOVA (Chen
et al., 2024a). However, there are also motivations
for developing models that solely include speech
tokens. Such models aim to develop textless speech
language models, which focus on building speech
intelligence without relying on textual supervision
or guidance.

3.3 Token-to-Speech Synthesizer (Vocoder)
The token-to-speech synthesizer (vocoder) converts
generated speech tokens back into audible wave-
forms. This process reverses the speech tokeniza-
tion and can be expressed as a = V o(s; θVo), where
V o is the vocoder model with parameters θVo .

SpeechLM vocoder can operate through two
pipelines: direct synthesis and input-enhanced
synthesis. Direct synthesis converts speech to-
kens straight into audio waveforms. For example,
(Polyak et al., 2021) adapts the HiFi-GAN (Kong
et al., 2020) architecture and takes speech tokens
as inputs. Input-enhanced synthesis uses an ad-
ditional module to transform tokens into continu-

ous latent representations before vocoding (Anas-
tassiou et al., 2024; Betker, 2023). For exam-
ple, CosyVoice (Du et al., 2024b) uses Condi-
tional Flow-Matching (CFM) to convert tokens
to mel-spectrograms before HiFi-GAN vocoding.
While direct synthesis offers simplicity and speed
advantages, the choice between these pipelines
largely depends on the input token type: acous-
tic tokens work well with direct synthesis due to
their sufficient acoustic information, whereas se-
mantic tokens, lacking fine acoustic details (espe-
cially in higher frequencies), benefit from being
enhanced into acoustic-rich representations like
mel-spectrograms before final synthesis.

Vocoders can be categorized by architectural
choice. Below, we summarize those commonly
used in SpeechLM development. See Appendix B
for additional types.

3.3.1 GAN-based Vocoder
Generative Adversarial Networks (GANs) are
widely used as SpeechLM vocoders for their fast,
high-quality speech synthesis (Kumar et al., 2019;
Kong et al., 2020; Polyak et al., 2021). GANs
consist of a generator that produces realistic audio
from noise or input features and a discriminator
that assesses the authenticity of the generated au-
dio against real samples. GAN-based vocoders
incorporate inductive biases for generating audio
waveforms. MelGAN (Kumar et al., 2019) uses
residual blocks with dilations in the generator to
capture long-range correlations in audio and in-
troduces a multi-scale discriminator to handle dif-
ferent audio frequency ranges. HiFi-GAN (Kong
et al., 2020) extends this with a multi-period dis-
criminator to model diverse periodic patterns in
audio waveforms. Fre-GAN (Kim et al., 2021b)
employs the Discrete Wavelet Transform (DWT) to
downsample and learn spectral distributions across
frequency bands, offering an efficient alternative
to Average Pooling (AP) by decomposing signals
into low-frequency and high-frequency sub-bands.
BigVGAN (Lee et al., 2023) introduces a snake
activation function and anti-aliased representation
to minimize high-frequency artifacts in synthesized
audio. For common loss functions for GAN-based
Vocoders, readers can refer to Appendix A due to
space limits.

4 Training Recipes

This section summarizes common training recipes
in recent SpeechLM papers, covering the features
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modeled, techniques employed in each training
stage, and different speech generation paradigms.

4.1 Features Modeled

This section discusses the different features out-
putted by speech tokenizers and modeled by
SpeechLMs. These features represent different
aspects of speech waveforms and determine the
performance of SpeechLMs.

4.1.1 Discrete Features
Discrete features (or discrete tokens) are quan-
tized speech representations in the form of distinct,
countable tokens, derived through encoding and
quantization. SpeechLMs commonly use these fea-
tures because their modeling process is the same as
that of text tokens in a TextLM.

Most SpeechLMs use semantic tokens (gener-
ated by semantic understanding tokenizers, Section
3.1.1) to represent speech, as they capture crucial
contextual information. GSLM (Lakhotia et al.,
2021), the first SpeechLM, evaluates three tok-
enizers—CPC (Oord et al., 2018), wav2vec 2.0
(Baevski et al., 2020b), and HuBERT (Hsu et al.,
2021)—and concludes HuBERT performs best on
tasks like speech resynthesis and generation. Many
works adopt HuBERT as the speech tokenizer (Has-
sid et al., 2024; Nguyen et al., 2024; Zhang et al.,
2023a). AudioPaLM (Rubenstein et al., 2023)
compares w2v-bert (Chung et al., 2021), USM-
v1 (Zhang et al., 2023b), and USM-v2 (Rubenstein
et al., 2023), concluding USM-v2 excels in ASR
and Speech Translation (ST) tasks.

While semantic tokens generate semantically
meaningful speech, they lack expressive elements
like prosody and timbre (Nguyen et al., 2023a,
2024). To address this, paralinguistic tokens can
be added to capture expressive features. pGSLM
(Kharitonov et al., 2022) integrates prosody fea-
tures like fundamental frequency (F0) and unit du-
ration along with HuBERT tokens, using a multi-
stream transformer to predict all tokens. Simi-
larly, SPIRIT-LM (Nguyen et al., 2024) comple-
ments HuBERT tokens with pitch and style tokens
(Duquenne et al., 2023), improving expressiveness
without compromising semantic understanding.

Acoustic tokens, derived from neural audio
codec models (Section 3.1.2), aim to capture acous-
tic features for high-fidelity speech reconstruction.
For instance, Viola (Wang et al., 2024c) handles
ASR, TTS, and Machine Translation using codec
tokens, while Parrot (Meng et al., 2024) leverages

VQ-VAE (Van Den Oord et al., 2017) tokens to
model dual-channel spoken dialogue.3

4.1.2 Continuous Features
Continuous features are unquantized, real-valued
speech representations on a continuous scale, such
as spectral representations (e.g., mel-spectrograms)
or latent representations from neural networks.
Spectron (Nachmani et al., 2024) predicts spec-
trograms frame-by-frame for speech continuation.
Mini-Omni (Xie and Wu, 2024a) and SLAM-Omni
(Chen et al., 2024b) use intermediate represen-
tations from a frozen Whisper encoder, while
LauraGPT (Du et al., 2023) employs a co-trained
audio encoder and language model to extract la-
tent speech representations. Continuous features
capture fine-grained speech details often lost in dis-
cretization but require modifying traditional text-
based language model pipelines. Additionally, they
demand more storage than discrete features.

4.2 Training Stages

Training a SpeechLM involves three components:
speech tokenizer, language model, and vocoder.
This section focuses on the primary techniques
used in training the language model, as the lan-
guage model plays a crucial role in generat-
ing speech continuations, which are central to
SpeechLM. We divide the SpeechLM language
model training process into three stages: pre-
training, instruction tuning, and post-alignment.

4.2.1 Language Model Pre-training
Pre-training in SpeechLMs is crucial for generat-
ing coherent and contextually relevant speech. It
involves training the model to autoregressively pre-
dict the next token using a large corpus of speech
data, thereby learning statistical patterns and de-
pendencies to generate speech based on context.

Training data. SpeechLMs pre-training utilizes
large-scale open-source speech datasets, including
those for ASR (Panayotov et al., 2015; Kahn et al.,
2020; Wang et al., 2021a), TTS (Zen et al., 2019),
ST (Jia et al., 2022; Wang et al., 2021a), podcasts
(Clifton et al., 2020), and dialogues (Cieri et al.,
2004). Some datasets contain only speech, while
others include both speech and text transcripts, en-
abling models to learn the relationship between
spoken and written language. Table 2 lists popular
datasets used in SpeechLMs pre-training.

3More discussions on discrete features are in Appendix C.
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Cold Initialization. Some SpeechLMs use
cold initialization during pre-training, where model
parameters are randomly initialized. The first
SpeechLM, GSLM (Lakhotia et al., 2021) trained a
transformer (Vaswani et al., 2017) from scratch as
the language model and compared tokens from dif-
ferent speech tokenizers. They found that HuBERT
(Hsu et al., 2021) outperformed CPC (Oord et al.,
2018) and wav2vec 2.0 (Baevski et al., 2020b) in
speech understanding and generation. SUTLM
(Chou et al., 2023) also employed a transformer
and explored joint modeling of speech and text
using four methods: speech-only, text-only, con-
catenated speech-text, and alternating (interleav-
ing) speech-text (Table 3). Alternating speech-text
performs the best in their cross-modal evaluations.

Some models use non-standard transformer ar-
chitectures and are usually trained from scratch
when they differ significantly from standard trans-
formers or TextLM architectures. For instance,
pGSLM (Kharitonov et al., 2022) introduces a
multi-stream transformer language model (MS-
TLM) to simultaneously generate speech units, du-
ration, and pitch embeddings. dGSLM (Nguyen
et al., 2023b) presents a dialogue transformer lan-
guage model (DLM) for jointly modeling dialogue
speech data from two speakers. LSLM (Ma et al.,
2024) integrates a streaming self-supervised learn-
ing (SSL) encoder with an autoregressive token-
based TTS model to enable SpeechLMs to listen
while speaking.

