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Abstract

Despite the increasing interest in the reasoning
abilities of Large Language Models (LLMs),
existing work shows limitations in assessing
logic abilities independently from lexical mem-
ory. We address this gap with Mystery-Zebra.
This robust two-part benchmark (4,290 puz-
zles) challenges the logic abstraction abilities
of LLMs in two setups: (1) a lexical obfus-
cation setup tests the dependence of LLMs on
lexical content based on two canonical grid puz-
zles widely spread on the Internet; (2) a set of
new grid puzzles in 42 different sizes and 12
difficulty levels tests how the formal difficulty
degree of a puzzle affects LLMs. We test open
and closed-weight LLMs on both parts of the
benchmark. The results on part two suggest that
model sizes up to 70B parameters have only a
minor influence when solving newly generated
puzzles, while performance mainly relates to
the number of items in the puzzle. The results
on the first part of the benchmark suggest that
the applied obfuscation strategies help to miti-
gate effects of logic puzzles being part of LLM
training data, showing a drastic drop in perfor-
mance for obfuscated versions of well-known
puzzles. In addition we conduct a case-study
on the first part of the benchmark predicting
the position of single items, unveiling that the
reasoning abilities of LLMs are mainly limited
to a few consecutive steps of reasoning.1

1 Introduction

Alongside the general improvement in Large Lan-
guage Model (LLM) performance across NLP
tasks, the trust in their reasoning abilities increases.
Their deployment in real-world applications calls
for a critically informed view on LLM reasoning
since misconceptualising these abilities has severe
consequences.

1The code used to create obfuscated puzzle variants, run
experiments, and evaluate results is available under: https:
//github.com/arg-tech/MysteryZebra

Figure 1: Grid puzzles like the “Zebra” puzzle encode
relationships between items in natural language clues.
Through deduction and elimination, these clues can be
interpreted to populate a unique solution grid.

While classic reasoning benchmarks for LLMs
cover basic maths, rule-based, or inferential rea-
soning (Wan et al., 2024; Mirzadeh et al., 2024;
Gui et al., 2024; Wang, 2024), another line of re-
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search assesses LLMs on games like Minecraft,
card games, and logic puzzles (e.g. Sudoku) (Wang
et al., 2023; Gupta, 2023; Guo et al., 2023; Li et al.,
2024a; Shah et al., 2024; Saha et al., 2024).

Nevertheless, the intense scaffolding needed to
apply LLMs in games blurs insights into their rea-
soning abilities. Further, abstract puzzles like Su-
doku rely on more abstract non-linguistic represen-
tations offering a limited perspective on the link
between language and reasoning in LLMs. In con-
trast, grid puzzles like the popular “Zebra”2 and
“Einstein”3 puzzle offer a constrained task to evalu-
ate LLM reasoning abilities in a natural-language
setup. As illustrated in Figure 1, a typical grid
puzzle contains a set of clues describing the rela-
tive position of items of the same syntactic domain
(e.g. pets). The correct solution can be translated
to a grid, where each row represents a domain,
where the items are positions relatively to each
other in columns. For a successful solution, the
model needs to identify clue(s) leading to a valid
elimination of positioning options or a correct posi-
tioning, keep track of the grid’s current status, and
ensure a conflict-free solution grid.

Grid-puzzles are rule-based (Giadikiaroglou
et al., 2024) and therefore have a strict set of con-
straints to be satisfied in the solution grid. These
constraints can take the form of symbolic logic
expressions, turning the puzzles into Constraint
Satisfaction Problems (CSPs). This allows to de-
couple the logical structure of the the clue from its
linguistic representation. In the solution process,
it is irrelevant whether the clues involve pets or
beverages as these are just variables.

Figure 2 details the workflow of this paper,
which leverages the similarity to CSPs to propose
Mystery Zebra. The two parts of this benchmark
challenge the reasoning capabilities of LLMs nec-
essary to solve logic puzzles.

Part one of the benchmark targets the depen-
dence of LLMs on residual lexical clues from the
training content when solving a complex logic puz-
zle. In order to make the logical structure inde-
pendent from the linguistic representation, we turn
each clue into its symbolic logical representation;
e.g. The dog-owner drinks coffee → A = B. Simi-
larly to Valmeekam et al. (2023), we apply different
obfuscation techniques to manipulate the popular
“Zebra” and “Einstein” puzzle instances, which are

2https://en.wikipedia.org/wiki/Zebra_Puzzle
3https://www.chessandpoker.com/

einsteins-problem-solution.html

Figure 2: Workflow of creating and testing the Mystery
Zebra benchmark. In two distinct parts: (1) contains the
two canonical puzzle variants (“Zebra” and “Einstein”)
with lexical manipulations of them; (2) with 4,250 newly
generated puzzles in 42 sizes and with 12 difficulty
levels defined through formal difficulty of the puzzle
clues. Both parts are tested in a grid prediction setup,
while only part 1 is evaluated in a Q&A case-study.

widely spread on the Internet. We manipulate the
phrasing of clues, but also the lexical content of the
variables in the clues without changing the under-
lying symbolic structure. This helps to assess the
dependence of LLMs on the exact lexical content
of puzzles that are likely contained in their train-
ing data. Part two of the benchmark assesses the
effect of grid size and formal difficulty of clues. It
includes 4,250 newly generated puzzles in 12 for-
mal difficulty classes and 42 sizes. While existing
datasets control difficulty mainly based on the grid
size or coarse difficulty categories, Mystery-Zebra
uses the amount of information conveyed by the
clues to judge difficulty on a fine-grained basis.

13533

https://en.wikipedia.org/wiki/Zebra_Puzzle
https://www.chessandpoker.com/einsteins-problem-solution.html
https://www.chessandpoker.com/einsteins-problem-solution.html


A range of open and closed weight LLMs is eval-
uated on both parts are evaluated via grid-accuracy
when predicting the whole solution grid. In addi-
tion, part two is used to conduct a case study in a
Q&A setup.

The contributions of this paper are 7-fold: (1) we
introduce the first adaptable reasoning benchmark
enabling multidimensional analysis of LLM reason-
ing; (2) we evaluate LLMs’ logical abstraction abil-
ities from the lexical content of a well-known puz-
zle; (3) we show that our obfuscation techniques
can mitigate data contamination from training; (4)
we provide a formally motivated reference point
for puzzle difficulty; (5) we find that LLMs strug-
gle primarily with larger puzzles requiring longer
reasoning chains; (6) we show that scaling models
up to 70B parameters yields only limited gains in
performance; and (7) we demonstrate, through a
case study, that models can perform only a limited
number of consecutive inferential reasoning steps.

2 Related Work

Puzzle solving Formal logic and early machine
learning started tackling automatic puzzle solving
including CSPs like maths puzzles, Sudoku, Cross-
word puzzles or grid-puzzles (Wos, 1988; Shazeer
et al., 1999; Goldberg et al., 2002; Jones et al.;
Shapiro, 2011; Chesani et al., 2017; Valentine and
Davis, 1987; Salavati et al., 2009).

Pre-LLM approaches in NLP tried solving grid
puzzles with controlled or hybrid architectures
(Schwitter, 2013; Jabrayilzade and Tekir, 2020).
As LLMs’ performance increased, a range of works
explored their reasoning abilities with puzzles like
Minesweeper (Li et al., 2024b). Results suggest
very basic reasoning abilities and issues in perform-
ing consistent, coherent longer reasoning chains.

