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Abstract

Low-Rank Adaptation (LoRA) is a popular
technique for efficient fine-tuning of founda-
tion models. However, applying LoRA in fed-
erated learning environments, where data is dis-
tributed across multiple clients, presents unique
challenges. Existing methods rely on tradi-
tional federated averaging of LoRA adapters,
resulting in inexact updates. To address this,
we propose Federated Exact LoRA, or FedEx-
LoRA, which adds a residual error term to the
pre-trained frozen weight matrix. Our approach
achieves exact updates with minimal computa-
tional and communication overhead, preserv-
ing LoRA’s efficiency. We evaluate the method
on various models across arithmetic reasoning,
commonsense reasoning, natural language un-
derstanding and natural language generation
tasks, showing consistent performance gains
over state-of-the-art methods across multiple
settings. Through extensive analysis, we quan-
tify that the deviations in updates from the ideal
solution are significant, highlighting the need
for exact aggregation. Our method’s simplicity,
efficiency, and broad applicability position it
as a promising solution for accurate and effec-
tive federated fine-tuning of foundation mod-
els. Our code is available at: https://github.
com/RaghavSinghal10/fedex-lora.

1 Introduction

The introduction of large language models (LLMs)
has revolutionized natural language processing, en-
abling unprecedented performance across a wide
range of tasks (Achiam et al., 2023; Touvron et al.,
2023; Team et al., 2023; Chang et al., 2024; Raf-
fel et al., 2020; Zeng et al., 2022). While these
models excel at transfer learning, their true po-
tential is often unlocked through fine-tuning — a
critical process that aligns these general-purpose
models with specific tasks or domains. Moreover,
the sheer size of these models presents significant

‡Equal contributions. Ordering determined by coin flip.

challenges for fine-tuning and deployment, partic-
ularly in resource-constrained or distributed envi-
ronments. To address these challenges, parameter-
efficient fine-tuning (PEFT) methods have gained
prominence, with Low-Rank Adaptation (LoRA)
emerging as a particularly effective approach (Hu
et al., 2021). LoRA’s success lies in its ability
to adapt LLMs to new tasks by training only a
small number of parameters, while freezing rest
of the parameters. This significantly reduces com-
putational and memory requirements without com-
promising performance. Although good progress
in training of LLMs has been realized by entities
equipped with massive computational resources,
there is hoards of unreachable data in verticals
such as healthcare, finance, law firms, social-media
and logistics. Federated learning (FL) is a popular
paradigm to learn a machine learning model in this
setting with multiple distributed entities (Konečný
et al., 2017; Kairouz et al., 2021; Bonawitz et al.,
2019) holding siloed data.

Federated Fine-Tuning (FFT) for foundation
models addresses the challenge of leveraging dis-
tributed datasets while preserving data privacy. The
current state-of-the-art, Federated Instruction Tun-
ing (FedIT, Zhang et al. (2024b)), uses conven-
tional federated aggregation to average the low-
rank matrices A and B individually. The resulting
update matrix which is formed post aggregation is
thus the product of the averaged matrices A and
B. However, the ideal update should be the aver-
age of the products of the low-rank adapters A and
B. The discrepancy results from the fact that "the
average of the products is not equal to the product
of the averages". A naive adhoc intervention of
modifying the aggregation to directly average the
client updates is not a viable solution, since the
subsequently obtained weight matrix loses its low-
rank structure. The low-rank structure provides
the efficiency benefits of LoRA in the first place,
making this approach computationally intractable.
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(a) FedIT (b) FedEx-LoRA

Figure 1: Comparison of federated LoRA methods: (a) FedIT averages the individual client low-rank adapters Ai

and Bi, resulting in inexact updates. (b) FedEx-LoRA sends the error residual ∆Wres along with the individual
adapters Ai and Bi, which is added to the pretrained weight matrix W0, ensuring exact aggregation. Clients
transmit low-rank adapters Ai and Bi in both methods.

The aggregation process must be carefully de-
signed for both accuracy and simplicity. We intro-
duce FedEx-LoRA, a method that improves fed-
erated aggregation for LoRA by incorporating an
error residual term, ∆Wres, into the pretrained
weight matrix to address inexact aggregation, as
shown in Figure 1. This adjustment preserves the
low-rank efficiency of LoRA without adding com-
putational overhead. Since the average update is
inherently higher rank and cannot fit into the low-
rank adapters, it is absorbed into the pretrained
weight matrix, which is already high rank. This
error term requires no training and is added at each
aggregation step, ensuring no additional training
costs. Our key contributions are summarized as:

• We address a critical discrepancy in traditional
federated averaging of LoRA adapters by explic-
itly assigning the error residual to the pretrained
weight matrix, ensuring ideal updates.

• The error residual term is incorporated at each
aggregation step, maintaining LoRA’s efficiency
without any additional training. We propose
a communication protocol that minimizes both
communication and computational overhead.
We also provide an efficient alternative for
bandwidth-constrained scenarios.

• We demonstrate the effectiveness of our approach
through extensive experiments on models rang-
ing from RoBERTa-base (125M) to Gemma-2
(9B) across arithmetic reasoning, commonsense
reasoning, natural language understanding, and

generation tasks. Our method consistently out-
performs state-of-the-art federated fine-tuning
techniques, showing clear performance gains.

• We provide a detailed analysis of the devia-
tions introduced by federated averaging com-
pared to ideal updates, and identify notable pat-
terns. We further show that while multiple assign-
ment strategies exist for exact aggregation, our
specific assignment approach is most effective.

2 Preliminaries and Motivation

Fine-tuning with LoRA. LoRA (Hu et al., 2021)
leverages low-rank matrix factorization to effi-
ciently represent the updates of pre-trained model
weights. Specifically, the fine-tuned weights, W′,
are expressed as a sum of the original weights W0

and a low-rank update ∆W:

W′ = W0 +∆W = W0 +BA (1)

where W0,W
′ ∈ Rm×n are the pretrained and

fine-tuned weight matrices, respectively, and A ∈
Rr×n, B ∈ Rm×r represent the low-rank decom-
position of ∆W. Here, the rank r is significantly
smaller than both m and n, leading to a substantial
reduction in the number of trainable parameters
for ∆W. Instead of directly updating W0 during
fine-tuning, LoRA optimizes the smaller matrices
A and B, resulting in considerable savings in mem-
ory usage. For instance, in GPT-2, LoRA reduces
the number of trainable parameters from 124.44 M
to just 0.41 M when using a rank of r = 4, with
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no observed degradation in performance (Hu et al.,
2021).