Continued Pre-Training. Continued pre-
training starts with pre-trained TextLM weights,
adapting them for speech modeling. This lever-
ages linguistic knowledge in TextLMs for more
efficient SpeechLM training. TWIST (Hassid et al.,
2024) showed that TextLMs like OPT (Zhang
et al., 2022b) and LLaMA (Touvron et al., 2023a)
improve convergence and speech understanding,
outperforming cold initialization. AudioPaLM
(Rubenstein et al., 2023) demonstrated that larger
TextLM checkpoints (e.g., PaLM, PaLM-2 (Chowd-
hery et al., 2023; Anil et al., 2023a)) and datasets
further enhance SpeechLM performance.

Aligning text and speech modality represen-
tations can further boost the performance of
SpeechLMs. One approach aligns text and speech
in a single sequence. SPIRIT-LM (Nguyen
et al., 2024) demonstrated that interleaving text
and speech tokens during pretraining improves
performance on speech tasks and increases text-
speech feature similarity. SpeechGPT (Nachmani

et al., 2024) aligns representations by enabling
the SpeechLM to answer step-by-step: transcrib-
ing input speech to text, predicting text responses,
and synthesizing speech. Another method uses
multi-sequence alignment, where text and speech
sequences are generated simultaneously. Mini-
Omni (Xie and Wu, 2024a) produces one text to-
ken sequence and seven acoustic token sequences,
aligned at the sentence level. Similarly, Moshi
(Défossez et al., 2024) generates one text token
sequence, one semantic token sequence, and seven
acoustic token sequences, aligned at the word level.
Further discussion on speech-text representation
alignment is in Appendix D.

4.2.2 Language Model Instruction-Tuning
Instruction-tuning fine-tunes SpeechLMs to follow
instructions for various tasks. This phase is crucial
for enhancing the pre-trained model’s generaliza-
tion capabilities and making it more adaptable to
diverse applications.

Effective instruction-following datasets are cru-
cial in instruction-tuning. SpeechGPT (Zhang et al.,
2023a) and SpeechGPT-Gen (Zhang et al., 2024b)
propose a two-stage instruction-tuning process: (1)
cross-modal instruction fine-tuning, where instruc-
tions are appended to paired ASR data, asking the
model to convert speech into text (or vice versa).
(2) chain-of-modality fine-tuning, where text-based
instruction datasets are synthesized into speech-in-
speech-out datasets using TTS. To more closely
resemble spoken language pattern, Llama-Omni
(Fang et al., 2024) synthesizes text-based instruc-
tion data by reformatting text prompts to mimic
natural speech, generating responses via a TextLM,
and synthesizing prompt-response pairs using TTS.

4.2.3 Language Model Post-Alignment
Post-alignment refines a language model’s behav-
ior to align with human preferences, ensuring safe
and reliable outputs. As the final training phase,
it often uses preference alignment algorithms like
Reinforcement Learning from Human Feedback
(RLHF) (e.g., Proximal Policy Optimization (PPO)
(Schulman et al., 2017)) or Direct Preference Opti-
mization (DPO) (Rafailov et al., 2023).

Post-alignment in SpeechLMs addresses unique
challenges in the speech interaction pipeline. Align-
SLM (Lin et al., 2024) identifies that SpeechLMs
often generate inconsistent semantic content. They
propose to use a TextLM to select preferred re-
sponses from SpeechLMs (transcribed via ASR)
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and align preferences with DPO. SpeechAlign
(Zhang et al., 2024a) argues that sub-optimal
speech tokens generated by SpeechLM degrade
the generated audio quality. They improve it by
aligning model-generated tokens to the “golden"
token distribution. Despite its importance, the post-
alignment of SpeechLMs remains under-explored.
Future research should prioritize identifying and
addressing the unique safety challenges posed by
SpeechLMs (see Section 6.3).

4.3 Speech Interaction Paradigm
Most earlier SpeechLM approaches follow the tra-
ditional speech interaction paradigm, which in-
volves taking a complete input sequence and gener-
ating a complete response. However, this approach
does not mirror natural conversations, where partic-
ipants may interrupt one another. Therefore, some
studies attempt to equip SpeechLM with real-time
interaction ability.

Real-time interaction of SpeechLMs involves the
advanced handling of conversation data from two
or more people, and it can be understood through
several progressive stages. The initial stage is the
adoption of streaming tokenizers and vocoders,
which eliminate the need for the language model
to wait for complete speech encoding before pro-
cessing. This architecture enables immediate, low-
latency responses to user queries, marking a sig-
nificant improvement over the traditional interac-
tion paradigm. Nonetheless, while this streaming
approach supports basic real-time interaction, it
remains insufficient for capturing the more sophis-
ticated interaction patterns observed in natural con-
versation. The next frontier is full-duplex model-
ing, which allows SpeechLMs to support simulta-
neous bidirectional communication—specifically,
the ability to handle interruptions initiated by ei-
ther the user or the model. It mainly includes two
features: 1) User interruption, where models can
be interrupted and respond appropriately to new
instructions during a conversation, and 2) Simulta-
neous response, enabling models to process input
and generate output concurrently. Achieving this
requires the joint modeling of both user and model
audio streams. dGSLM (Nguyen et al., 2023b) em-
ploys a separate transformer for each participant
in two-speaker dialogues, with cross-attention lay-
ers capturing speaker interactions. Most methods,
however, rely on a single language model. Parrot
(Meng et al., 2024) employs a "next-token-pair pre-
diction" approach with a decoder-only Transformer

to predict tokens for both channels. Moshi (Défos-
sez et al., 2024) concatenates user input and model
response channels data, using an RQ-Transformer
to process the data together. LSLM (Ma et al.,
2024) focuses on modeling one speaker’s speech
using a decoder-only Transformer, integrating a
streaming SSL encoder to fuse listening and speak-
ing channel embeddings.

5 Evaluations

Similar to TextLMs, SpeechLMs possess diverse
capabilities, making model comparisons difficult.
Therefore, evaluating them from multiple perspec-
tives is crucial. This section reviews common eval-
uation methods and benchmarks (Table 10) for
SpeechLMs, categorized into automatic and human
assessments with distinct aspects.

5.1 Automatic (Objective) Evaluation

Automatic evaluation methods are crucial for quick,
consistent assessments of SpeechLMs, using quan-
titative metrics computed without needing humans.
Common techniques are outlined below.

Representation Evaluation. Representations
(embeddings) are hidden vectors that represent in-
put/output data in a lower-dimensional space. It
lays a foundation for the understanding and gen-
eration abilities of the models. For SpeechLMs,
representation evaluation measures how effectively
the model converts speech features into meaningful
vectors. The between-speaker ABX score, used by
GSLM (Lakhotia et al., 2021), assesses phonetic
category separation by comparing three sound sam-
ples: two from one category and one from another.
Additionally, speech resynthesis evaluation (Lakho-
tia et al., 2021) involves encoding speech into to-
kens, reconstructing it back to speech, and mea-
suring the word or character error rates between
original and reconstructed versions.

Linguistic Evaluation. Linguistic evaluation
methods, covering lexical, syntactic, and semantic
aspects, test a model’s ability to understand and
generate words, sentences, and meaningful content.
Benchmark datasets include sWUGGY (Nguyen
et al., 2020) for distinguishing real words from non-
words, sBLIMP (Nguyen et al., 2020) for identify-
ing grammatically correct sentences, and Spoken
StoryCloze (Hassid et al., 2024) for selecting the
semantically-coherent story ending.

Paralinguistic Evaluation. Paralinguistic eval-
uation examines non-verbal aspects of communi-
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cation in speech. SpeechLMs that integrate par-
alinguistic tokens into their modeling can be eval-
uated at the token level. For instance, pGSLM
(Kharitonov et al., 2022) assesses prosodic tokens
based on accuracy (using minimum MAE), con-
sistency (using Pearson correlation), and expres-
siveness (using standard deviation) by comparing
the generated token to the reference token. At
the perceptual level, SPIRIT-LM (Nguyen et al.,
2024) introduced the STSP benchmark, which mea-
sures how well sentiment is preserved in generated
speech or text based on the prompt. This approach
could also be adapted to evaluate other paralinguis-
tic features, such as timbre or prosody.

Generation Quality and Diversity. Quality and
diversity are two crucial aspects of model genera-
tion. Typically, there is a trade-off between these
dimensions when sampling model responses at dif-
ferent temperatures, so GSLM (Lakhotia et al.,
2021) suggests using the Area Under the Curve
(AUC) with various temperature values. Specifi-
cally, AUC on perplexity and VERT are employed
to assess these factors, where VERT represents the
geometric mean of the ratio of k-grams in the gener-
ated speech that repeat at least once. Additionally,
the ChatGPT score can be utilized to evaluate the
quality of the generated speech. In this process,
the generated speech is transcribed using state-of-
the-art ASR models and then sent to ChatGPT for
quality (and diversity) assessment.