Live-Bench (White et al., 2024) includes Zebra-
Puzzles in a Q&A format asking for one single
item. Tyagi et al. (2024) develop a LLM grid-
puzzle benchmark with 5 sizes and 3 difficulty
levels, analysing reasoning chains in depth. They
conclude that mistakes are more frequent in the
second half of the reasoning process than in the
initial part. Lin et al. (2024) provides puzzles in
36 sizes and rank puzzle difficulty based on puz-
zle size. They find that models between 7 and 10
billion parameters struggle with hard puzzles and
show a low accuracy for smaller puzzles. Despite
the advancements in these works, they offer only a
few sizes and fail to provide fine-grained difficulty

levels. Further, potential effects of residual lexical
clues from the training data are ignored. This work
aims to address this gap by offering a larger vari-
ety of sizes and difficulty levels based on a formal
perspective and providing systematic obfuscation
techniques to mitigate effects for puzzles that might
be part of LLM training data.

Task obfuscation Obfuscation techniques origi-
nate from adversarial training of image classifica-
tion models to test the robustness against variations
in the input data (Xu et al., 2018; Pezzementi et al.,
2018; Woods et al., 2019; Dong et al., 2020; Zhang
et al., 2020; Badjie et al., 2024). In language mod-
elling, a wide range of techniques was developed
to generate manipulated language input and test
the robustness of language models (Xu et al., 2018;
Wang et al., 2019; Zhang et al., 2019; Niewinski
et al., 2019; Liu et al., 2020).

Further, obfuscation is used in adversarial stud-
ies to assess LLM-weaknesses (Schwinn et al.,
2023; Zou et al., 2024; Kumar, 2024). Steindl et al.
(2024); Liu et al. (2024); Yao et al. (2024); Ahmed
and Angel Arul Jothi (2024) use this to evaluate the
robustness of LLMs against jailbreak attacks that
attempt to circumvent safeguarding mechanisms .

Recently, many other planning or reasoning
tasks adopted obfuscation methods to probe the rea-
soning abilities of LLMs. Valmeekam et al. (2023)
manipulate the Blocks-World planning task system-
atically replacing the actions required in the plan-
ning process. Nezhurina et al. (2024) propose the
Alice in Wonderland (AIW) task, manipulating lex-
ical items in a simple logic puzzle. Xie et al. (2024)
use a similar approach on Knights & Knaves puz-
zles. All works report a breakdown in performance
for puzzles from manipulated (training) data.

3 Grid Puzzles as CSPs

A CSP perspective on grid-puzzles helps to deter-
mine the difficulty of puzzles. By formulating the
rules of the puzzle in pseudo-logical form, it can be
determined how many variables are linked through
a single clue. In addition, this angle helps to ex-
plore how tightly the clues condition the position
of items in the grid. These properties are crucial for
formal approaches as they influence how many op-
tions there are for placing an item in the grid after
interpreting a clue. They also determine if a clue
can be interpreted on its own or requires combined
information from other clues.

This work uses this property to offer a fine-
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Figure 3: Example of the obfuscation process for the “Zebra” puzzle. On the right is the rephrased “Zebra” puzzle
(see Figure 1 for the original phrasing). The items in the puzzle and solution grid are then systematically replaced in
the 5-domain obfuscated puzzle so that the logical structure of deductions leading to the solution grid remains intact.

grained range of difficulty levels based on the prop-
erties of the clues of the riddle. The lowest level of
difficulty uses the commonly employed clue types
which link two variables with determined positions.
With increasing difficulty, the clues link up to 3
variables in the grid and become less restricting,
with the highest levels of difficulty including less
strict position clues (A is somewhere to the right
of B) and optional conditions (A ‘or’ B). The diffi-
culty of correctly interpreting the advanced types
of clues rises with the size of the grid and especially
with the number of items per domain.

4 Dataset creation

Mystery-Zebra contains 4,290 puzzles in two parts:
Part one (40 puzzles) contains the original “Ein-
stein” and “Zebra” puzzles with 19 each, preserv-
ing the logical structure, while varying the lexical
content. Part two includes 4,250 newly generated
puzzles not found in any available corpus.4

4.1 Manipulated Puzzles

Part one of the benchmark includes the original
‘Einstein”and the “Zebra”5 puzzle (hereafter canon-
ical puzzles; see App. B for the original puzzles)
These puzzles are solved in 5×5 grids and their so-

4The benchmark is released under BY-NC-SA 4.0
and available here: https://huggingface.co/datasets/
arg-tech/MysteryZebra

5We use the more commonly known version where the
green house is to the right of the ivory house.

lutions can be found on various webpages, making
it likely that they are part of LLM training data.

For each of the canonical puzzles, 19 obfuscated
variants are created to test the ability to abstract
from the lexical content to the logical structure.
We opt for minimal manipulations in order to show-
case the effect of minor changes on the model per-
formance. We keep the symbolic structure of the
canonical puzzles and vary the lexical representa-
tion of variables in the puzzle. in order

We obfuscate the puzzles in a 3-step process. (1)
the puzzles are translated to a symbolic represen-
tation. (2) optionally, the content of the solution
grid and corresponding clues is changed. This step
uses the obfuscation strategies detailed below. (3)
the puzzle clues are rephrased in a uniform way
so that the clues are grammatically valid structures
(see App. C for details). Mystery Zebra contains 3
versions per obfuscation strategy.

Rephrasing The canonical puzzles both vary the
verb-phrases used for the domains. To allow auto-
matic obfuscation, we adopt uniform verb-phrases
within a domain of items (see App. C). In order to
test the effect of this, we apply the uniform phras-
ing to the original puzzles, skipping step (2).

n-domain obfuscation This strategy replaces in
step (2) n domains and their corresponding items in
the solution grid and clues (e.g. beverage→hobby).
As n increases, the lexical difference to the orig-
inal puzzle increases. Figure 3 illustrates the dif-
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ference between the rephrased and the 5-domain
obfuscated version of the “Zebra” puzzle.

in domain obfuscation Here, step (2) replaces all
items of the solution grid with different items of the
same domain, thus keeping the original domains
intact (e.g. yellow→azure in color). This creates
a smaller semantic difference to the original, also
leaving the corresponding verb-phrases unchanged.

4.2 Generated Puzzles
The puzzles for part two are created systematically
using a puzzle generator6. The difficulty of a puzzle
is determined by the size of the solution-grid and
the types of clues. The dataset includes puzzles
in sizes between 1 × 2 and 7 × 7. The generator
provides transparent fine-grained metrics for the
formal difficulty of a puzzle. We use the first 12
difficulty levels provided. Each level is associated
with specific formal clue-structures (e.g. A = B;
A = B ∨ A = C) which are added to a growing
pool from which the generator can choose (see
App. A for all clue-structures). The difficulty of a
structure is determined by how restrictive it would
be as the only clue. With increasing difficulty, the
number of possible solution grids matching the clue
increases, meaning that the amount of information
contained within the clue decreases.

At least one clue must have a structure from tar-
get level (e.g. all Level 6 puzzles have at least one
clue in level 6 clue-structure). Since some struc-
tures require larger grids (e.g. Level 2: A is between
B and C), not all grid sizes are available at all levels.
Table 5 in App. A contains information on the level
size combinations. We create 10 puzzles for each
level size combination.

5 Methodology

5.1 Problem formulation
In our experiments, the models predict the solution
grid G given a set of clues C = {c1 . . . cn} and the
empty target grid G with d domains and n items per
domain. The corresponding prompt is in App. D.

5.2 Grading solutions
We require the model to provide the full solution
grid. Because only one misplaced item can lead
to a wrong answer, we refrain from a classical ac-
curacy measure. Instead, a point scale (one point
per correctly filled cell) is applied, which can be

6https://github.com/quint-t/
Puzzle-Generator-and-Solver/tree/master

converted to an accuracy score reflecting the per-
centage of correct cells in the solution grid. This
offers a more differentiated and comparable mea-
sure across sizes. In the following, this is called
grid completion accuracy.