Global Updates due to Vanilla Federated Av-
eraging are Inexact. The widely adopted feder-
ated learning algorithm, FedAvg (McMahan et al.,
2017), updates the global model by performing a
weighted average of local client updates in each
communication round for k clients:

Wglobal = W0 +
1

k

k∑

i=1

∆Wi = W0 +∆W

(2)

where W0 and Wglobal represent the global model
parameters before and after aggregation, respec-
tively. ∆Wi denotes the local update from the
i-th client. FedIT (Zhang et al., 2024b) extends
FedAvg by incorporating LoRA for federated fine-
tuning, where clients fine-tune LoRA modules of
a fixed rank. The global LoRA matrices A and B
are updated via weighted averaging over the client-
specific LoRA parameters Ak and Bk:

A =
1

k

k∑

i=1

Ai, B =
1

k

k∑

i=1

Bi (3)

Although FedIT follows a similar aggregation pro-
cess as FedAvg, only LoRA modules are updated
and communicated. However, this independent av-
eraging of Ai and Bi introduces deviation from
the exact centralized LoRA updates, as the actual
model updates depend on the product BiAi, not
the individual components B and A.

W̃global = W0 +
1

k

k∑

i=1

Bi ×
1

k

k∑

i=1

Ai

︸ ︷︷ ︸
Parameters after aggregation with LoRA + FedAvg (FedIT)

̸= W0 +
1

k

k∑

i=1

(BiAi) = Wglobal

︸ ︷︷ ︸
Ideal parameters following model-averaging

(4)

There is No Free Lunch. A naive approach
would be to directly average the client updates as
1
k

∑k
i=1(BiAi) and use the result for the global

update before resuming training. However, this
undermines the purpose of LoRA, as it forces sub-
sequent training on the full-rank matrix Wglobal ∈
Rm×n rather than its intended low-rank adapters
A ∈ Rr×n and B ∈ Rm×r.

An alternative is to decompose the averaged up-
date 1

k

∑k
i=1(BiAi) into a low-rank matrix of rank

(k ·r). However, this leads to an exponential growth
in the rank with each aggregation round, as the rank
increases by a factor of k in every iteration, making
this approach computationally intractable.

FFA-LoRA. FFA-LoRA addresses the problem
of inexact aggregation, particularly in privacy-
preserving settings. Motivated from previous
works (Zhang et al., 2023a; Tian et al., 2024), it
asymmetrically freezes the A adapters while keep-
ing only the B adapters trainable. This approach
mitigates the issues of non-ideal aggregation by
avoiding independent updates of A and B. How-
ever, the drawback is that the A matrix remains
static, which limits expressiveness. While this
method excels in privacy-sensitive scenarios where
noise is amplified, it underperforms in non-private
settings, even when the number of trainable param-
eters is equivalent.

3 Method: FedEx-LoRA

3.1 Noise-Free Exact Aggregation

To tackle the problem of inexact aggregation aris-
ing from the independent averaging of the A and
B matrices across clients, we introduce a novel
method called FedEx-LoRA. Instead of separately
averaging the low-rank adapter matrices A and B,
we compute the average of their product BA across
all clients. However, as previously noted in Section
2, we cannot keep this high-rank matrix or its lower-
rank decomposition (with rank (k · r)) trainable.
Consequently, we append a high-rank error term
that captures the discrepancy between the average
of the products and the product of the averages.
This error residual is incorporated into the global
frozen weight matrix, ensuring its non-trainability.
The update at the jth aggregation round can be
expressed as follows:

Bj+1
i ← 1

k

k∑

i=1

Bj
i , Aj+1

i ← 1

k

k∑

i=1

Aj
i (5)

W0
j+1 ←W0

j

+
1

k

k∑

i=1

(Bj
iA

j
i )−

1

k

k∑

i=1

Bj
i ×

1

k

k∑

i=1

Aj
i

︸ ︷︷ ︸
Residual

(6)

We now demonstrate that our formulation results
in exact aggregation for every client:

Wj+1
global = W0

j +Bj
iA

j
i (7)
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Wj+1
global = W0

j +
1

k

k∑

i=1

(Bj
iA

j
i )

−1

k

k∑

i=1

Bj
i ×

1

k

k∑

i=1

Aj
i +

1

k

k∑

i=1

Bj
i ×

1

k

k∑

i=1

Aj
i

(8)

Wj+1
global = W0

j +
1

k

k∑

i=1

(Bj
iA

j
i )

︸ ︷︷ ︸
Ideal aggregation

(9)

3.2 FedEx-LoRA: Overall Pipeline
Initially, the server distributes the global pretrained
model to all k clients and initializes the low-rank
adapters A and B according to standard LoRA set-
tings: B is initialized to zero, while A is initialized
using a random Gaussian distribution.

B0
i ← Binit, A0

i ← Ainit (10)

W0
0 ←Wpretrained (11)

Each client then independently trains their low-
rank adapters A and B using their local data for a
specified number of epochs (referred to as “local
epochs”). Upon completion of training, the clients
send their updated low-rank adapters back to the
server for aggregation. The server aggregates these
low-rank adapters and incorporates the residual
term into the global model:

Bj
global =

1

k

k∑

i=1

Bj
i (12)

Aj
global =

1

k

k∑

i=1

Aj
i (13)

∆Wj
res =

1

k

k∑

i=1

(Bj
iA

j
i )

−1

k

k∑

i=1

Bj
i ×

1

k

k∑

i=1

Aj
i

(14)

The server then sends the aggregated matrices
back to each client. After receiving these up-
dates, the clients proceed to update their low-rank
adapters A and B, as well as the weight matrix:

Bj+1
i ← Bj

global, Aj+1
i ← Aj

global (15)

Wj+1
0 ←Wj

0 +∆Wj
res (16)

Following this, clients independently resume fine-
tuning for a set number of local epochs. This pro-
cess repeats across multiple aggregation rounds
(also referred to as communication rounds).