Real-time Interaction Evaluation. Real-time
interaction evaluation assesses SpeechLMs’ abil-
ity to interact in real-time, essential for full-duplex
communication. Existing research focuses on as-
sessing the naturalness and usefulness of the real-
time interaction speech. dGSLM (Nguyen et al.,
2023b) measures naturalness by analyzing turn-
taking events (e.g., speech segments, pauses, gaps,
overlaps), with speech being more natural if these
statistics resemble human dialogues. Another ap-
proach evaluates speech continuation, where natu-
ralness depends on alignment between turn-taking
statistics of prompts and continuations. Useful-
ness is also critical in real-time interaction sce-
narios. The Parrot model (Meng et al., 2024)
introduces reflective pauses (SpeechLM remains
silent while the user speaks) and interruptions
(SpeechLM stops when interrupted) to assess real-
time interaction quality. Additionally, there are
two benchmarks specifically designed for evaluat-
ing full duplex modeling of SpeechLMs. Arora
et al. (Arora et al., 2025) introduce a predictive

model-based evaluation where SpeechLM quality
is determined by alignment between generated turn-
taking events and those predicted by a specialized
evaluation model. Full-Duplex-Bench (Lin et al.,
2025) advances the field by evaluating four critical
aspects of conversational dynamics: pause han-
dling, backchanneling, turn-taking, and interrup-
tion management—each with dedicated metrics
that provide nuanced assessment.

Downstream Evaluation. Downstream evalua-
tion assesses SpeechLMs’ performance on specific
tasks like ASR, TTS, and Speaker Identification,
either through few-shot examples or direct instruc-
tion. Various benchmarks have emerged to provide
comprehensive assessment: SUPERB (Yang et al.,
2021) focuses on speech understanding, SD-Eval
(Ao et al., 2024) tests paralinguistic comprehen-
sion, SALMON evaluates speech generation con-
sistency, VoiceBench (Chen et al., 2024c) evaluates
SpeechLM general capabilities, while Dynamic-
SUPERB (Huang et al., 2024a), MMAU (Sakshi
et al., 2024), AirBench (Yang et al., 2024c), and Au-
dioBench (Wang et al., 2024a) incorporate speech,
sound, and music-related tasks. However, these
benchmarks primarily require text responses. To
address this limitation, VoxEval (Cui et al., 2025)
supports the evaluation of speech output, making
it more suitable for end-to-end speech interaction
evaluation.

5.2 Human (Subjective) Evaluation.

Human evaluation is vital for assessing
SpeechLMs, as speech is meant to be heard
and understood by humans. Below are common
human evaluation methods for SpeechLMs.

Mean Opinion Score (MOS) is a key met-
ric in speech evaluation that measures perceived
speech quality through human listener ratings on
a 1-5 scale, with variations like MMOS, PMOS,
and SMOS (Kharitonov et al., 2022; Zhang et al.,
2024b) focusing on naturalness, prosody, and tim-
bre similarity respectively. MOS is the averaged
human-rated score for each audio sample. While
human evaluation is crucial, the challenges in
recruiting participants and gathering evaluations
have led researchers to increasingly adopt machine-
based evaluations. For example, a naturalness pre-
diction model (Mittag et al., 2021) can assess the
naturalness of generated outputs.
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6 Challenges and Future Directions

Research on SpeechLMs shows promise but re-
mains in the early stages. This section explores
challenges and future directions in the field.

6.1 Understanding Different Component
Choices

Current research on SpeechLMs encompasses key
components such as speech tokenizers, language
models, and vocoders, each offering a diverse range
of options. While some studies have compared
various component choices—primarily focusing
on speech tokenizers—the comparisons tend to be
limited in scope and depth (Lakhotia et al., 2021;
Rubenstein et al., 2023). Consequently, there re-
mains a significant gap in understanding the ad-
vantages and disadvantages of different component
selections. Therefore, studies aimed at compre-
hensively comparing these choices are essential.
Such an investigation would yield valuable insights
and serve as a guide for selecting more efficient
components when developing SpeechLMs.

6.2 End-to-End Training

Although SpeechLMs can generate speech directly
without relying on text signals, some studies train
the three components separately. This separate
optimization may hinder the model’s overall po-
tential. Consequently, it would be worthwhile to
investigate whether training can be conducted in an
end-to-end manner, allowing gradients to be back-
propagated from the vocoder’s output to the tok-
enizer’s input. By exploring this fully end-to-end
approach, we could potentially enable SpeechLMs
to produce more coherent, contextually relevant,
and high-fidelity speech outputs.

6.3 Safety Risks in SpeechLMs

Safety is a crucial topic in Machine Learning, es-
pecially for large-scale generative AI models. Un-
like TextLMs, the safety concerns in SpeechLMs
remain underexplored. SpeechLMs share some
safety challenges with TextLMs but also have
unique issues, as noted in OpenAI’s report on
GPT-4o’s voice mode (OpenAI, 2024). Future re-
search must address vulnerabilities in SpeechLMs
to enhance their safety. Key safety concerns in
SpeechLMs include toxicity and privacy. Toxi-
city involves generating harmful content, such as
dangerous instructions or inappropriate speech like
erotic audio (OpenAI, 2024). Privacy risks include

revealing personal information from speech input,
such as inferring a speaker’s identity, ethnicity, or
beliefs, even when insufficient information is avail-
able (OpenAI, 2024).

6.4 Performance on Rare Languages

SpeechLMs directly model speech data, which
allows them to more effectively handle “low-
resource" languages compared to TextLMs. “Low-
resource" languages are those that lack extensive
textual data, making it challenging for TextLMs to
model them efficiently. In contrast, SpeechLM pro-
vides a better solution by modeling the speech data
of these “low-resource" languages, which often
have more available audio data than text (Lakho-
tia et al., 2021). Therefore, future research could
focus on training SpeechLMs in “low-resource"
languages or dialects to expand their capabilities.

7 Conclusions

This survey provides a comprehensive overview of
recent advancements in Speech Language Models
(SpeechLMs). We begin by addressing the limita-
tions of the naive framework that combines ASR,
LLM, and TTS for speech interactions. Following
this, we highlight the key advantages offered by
SpeechLMs. We then explore the various compo-
nents of SpeechLM architectures and outline their
training methodologies, including the features they
model and their distinct training stages. Lastly,
we summarize the evaluation techniques used for
SpeechLMs and discuss the primary challenges and
promising future research directions in this field.
We hope this survey will illuminate the field and
assist the research community in creating more
powerful Speech Language Models.

8 Limitations

Due to space constraints, several aspects of
SpeechLMs could not be fully addressed in the
main body of this survey. Firstly, the compre-
hensive taxonomy of SpeechLMs, which provides
a detailed classification and organization of var-
ious models and approaches, has been placed in
the appendix. Secondly, while the main text fo-
cuses on the most commonly used vocoders in
SpeechLMs, the introduction of less frequently em-
ployed vocoder types had to be omitted. Lastly,
some detailed discussions, such as the comparison
of different features and the downstream tasks of
SpeechLMs, have also been moved to the appendix.
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Readers are encouraged to consult the appendix for
a more comprehensive treatment of these aspects
of SpeechLM research and development.
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A GAN-based Vocoder Loss Functions

To utilize GAN to synthesize high-fidelity speech,
various training objectives are designed, focusing
on different aspects. First, GAN loss is utilized as
the fundamental objective for the operation of the
generator and the discriminator. Specifically, the
typical choice of the GAN loss for the generator
(G) and discriminator (D) is to use the least squares
loss function. The GAN loss for the generator
(LGAN(G)) and the discriminator (LGAN(D)) are

LGAN(G) = Ems

[
(D(G(ms))− 1)2

]
(1)

and

LGAN(D) = E(x,ms)

[
(D(x)− 1)2 + (D(G(ms)))2

]
,
(2)

respectively. In these loss functions, x repre-
sents the ground truth audio and ms represents
its mel-spectrogram. Second, most GAN-based
vocoders synthesize speech waveform from mel-
spectrograms, so mel-spectrogram loss is pro-
posed to align the mel-spectrogram synthesized
by the generator and the mel-spectrogram trans-
formed from the ground-truth waveform, in order
to improve the fidelity of the generated speech.
Mel-spectrogram loss (LMel(G)) works by mini-
mizing the L1 distance between the two versions
of mel-spectrograms mentioned above. Its formula
is shown below:

LMel(G) = E(x,ms) [∥ϕ(x)− ϕ(G(ms))∥1] , (3)

where ϕ(·) is the function to transform a waveform
into the corresponding mel-spectrogram. Third,
to further enhance the generation fidelity, feature
matching loss (LFM (G)) is proposed to align the
discriminator-encoded features of the ground truth
sample and the generated sample with L1 distance,
which has the following formula:

LFM (G) = E(x,ms)

[
T∑

i=1

1

Ni

∥∥∥Di(x)−Di(G(ms))
∥∥∥
1

]
,

(4)

where Di(·) and Ni denote the features and the
number of features in the i-th layer of the discrimi-
nator, respectively.

B Other Vocoders

The variety of vocoders is not restricted to the
ones mentioned in Section 3.3, as those are the
ones commonly employed in SpeechLMs. This
section briefly outlines other potential vocoder

types that are seldom explored as a component
in SpeechLMs.