As a baseline, we use a random, uniformly dis-
tributed assignment of each item to a random po-
sition within the correct domain. This simulates a
model that ignores the clues but still places each
item exactly once and within the correct domain.
Te expected value for correctly guessed cells in a
grid with d domains and n items per domain is
E = d. Transferred to the measure of grid accu-
racy, this is: E = d

n·d = 1
n

6 Experimental setup

We assess open and closed-weight models for dif-
ferent puzzle sizes, clue difficulties and obfuscation
techniques (see App. E for the hyper-parameters
used). The first experiment includes Llama 3.1-8B,
3.3-70B, 3.3-70B (Touvron et al., 2023), Mistral-
7B (Jiang et al., 2023), Qwen 2.5-7B, 72B7, GPT
4o-mini, GPT 4o (Achiam et al., 2023), and R1
(DeepSeek-AI et al., 2025). The second experiment
uses only open-weight models between 7 and 72B
parameters due to its higher cost. In a pre-study
involving three example puzzles from the second
part of the benchmark, we determined the models’
reactions to the prompt in App. D. No additional
prompting strategies are used as Tyagi et al. (2024)
report no improvement in puzzle solving over a
variety of prompting strategies.

Experiment 1 The first experiment evaluates the
open-weight and GPT models on the canonical
puzzles and their obfuscated versions. For the orig-
inal and rephrased versions, three solutions are
predicted with different random initialisations. The
n-Domain and in domain obfuscations three differ-
ent obfuscated versions are tested.

Experiment 2 In this experiment, the models
predict a solution for 10 different puzzles from the
second part of the benchmark of each level size
combination. As we expect no effect from training
data in this case, no obfuscated versions are tested.

7 Results

The evaluation of the grid-format experiments pre-
supposes a table format with the domains as rows
and the items in the domains as columns. The

7https://github.com/QwenLM/Qwen
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Figure 4: Average grid accuracy on the puzzles and their obfuscated versions of Deepseek R1, GPT 4o, GPT 4o-mini,
Llama 3.1-8B, 3.1-70B, 3.3-70B, Qwen 2.5-7B, 2.5-70B, and Mistral 7B. The random baseline for 5× 5-puzzles
of 0.2 is indicated by the dashed black line. Star-shaped points indicate the 1% significance interval. Data points
without a correctly formatted prediction are squares or triangles.

Q&A format is evaluated based on the target for-
mat defined in the prompt and accounts for minor
variations through additional white spaces. All
generated answers that do not contain the target for-
mats are excluded from the analysis (see App. F).
The significance intervals provided are calculated
as described in App. G.

Experiment 1 Figure 4 reports the results of ex-
periment 1. The performance of the GPT models
on the “Einstein” puzzle (left) is nearly perfect on
the original puzzle and degrades with the degree
of obfuscation, being close to the random baseline
(0.2) for in domain and 5 domain obfuscation. The
performance of R1 is high for up to 2-domain obfus-
cations but degrades afterwards. For the in domain
obfuscation, the performance of R1 is significantly
above the random baseline. The performance of
open-weight models is below the GPT models on
the original puzzle. Qwen 2.5-72B is an exception
and performs more similarly to the GPT models.

The results for the “Zebra” puzzle show an over-
all lower performance with the maximum achieved
grid completion accuracy being 97% by 4o-mini
on the rephrased version. All models except for R1
and Qwen 2.5-7B perform worse on the puzzle as
found on the internet compared to the rephrased ver-
sion. The performance still decreases as the level of
obfuscation increases. No model except for R1 out-
performs the random baseline significantly after the
2-domain obfuscations. R1’s performance is more

Qwen2.5 Llama 3.1 Llama 3.3 Mistral

Lv
Md 7B 72B 8B 70B 70B 7B

Lv1 0.38 0.29 0.30 0.51* 0.57** 0.20
Lv2 0.29 0.23 0.21 0.38 0.43* 0.15
Lv3 0.35 0.27 0.25 0.44* 0.51* 0.18
Lv4 0.37 0.28 0.29 0.45* 0.51* 0.21
Lv5 0.36 0.27 0.30 0.46* 0.55** 0.22
Lv6 0.33 0.27 0.28 0.41 0.48* 0.20
Lv7 0.29 0.22 0.22 0.38 0.43* 0.15
Lv8 0.32 0.28 0.27 0.40 0.47* 0.21
Lv9 0.31 0.26 0.23 0.38 0.43 0.20
Lv10 0.23 0.20 0.21 0.30 0.33 0.15
Lv11 0.23 0.21 0.22 0.28 0.35 0.15
Lv12 0.24 0.19 0.20 0.28 0.31 0.14

Table 1: Average table completion accuracy (for cor-
rectly formatted predictions) per level (Lv) for Model
(Md) Qwen 2.5-7B, 2.5-72B, Llama 3.1-8B, 3.1-70B,
3.3-70B, and Mistral-7B. With respect to a random base-
line, * indicates p ≤ 0.05 and ** indicates p ≤ 0.01.

.

unstable, bouncing between performances signif-
icantly above the random baseline and insignifi-
cant performances. Nevertheless, a clear tendency
for degrading performance is visible. Mistral and
Llama show a poor performance close to or be-
low random baseline across the board of versions.
These two models struggle significantly with pro-
ducing the target format. The larger open-source
models achieve a performance more similar to the
GPT models with Llama 3.1-70B, even surpassing
them for the original and rephrased version.

Experiment 2 Table 1 focuses on the results per
difficulty level, while averaging over grid sizes and
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model
n
d

1 2 3 4 5 6 7 baseline

Qwen2-7B

2 0.75** 0.59 0.62** 0.51 0.54 0.54 0.54 0.50
3 0.41 0.43** 0.41* 0.41** 0.39* 0.37 0.37 0.33
4 0.35* 0.30 0.29 0.30* 0.26 0.27 0.27 0.25
5 0.28* 0.23 0.24 0.23 0.20 0.21 0.21 0.20
6 0.22 0.19 0.20 0.18 0.17 0.16 0.16 0.17
7 0.20 0.16 0.16 0.16 0.13 0.13 0.13 0.14

Qwen2-72B

2 0.63 0.55 0.57 0.59* 0.43 0.53 0.50 0.50
3 0.41 0.34 0.35 0.34 0.32 0.34 0.37 0.33
4 0.27 0.30 0.24 0.23 0.26 0.22 0.24 0.25
5 0.25 0.21 0.19 0.18 0.20 0.19 0.18 0.20
6 0.20 0.15 0.17 0.15 0.16 0.16 0.14 0.17
7 0.15 0.13 0.12 0.14 0.14 0.13 0.13 0.14

Llama3.1-8B

2 0.68** 0.64* 0.68** 0.65** 0.56 0.58* 0.55 0.50
3 0.44 0.36 0.40 0.39 0.38 0.40* 0.39* 0.33
4 0.31 0.26 0.26 0.27 0.27 0.28 0.26 0.25
5 0.28 0.15 0.21 0.24 0.24 0.22 0.21 0.20
6 0.14 0.08 0.19 0.19 0.19 0.19 0.19 0.17
7 0.18 0.06 0.15 0.16 0.15 0.15 0.14 0.14

Llama3.1-70B

2 0.95** 0.90** 0.84** 0.82** 0.76** 0.73** 0.74** 0.50
3 0.73** 0.62** 0.57** 0.54** 0.49** 0.50** 0.48** 0.33
4 0.54** 0.52** 0.40** 0.35** 0.36** 0.34** 0.33** 0.25
5 0.47** 0.41** 0.31** 0.31** 0.30** 0.27** 0.27** 0.20
6 0.39** 0.31** 0.25** 0.25** 0.23** 0.23** 0.22** 0.17
7 0.35** 0.25** 0.23** 0.20** 0.21** 0.19** 0.18 0.14