Multiple Assignment Strategies can Lead to
Exact Aggregation. Several methods can be used
for achieving exact aggregation, with our choice of
assignments for Ai and Bi being particularly piv-
otal. Each such assignment strategy allows us to ad-
just the corresponding error offset within the frozen
weight matrix, facilitating precise aggregation. In
Section 5, we investigate various methods and em-
pirically show that our proposed assignments for
Ai and Bi deliver the best performance.

Communication Protocol. At first glance, it
may seem necessary for the server to transmit the
high-rank update matrix ∆Wres to the clients,
which could introduce substantial communication
overhead. However, the rank of this update matrix
is capped at (k · r). Consequently, ∆Wres can
be decomposed into two low-rank matrices using
methods such as Gram-Schmidt orthogonalization.
This decomposition expresses the matrix as a prod-
uct of the basis of its column (or row) space and
the corresponding linear coefficients. The compu-
tational overhead incurred by this operation at each
aggregation step is negligible compared to the nu-
merous matrix multiplications involved in training.
Importantly, clients are only required to transmit
their low-rank adapters Ai and Bi, avoiding the
need to send any high-rank update matrices. In
practice, the communication overhead is minimal
compared to FedIT, and overall, the communica-
tion cost remains significantly lower than that of
full federated fine-tuning. Detailed communication
overhead analysis is provided in Section 5.

Best Inexact Approximation. For exact ag-
gregation, the communication cost scales linearly
with the number of clients, becoming prohibitive
in hyperclient settings. To address this, we propose
relaxing the exact aggregation condition through
truncated SVD of the residual matrix. This recon-
struction yields a low-rank approximation which,
by the Eckart-Young theorem (Eckart and Young,
1936), is provably optimal for the high-rank update
matrix. Specifically, for a target rank r′, the best
low-rank approximation ∆W r′

rec is computed as:

U, S, V T ← SVD(∆Wres) (17)

∆W r′
rec ← U [1 : r′]S[1 : r′, 1 : r′]V T [1 : r′]

(18)

While this method introduces approximation error,
it provides the theoretically optimal approximation
to exact aggregation. A key advantage is that the
server can control communication costs, a capa-
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bility absent in previous methods - FedIT (Zhang
et al., 2024b) and FFA-LoRA (Sun et al., 2024).

4 Experiments

Models and Datasets. We evaluate our method
on four NLP benchmarks using models rang-
ing from RoBERTa-base with 125M parameters
to Gemma-2 with 9B parameters, covering both
masked and autoregressive architectures. Our ex-
periments include fine-tuning Mistral-7B (Jiang
et al., 2023), Gemma-2 9B (Team et al., 2024),
Llama-3.2 3B (Dubey et al., 2024), RoBERTa-base,
RoBERTa-large (Liu et al., 2019), and GPT-2 (Rad-
ford et al., 2019) using FedEx-LoRA. This compre-
hensive setup allows us to assess the effectiveness
of our approach across different tasks and model
architectures.

For arithmetic reasoning, we fine-tune the
decoder-only models Mistral-7B and Gemma-2
9B using 10K samples from the MetaMathQA
dataset (Yu et al., 2024). These models are evalu-
ated on two standard arithmetic reasoning bench-
marks, GSM8K (Cobbe et al., 2021) and MATH
(Hendrycks et al., 2021). In the commonsense
reasoning category, we use Llama-3.2 3B, which
is trained on COMMONSENSE170K—a compila-
tion of eight commonsense reasoning datasets (Hu
et al., 2023). We evaluate the RoBERTa mod-
els on natural language understanding tasks with
the GLUE benchmark (Wang et al., 2019) and as-
sess GPT-2 on natural language generation tasks
through the E2E NLG Challenge (Novikova et al.,
2017). We implement all algorithms using PyTorch
(Paszke et al., 2019), based on the widely-used
HuggingFace Transformers codebase (Wolf et al.,
2020). We run all experiments on a single NVIDIA
A100/A6000 GPU, and present the results as av-
erage of 3 different random runs. Base models
are loaded in torch.bfloat16 to save memory.
Dataset details are presented in Appendix C.

Implementation Details. The residual and prod-
uct matrices are scaled by the factor α/r, where α
is a constant in r, consistent with the approach in
LoRA (Hu et al., 2021). We run our experiments
in a three-client cross-silo federated setting, based
on the settings described in FFA-LoRA (Sun et al.,
2024). For data distribution among clients, we
use the common method to sample data at random
for each client, as implemented in standard works
(Zhang et al., 2024b; He et al., 2020; Lai et al.,
2022).

Baselines. We primarily compare FedEx-LoRA
with other federated fine-tuning versions of LoRA,
but include centralized LoRA as a performance
benchmark or skyline. We also include other base-
lines, where possible. Full Fine-Tuning (FT)
refers to fine-tuning the entire pretrained model.
LoRA (Hu et al., 2021) represents the traditional
centralized LoRA approach. FedIT (Zhang et al.,
2024b), the current state-of-the-art federated fine-
tuning method, applies vanilla federated averaging
(FedAvg) to LoRA (McMahan et al., 2017). FFA-
LoRA (Sun et al., 2024) freezes the A matrices
and trains only the B matrices, allowing for exact
aggregation in a federated setting but at the cost of
losing the benefits of training A.

4.1 Instruction Tuning
Implementation Details. For arithmetic rea-

soning, we fine-tune Mistral-7B (Jiang et al.,
2023) and Gemma-2 9B (Team et al., 2024) on
10K samples from the MetaMathQA dataset (Yu
et al., 2024) and evaluate them on the GSM8K
(Cobbe et al., 2021) and MATH (Hendrycks et al.,
2021) benchmarks. For commonsense reasoning,
we use Llama-3.2 3B, training it on COMMON-
SENSE170K—a dataset combining eight common-
sense reasoning datasets (Hu et al., 2023)—and
evaluate its performance on each of those datasets.
In all instruction tuning tasks, we apply LoRA mod-
ules to the key, value, query, attention output, and
all fully connected weight matrices. We fine-tune
over a single local epoch within one aggregation
round, using a rank of r = 32.