GAN-based Neural Audio Codec. Given that
many neural audio codecs employ a GAN architec-
ture, they can be effectively discussed within the
context of GAN-based vocoders. Similar to its role
as a tokenizer, although the primary objective of
neural audio codecs is for audio compression, the
encoded compact token sequences capture the es-
sential information buried in the audio waveforms
and therefore the codec decoder can be leveraged
as a vocoder in SpeechLMs to transform the to-
kens into speech waveforms. EnCodec (Défossez
et al., 2023) uses a GAN architecture and proposes
a novel generator including an encoder, a quantizer,
and a decoder. The compressed audio representa-
tions are outputted by the quantizer by using Resid-
ual Vector Quantization (RVQ). Polyak et al. uti-
lizes HiFi-GAN (Kong et al., 2020) as the vocoder
backbone and proposes to disentangle the input fea-
tures of a vocoder into distinct properties (Polyak
et al., 2021), which include semantic tokens, pitch
tokens, and speaker embeddings. Such a design
choice enables the codec to better perform on pitch
and speaker-related tasks such as voice conversion
and F0 manipulation.

Pure Signal Processing Vocoder. Pure signal
processing vocoders are traditional methods that
rely on deterministic algorithms rather than deep
learning models to synthesize speech (Griffin and
Lim, 1984; Morise et al., 2016). However, this kind
of vocoders introduces noticeable artifacts in the
synthesized audio and is thus rarely used.

Autoregressive Vocoder. Autoregressive
vocoders generate audio waveforms one sample
at a time, with each sample conditioned on the
previously generated samples (Oord et al., 2016).
This approach allows for high-quality audio syn-
thesis due to its sequential nature and the ability
to capture intricate temporal dependencies within
the audio signal. However, the sequential gener-
ation process can be computationally expensive
and time-consuming, making autoregressive mod-
els less efficient compared to parallelized methods
like GAN-based vocoders.

Flow-based Vocoder. Flow-based vocoder aims
to establish a series of invertible transformations
that map a simple distribution, such as a Gaussian,
to the complex distribution of audio samples. This
mechanism allows for efficient sampling and den-
sity evaluation, enabling the model to synthesize
audio in parallel rather than sequentially, which sig-
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Approach Speech Tokenizer Language Model Vocoder

Minmo (Chen et al., 2025) SenseVoice (SpeechTeam, 2024) Qwen2.5 (Yang et al., 2024b) CosyVoice 2 (Du et al., 2024c)
Lyra (Zhong et al., 2024) Whisper (Radford et al., 2023) Qwen2-VL (Wang et al., 2024b) HuBERT + HiFi-GAN
Flow-Omni (Yuan et al., 2024) Whisper Encoder + Linear Projector Qwen2 (Yang et al., 2024a) Flow Matching (Transformer + MLP) +

HiFi-GAN
SLAM-Omni (Chen et al., 2024b) Whisper Encoder + Linear Projector Qwen2 -
OmniFlatten (Zhang et al., 2024c) CosyVoice Encoder (Du et al., 2024b) Qwen2 CosyVoice Decoder (Du et al., 2024b)
SyncLLM (Veluri et al., 2024) HuBERT (Hsu et al., 2021) LLaMA-3 (Dubey et al., 2024) HiFi-GAN (Kong et al., 2020; Polyak

et al., 2021)
EMOVA (Chen et al., 2024a) SPIRAL (Huang et al., 2022) LLaMA-3 VITS (Kim et al., 2021a)
Freeze-Omni (Wang et al., 2024d) Transformer (Vaswani et al., 2017) Qwen2 TiCodec (Ren et al., 2024)
IntrinsicVoice (Zhang et al., 2024d) HuBERT Qwen2 HiFi-GAN
Mini-Omni2 (Xie and Wu, 2024b) Whisper Qwen2 Mini-Omni (Xie and Wu, 2024a)
SALMONN-omni (Yu et al., 2024) Mamba Streaming Encoder (Gu and

Dao, 2024)
- VoiceCraft (Peng et al., 2024) + Codec

Decoder
Zeng et al. (Zeng et al., 2024b) Whisper + VQ GLM (GLM et al., 2024) CosyVoice
Parrot (Meng et al., 2024) VQ-VAE LLaMA-3, Mistral, Gemma 2 HiFi-GAN
GPST (Zhu et al., 2024) EnCodec (Défossez et al., 2023) Transformer Codec Decoder
GLM-4-Voice (Zeng et al., 2024a) Whisper + VQ (Défossez et al., 2024) GLM-4-9B-Base (GLM et al., 2024) CosyVoice
Moshi (Défossez et al., 2024) Mimi (Défossez et al., 2024) Transformer* Mimi
VITA (Fu et al., 2024) CNN + Transformer + MLP (Fu et al.,

2024)
Mixtral (Jiang et al., 2024) Text-to-Speech Toolkit (Fu et al., 2024)

LSLM (Ma et al., 2024) vq-wav2vec (Baevski et al., 2020a) Decoder-Only Transformer UniVATS (Du et al., 2024a)
SPIRIT-LM (Nguyen et al., 2024) HuBERT, VQ-VAE (Van Den Oord

et al., 2017), speechprop
LLaMA-2 (Touvron et al., 2023b) HiFi-GAN

TWIST (Hassid et al., 2024) HuBERT OPT (Zhang et al., 2022b), LLaMA
(Touvron et al., 2023a)

HiFi-GAN

PSLM (Mitsui et al., 2024) HuBERT NekoMata (Sawada et al., 2024) HiFi-GAN
VOXTLM (Maiti et al., 2024) HuBERT OPT (Zhang et al., 2022b) HiFi-GAN
Voicebox (Le et al., 2024) EnCodec Transformer* (Vaswani et al., 2017) HiFi-GAN
Park et al. (Park et al., 2024) AV-HuBERT (Shi et al., 2022) OPT HiFi-GAN
USDM (Kim et al., 2024) XLS-R (Babu et al., 2021) Mistral Voicebox (Le et al., 2023)
VioLA (Wang et al., 2024c) EnCodec Transformer* Codec Decoder (Défossez et al., 2023)
FunAudioLLM (SpeechTeam, 2024) SAN-M (Gao et al., 2020) Transformer* HiFTNet (Li et al., 2023)
SpeechGPT-Gen (Zhang et al., 2024b) SpeechTokenizer (Zhang et al., 2024e) LLaMA-2 SpeechTokenizer decoder (Zhang et al.,

2024e)
ICoT (?) SpeechTokenizer LLaMA-2 SoundStorm
AnyGPT (Zhan et al., 2024) SpeechTokenizer LLaMA-2 SoundStorm
LauraGPT (Du et al., 2023) Conformer* Qwen (Bai et al., 2023) Transformer + Codec Decoder
Spectron (Nachmani et al., 2024) Conformer* PaLM 2* (Anil et al., 2023b) WaveFit (Koizumi et al., 2023)
AudioLM (Borsos et al., 2023) w2v-BERT (Chung et al., 2021) Decoder-Only Transformer* SoundStream* (Zeghidour et al., 2021)
UniAudio (Yang et al., 2023b) EnCodec, Hifi-codec (Yang et al.,

2023a), Improved RVQGAN (Kumar
et al., 2023)

Transformer* Codec Decoder

Llama-Omni (Fang et al., 2024) Whisper LLaMA-3.1 HiFi-GAN
Mini-Omni (Xie and Wu, 2024a) Whisper + ASR Adapter (Xie and Wu,

2024a)
Qwen2 TTS Adapter (Xie and Wu, 2024a)

tGSLM (Algayres et al., 2023) Segmentation + SSE (Algayres et al.,
2022) + Lexical embedder

Transformer* Tacotron-2 + Waveglow (Shen et al.,
2018; Prenger et al., 2019)

SpeechGPT (Zhang et al., 2023a) HuBERT LLaMA HiFi-GAN
dGSLM (Nguyen et al., 2023b) HuBERT Dialogue Transformer (Nguyen et al.,

2023b)
HiFi-GAN

SUTLM (Chou et al., 2023) HuBERT Transformer* -
pGSLM (Kharitonov et al., 2022) HuBERT MS-TLM (Kharitonov et al., 2022) HiFi-GAN
GSLM (Lakhotia et al., 2021) HuBERT, CPC (Oord et al., 2018),

Wav2vec 2.0 (Baevski et al., 2020b)
Transformer* Tacotron-2 + Waveglow

Table 1: Summarization of the architectural choice of speech tokenizer, language model, and vocoder in popular
SpeechLMs. “-” represents non-existence or not indicated, * means the architecture is mainly based on the written
one, “A, B" means the authors experimented with both “A" and “B" as the component, and “A + B" means “A" and
“B" are combined to serve as the component.
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nificantly enhances both speed and quality (Prenger
et al., 2019). Compared to GAN-based vocoders,
Flow-based vocoders typically need more parame-
ters and memory to train the model, which hinders
them from being effectively utilized (Kumar et al.,
2019) in SpeechLMs.

VAE-based Vocoders. Variational Autoen-
coders (VAEs) are powerful generative models that
learn to encode input data into a compressed latent
space while allowing for the reconstruction of the
original data (Van Den Oord et al., 2017; Huang
et al., 2019). However, VAE is seldom explored as
the underlying architecture of vocoders.