Llama3.3-70B

2 0.96** 0.94** 0.93** 0.92** 0.89** 0.85** 0.85** 0.50
3 0.90** 0.70** 0.65** 0.58** 0.54** 0.54** 0.57** 0.33
4 0.68** 0.58** 0.47** 0.42** 0.41** 0.39** 0.37** 0.25
5 0.71** 0.47** 0.38** 0.36** 0.34** 0.29** 0.29** 0.20
6 0.55** 0.36** 0.32** 0.31** 0.26** 0.25** 0.24** 0.17
7 0.56** 0.33** 0.27** 0.25** 0.22** 0.21** 0.19* 0.14

Mistral-7B

2 0.77 0.49 0.52 0.50 0.39* 0.44 0.47 0.50
3 0.43 0.28 0.29 0.32 0.28 0.25* 0.23** 0.33
4 0.29 0.15 0.25 0.20 0.24 0.18* 0.18* 0.25
5 0.27 0.14 0.16 0.16 0.14* 0.12* 0.16 0.20
6 0.22 0.14 0.13 0.15 0.12 0.12 0.14 0.17
7 0.17 0.11 0.09 0.12 0.13 0.12 0.12 0.14

Table 2: Average table completion accuracy (for cor-
rectly formatted predictions) for each grid size (with d
(domains) × n (items per domain)) for Qwen 2.5-7B,
72B, Llama 3.1-8B, 70B, Llama 3.3-70B, and Mistral-
7B. With respect to a random baseline, * indicates
p ≤ 0.05 and ** indicates p ≤ 0.01.

shows a slight decrease in performance for higher
difficulty levels. Level 2 and 7 stand out with a
relatively low performance.

Table 2 shows the results for each grid size when
averaged over the difficulty levels. Here, a strong
variation in performance across different grid sizes
is visible. All models perform best on 1× 2-grids.
For the 7B models, as d increases, the performance
drops to values around the random baseline, while
the larger equivalents of Llama present a more sta-
ble performance for n = 2. Qwen 2.5 72B is
an outlier, under-performing its smaller equivalent.
Nevertheless, even the performance of best model
in this experiment (Llama 3.3-70B) decreases as
the grid size increases and reaches values close to
the random baseline for larger puzzles.

To reveal underlying effects between the per-
formance and model size, grid size, and level, a
correlation analysis is conducted. The results in Ta-
ble 3 suggest a weak positive effect between model
size. In general, the number of items per domain
(n) has the strongest negative effect on the perfor-
mance, while all other factors have medium to low

negative effects on the performance.

n d model size level

all models -0.70 -0.22 0.25 -0.17
Llama 3.1-8B -0.83 -0.03 – -0.10
Llama 3.1-70B -0.82 -0.29 – -0.26
Llama 3.3-70B -0.82 -0.29 – -0.26
Qwen 2.5-7B -0.75 -0.38 – -0.21
Qwen 2.5-72B -0.82 -0.11 – -0.15
Mistral-7B -0.71 -0.19 – -0.10

Table 3: Correlation analysis of grid accuracy by n
(items per domain), d (number of domains), model size
(only across all models), difficulty level. Red reflects
negative effects, green indicates positive effects. Satura-
tion indicates effect strength.
7.1 Error analysis
To gain a deeper insight into the reasoning chains
of the models, a manual qualitative error analysis is
conducted. For open weight models, 50 randomly
selected, incorrectly solved puzzles up to a size of
5 × 5 are assessed. For the GPT models and R1,
20 incorrectly solved answers are considered. This
analysis also includes outputs that did not adhere
to the target format. A list of the error sources and
their distribution can be found in App. H.

All models frequently produce pseudo-reasoning
(41%); i.e. instances where linguistic markers of
reasoning are used to combine premises and con-
clusions that make no sense. Further, the free-text
often contradicts the produced solution grid (37%),
while no model is able to detect and correct errors
in the predicted solution grid. The only exceptions
are Qwen 2.5-7B, Mistral-7B and R1, the former
two detect errors in 2% and 4% of the analysed
outputs, incorrectly concluding that the puzzle was
unsolvable. R1 however, claims to fix detected
errors, but fails to accomplish this.

Further, smaller 7-8B parameter models pro-
duce the highest amount of (partially) empty or
malformed solution grids (44%). This effect is
strongest in Llama 3.1-8B (52%) and Mistral-7B
(58%). Another prevalent source of errors in these
models are contradictions between the free-text rea-
soning and the solution grid (43%).

70-72B parameter models show a positioning
bias that prefers to place items in the leftmost free
position (35%) and place items twice in the solu-
tion grid (31%). Further, these models ignore clues
in the produced free-text reasoning more often than
others (17% vs. 0.29%). These models also strug-
gle with clues that contain a negation (13%). Qwen
2.5-72B is the only model that produces grids with-
out free-text reasoning (82%).
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The GPT models show the highest rate of
pseudo-reasoning (78%) and tend to misinterpret
placement clues (28%). This especially includes
cases where clues are interpreted more loosely than
intended (e.g. “to left” or “to the right” is inter-
preted as “somewhere to the left/right”). Further,
these models are more prone to placing before the
drawn conclusions are sufficient for a definitive po-
sitioning (23%) and also tend to place items in the
leftmost available position (30%).

In n-domain obfuscated puzzles, R1 solves not
obfuscated rows perfectly, while making mistakes
in obfuscated rows. This suggests a strong influ-
ence from training material. Further, this model
produces the longest free-text reasoning among all
tested models, resulting in self-repetitions (75%)
and as a result overwrites formerly correct predic-
tions (35%). This model has as well a bias for
positioning items in the leftmost position (35%).

7.2 Case study
In addition, we conduct a case study on the canon-
ical puzzles to analyse model-specific behaviours
in different reasoning steps of the solution. This is
done in a Q&A setup, which asks for the position
P of a specific item I in a row R of the solution
grid G given a set of clues C = {c1 . . . cn}. The
corresponding prompt is shown in App. D. This
format is evaluated based on the accuracy of correct
answers. Since this setup focuses on the position
within a single domain, the random baseline for a
puzzle with n items per domain is: E = 1

n .
We test the GPT and open-weight models from

Experiment 1 on the original, rephrased, in domain,
and 5-domain obfuscations of the canonical puzzles
to avoid cases where only a part of the puzzle is
manipulated. We run 10 predictions for each item
with open-weight models and 3 predictions per
item with GPT models. The items are ordered by
the reasoning depth in the canonical puzzles in
accordance with solution guides available on the
Internet. App. I.1 details the step-by-step solutions.

A per-item analysis shows that 4o, 4o-mini and
Llama 3.3 are mostly consistent in their predictions
for the same item (see Tables 16-20 in App. I).
Since we test only one in domain and one 5-domain
obfuscation, the resulting accuracies are close to 0
or 1. Hence, the random baseline is unsuitable and
no significance can be reported.

Figures 5 and 6 in App. I report the accuracy
at each reasoning step. In all assessed puzzle vari-
ations and models, the first two reasoning steps

are performed successfully. For smaller models of
7-8B parameters, the performance degrades after-
wards regardless of the obfuscation of the puzzle.
On the original an rephrased puzzles, Llama 3.3-
70B and Qwen 2.5-72B recover from this drop in
performance and reach relatively high performance
in the last step. The GPT models keep a relatively
high performance across the original grid versions
with medium drops in performance from the 3rd
reasoning step. On the obfuscated versions, the
performance drops also for bigger models from the
3rd step onward. Nevertheless, peaks of medium to
high accuracy can be found at specific steps in the
reasoning process (4th, 7th, and 8th for “Einstein”;
5th and 7th for “Zebra”).