Main Results. Tables 1 and 2 present the results
for commonsense and arithmetic reasoning. Our
method consistently surpasses state-of-the-art fed-
erated fine-tuning techniques across both arithmetic
benchmarks and all eight commonsense reason-
ing tasks for every evaluated model. For example,
on average accuracy for commonsense reasoning,
FedEX-LoRA outperforms FFA-LoRA by 8.63%
and FedIT by 2.42% respectively.

4.2 Natural Language Understanding
Implementation Details. RoBERTa (Liu et al.,

2019) is a widely used pretrained model known
for its competitive performance among its size.
We use the pretrained RoBERTa-base (125M pa-
rameters) and RoBERTa-large (355M parameters)
from the HuggingFace Transformers library (Wolf
et al., 2020) and evaluate them on several datasets
from the GLUE benchmark: CoLA, RTE, MRPC,
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Method Accuracy (↑)
BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg.

Centralized LoRAr=32 73.45 89.65 82.23 94.41 87.97 93.88 82.76 86.60 86.37
FedITr=32 70.73 87.59 79.17 91.06 83.42 92.71 81.31 82.68 83.57
FFA-LoRAr=32 65.78 84.22 72.41 82.27 72.53 90.36 76.28 75.00 77.35
FedEx-LoRAr=32 73.21 89.01 81.98 94.29 87.29 93.68 82.33 86.20 85.99

Table 1: Results for Llama-3.2 3B on eight commonsense reasoning datasets, comparing various federated LoRA
methods at rank r = 32. Centralized LoRA (in grey) sets the benchmark skyline for its federated versions. Best
results among federated methods (in blue) are highlighted in bold for each setting.

Model Method Accuracy (↑)
GSM8K MATH

Mistral-7B

Centralized LoRAr=32 62.77 16.24
FedITr=32 56.94 14.96
FFA-LoRAr=32 56.41 14.88
FedEx-LoRAr=32 62.62 16.54

Gemma-2 9B

Centralized LoRAr=32 76.34 39.32
FedITr=32 74.57 37.16
FFA-LoRAr=32 75.04 35.18
FedEx-LoRAr=32 76.19 39.00

Table 2: Arithmetic reasoning performance on GSM8K
and MATH for Mistral-7B and Gemma-2 9B, comparing
various federated LoRA methods at rank r = 32. Cen-
tralized LoRA (in grey) sets the benchmark skyline
for its federated versions. Best results among federated
methods (in blue) are highlighted in bold per setting.

SST-2, QNLI, and STS-B. We apply LoRA mod-
ules only to the self-attention layers, following the
setup from the original LoRA paper (Hu et al.,
2021). Models are fine-tuned at ranks r = {4, 1}
over local epochs of 3 and 10. For RoBERTa-base,
we run 50 aggregation rounds for 3 local epochs
and 15 rounds for 10 local epochs. For RoBERTa-
large, we perform 15 aggregation rounds for 3 local
epochs and 5 rounds for 10 local epochs. Detailed
experimental settings are provided in Appendix D.

Main Results. We present results for RoBERTa-
base and RoBERTa-large in Table 3, evaluated at
ranks r = {4, 1}. Our method consistently out-
performs state-of-the-art federated fine-tuning ap-
proaches across all datasets and settings. Notably,
our method occasionally achieves performance on
par with centralized LoRA. Additional results in
Appendix F (Table 10) further demonstrate the ro-
bustness and superiority of our method over other
federated LoRA variants across multiple settings.

4.3 Natural Language Generation

We present results and details for NLG tasks in
Appendix B.

5 Analysis

To fully understand the implications of our method,
we performed several in-depth analyses, each tar-
geting a specific aspect of FedEx-LoRA’s perfor-
mance and efficiency.

Assignment Strategies for Ai and Bi. As dis-
cussed in Section 3, we can incorporate any high-
rank update matrix ∆Wres within the frozen full-
rank matrix W0. However, assignment of the low-
rank adapters Ai and Bi post-aggregation is less
straightforward. Any selection of Ai and Bi can be
offset by adjusting the residual update, by ensuring
that W0 +BiAi remains consistent across clients.
We evaluate three strategies: (1) Reinitialize Ai

and Bi reinitializes Ai and Bi after aggregation
and appends the full update to the frozen weights
(ensuring W0 +BiAi is identical). (2) Ai ← Ai

and Bi ← Bi leaves Ai and Bi unchanged across
clients, maintaining their pre-aggregation values.
(3) FedEx-LoRA aggregates Ai and Bi using the
aggregation method in FedIT (FedAvg), provid-
ing the best low-rank approximation to the aggre-
gated update with the residual ∆Wres stored in
W0. We present results for RoBERTa-base on the
GLUE benchmark in Table 4. FedEx-LoRA out-
performs the other strategies, leading us to adopt
Bi ← 1

k

∑k
i=1Bi and Ai ← 1

k

∑k
i=1Ai across

all clients.
To extend our method to rank-heterogeneous set-

tings, the assignments for Ai and Bi must also
accommodate rank heterogeneity. Further investi-
gation is required to develop an optimal assignment
strategy that supports this.

Scaled Frobenius Norm of Diver-
gence/Deviation. We now study the deviations
in updates from federated averaging (FedAvg)
relative to ideal updates and analyze the findings.
To quantify this deviation, we measure the scaled
Frobenius norm of the divergence between the
updates produced by FedAvg and the ideal LoRA
updates, revealing several notable patterns. In
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Model Method CoLA RTE MRPC SST-2 QNLI STS-B All
Mcc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Corr ↑ Avg ↑

RoBERTa-base

Centralized LoRAr=4 64.31 75.45 87.99 94.61 92.75 90.73 84.31
FedITr=4 60.82 73.64 88.48 94.61 92.07 90.91 83.42
FFA-LoRAr=4 59.34 70.04 87.50 94.27 91.37 90.26 82.13
FedEx-LoRAr=4 62.82 75.09 89.95 94.84 92.66 90.95 84.39

Centralized LoRAr=1 62.13 74.67 87.75 94.61 92.31 90.83 83.72
FedITr=1 61.33 71.48 87.99 94.52 92.01 90.81 83.02
FFA-LoRAr=1 57.52 71.20 87.48 94.03 91.78 90.34 82.06
FedEx-LoRAr=1 62.07 73.65 88.73 94.84 92.21 90.87 83.73