Diffusion-based Vocoder. Diffusion models
have emerged in recent years as a powerful class
of generative models that can be used for high-
fidelity speech synthesis. They work by gradually
adding noise to the input data (e.g. audio wave-
forms) to create a sequence of increasingly noisy
representations, then learning to reverse this pro-
cess to generate new samples (Kong et al., 2021;
Chen et al., 2021b; Lee et al., 2022). For instance,
DiffWave (Kong et al., 2021) uses Denoising Dif-
fusion Probabilistic Models (DDPM) to synthesize
audio. Additionally, CosyVoice (Du et al., 2024b)
introduces a Conditional Flow-Matching (CFM)
model that serves as a vocoder in TTS systems.

C Discussion on Different Discrete
Features

The choice of discrete feature types (see Section
4.1.1) used for training significantly affects the
quality of speech generated by SpeechLMs, often
resulting in trade-offs (Borsos et al., 2023). For
example, while semantic tokens align well with
text and excel in producing semantically coherent
speech, the generated speech often lacks acous-
tic details, such as high-frequency information.
Recovering and enhancing these details typically
requires post-processing, like a diffusion model,
which significantly increases the model’s latency.
Conversely, acoustic tokens can facilitate the gener-
ation of high-fidelity audio but often struggle with
inaccuracies in content generation (Zhang et al.,
2024e). Researchers have tried two ways to bal-
ance these trade-offs. The first involves combin-
ing semantic and acoustic tokens into a single se-
quence. AudioLM (Borsos et al., 2023) proposes
a hierarchical modeling scheme that first models
semantic tokens from w2v-bert (Chung et al., 2021)
and then uses these tokens to predict acoustic to-

kens from SoundStream (Zeghidour et al., 2021),
which ultimately generates speech. However, this
kind of approach increases sequence length, which
increases modeling complexity and latency. The
second strategy leverages mixed tokens (Section
3.1.3) to jointly model semantic and acoustic infor-
mation, showing promising results in Moshi (Dé-
fossez et al., 2024) and SpeechGPT-Gen (Zhang
et al., 2024b).

D Discussion on Speech-Text
Representation Alignment

The primary goal of aligning text and speech rep-
resentations is to leverage the strengths of text-
based models to enhance speech-based models. Re-
searchers have found that training a SpeechLM
is significantly more challenging than training a
TextLM. This difficulty arises because text serves
as a concentrated form of knowledge, while speech
requires models to independently learn the rules
of spoken language. Aligning text and speech rep-
resentations has demonstrated effectiveness, but it
involves various trade-offs. First, text primarily
conveys semantic information, which can improve
a SpeechLM’s semantic modeling capabilities but
may compromise its ability to capture paralinguis-
tic features, such as tone and emotion, during
alignment. Second, there are two main inference
approaches for the aligned models: text-present
and text-independent. Text-present inference de-
codes text and speech simultaneously, which may
increase latency but enhances the SpeechLM’s rea-
soning abilities (Xie and Wu, 2024a) and reduces
possible hallucinations (Défossez et al., 2024).
Conversely, text-independent inference is more ef-
ficient but may lack stability. Furthermore, the
question of whether to incorporate text modality to
enhance SpeechLM performance remains an open
question, especially considering that humans typi-
cally acquire spoken language skills before master-
ing written language.

E More on Speech Interaction Paradigm

In addition to real-time interaction (see Sec-
tion 4.3), another advanced interaction ability
of SpeechLMs is Interactive Period Recognition
(IPR), which refers to the ability to recognize
whether the users are interacting with it or not.
SpeechLMs should provide response during the
interactive period and remain silent during the non-
interactive period. IPR is essential for creating a
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Dataset Type Phase Hours Year

LibriSpeech (Panayotov et al., 2015) ASR Pre-Training 1k 2015
Multilingual LibriSpeech (Pratap et al., 2020) ASR Pre-Training 50.5k 2020
LibriLight (Kahn et al., 2020) ASR Pre-Training 60k 2019
People dataset (Galvez et al., 2021) ASR Pre-Training 30k 2021
VoxPopuli (Wang et al., 2021a) ASR Pre-Training 1.6k 2021
Gigaspeech (Chen et al., 2021a) ASR Pre-Training 40k 2021
Common Voice (Ardila et al., 2020) ASR Pre-Training 2.5k 2019
VCTK (Veaux et al., 2013) ASR Pre-Training 0.3k 2017
WenetSpeech (Zhang et al., 2022a) ASR Pre-Training 22k 2022
LibriTTS (Zen et al., 2019) TTS Pre-Training 0.6k 2019
CoVoST2 (Wang et al., 2021b) S2TT Pre-Training 2.8k 2020
CVSS (Jia et al., 2022) S2ST Pre-Training 1.9k 2022
VoxCeleb (Nagrani et al., 2017) Speaker Identification Pre-Training 0.4k 2017
VoxCeleb2 (Chung et al., 2018) Speaker Identification Pre-Training 2.4k 2018
Spotify Podcasts (Clifton et al., 2020) Podcast Pre-Training 47k 2020
Fisher (Cieri et al., 2004) Telephone conversation Pre-Training 2k 2004
SpeechInstruct* (Zhang et al., 2023a) Instruction-following Instruction-Tuning - 2023
InstructS2S-200K* (Fang et al., 2024) Instruction-following Instruction-Tuning - 2024
VoiceAssistant-400K* (Xie and Wu, 2024a) Instruction-following Instruction-Tuning - 2024

Table 2: A summary of popular datasets used in the pre-training and instruction-tuning phase of SpeechLMs.
* means it is the speech version of the text dataset synthesized using TTS. S2ST and S2TT represent speech-to-
speech translation and speech-to=text translation, respectively.

Modeling Method Example Explanation

Speech-only [SPEECH] S12 S34 S33 ... S11 S59 Only the speech sequence is provided.
Text-only [TEXT] A quick brown fox jumps over a

lazy dog.
Only the text sequence is provided.

Concatenated speech-
text

[SPEECH] S12 S34 S33 ... S11 S59
[TEXT] A quick brown fox jumps over a
lazy dog.

The speech sequence and text sequence
are concatenated together.

Alternating speech-
text

[SPEECH] S12 S34 S33 [TEXT] brown
fox jumps over a lazy [SPEECH] S11 S59

The sequence is interleaved with speech
and text tokens.

Table 3: Four different methods of jointly modeling speech and text tokens.

natural conversational flow, allowing the model to
avoid unnecessary interruptions. It is crucial for
situations where a small group of users is having a
discussion, as the SpeechLM needs to discern when
to join in and when to stay silent. Additionally, it
is important for the model to learn when to disre-
gard instructions when users are not speaking at it.
One approach to achieving IPR is through a Voice
Activity Detection (VAD) module. MiniCPM-o
2.6 (OpenBMB, 2024) integrates a VAD module
to ensure the model responds only when the input
audio surpasses a predefined VAD threshold. In-
puts below this threshold are considered noise and
ignored. VITA (Fu et al., 2024) takes a different
approach by training the SpeechLM to distinguish
between query speech and non-query audio. The
model learns to output an end-of-sequence token
to terminate its response when non-query audio is
detected.

F Empirical Analysis of SpeechLM
Performance

This section provides an overview of the empir-
ical performance of SpeechLMs on widely used
benchmarks. We begin by examining the overall
performance of SpeechLM and then delve into the
performance of the tokenizer and vocoder compo-
nents of SpeechLMs.

F.1 Overall Performance
The overall performance of SpeechLM is typically
assessed based on its capability to model linguis-
tic information (as shown in Table 4) and its suc-
cess in achieving high performance in spoken QA
tasks (Table 5). The results illustrate a clear im-
provement in SpeechLM’s performance across var-
ious model architectures and the influence of train-
ing data size. GSLM, which is trained entirely
from scratch, serves as the baseline for comparison.
TWIST demonstrates notable enhancements by uti-
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Models sWUGGY sBLIMP sTSC sSC

GSLM 64.8 54.2 66.6 53.3
AudioLM 71.5 64.7 - -
TWIST 72.2 56.5 - -
SPIRIT-LM 69.0 58.3 82.9 61.0
Moshi 74.3 58.9 83.0 60.8
GLM-4-Voice - - 82.9 62.4

Table 4: Evaluation accuracy (%) of different
SpeechLMs on common linguistic evaluation bench-
marks. sTSC and sSC represent sTopic-StoryCloze and
sStoryCloze, respectively. The results are adapted from
the corresponding SpeechLM papers.