8 Discussion

In both experiments, the reasoning abilities of
smaller models (7-8B) are limited. They are suc-
cessful in one-step reasoning in d× 2 puzzles. For
bigger puzzles, their performance approaches the
random baseline. The case study in 7.2 and Lin
et al. (2024) support this.

In general, models around 70B parameters out-
perform the random baseline by a statistically sig-
nificant but very small margin. This indicates that
easier clues are solved but not the harder ones.

The correlation analysis reveals only a modest
performance gain when scaling models up to 70B
parameters, suggesting diminishing returns at even
larger scales (e.g. 400B), especially given the sub-
stantial computational and environmental costs.The
formal difficulty of clues is also a limited predictor.
The observed irregularities in Levels 2 and 7 might
be related to clues containing the relation between
introduced in these levels. Further effects may be
invisible due to the correlation of difficult clues
with more items per domain (see Table 5, App. A),
which is the strongest predictor in this analysis.

The correlation between grid size and perfor-
mance is supported by the case study, which re-
veals a decrease in performance for longer reason-
ing chains in fully obfuscated canonical puzzles.
Irregular performance peaks in the case study occur
in specific later reasoning steps, where the last 1-2
positions in a row are filled (see App. I.1, which in-
creases the likelihood of successful guessing. This
effect is further reinforced as the models with these
peaks are more deterministic in their predictions.

The error analysis suggests severe difficulties in
detecting contradictions in the produced solution
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grids for all models, while they produce a lot of
pseudo-reasoning and are unable to align free-text
reasoning and solution grids.

For the original “Einstein” puzzle, the open-
weight models show performances significantly
above the random baseline, suggesting that the exis-
tence of this puzzle in the training data is beneficial
for the performance on this puzzle. For the original
“Zebra” puzzle, only Llama and GPT models show
this effect. For any obfuscated version, the open-
weight models show similar performances to newly
generated puzzles of the same size, indicating that
the obfuscation has the intended effect.

The closed weight models show nearly perfect
performance on the original version of the “Ein-
stein” puzzle. But their performance degrades dras-
tically with the gradual manipulation of the lexical
content of the solution grid, finally not outperform-
ing the random baseline. The error analysis sug-
gests a high degree of pseudo-reasoning for these
models and a tendency to place items prematurely
in the leftmost available position.

The observed decrease in performance of larger
models with the increase of obfuscation suggests
that they are able to cope with slightly larger varia-
tions than smaller models. Nevertheless, this trend
suggests that the dependence on lexical items in
the input is not overcome in models with more pa-
rameters. R1’s relatively high performance in the
Einstein-in domain is composed of a singular trial
with high performance and two low performances,
signalling high instability.

On the “Zebra” puzzle, some models improve
performance on the rephrased compared to the orig-
inal puzzle. This could be explained by a domi-
nance of passive voice in the original “Zebra” puz-
zle (see App. B), which the rephrased version turns
into active. This is supported by work reporting
that LLMs use passive voice in written text less
frequently than humans (Reinhart et al., 2024).

9 Conclusion
This paper develops Mystery-Zebra, the first adapt-
able systematic benchmark to evaluate on multiple
levels. By evaluating a range of open and closed
weight LLMs, we demonstrate their dependence on
the lexical content from training material for the
successful solution of complex grid puzzles.

In comparison to the original puzzles, the perfor-
mance drops significantly for lexically manipulated
puzzles and even reaches the random baseline when
all noun phrases in the puzzle are altered. The rea-

soning abilities of smaller LLMs break down with
the slightest variation of the lexical context of a
puzzle that is part of their training data.

Our obfuscation strategies can easily be trans-
ferred to other tasks to mitigate the effect of logic
puzzle benchmarks being part of the training data
of the LLMs. This will help to preserve the signifi-
cance of benchmark results in the future.

An extensive analysis of open weight models on
the newly generated puzzles in the second part of
the benchmark demonstrated that the grid size has
a stronger influence on the performance than the
clue difficulty or model size.

In the error analysis, models proved to be inca-
pable to detect and correct contradictions in their
output. In addition, our detailed case study of rea-
soning steps in the solution process demonstrated
that the assessed models were only able to perform
a very limited number of consecutive reasoning
steps correctly.

The results from this paper can direct future re-
search in LLM reasoning by pointing out that im-
provements through traditional fine-tuning are no
clear indicator of improvements in the task itself
(see Experiment 1). Hybrid solutions, however,
might provide a more sustainable direction to suc-
cessful LLM reasoning.

Limitations

Due to limits in the compute budget, this work only
assesses open-weight models up to a size of 72B
parameters on the second part of the benchmark.
For this reason, the paper can make only limited
claims with regard to the influence of very large
parameter sizes on the performance on unknown
puzzles of various sizes and difficulty levels.

Due to the substantial compute time of Deepseek
R1 (404 seconds on average), this model is only
evaluated in the first experiment and the error anal-
ysis, but not considered for the case-study. This
leads to limited insights into the influence of rea-
soning depth on the performance of this model.
Nevertheless, the error analysis suggests a strong
dependence of this model on training material. Fu-
ture work should consider analysing the reasoning
abilities of this model in depth.

Further, the benchmark obfuscates only the
nouns and related verb-phrases of the clues and
leaves the structures referring to the positions in
the solution grid untouched. The influence of such
manipulations should be investigated in future re-
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search.
Finally, the provided explanation for the

improvement in performance observed on the
rephrased “Zebra” puzzle relies only on a possible
linguistic explanation and evidence from free-text
writing studies. Future work should consider the
influence of passive voice on performance in more
detail.
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A Puzzle Levels

Level Semi-Formal expression Description

Level 1

A == B An object that has attribute A has attribute B.
A is on the left of B An object with attribute A is next to the left of an object with attribute

B (A-B).
A is on the right of B An object with attribute A is next to the right of an object with attribute

B (B-A).
A is on the far left An object with attribute A is on the far left (A-...).
A is on the far right An object with attribute A is on the far right (...-A).
A is in the middle An object with attribute A is in the middle.

Level 2 A is between B and C An object with attribute A is between an object with attribute B, and an
object with attribute C (any order: B-A-C, C-A-B).

Level 3 A is on the left or right of B An object with attribute A is next to the left or right of an object with
attribute B (A-B or B-A).

A is on the far left or far right An object with attribute A is on the far left or far right. (A-... or ...-A)

Level 4 A is in an odd position An object with attribute A is in an odd position (odd positions : 1, 3, 5,
...).

A is in an even position An object with attribute A is in an even position (even positions : 2, 4,
6, ...).

Level 5 A is somewhere to the left of B An object with attribute A is somewhere to the left of an object with
attribute B (any number of intermediates, including 0 : A-...-B).

A is somewhere to the right of B An object with attribute A is somewhere to the right of an object with
attribute B (any number of intermediates, including 0 : B-...-A).

Level 6 A != B An object that has attribute A does not have attribute B.

Level 7 A is somewhere between B and C An object with attribute A is somewhere between an object with at-
tribute B, and an object with attribute C (any number of intermediates,
including 0 : B-...-A-...-C, C-...-A-...-B).

Level 8 A is not to the left of B An object with attribute A is not to the left of an object with attribute
B.

A is not to the right of B An object with attribute A is not to the right of an object with attribute
B.

Level 9 A and B have different parity positions An object with attribute A and an object with attribute B have different
parity positions.

A and B have the same parity positions An object with attribute A and an object with attribute B have the same
parity positions (positions may be the same or different, but the parity
is always the same).