RoBERTa-large

Centralized LoRAr=4 66.03 82.67 88.84 96.21 94.58 91.92 86.71
FedITr=4 64.48 78.43 88.48 95.87 94.41 91.29 85.49
FFA-LoRAr=4 62.05 75.39 86.52 95.27 94.35 90.23 83.97
FedEx-LoRAr=4 65.29 80.31 89.95 96.21 94.71 91.85 86.39

Centralized LoRAr=1 65.21 83.39 92.44 96.10 94.42 92.12 87.28
FedITr=1 62.82 78.11 91.29 96.10 94.35 91.62 85.72
FFA-LoRAr=1 60.58 74.67 89.47 95.58 94.01 91.34 84.28
FedEx-LoRAr=1 64.35 80.01 91.76 96.22 94.71 91.91 86.49

Table 3: Results with RoBERTa-base and RoBERTa-large on the GLUE benchmark datasets, comparing various
federated LoRA methods at ranks r = {4, 1}. Centralized LoRA (in grey) sets the benchmark skyline for its
federated versions. Best results among federated methods (in blue) are highlighted in bold for each setting. There
are 3 local epochs before every aggregation round. We report Matthew’s correlation for CoLA, Pearson correlation
for STS-B, and accuracy for others. Higher is better for all metrics.

Method CoLA RTE MRPC SST-2 QNLI STS-B All
Mcc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Corr ↑ Avg ↑

Reinitialize Ai and Bi 0.00 61.37 75.74 76.26 53.98 53.38 53.46
Ai ← Ai and Bi ← Bi 55.54 59.93 84.80 92.77 88.98 88.41 78.41
FedEx-LoRA 62.82 75.09 89.95 94.84 92.66 90.95 84.39

Table 4: Results with RoBERTa-base (r = 4) on the GLUE benchmark datasets, comparing various assignment
strategies for Ai and Bi. We report Matthew’s correlation for CoLA, Pearson correlation for STS-B, and accuracy
for other datasets. Best results for each dataset are highlighted in bold.

Figure 2, we plot this divergence for the query
(Q) and value (V) matrices across model layers,
computed after the first aggregation step for
local epochs = {3, 10}. We observe that (1) the
deviations decrease as the model depth increases,
(2) the deviation grows with a higher number
of local epochs, and (3) the deviation is more
pronounced in the query (Q) matrices compared
to the value (V) matrices. These trends hold
consistently across various datasets and settings, as
shown by additional plots in Appendix H.1 (see
Figures 4 and 5).

Next, we examine how this deviation evolves
across multiple rounds of federated aggregation.
We plot the scaled Frobenius norm of the devia-
tion between FedAvg and ideal LoRA updates over
several aggregation rounds for different datasets,
focusing on (a) the query matrices of the first layer,
and (b) the average of the query and value matrices
across all layers, as presented in Figure 3. We ob-

serve that the deviation consistently decreases as
the number of aggregation rounds increases, both
for the first-layer query matrix and for the aver-
age of the query and value matrices across all lay-
ers. These findings are supported by detailed plots
across multiple datasets and settings, as shown in
Appendix H.2 (see Figures 6, 7, 8, and 9).

Communication Costs. As discussed in Section
3, FedEx-LoRA transmits a higher-rank update ma-
trix (rank = k · r) along with the low-rank adapters,
which raises concerns about potential communica-
tion overhead. Table 8 compares the communica-
tion costs of FFA-LoRA, FedIT, and full federated
fine-tuning (FT), compared to FedEx-LoRA, for
RoBERTa-base, RoBERTa-large, and GPT-2 mod-
els with rank r = 4 over 5 communication rounds.
FedEx-LoRA incurs only a marginal increase in
communication overhead relative to FedIT and
FFA-LoRA, while FFA-LoRA has the lowest cost
due to its reduced number of trainable parameters.

1322



Figure 2: Scaled Frobenius norm of diver-
gence/deviation of updates with conventional
federated aggregation (FedAvg) versus ideal LoRA
updates, computed after the first aggregation step. We
plot for query (Q) and value (V) matrices across model
layers. Results are shown for local epochs = {3, 10}.
(Dataset: MRPC, model: RoBERTa-large, r = 1).

FedEx-LoRA still maintains a substantially lower
communication cost compared to federated full FT.

The practical impact of communication overhead
is reduced by two factors: (1) the initial transmis-
sion of full model weights dominates communi-
cation costs, and (2) in NLU tasks, most commu-
nicated parameters come from the classification
head, which requires training regardless of the
aggregation method. Therefore, communication
cost differences between FedEx-LoRA, FedIT, and
FFA-LoRA are minimal in practice. Despite this
marginal overhead, FedEx-LoRA consistently out-
performs other federated LoRA approaches, mak-
ing it an effective choice for federated fine-tuning.

6 Conclusion

In our work, we identified limitations in state-of-
the-art federated fine-tuning methods that struggle
with inexact aggregation. We proposed a novel
method, FedEx-LoRA, which appends the residual
error matrix to the frozen pretrained matrix, while
maintaining minimal communication and computa-
tional overhead. The strength of our approach lies
in its simplicity and broad applicability. Extensive
experiments demonstrate that FedEx-LoRA consis-
tently outperforms other federated LoRA methods
across various datasets and settings. Our analyses
reveal that deviations in updates from federated
averaging compared to the ideal solution are signif-
icant and exhibit notable patterns.

(a) Query matrices of first layer

(b) Avg. of query and value matrices across all layers

Figure 3: Scaled Frobenius norm of diver-
gence/deviation of updates with conventional
federated aggregation (FedAvg) versus ideal LoRA
updates, computed across multiple aggregation rounds
for various datasets. We present results for (a) query
matrices from the first layer, and (b) the average of
query and value matrices across all layers. (Model:
RoBERTa-large, r = 1, local epochs = 10).