Web-Questions Llama-Questions Trivia QA

Models S→T S→S S→T S→S S→T S→S

GSLM - 1.5 - 4.0 - -
AudioLM - 2.3 - 7.0 - -
TWIST - 2.2 - 0.5 - -
SpeechGPT 6.5 - 21.6 - 14.8 -
Spectron 6.1 - 22.9 - - -
Moshi 26.6 9.2 62.3 21.0 22.8 7.3
GLM-4-Voice 32.2 15.9 64.7 50.7 39.1 26.5
Freeze-Omni 72.0 - 53.9 - 44.7 -
MinMo 55.0 39.9 78.9 64.1 48.3 37.5

Table 5: Evaluation accuracy (%) of different
SpeechLMs on common spoken QA benchmarks in
speech-to-text and speech-to-speech modes. The results
are adapted from the corresponding SpeechLM papers.

lizing pre-trained TextLM checkpoints, showcasing
the advantages of transfer learning from text-based
models. SPIRIT-LM builds upon these improve-
ments with its innovative interleaved speech-text
alignment training strategy, enabling more effec-
tive cross-modal understanding. While SPIRIT-LM
delivers impressive results through its alignment-
based training, Moshi surpasses it by leveraging
a much larger dataset comprising 7 million hours
of speech data. Finally, GLM-4-Voice sets a new
performance standard by pre-training on approx-
imately 13 million hours of synthetic interleaved
speech-text data.

F.2 Tokenizer Performance

Table 6 presents a comparison among three types
of tokenizers: a semantic tokenizer (HuBERT), an
acoustic tokenizer (EnCodec), and a mixed tok-
enizer (SpeechTokenizer). The first two metrics
assess semantic performance, while the last two
evaluate acoustic performance. As discussed in
Section 3.1, the semantic tokenizer demonstrates
superior semantic modeling, the acoustic tokenizer
excels in acoustic modeling, and the mixed tok-
enizer strikes a balance between the two.

F.3 Vocoder Performance

The comparative analysis presented in Tables 7
and 8 demonstrates the trade-offs between differ-
ent vocoder architectures across multiple evalua-
tion dimensions. Table 7 reveals that autoregres-
sive models (WaveNet and WaveRNN) achieve
superior perceptual quality than the GAN-based
vocoder (MelGAN) as measured by Mean Opin-
ion Score (MOS). However, Table 8 illustrates
the computational efficiency advantages of GAN-
based vocoders. MelGAN demonstrates excep-
tional efficiency with only 3.05M parameters and
3.01 GFLOPS, achieving real-time factors of 0.001
on GPU and 0.029 on CPU—orders of magnitude
faster than diffusion-based approaches. Parallel
WaveGAN offers an optimal balance, maintain-
ing competitive audio quality while requiring only
1.34M parameters and achieving RTF values of
0.002 (GPU) and 0.576 (CPU).

The results indicate that while autoregressive
vocoders (and diffusion-based vocoders) excel in
audio fidelity, GAN-based architectures provide
the computational efficiency essential for real-time
speech synthesis. This efficiency-quality trade-
off explains the prevalent adoption of GAN-based
vocoders in SpeechLMs, where low-latency infer-
ence is critical for interactive applications while
maintaining acceptable perceptual quality.

G Technical Specifications of Common
SpeechLM Components

This section expands on Section 3 by providing the
technical notations and specifications for some of
the commonly adopted components in SpeechLMs,
including speech tokenizers and vocoders.

G.1 Speech Tokenizer

This subsection presents the notation for three rep-
resentative speech tokenizers, each exemplifying
a distinct category. We examine HuBERT as a
semantic objective tokenizer, Encodec as an acous-
tic objective tokenizer, and SpeechTokenizer as a
mixed objective tokenizer.

HuBERT. As a representative semantic objec-
tive tokenizer, HuBERT (Hsu et al., 2021) em-
ploys a feature encoder fE to transform raw au-
dio waveforms a into continuous embeddings v,
i.e., fE(a; θfE ) = v. These embeddings are
then quantized into discrete speech tokens s via
k-means clustering of MFCC features, denoted as
d(MFCC(a); θd) = s. The model is trained with
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Tokenizer Teacher MI↑ WER↓ WER*↓ SIM↑

GroundTruth - - - 4.58 1.0
HuBERT (semantic) KM500 31.2 9.88 16.26 0.77
EnCodec (acoustic) RVQ-1 16.5 61.52 38.34 0.92
EnCodec (acoustic) RVQ-1:8 23.6 30.91 5.11 0.98
SpeechTokenizer (mixed) RVQ-1 HuBERT avg 30.9 15.58 9.57 0.74
SpeechTokenizer (mixed) RVQ-1:8 HuBERT avg 29.7 16.03 5.04 0.97

Table 6: Empirical Comparison results of different speech tokenizers (adapted from (Zhang et al., 2024e)). KM
represents K-means. MI and WER represent Mutual Information and Word Error Rate. WER* and SIM represent
word error rate and speaker similarity of resynthesized speech.

Metric Corpus WaveNet WaveRNN MelGAN Parallel WaveGAN WaveGrad DiffWave Griffin-Lim Ground Truth

SSIM↑
LJ Speech 0.66 0.62 0.89 0.84 0.76 0.82 0.90 -
LibriTTS 0.056 0.53 0.91 0.86 0.71 0.74 0.89 -
VCTK 0.46 0.43 0.88 0.79 0.59 0.64 0.86 -

LS-MSE↓
LJ Speech 0.006 0.010 0.001 0.002 0.006 0.006 0.001 -
LibriTTS 0.008 0.008 0.001 0.001 0.005 0.006 0.001 -
VCTK 0.009 0.010 0.001 0.002 0.007 0.007 0.001 -

PSNR↑
LJ Speech 23.20 20.36 28.53 26.70 22.57 22.51 28.77 -
LibriTTS 21.54 21.17 29.98 28.62 22.94 22.18 29.03 -
VCTK 21.36 20.40 30.40 28.17 21.54 21.22 28.77 -

FAD↓
LJ Speech 1.05 3.43 1.51 0.92 3.12 3.62 2.69 0.31
LibriTTS 1.55 2.60 2.95 1.41 3.10 3.74 4.27 1.23
VCTK 0.99 3.59 1.76 1.22 4.10 5.59 3.92 0.61

MOS↑
LJ Speech 3.68±0.037 3.96±0.089 3.73±0.075 3.99±0.059 3.85±0.068 4.07±0.060 3.68±0.082 4.10±0.059
LibriTTS 3.75±0.107 3.74±0.099 3.50±0.086 3.82±0.069 3.48±0.083 3.80±0.073 3.36±0.092 4.03±0.065
VCTK 3.95±0.032 3.94±0.089 3.75±0.074 3.87±0.068 3.77±0.074 3.86±0.069 3.66±0.079 3.98±0.064

Table 7: Audio quality evaluation of vocoder models across three datasets (adapted from (AlBadawy et al., 2022)).
SSIM, LS-MSE, PSNR, FAD, and MOS represent Structural Similarity Index Measure, Log-mel Spectrogram Mean
Squared Error, Peak Signal-to-Noise Ratio, Fréchet Audio Distance, and Mean Opinion Score, respectively.

Model #Param (M) GFLOPS RTF (GPU) RTF (CPU)

WaveNet 3.79 89.65 - -
WaveRNN 4.35 94.98 - -
MelGAN 3.05 3.01 0.001 0.029
Parallel WaveGAN 1.34 31.26 0.002 0.576
WaveGrad 15.81 33.75 0.381 9.858
DiffWave 2.62 31.70 0.070 4.452

Table 8: Computational efficiency comparison of
vocoder models (adapted from (AlBadawy et al., 2022)).
It compares model complexity (parameters), computa-
tional requirements by Floating Point Operations per
Second (GFLOPS), and inference speed measured by
Real-Time Factor (RTF) on GPU and CPU platforms.

a masked prediction objective, which seeks to max-
imize the likelihood of the correct token at masked
positions:

L(θ) = Ea∼D

[∑

i∈M
− log p(si | v\M; θ)

]
, (5)

where M denotes the masked indices. HuBERT
further refines its speech tokens iteratively, updat-
ing the encoder and discretizer parameters at each

step as

s(n+1) = d(fE(a; θ
(n)
fE

); θ
(n)
d ). (6)

This iterative process enables the learning of in-
creasingly meaningful speech representations.

Encodec. As a representative acoustic objec-
tive tokenizer, EnCodec (Défossez et al., 2023)
employs a convolutional encoder-decoder architec-
ture with residual vector quantization (RVQ). The
encoder fE maps the raw audio waveform a to con-
tinuous embeddings v, i.e., v = fE(a; θfE ). These
embeddings are then discretized using a multi-stage
RVQ, where each stage r quantizes the residual
from the previous stage:

s = d(v; θd) =
(
d1(v; θd1), d2(v − v̂1; θd2),

. . . , dR(v −
R−1∑

r=1

v̂r; θdR)
)
,

(7)

with v̂r denoting the quantized embedding at stage
r. The decoder fD reconstructs the audio wave-
form from the quantized tokens, â = fD(s; θfD).
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This design enables EnCodec to produce discrete
acoustic tokens that retain high-fidelity audio infor-
mation suitable for downstream modeling.

SpeechTokenizer. As a representative mixed
objective tokenizer, SpeechTokenizer (Zhang et al.,
2024e) combines semantic and acoustic objectives
by leveraging both HuBERT and residual vector
quantization (RVQ) mechanisms. The encoder fE
first transforms the input audio waveform a into
continuous embeddings v, i.e., v = fE(a; θfE ).
Discretization is performed via a multi-stage RVQ.
The discretization process uses a multi-stage RVQ,
which operates similarly to Encodec, except that
the first RVQ stage distills tokens derived from Hu-
BERT, while the subsequent stages quantize the
residuals. This hybrid approach enables Speech-
Tokenizer to capture both high-level semantic and
low-level acoustic information for robust speech
representation learning.