Level 10 A == B or A == C, but not both An object that has attribute A has attribute B, or an object that has
attribute A has attribute C, but not both.

A == B or B == C, but not both An object that has attribute A has attribute B, or an object that has
attribute B has attribute C, but not both.

Level 11 A == B or A == C or both An object that has attribute A has attribute B, or an object that has
attribute A has attribute C, or both.

A == B or B == C or both An object that has attribute A has attribute B, or an object that has
attribute B has attribute C, or both.

Level 12 A != B or A != C or both An object that has attribute A has not attribute B, or an object that has
attribute A has not attribute C, or both.

A != B or B != C or both An object that has attribute A has not attribute B, or an object that has
attribute B has not attribute C, or both.

Table 4: Puzzle clue types per level taken from https://github.com/quint-t/
Puzzle-Generator-and-Solver/tree/master

Level Puzzle sizes (domains × items per domain) number

Level 1 all sizes from 1 × 2 to 7 × 7 420
Level 2 sizes with at least 3 items per domain 350
Level 3 all sizes from 1 × 2 to 7 × 7 420
Level 4 all sizes from 1 × 2 to 7 × 7 420
Level 5 all sizes from 1 × 2 to 7 × 7 420
Level 6 sizes with at least 2 domains 360
Level 7 sizes with at least 3 items per domain 350
Level 8 all sizes from 1 × 2 to 7 × 7 420
Level 9 sizes with at least 2 domains 360
Level 10 sizes with at least 2 domains and 3 items per domain 250
Level 11 sizes with at least 2 domains and 3 items per domain 250
Level 12 sizes with at least 2 domains and 3 items per domain 250

Table 5: Combinations of difficulty levels and sizes available in the benchmark of newly generated puzzles, since
some puzzle sizes are not compatible with some types of clues (e.g. Level 2: A is between B and C.)
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B Original Puzzle

Einstein Puzzle Zebra Puzzle

There are 5 houses (in a row) painted 5 different colors: Blue, Green, Red,
White and Yellow. In each house there lives a person of a different nationality:
Brit, Dane, German, Norwegian or Swede. These 5 owners each drink a certain
beverage: Beer, Coffee, Milk, Tea or Water. They also smoke a certain brand
of cigar: Bluemaster, Dunhill, Pall Mall, Prince or Blend. Additionally, they
also keep a certain type of pet: Cats, Birds, Dogs, Fish or Horses. The owners
DO NOT have the same pet, smoke the same brand of cigar or drink the same
beverage.

There are five different-colored houses: red, green, ivory, yellow, blue There
live five resident of a different nationality: english, spanish, ukranian, nor-
wegian, japanese Each resident owns a different pet: dog, fox, zebra, horse,
snails Each one prefers a different drink: coffee, tea, milk, orange-juice, water
Each one smokes a different brand of cigarettes: old-gold, kools, chesterfields,
lucky-strike, parliaments

1. The Brit lives in a Red house. 1. There are five houses.
2. The Swede keeps Dogs as pets. 2. The Englishman lives in the red house.
3. The Dane drinks Tea. 3. The Spaniard owns the dog.
4. The Green house is on the left of the White house. 4. Coffee is drunk in the green house.
5. The Green house owner drinks Coffee. 5. The Ukrainian drinks tea.
6. The owner who smokes Pall Mall rears Birds. 6. The green house is immediately to the right of the ivory house.
7. The owner of the Yellow house smokes Dunhill. 7. The Old Gold smoker owns snails.
8. The owner living in the center house drinks Milk. 8. Kools are smoked in the yellow house.
9. The Norwegian lives in the first house. 9. Milk is drunk in the middle house.
10. The owner who smokes Blend lives next to the one who keeps Cats. 10. The Norwegian lives in the first house.
11. The owner who keeps horses lives next to the man who smokes Dunhill. 11. The man who smokes Chesterfields lives in the house next to the man with

the fox.
12. The owner who smokes Bluemaster drinks Beer. 12. Kools are smoked in the house next to the house where the horse is kept.
13. The German smokes Prince. 13. The Lucky Strike smoker drinks orange juice.
14. The Norwegian lives next to the Blue house. 14. The Japanese smokes Parliaments.
15. The owner who smokes Blend has a neighbor who drinks Water. 15. The Norwegian lives next to the blue house. Now, who drinks water? Who

owns the zebra?

Table 6: Original “Einstein” and “Zebra” puzzle

s

Domain Phrasing in obfuscated / generator puzzles Phrasing in canonical Einstein Phrasing in canonical Zebra

Color the person who likes [color] [color] house [color] house
Beverage the person drinking [beverage] drinks [beverage] [beverage] is drunk / driniks [beverage]
Pet the owner of the [pet] keeps [pet] as pets / rears [pet] / keeps [pet]

/
owns the [pet] / owns [pet] / the [pet] is
kept / the man with the [pet]

Nationality the [nationality] the [nationality] the [nationality]
Cigar the [cigar]-smoker the owner|man who smokes [cigar] /

smokes [cigar]
[cigar] are smoked / the [cigar] smoker /
smokes [cigar]

Food the person eating [food] – –
House the [house] house – –
Job the [job] – –
Transport the person driving the [transport name] – –
Music-Genre the fan of [music-genre] – –
Movie-Genre the person watching [movie-genre] – –
Sport the person who’s sport is [sport] – –
Hobby the person who’s hobby is [hobby] – –
Flower the person who grows [flower] – –
Birthday the person who’s birthday is in [birthday month] – –
Game the person playing [game] – –

Table 7: Phrasing patterns used in the obfuscated versions of the canonical puzzles and the generator-puzzles in the
second part of Mystery-Zebra. For reproducibility of the rephrasing obfuscation, the equivalents in the canonical
puzzles are detailed in the two rightmost columns.
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C Obfuscation Details

To facilitate the obfuscation process, the canonical
puzzles are first translated to the same
pseudo-logical language as used by the
puzzle-generator, where items are stated as
domain:item, equivalence is expressed as “=” and
negation is expressed as “!=”. Any plural forms
are replaced with their singular equivalents for this
step.
Once the obfuscation is complete, the items are
translated back to natural language using the
patterns in Table 7. Tables 9 and 10 show the full
rephrased versions in comparison to the original
phrasing. The same phrasing patterns are applied
as well to translate the puzzles from the generator
to natural language input. For simplicity, only one
phrasing pattern is used for each domain. The
pseudo-logical formulas from the generator are
translated to natural language according to Table 8.

pseudo-logical sign phrasing in obfuscated / generator-puzzles

!= is not
== is

Table 8: Translation patterns for the pseudo-logical
structures created by the puzzle generator and used to
obfuscate canonical puzzles.

original phrasing rephrased

1. The Brit lives in a Red house. 1. The british is the person who
likes red

2. The Swede keeps Dogs as pets. 2. The swedish is the owner of the
dog

3. The Dane drinks Tea. 3. the danish is the person drinking
tea

4. The Green house is on the left of
the White house.

4. The person who likes green is
on the left of the person who likes
white

5. The Green house owner drinks
Coffee.

5. The person who likes green is
the person drinking coffee

6. The owner who smokes Pall Mall
rears Birds.

6. The pall-mall-smoker is the
owner of the bird

7. The owner of the Yellow house
smokes Dunhill.

7. The person who likes yellow is
the dunhill-smoker

8. The owner living in the center
house drinks Milk.

8. The person drinking milk is in
the middle

9. The Norwegian lives in the first
house.

9. The norwegian is on the far left

10. The owner who smokes Blend
lives next to the one who keeps
Cats.

10. The blend-smoker is on the left
or right of the owner of the cat

11. The owner who keeps horses
lives next to the man who smokes
Dunhill.

11. The owner of the horses is
on the left or right of the dunhill-
smoker

12. The owner who smokes Blue-
master drinks Beer.

12. The bluemaster-smoker is the
person drinking beer

13. The German smokes Prince. 13. The german is the prince-
smoker

14. The Norwegian lives next to the
Blue house.

14. The norwegian is on the left or
right of the person who likes blue

15. The owner who smokes Blend
has a neighbor who drinks Water.

15. The blend-smoker is on the left
or right of the person drinking water

Table 9: Original “Einstein” puzzle in comparison to
the rephrased obfuscation.

original phrasing rephrased

1. There are five houses.
2. The Englishman lives in the red
house.

1. the english is the person who
likes red

3. The Spaniard owns the dog. 2. the spanish is the owner of the
dog

4. Coffee is drunk in the green
house.

3. the person drinking coffee is the
person who likes green

5. The Ukrainian drinks tea. 4. the ukrainian is the person drink-
ing tea

6. The green house is immediately
to the right of the ivory house (to
your right as you stand facing the
row of five houses).