7 Limitations

Our work does not address privacy-preserving set-
tings. As shown in FFA-LoRA (Sun et al., 2024),
differential privacy noise can cause significant de-
viations from ideal updates. Since our method
achieves exact aggregation and surpasses FFA-
LoRA in non-private settings, we expect it to per-
form well in privacy-sensitive applications. Addi-
tionally, while our approach is adaptable for fine-
tuning models such as Vision Transformers (ViTs)
and Vision-Language Models (VLMs), this study
focuses solely on language models.
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A Related work

Parameter-efficient Fine-tuning. PEFT meth-
ods aim to adapt foundation models while mini-
mizing the number of trainable parameters. Input-
based techniques like prefix tuning (Li and Liang,
2021) prepend trainable prompts, and prompt tun-
ing (Lester et al., 2021) optimizes soft prompts
in the embedding space - both effective for task-
specific adaptations. Architectural approaches,
such as adapter layers (Houlsby et al., 2019), add
trainable components between transformer blocks
(Vaswani et al., 2017), facilitating multi-task learn-
ing. LoRA (Hu et al., 2021) reduces memory over-
head by representing weight updates with low-rank
matrices, while AdaLoRA (Zhang et al., 2023b)
improves efficiency by dynamically adjusting the
parameter budget. Optimization techniques, like
QLoRA (Dettmers et al., 2024), enable fine-tuning
on consumer hardware via quantization, and Lon-
gLoRA (Chen et al., 2024) targets long-context
tasks. Recent advancements include combining
multiple PEFT methods (Lin et al., 2024) and scal-
ing these techniques for very large models (Zhang
et al., 2024a), advancing the state of efficient fine-
tuning.

Federated Fine-Tuning of Foundation Models.
Federated learning (Konečný et al., 2017) is a de-
centralized approach that allows multiple clients to
collaboratively train a shared model without shar-
ing their private data. Instead, clients perform lo-
cal training on their own datasets, and only the
resulting model updates are securely aggregated
to update the global model (Kairouz et al., 2021).
This iterative process of local training and global
aggregation continues until the model converges.
FedBERT (Tian et al., 2022) introduced federated
pre-training for BERT, while recent efforts have
focused on federated fine-tuning of foundation
models (Zhang et al., 2022; Kuang et al., 2024;
Babakniya et al., 2023). The current state-of-the-
art, FedIT (Zhang et al., 2024b)), fine-tunes LLMs
by averaging LoRA parameters across clients us-
ing vanilla Federated Averaging (FedAvg, McMa-
han et al. (2017)). However, averaging low-rank
adapters independently introduces noise and re-
sults in inexact global updates. Federated Freeze A
LoRA (FFA-LoRA) (Sun et al., 2024) mitigates this
by keeping one set of adapters trainable, improv-
ing aggregation stability but limiting the training
flexibility of other adapters. This method is par-
ticularly advantageous in privacy-sensitive settings

(Huang et al., 2022; Zhang et al., 2021). Another
challenge arises from heterogeneous rank settings,
where clients adjust LoRA ranks based on their
capacities (Zhao et al., 2018; Li et al., 2019). Some
methods address this by self-pruning local LoRA
modules and employing sparsity-weighted aggre-
gation (Cho et al., 2024), though this introduces
substantial computational overhead.

B Natural Language Generation

Implementation Details. We fine-tune GPT-
2 (124M parameters) (Radford et al., 2019) on
the E2E NLG Challenge dataset (Novikova et al.,
2017). We apply LoRA modules only to the self-
attention layers. The model is fine-tuned at ranks
r = {4, 1} with local epochs set to 3 and 10, using
6 aggregation rounds for both settings. Detailed
experimental settings are provided in Appendix D.

Main Results. Table 5 presents the performance
of GPT-2 fine-tuned with ranks r = {4, 1}. FedEx-
LoRA consistently outperforms leading federated
fine-tuning methods, across all settings. Additional
evaluations, provided in Appendix G (Table 11),
further demonstrate the reliability and strength of
FedEx-LoRA across different configurations.

C Dataset Details

COMMONSENSE170K is a dataset combining
eight commonsense reasoning datasets (Hu et al.,
2023), as detailed below:

1. WinoGrande (Sakaguchi et al., 2021) in-
volves filling in blanks with binary choices
based on sentences that demand common-
sense reasoning.

2. HellaSwag (Zellers et al., 2019) asks the
model to predict the most plausible continua-
tion of a given context by selecting the correct
ending from several options.

3. ARC Challenge or ARC-c (Clark et al., 2018)
consists of multiple-choice science questions
designed to challenge models with more com-
plex reasoning, making them harder for meth-
ods that rely solely on co-occurrence patterns.

4. PIQA (Bisk et al., 2020) tests physical com-
monsense reasoning, where the task is to
choose the best action from a set of options in
a hypothetical situation.
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Method E2E NLG Challenge
BLEU ↑ NIST ↑ MET ↑ ROUGE-L ↑ CIDEr ↑

Centralized LoRAr=4 68.91 8.73 46.78 71.29 2.47
FedITr=4 67.60 8.67 46.30 68.96 2.41
FFA-LoRAr=4 66.79 8.61 45.24 67.98 2.39
FedEx-LoRAr=4 68.15 8.72 46.48 69.49 2.44

Centralized LoRAr=1 67.41 8.68 46.01 69.51 2.41
FedITr=1 66.01 8.56 45.21 68.14 2.28
FFA-LoRAr=4 65.87 8.54 45.02 68.05 2.27
FedEx-LoRAr=1 67.02 8.61 45.99 69.52 2.38

Table 5: Results with GPT-2 on the E2E NLG Challenge, comparing various federated LoRA methods at ranks
r = {4, 1}. Centralized LoRA (in grey) sets the benchmark skyline for its federated versions. Best results
among federated methods (in blue) are highlighted in bold for each setting. There are 3 local epochs before every
aggregation round. Higher is better for all metrics.

5. BoolQ (Clark et al., 2019) focuses on yes/no
question answering from naturally occurring
queries.

6. ARC Easy or ARC-e (Clark et al., 2018)
consists of grade-school-level multiple-choice
science questions, providing a simpler set of
tasks for testing models’ basic reasoning abi-
ities.

7. OBQA (Mihaylov et al., 2018) contains open-
book, knowledge-intensive QA tasks requir-
ing multi-hop reasoning to answer questions
that involve integrating information from mul-
tiple sources.

8. SIQA (Sap et al., 2019) focuses on under-
standing human actions and predicting their
social consequences, evaluating models’ so-
cial commonsense reasoning.