G.2 Vocoder

We present the notation of HiFi-GAN (Kong et al.,
2020) as it is the most used vocoder in SpeechLMs.
HiFi-GAN synthesizes high-fidelity audio wave-
forms from mel-spectrograms or speech tokens us-
ing a generator-discriminator framework. The gen-
erator G(s; θG) maps a sequence of speech tokens
s to an output audio waveform a, i.e.,

a = V o(s; θV o) = G(s; θG), (8)

where V o denotes the vocoder function and
θV o = θG are its parameters. HiFi-GAN em-
ploys multi-period and multi-scale discriminators,
DMPD(a; θMPD) and DMSD(a; θMSD), to dis-
tinguish real from generated audio during adversar-
ial training. At inference, only the generator G is
used to efficiently reconstruct speech waveforms.

H Downstream Applications

SpeechLMs, unlike traditional ASR and TTS sys-
tems that focus on specific tasks, are generative
foundation models capable of handling a vari-
ety of speech-only, text-only, and multi-modal
tasks. This section explores their primary down-
stream applications, which include both traditional
speech tasks and unique SpeechLM tasks. Un-
like TextLMs which generate only semantic in-
formation, SpeechLMs can also model paralin-
guistic features like pitch and timbre, enhancing
their capabilities. The applications of SpeechLMs

are categorized into three main classes: semantic-
related, speaker-related, and paralinguistic applica-
tions. We give an example of all the downstream
applications in Table 9.

H.1 Semantic-Related Applications
Semantic-related applications involve key tasks
that facilitate meaningful interactions between hu-
mans and machines. These applications require
SpeechLMs to grasp the semantic meaning of input
and generate responses that are contextually rele-
vant and logically coherent. The primary Semantic-
related applications of SpeechLMs are as follows.

Spoken Dialogue. Spoken dialogue is the most
natural application of SpeechLMs. Spoken dia-
logue systems are designed to facilitate natural con-
versations between humans and machines in spo-
ken format. They can engage users in interactive
exchanges, understanding and generating responses
based on the context of the conversation. Unlike
TextLMs, SpeechLMs are able to perform conver-
sations with humans directly in speech, which is
a more natural way of communication. Note that
SpeechLMs can not only perform speech-only di-
alogues but also perform cross-modal dialogues,
such as taking texts as input and responding in
speech format.

Speech Translation. Speech translation (ST) is
the process of converting spoken language from
one language to another. Similar to Spoken dia-
logue, SpeechLMs can perform ST in both single-
modal and cross-modal settings. Specifically, the
input and output of the ST task can be either in text
or speech format.

Automated Speech Recognition. Automatic
speech recognition (ASR) enables systems to con-
vert spoken language into text. The input of ASR is
a speech waveform, and the system outputs the tran-
scription in textual form. For SpeechLMs, the input
would be a combination of the speech waveform
and the instruction to tell the model to perform
ASR on the given speech.

Keyword Spotting. Keyword spotting can be
considered a special type of ASR, where its primary
objective is to identify specific words or phrases
within continuous speech. While traditional ASR
systems aim to transcribe entire spoken utterances
into text, keyword spotting focuses specifically on
identifying and extracting predefined keywords or
phrases within continuous speech. The primary
application of keyword spotting is to build voice-
activated assistants in smart home devices. Those
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Task Input Output

Semantic-related Applications
Spoken Dialogue Speech(I am so angry right now!) Speech(Sorry to hear that. What happened?)
Speech Translation Speech(Good morning my friend!) Please trans-

late the speech into French.
Speech(Bonjour mon ami !)

Automatic Speech
Recognition

Speech(A river is on your left side.) Please
perform automatic speech recognition to the
speech

The transcribed speech is: A river is on your left
side.

Keyword Spotting Speech(How’s your day? (Speaking to some-
body else) Hey, Siri.) Please detect if the given
speech contains any pre-defined keywords.

Keyword detected: “Hey, Siri."

Text-to-Speech Syn-
thesis

Please synthesize the following text into speech:
“A river is on your left side."

Sure. Here is the synthesized speech: Speech(A
river is on your left side.)

Intent Classification Speech(Can you help me book a flight?) Please
detect the intent of the given speech.

Intent detected: “Book a flight".

Slot Filling Speech(I want to fly from New York to San
Francisco on June 5th.) Please fill the following
slots based on the given speech: departure city,
destination city, and date

Sure. Here are the filled slots. Departure city:
New York. Destination city: San Francisco. Date:
June 5th.

Query by Example
Spoken Term Detec-
tion

Speech(Can you retrieve the audio documents
that contain the word “happy"?) [A batch of
audio documents]

Sure. I have found documents 2 and 4 contain
the word happy.

Speaker-related Applications
Speaker Identification The following speech comes from Lucy:

“[Lucy’s speech]". The following speech comes
from Bob: “Bob’s speech". Question: Who is
the speaker of the following speech [Unknown
speech]

The speaker of the following speech: “[Unknown
speech]” is Bob.

Speaker Verification Here are two speeches. Speech 1: [Speech 1].
Speech 2: [Speech 2]. Do they come from the
same speaker?

No, they do not come from the same speaker.

Speaker Diarization [An audio file of the meeting] Please provide
the speaker diarization output in the following
format: [Start Time] - [End Time]: Speaker
[Speaker].

Sure. Here is the speaker diarization result: 00:00
- 00:15: Alice, 00:16 - 00:40: Bob, 00:41 - 01:00:
Carol, 01:01 - 01:20: Alice, 01:21 - 01:45: Bob
and Carol (overlapping speech), 01:46 - 02:00:
Carol.

Voice-Conditioned
Speech Generation

Can you use a robotic voice to say "Hello
world!" to me?

Sure. Speech([In robotic voice] Hello world!)

Paralinguistic Applications
Emotion Recognition Speech(What are you doing) What emotion

does the speech convey?
It seems that the speaker is pretty shocked and
angry about something.

Speech Separation Speech([Two overlapping speeches]) Can you
separate the two speeches?

Sure. Here is the speech separation result. Speech
1: Speech(Should I go for this one?). Speech 2:
Speech(That one seems good.)

Paralinguistics-
Enhanced Generation

Speech(Please generate a speech that sounds
happy.)

Speech([In happy mood] My friend just gave me
a candy!!)

Table 9: Examples of the various capabilities of SpeechLMs.

Name Eval Type # Tasks Audio Type I/O

ABX (Versteegh et al., 2016; Dunbar et al., 2019; Nguyen et al., 2020) Representation 1 Speech A → −
sWUGGY (Nguyen et al., 2020) Linguistic 1 Speech A → −
sBLIMP (Nguyen et al., 2020) Linguistic 1 Speech A → −
sStoryCloze (Hassid et al., 2024) Linguistic 1 Speech A/T → −
STSP (Nguyen et al., 2024) Paralinguistic 1 Speech A/T → A/T
MMAU (Sakshi et al., 2024) Downstream 27 Speech, Sound, Music A → T
Audiobench (Wang et al., 2024a) Downstream 8 Speech, Sound A → T
AIR-Bench (Yang et al., 2024c) Downstream 20 Speech, Sound, Music A → T
SD-Eval (Ao et al., 2024) Downstream 4 Speech A → T
SUPERB (Huang et al., 2024a) Downstream 10 Speech A → T
Dynamic-SUPERB (Huang et al., 2024a) Downstream 180 Speech, Sound, Music A → T
SALMON (Maimon et al., 2024) Downstream 8 Speech A → −
VoiceBench (Chen et al., 2024c) Downstream 8 Speech A → T
VoxEval (Cui et al., 2025) Downstream 56 Speech A → A

Table 10: A summary of popular benchmarks for the evaluation of SpeechLMs. I/O, A, and T represent input/output
format, audio, and text, respectively.
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devices are activated when the specific keywords
are triggered. Therefore, although SpeechLMs are
capable of spotting and understanding more than
just a couple of words, keyword spotting can be
used to efficiently trigger SpeechLMs to respond
to user inputs.

Text-to-Speech Synthesis. Text-to-speech syn-
thesis (TTS) enables systems to synthesize written
text into spoken language. In contrast to ASR, TTS
takes text as input and outputs the converted speech
waveform. Similarly, the input of the SpeechLMs
would be a combination of the text to synthesize
and the instruction, and the output is the synthe-
sized speech.

Intent Classification. Intent classification is a
critical task that identifies the underlying intention
behind a user’s input speech. The AI system can
then perform certain actions based on the identified
user intent (e.g., book a flight). Intent classification
is particularly important in applications such as
virtual assistants, customer service bots, and inter-
active voice response systems. To perform Intent
Classification, it is more natural for SpeechLMs to
take speech inputs and classify the results in text
since it is easier to parse and classify the intent
classification result in text than speech.