5. the person who likes green is
to the right of the person who likes
ivory

7. The Old Gold smoker owns
snails.

6. the old-gold-smoker is the owner
of the snails

8. Kools are smoked in the yellow
house.

7. the kools-smoker is the person
who likes yellow

9. Milk is drunk in the middle
house.

8. the person drinking milk is in the
middle

10. The Norwegian lives in the first
house.

9. the norwegian is on the far left

11. The man who smokes Chester-
fields lives in the house next to the
man with the fox.

10. the chesterfield-smoker is on
the left or right of the owner of the
fox

12. Kools are smoked in a house
next to the house where the horse is
kept.

11. the kools-smoker is to the left
or right of the owner of the horse

13. The Lucky Strike smoker
drinks orange juice.

12. the lucky-strike-smoker is the
person drinking orange-juice

14. The Japanese smokes Parlia-
ments.

13. the japanese is the parliament-
smoker

15. The Norwegian lives next to the
blue house.

14. the norwegian is to the left or
right of the person who likes blue

Table 10: Original “Zebra” puzzle in comparison to the
rephrased obfuscation.

D Model Prompting

This work uses a basic prompting strategy since
the work by Tyagi et al. (2024) suggests that
elaborate prompting strategies like
self-consistency have no beneficial effects on the
grid-puzzle solving abilities of LLMs.

Grid-setup The grid-setup prompt specifies an
empty solution grid to improve the consistency in
formatting in the outputs.
> Please solve the following logic
puzzle in the following table:

[EMPTY SOLUTION GRID]

Puzzle:
[PUZZLE CLUES].

Think step by step when solving the
puzzle. Please put ’#############’
around the final solution table.

Q&A-setup The Q&A-setup prompts the model
first to solve the puzzle and then to indicate the
position of a specific item in the grid in the form of
item:Num.
> Solve the following logic puzzle:
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[PUZZLE CLUES]

After solving tell me where is **[TARGET
ITEM]**. Give the answer in the format
**[TARGET ITEM]:Num**.

E Hyper-Parameters

The hyper parameters of the models were left at
their default if not mentioned explicitly.

model hyper-parameter setting

LLama 3.1-8B
max_new_tokens 10000

temperature 0.1
top_p 0.9

LLama 3.1-70B
max_new_tokens 10000

temperature 0.1
top_p 0.9

LLama 3.3-70B
max_new_tokens 10000

temperature 0.1
top_p 0.9

Qwen 2.5-7B max_new_tokens 10000

Qwen 2.5-72B max_new_tokens 10000

Mistral-7B max_new_tokens 10000

Table 11: Hyper-parameters for open weight models

F Pre-processing

Grid-setup The open-ended generations of the
models were pre-processed according to this
requirement. Since this study focuses on the logic
capabilities and not on formatting abilities
non-adhering answers were excluded from the
evaluation process. This filtering was done
checking for two criteria: First, the result needs to
be a table with boundaries marked by “|”. Second,
the leftmost column needs to contain all expected
domain names for the respective puzzle.8. This
method does not account for all possible
formatting issues (see the error analysis in 7.1),
but to in order to ensure reproducibility of this
pre-processing, no more fine-grained case
distinctions were included. Table 12 reports the
percentage of wrong output format for the
evaluated models, indicating that especially some
of the smaller open-weight models struggle
significantly with the target output format.

Q&A-setup The prompt for the Q&A specifies
the target format used for the pre-processing as
item:Num. The pre-processing filters the
open-ended generations by the models for this

8Any row with an invalid domain name (e.g. a header row)
is not considered in the evaluation.

Model Excluded from evaluation

R1 0.00%
GPT 4o 0.00%
GPT 4o-mini 0.00%
Qwen 2.5-7B 5.72%
Qwen 2.5-72B 13.55%
Llama 3.1-8B 14.39%
Llama 3.1-70B 5.30%
Llama 3.3-70B 3.80%
Mistral 43.28%

Table 12: Percentage of outputs per model excluded
from the evaluation in the grid-setup. The evaluation
requires tables with domains in the rows and items in
the columns in the model output.

format and slight variations containing additional
white-space characters, the word position or house,
or one letter in front of the integer indicating the
position in the grid. All other versions or formats
are excluded from the analysis in Section 7. The
percentage of outputs excluded from the analysis
is reported in Table 13.

Model Excluded from evaluation

GPT 4o 0.00%
GPT 4o-mini 0.00%
Llama 3.1 8B 40.75%
Llama 3,1-70B 14.45%
Llama 3,3-70B 3.15%
Mistral 7B 39.85%
Qwen 2.5-72B 13.40%
Qwen 2.5 7B 5.55%

Table 13: Percentage of outputs per model excluded
from the evaluation in the Q&A-setup. The evaluation
requires the format item:num.

G Significance Testing

Grid-setup The grid-setup in Experiments 1 and
3 does not allow to calculate significance values
straightforward since the grid-score is not a
binomially distributed variable. For this reason,
we use the following approximation to calculate
significances. The expected values E and
Variances V can be calculated for the case d = 1
as follows:

E =
1

n
, V =

2n− 1

n2

By approximating the case for d > 1 as a
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Gauss-Distribution, we get:

E =
1

n
, V =

2n− 1

dn2

As the experiments are repeated k-times, we get:

E =
1

n
, V =

2n− 1

dkn2

The average Variance over a grid size or level is
then:

V

(
X1 +X2 + . . .+Xj

j

)
=

V (X1) + . . .+ V (Xj)

j2

The significance for the measured average
normalized grid-score m then calculated in a
one-sided T-test:

p = 2 · P (X > m) = 2 · P
(
N >

(m− E)√
V

)
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H Error Analysis

model R1 4o 4o-mini Qwen2.5 Llama3.1 Llama3.3 Mistral Average

7B 72B 8B 70B 70B 7B

E1 0.00% 0.00% 15.00% 2.00% 0.00% 0.00% 14.00% 8.00% 0.00% 4.17%
E2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 4.00% 2.00% 4.00% 1.39%
E3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 6.00% 0.83%
E4 0.00% 0.00% 0.00% 6.00% 0.00% 4.00% 4.00% 8.00% 6.00% 3.89%
E5 0.00% 0.00% 0.00% 8.00% 2.00% 2.00% 2.00% 0.00% 16.00% 4.17%
E6 0.00% 25.00% 20.00% 0.00% 2.00% 6.00% 20.00% 6.00% 16.00% 9.44%
E7 0.00% 0.00% 0.00% 22.00% 4.00% 52.00% 0.00% 0.00% 58.00% 18.89%
E8 0.00% 0.00% 0.00% 2.00% 0.00% 0.00% 0.00% 0.00% 4.00% 0.83%
E9 60.00% 60.00% 95.00% 42.00% 8.00% 22.00% 52.00% 46.00% 40.00% 41.11%
E10 35.00% 40.00% 20.00% 2.00% 2.00% 6.00% 2.00% 4.00% 14.00% 9.44%
E12 50.00% 30.00% 25.00% 44.00% 4.00% 40.00% 30.00% 58.00% 46.00% 36.67%
E13 0.00% 0.00% 15.00% 0.00% 0.00% 2.00% 0.00% 0.00% 8.00% 2.22%
E13 0.00% 50.00% 15.00% 2.00% 2.00% 12.00% 14.00% 36.00% 10.00% 14.17%
E14 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.00% 0.00% 0.28%
E15 0.00% 0.00% 0.00% 0.00% 82.00% 0.00% 12.00% 2.00% 0.00% 13.33%
E16 75.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 4.17%
E17 35.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.94%