MetaMathQA dataset (Yu et al., 2024) gener-
ates mathematical questions by rephrasing them
from various perspectives without introducing ad-
ditional knowledge. We evaluate this dataset on
two benchmarks: GSM8K (Cobbe et al., 2021),
which includes grade-school math word prob-
lems that require multi-step reasoning, and MATH
(Hendrycks et al., 2021), which features challeng-
ing competition-level mathematics problems.

GLUE Benchmark is a diverse suite of tasks
for evaluating natural language understanding ca-
pabilities. It includes datasets such as SST-2 for
sentiment analysis (Socher et al., 2013), MRPC for
paraphrase detection (Dolan and Brockett, 2005),
CoLA for linguistic acceptability (Warstadt et al.,
2019), QNLI for inference (Rajpurkar et al., 2018),
RTE for inference, and STS-B for semantic textual

similarity (Cer et al., 2017). Due to its comprehen-
sive coverage of NLU tasks, GLUE is widely used
to assess models like RoBERTa. Each dataset is
released under its own license.

The E2E NLG Challenge (Novikova et al.,
2017) dataset is widely used to evaluate systems for
natural language generation, particularly for data-
to-text tasks. It contains around 42,000 training
examples, with an additional 4,600 each for vali-
dation and testing, all from the restaurant domain.
Each input table has multiple reference outputs,
where each data point (x, y) includes a sequence
of slot-value pairs and its corresponding reference
text in natural language. The dataset is made avail-
able under the Creative Commons BY-NC-SA 4.0
license.

D Hyperparameter Details

We conduct experiments on a single NVIDIA
A100/A6000 GPU and report the average results
from three independent runs. All models are
trained using the AdamW optimizer (Loshchilov
and Hutter, 2019). For the instruction tuning exper-
iments, the hyperparameters and configurations for
Mistral-7B, Gemma-2 9B, and Llama-3.2 3B are
provided in Table 6, following most of the settings
from previous works (Hu et al., 2023). The hyper-
parameter configurations for GPT-2 and RoBERTa-
base/large are detailed in Table 7, with most set-
tings following the original LoRA paper (Hu et al.,
2021), except for a learning rate sweep.

E Effect of Varying Rank

We evaluate FedEx-LoRA against other federated
fine-tuning methods on the CoLA dataset using
RoBERTa-base, by varying the rank of the low-
rank adapters across r = {1, 2, 4, 8, 16, 32}, as
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Mistral-7B / Gemma-2 9B Llama-3.2 3B

Optimizer AdamW AdamW
Batch size 1 6
Max. Seq. Len 512 256
Grad Acc. Steps 32 24
Local Epochs 1 1
Rounds 1 1
Dropout 0 0
Learning Rate 5e− 4 5e− 4
LR Scheduler Cosine Linear
Warmup Ratio 0.02 0.02
LoRA α 16 16

Table 6: Hyperparameter settings for Mistral-7B, Gemma-2 9B & Llama-3.2 3B.

GPT-2 RoBERTa-base/large

Training

Optimizer AdamW AdamW
Weight Decay 0.01 0.01
Dropout Prob 0.1 0.1
Batch Size 8 128
Warmup Steps 500 -
Warmup Ratio - 0.6
Label Smooth 0.1 -
Max Seq. Len 128 512
Learning Rate 2 · 10−3 1 · 10−3

LoRA α 32 8

Inference

Beam Size 10 -
Length Penalty 0.9 -
no repeat ngram size 4 -

Table 7: Hyperparameter settings for GPT-2 and RoBERTa-base/large.

Model Federated Full FT FedEx-LoRA FedIT FFA-LoRA

RoBERTa-base 7.032 1 0.979 0.972
RoBERTa-large 10.396 1 0.984 0.979
GPT-2 9.475 1 0.917 0.886

Table 8: Ratio of # of parameters communicated in federated LoRA variants and federated full FT to FedEx-LoRA.
All results are reported with rank r = 4 and across 5 communication rounds.

1329



presented in Table 9. Across all rank configura-
tions, FedEx-LoRA consistently outperforms com-
peting federated LoRA variants. In agreement with
prior studies (Hu et al., 2021; Zhang et al., 2023b),
increasing the rank does not always result in perfor-
mance gains. For this task, we find that the optimal
performance is achieved at r = 8, beyond which
further increases in rank yield diminishing returns.

F Additional Experiments for NLU

We present additional results with the RoBERTa-
base and RoBERTa-large models in Table 10, eval-
uated at ranks r = {4, 1}, with local epochs set to
10.

G Additional Experiments for NLG

Table 11 presents additional experiments of GPT-2
fine-tuned with ranks r = {4, 1}, with local epochs
set to 5. FedEx-LoRA consistently outperforms
leading federated fine-tuning methods across all
metrics and settings, consistent with the results
presented in Table 5.
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Method r = 1 r = 2 r = 4 r = 8 r = 16 r = 32

Centralized LoRA 62.13 62.11 64.31 64.44 64.32 63.98
FedIT 60.05 60.32 60.82 62.09 62.15 61.98
FFA-LoRA 57.73 57.78 59.34 57.82 57.78 58.24
FedEx-LoRA 62.07 61.38 62.82 63.57 63.56 63.35

Table 9: Matthew’s correlation on CoLA across different ranks for various federated LoRA methods. Centralized
LoRA (in grey) sets the benchmark skyline for its federated versions. Best results among federated methods (in
blue) are highlighted in bold for each rank. (Model: RoBERTa-base, local epochs = 3).