Slot Filling. Slot filling is an important task in
spoken language understanding that involves identi-
fying and extracting specific pieces of information
from user inputs into predefined classes, such as
intents, entities, and parameters that are essential
for completing a task. For example, slot filling ex-
tracts the phrase “I want to fly from New York to
San Francisco on June 5th." into distinct slots like
“departure city" (New York), “destination city" (San
Francisco), and “date" (June 5th). Similar to Intent
Classification, it is more natural for SpeechLMs to
take speech inputs and extract the pieces in texts.

Query by Example Spoken Term Detection.
Another spoken term detection task is query by ex-
ample spoken term detection (QbE-STD), which
allows users to identify specific spoken terms or
phrases within a larger audio stream by providing
an example of the desired term. Unlike traditional
keyword spotting methods that rely on predefined
lists of keywords, QbE-STD leverages the flexibil-
ity of example-based querying, enabling users to
specify their search terms through audio samples.

H.2 Speaker-Related Applications
Speaker-related applications refer to the tasks that
involve the processing of information related to

speaker identity. It could involve classification
tasks such as identifying, verifying, and distin-
guishing individual speakers based on their unique
vocal characteristics, as well as generation tasks
such as maintaining or modifying the timbre of a
given speech. While we acknowledge that voice
characteristics can be considered paralinguistic in-
formation, we believe that speaker-related applica-
tions are unique because they enable SpeechLMs
to function in complex scenarios such as participat-
ing in multi-speaker conversations. In this section,
we survey common speaker-related applications of
SpeechLMs.

Speaker Identification. Speaker identification
is the process of recognizing a person’s identity
based on their voice characteristics. It is a multi-
class classification of a given speech as input.
SpeechLMs can perform this task by taking an in-
put speech and outputting the classification result in
text or speech format. Moreover, SpeechLMs can
also identify different speakers implicitly. Specifi-
cally, it can chat with multiple speakers at the same
time, distinguishing the words from different speak-
ers and responding to each speaker appropriately.

Speaker Verification. Speaker verification in-
volves determining whether the speakers of a pair
of speeches match with each other. Unlike speaker
identification, which is a multi-class classification
process, speaker verification is a binary classifica-
tion process.

Speaker Diarization. Speaker diarization is the
process of partitioning an audio stream into seg-
ments according to the identity of the speakers. It
predicts “who is speaking when" for each times-
tamp (Yang et al., 2021). A natural way to integrate
speaker diarization into SpeechLMs is to have the
model generate the transcript of each audio seg-
ment along with the identification of the speaker.

Voice-Conditioned Speech Generation. Voice-
conditioned speech generation involves synthesiz-
ing speech based on the vocal characteristics of a
specific speaker. This could involve voice cloning
and voice conversion. Voice cloning utilizes a sam-
ple of the speaker’s voice as a reference, enabling
the model to reproduce the speaker’s timbre when
generating speech from input text. Voice conver-
sion, on the other hand, modifies an existing speech
signal to sound like it was produced by a different
speaker while retaining the original content. Addi-
tionally, instead of giving the target vocal charac-
teristics, SpeechLMs should also be able to adapt
their output timbre based on various speech or text
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instructions.

H.3 Paralinguistic Applications
Paralinguistics refers to the non-verbal elements of
communication that accompany spoken language,
including vocal attributes that convey meaning be-
yond the words themselves. These elements, such
as pitch, timbre, rate of speech, and pauses, signif-
icantly influence the message interpretation. Ad-
ditionally, variations in these elements can evoke
different emotions, so we include emotion-related
tasks as part of paralinguistic applications.

Emotion Recognition. Emotion recognition
task involves identifying and classifying the
emotion carried by a given speech into prede-
fined classes. Similar to speaker identification,
SpeechLMs are capable of not only directly per-
forming this task but also implicitly recognizing
users’ emotions through their speech queries and
responding accordingly.

Speech Separation. Speech separation refers to
the process of isolating individual speech signals
from a mixture of sounds, such as when multiple
speakers are talking simultaneously. When sepa-
rating the input speech, SpeechLMs can not only
output the contents of each person in speech but
also in text format (i.e., transcriptions).

Paralinguistics-Enhanced Generation.
Paralinguistics-enhanced generation refers to the
process of instructing SpeechLMs to produce
speech that exhibits specific paralinguistic char-
acteristics. Users can define these characteristics
in their prompts, allowing the model to generate
speech that aligns with their specifications.
Examples of paralinguistics-enhanced generation
include synthesizing speech with a specific style,
speaking at a fast pace, and even singing. This
capability distinguishes SpeechLMs from TextLMs
and facilitates a more engaging and interactive
form of communication with the AI models.
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SpeechLM

Components
(section 3)

Speech Tokenizer
(section 3.1)

Contrastive Predictive Coding (Oord et al., 2018), Wav2vec 2.0 (Baevski et al.,
2020b), vq-wav2vec (Baevski et al., 2020a), w2v-bert (Chung et al., 2021),
HuBERT (Hsu et al., 2021), SpeechTokenizer (Zhang et al., 2024e), Mimi
(Défossez et al., 2024), SoundStream (Zeghidour et al., 2021), Google USM
(Zhang et al., 2023b), WavLM (Chen et al., 2022a)

Language Model
(section 3.2)

Transformer (Vaswani et al., 2017), LLaMA (Touvron et al., 2023a), LLaMA
2 (Touvron et al., 2023b), LLaMA 3 (Dubey et al., 2024), OPT (Zhang et al.,
2022b), Qwen2 (Yang et al., 2024a), GLM (GLM et al., 2024), Mixtral (Jiang
et al., 2024)

Vocoder
(section 3.3)

WaveNet (Oord et al., 2016), Tacotron 2 (Shen et al., 2018), WaveGlow
(Prenger et al., 2019), HiFi-GAN (Kong et al., 2020), Token-based HiFi-GAN
(Polyak et al., 2021), EnCodec (Défossez et al., 2023)

Training Recipes
(section 4)

Features Modeled
(section 4.1)

Discrete Features
(section 4.1.1)

Semantic Tokens:
GSLM (Lakhotia et al., 2021), TWIST (Hassid
et al., 2024), SpeechGPT (Zhang et al., 2023a),
AudioPaLM (Rubenstein et al., 2023), OmniFlatten
(Zhang et al., 2024c), SLAM-Omni (Chen et al.,
2024b)

Paralinguistic Token:
pGSLM (Kharitonov et al., 2022), SPIRIT-LM
(Nguyen et al., 2024)

Acoustic Token:
VioLA (Wang et al., 2024c), Li et al. (Li et al.,
2024), Parrot (Meng et al., 2024)

Mixed Token:
Moshi (Défossez et al., 2024), SpeechGPT-Gen
(Zhang et al., 2024b)

Continuous
Features

(section 4.1.2)

Spectron (Nachmani et al., 2024), tGSLM (Algayres
et al., 2023), Mini-Omni (Xie and Wu, 2024a),
LauraGPT (Du et al., 2023), SLAM-Omni (Chen
et al., 2024b)

Training Stages
(section 4.2)

LM Pre-Training
(section 4.2)

Cold Initialization:
GSLM (Lakhotia et al., 2021), SUTLM (Chou
et al., 2023), pGSLM (Kharitonov et al., 2022),
LSLM (Ma et al., 2024), VioLA (Wang et al.,
2024c)

Continued Pre-Training:
TWIST (Hassid et al., 2024), AudioPaLM (Ruben-
stein et al., 2023), SPIRIT-LM (Nguyen et al.,
2024), AudioChatLlama (Fathullah et al., 2024),
Spectron (Nachmani et al., 2024), SLAM-Omni
(Chen et al., 2024b), OmniFlatten (Zhang et al.,
2024c), Mini-Omni (Xie and Wu, 2024a), Mini-
Omni 2 (Xie and Wu, 2024b), Freeze-Omni (Wang
et al., 2024d), Moshi (Défossez et al., 2024), Parrot
(Meng et al., 2024)

LM Instruction-
Tuning

(section 4.2)

SpeechGPT (Zhang et al., 2023a), SpeechGPT-Gen
(Zhang et al., 2024b), COSMIC (Pan et al., 2023),
Llama-Omni (Fang et al., 2024), Moshi (Défossez
et al., 2024)

Speech Genera-
tion Paradigm

(section 4.3)

Traditional Gen-
eration Paradigm

(section 4.3)

TWIST (Hassid et al., 2024), SPIRIT-LM (Nguyen
et al., 2024), AudioPaLM (Rubenstein et al., 2023),
SpeechGPT (Zhang et al., 2023a)

Real-Time
Interaction
(section 4.3)

dGSLM (Nguyen et al., 2023b), Parrot (Meng et al.,
2024), LSLM (Ma et al., 2024), VITA (Fu et al.,
2024), Moshi (Défossez et al., 2024), Mini-Omni
2 (Xie and Wu, 2024b), OmniFlatten (Zhang et al.,
2024c), SALMONN-omni (Yu et al., 2024)

Silence Mode
(section 4.3) VITA (Fu et al., 2024)

Figure 2: Taxonomy of Speech Language Models.
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