Method CoLA RTE MRPC SST-2 QNLI STS-B All
Mcc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Corr ↑ Avg ↑

Centralized LoRAr=4 64.31 75.45 87.99 94.61 92.75 90.73 84.31
FedITr=4 58.55 70.75 87.50 94.36 92.09 90.58 82.31
FFA-LoRAr=4 57.52 71.84 86.76 94.24 91.27 90.04 81.95
FedEx-LoRAr=4 61.32 75.81 87.75 94.57 92.64 90.62 83.79

Centralized LoRAr=1 62.13 74.67 87.75 94.61 92.31 90.83 83.72
FedITr=1 60.05 71.84 88.79 94.62 92.23 90.54 83.01
FFA-LoRAr=1 57.73 71.18 87.74 93.69 91.41 90.18 81.99
FedEx-LoRAr=1 61.31 73.12 89.21 94.73 92.40 90.67 83.57

(a) Results with RoBERTa-base on the GLUE benchmark datasets

Method CoLA RTE MRPC SST-2 QNLI STS-B All
Mcc ↑ Acc ↑ F1 ↑ Acc ↑ Acc ↑ Corr ↑ Avg ↑

Centralized LoRAr=4 66.03 82.67 88.84 96.21 94.58 91.92 86.71
FedITr=4 61.80 77.83 85.54 95.83 94.32 91.70 84.50
FFA-LoRAr=4 60.16 74.67 84.31 95.64 94.29 90.28 83.23
FedEx-LoRAr=4 62.60 79.19 86.03 96.10 94.74 91.91 85.10

Centralized LoRAr=1 65.21 83.39 89.21 96.10 94.42 92.12 86.74
FedITr=1 61.06 78.33 88.48 95.86 94.25 91.17 84.85
FFA-LoRAr=1 60.32 72.45 85.78 95.52 93.94 91.25 83.21
FedEx-LoRAr=1 63.56 79.07 89.71 96.22 94.56 91.77 85.82

(b) Results with RoBERTa-large on the GLUE benchmark datasets

Table 10: Results with RoBERTa-base and Roberta-large on the GLUE benchmark datasets, comparing various
federated LoRA methods at ranks r = {4, 1}. There are 10 local epochs before every aggregation round.

Method E2E NLG Challenge
BLEU ↑ NIST ↑ MET ↑ ROUGE-L ↑ CIDEr ↑

Centralized LoRAr=4 68.91 8.73 46.78 71.29 2.47
FedITr=4 67.61 8.62 46.45 70.28 2.43
FFA-LoRAr=4 67.21 8.57 46.05 69.98 2.41
Exact-FedITr=4 68.49 8.72 46.76 70.71 2.48

Centralized LoRAr=1 67.41 8.68 46.01 69.51 2.41
FedITr=1 66.16 8.56 45.54 68.25 2.29
FFA-LoRAr=1 65.78 8.49 45.01 67.82 2.26
Exact-FedITr=1 66.54 8.57 46.07 69.11 2.37

Table 11: Results with GPT-2 on the E2E NLG Challenge, comparing various federated LoRA methods at ranks
r = {4, 1}. There are 5 local epochs before every aggregation round.
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H More Divergence/Deviation Plots

H.1 Deviation/Divergence Plots Across Layers
As discussed in Section 5, we further quantify
the deviation of conventional federated aggrega-
tion (FedAvg) from ideal updates by measuring
the scaled Frobenius norm of the divergence the
updates produced by FedAvg and the ideal LoRA
updates. We present additional plots of this diver-
gence for the query (Q) and value (V) matrices
across model layers, computed after the first aggre-
gation step for local epochs = {3, 10} across mul-
tiple datasets, in Figures 4 and 5. Figure 4 shows
results for rank r = 1, while Figure 5 presents
results for rank r = 4.

H.2 Deviation/Divergence Plots Across
Rounds

We now examine how the deviation evolves across
multiple rounds of federated aggregation. We plot
the scaled Frobenius norm of the deviation between
FedAvg and ideal LoRA updates over several ag-
gregation rounds for different datasets, focusing on
(a) the query matrices of the first layer and (b) the
average of the query and value matrices across all
layers. This is presented in Figures 6, 7, 8, and 9.
We include results for ranks r = {1, 4} and local
epochs = {3, 10}.
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(a) QNLI, r = 1 (b) SST-2, r = 1

(c) CoLA, r = 1 (d) STS-B, r = 1

(e) MRPC, r = 1 (f) RTE, r = 1

Figure 4: Scaled Frobenius norm of divergence/deviation of updates with conventional federated aggregation
(FedAvg) versus ideal LoRA updates, computed after the first aggregation step. We plot for query (Q) and value
(V) matrices across model layers, for multiple datasets. Results are shown for local epochs = {3, 10}. (Model:
RoBERTa-large, r = 1).
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(a) QNLI, r = 4 (b) SST-2, r = 4

(c) CoLA, r = 4 (d) STS-B, r = 4

(e) MRPC, r = 4 (f) RTE, r = 4

Figure 5: Scaled Frobenius norm of divergence/deviation of updates with conventional federated aggregation
(FedAvg) versus ideal LoRA updates, computed after the first aggregation step. We plot for query (Q) and value
(V) matrices across model layers, for multiple datasets. Results are shown for local epochs = {3, 10}. (Model:
RoBERTa-large, r = 4).
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(a) Query matrices of first layer (b) Avg. of query and value matrices across all layers

Figure 6: Scaled Frobenius norm of divergence/deviation of updates with conventional federated aggregation
(FedAvg) versus ideal LoRA updates, computed across multiple aggregation rounds for various datasets. We present
results for (a) query matrices from the first layer, and (b) the average of query and value matrices across all layers.
(Model: RoBERTa-large, r = 1, local epochs = 3)

(a) Query matrices of first layer (b) Avg. of query and value matrices across all layers

Figure 7: Scaled Frobenius norm of divergence/deviation of updates with conventional federated aggregation
(FedAvg) versus ideal LoRA updates, computed across multiple aggregation rounds for various datasets. We present
results for (a) query matrices from the first layer, and (b) the average of query and value matrices across all layers.
(Model: RoBERTa-large, r = 1, local epochs = 10)

(a) Query matrices of first layer (b) Avg. of query and value matrices across all layers

Figure 8: Scaled Frobenius norm of divergence/deviation of updates with conventional federated aggregation
(FedAvg) versus ideal LoRA updates, computed across multiple aggregation rounds for various datasets. We present
results for (a) query matrices from the first layer, and (b) the average of query and value matrices across all layers.
(Model: RoBERTa-large, r = 4, local epochs = 3)
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(a) Query matrices of first layer (b) Avg. of query and value matrices across all layers

Figure 9: Scaled Frobenius norm of divergence/deviation of updates with conventional federated aggregation
(FedAvg) versus ideal LoRA updates, computed across multiple aggregation rounds for various datasets. We present
results for (a) query matrices from the first layer, and (b) the average of query and value matrices across all layers.
(Model: RoBERTa-large, r = 4, local epochs = 10)
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