Table 14: Distribution of Error sources (Err) per Model (Md) in the Error-Analysis of Experiments 1 and 2. The
column average gives the average of each error source for each model. For an explanation of the error sources, see
Table 15.

Error code Explanation

E1 Issues with placing items in inter-domain relations
E2 Negations in clues
E3 Grid size not respected
E4 Abbreviations
E5 Item placed in the wrong domain
E6 Item placed prematurely (before it was possible to deduce the correct position)
E7 (partially) empty grid / columns and rows swapped / other issues with the grid
E8 Puzzle classified as not solvable
E9 Pseudo-Reasoning
E10 Position bias (items placed from left to right without justifiable indication)
E11 Inconsistency between produced free-text reasoning and solution grid
E12 Items positoned twice in the grid
E13 Clue misinterpreted
E14 Not all clues used
E15 No reasoning provided
E16 Repeats itself more than necessary
E17 Overwrites already correct solutions

Table 15: Reference table for error codes and explanation.
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I Case Study

I.1 Solution paths
The solution paths used to analyse the stepwise
accuracy of in the solution process are based on
solution paths widely found on the internet 9. The
solution processes are relatively constrained for
both puzzles due to their setup and refers to the
clues as given in Table 6 in App. B. In the
following the two solution paths will be described
referring to the original item names. For the
equivalents in the in domain and in domain
obfuscations, refer to Tables 17 and 20.

I.1.1 Einstein solution path
Step 1: Norwegian, Milk This step places
“Norwegian” and “Milk” directly to positions 1
and 3 based on clues 8) and 9). Hence, this step
does not require further deduction and only basic
understanding of the clues’ semantics.

Step 2: Blue In this step, “blue” is placed to
position 2 via a 1-step inference based on clue 14)
stating that the Norwegian lives next to the blue
house.

Step 3: Green, Coffee, White This step places
“green”, “white”, and “coffee” based on clues 4)
and 5). Restricted by the deduction from clue 5)
which places Milk in the centre and from clue 14),
the only remaining positions are 4 for “green” and
“coffee” and 5 for “white”.

Step 4: British, Red, Yellow Here, we place
“British” and “Red” based on clue 1). Given the
former deductions, the only remaining position for
a colour and a nationality is 3. “yellow” fits then in
the remaining spot for a colour: 1. Note that it is
irrelevant for the correct position of yellow,
whether “green”, “white” and “red” were placed in
the correct positions, as long as “blue” and
“Norwegian” were placed correctly.

Step 5: Dunhill, Horses This step fills in
“Dunhill” to position 1 and “Horses” to 2 based on
the position of “yellow” and clues 7) and 11).

Step 6: Dane, Tea, Cat, Beer, Bluemaster,
Water, Blend This step considers the possible
positions for the groups [Dane + Tea] → 2 or 5
(clue 3), [Bluemaster + Beer] → 2 or 5 (clue 12),
[Blend next to Cats and next to Water] → [2, 1, 1],

9For Einstein: https://www.chessandpoker.com/
einsteins-problem-solution.html; For Zebra:
https://waitbutwhy.com/table/zebra-puzzle

[4, 3, 5], [5, 5] (clues 10 and 15) in the context of
the former deductions in the respective domains.
By elimination, the positions can be determined as
follows. Blend:2, Water:1, Cat:1, Dane:2, Tea:2,
Bluemaster:5, Beer:5.

Step 7: German, Prince, Swede, Dog Based on
the former deductions and clues 2) and 13), there
remains only one option to place the pairs
[German + Prince] → 4 and [Swede + Dog] → 5.
Also note that a former wrong placing of the other
items into potential other positions still allows to
place at least German and Prince correctly.

Step 8: Birds, Pall-Mall The only remaining
position based on clue 6) and former deductions
for “Pall-Mall” and “Birds” is 3. Also for these
items, there is an increased probability of correct
positioning since there is only one potential
positioning before that would make position 3
unavailable.

Step 9: Fish In this step, the last remaining spot
for a pet is filled, which is 4.

I.1.2 Zebra solution path
An important property of the Zebra puzzle is its
branched reasoning path. The reasoning path
reflects the order in which items can be placed
without a doubt. For this reason, the path places
the possible correct deductions during the
branching before the deductions that can be made
only after determining the correct branch.

Step 1: Norwegian, Milk This step places
“Norwegian” and “Milk” directly to positions 1
and 3 based on clues 9) and 10). Hence, this step
does not require further deduction and only basic
understanding of the clues’ semantics.

Step 2: Blue In this step, “blue” is placed to
position 2 via a 1-step inference based on clue 15)
stating that the Norwegian lives next to the blue
house.

Step 3: Yellow, Kools, Horse From the third
step, based on clues 6) and 4), there are two
possible positions for “green”+“coffee”, “ivory”
and “red”, which are either 4, 3, 5 or 5, 4, 3. This
cannot be resolved until step 6, but the options
leave only one option to position “yellow ”
correctly, which is 1 since blue occupies 2. Based
on this and clue 8) and 12), “Kools” goes to
position 1 and “Horse” goes to 1.

13550

https://www.chessandpoker.com/einsteins-problem-solution.html
https://www.chessandpoker.com/einsteins-problem-solution.html
https://waitbutwhy.com/table/zebra-puzzle


Step 4: Ukrainian, Tea Another conclusion that
is independent from the branched reasoning is the
positioning of “Ukrainian” and “Tea” based on
clue 5). Independently from former conclusions, 2
is the only valid position for this. This is entirely
independent from the deductions made in step 3
and the branch of the reasoning path that considers
“green”, “ivory” and “red”.

Step 5: Water Based on Step 4 and clue 13),
which demands to place “orange-juice” and
“Lucky-Strike” together and blocks positions 4 or 5
depending on the branch taken for
“green”+“coffee”. This means that only one option
remains free for “water”, which is 1.

Step 6: Ivory, Green, Coffee At this point, it
can be observed that only the reasoning path,
where “green”+“coffee”, “ivory” and “red” are at
4, 5, 3 allows further valid deductions.

Step 7: Orange-juice, Lucky-Strike Following
from the step before, the only remaining position
for “orange-juice” and “lucky-strike” is 4.

Step 8: Japanese, Spanish, Red, English, Snails,
Dog, Old-Gold, Parliaments In the next step
clues 1), 3), 14), and 7) are evaluated. From the
former steps “Spanish”+“Red” go into position 3.
Since [Parliaments + Japanese] can only go to 5,
the further possible options are limited to [Spanish
+ Dog] → 5, [Old-Gold + Snails] → 3.

Step 9: Fox, Chesterfields Finally, based on
clue 11), there is only one option left to place
“Fox” and “Chesterfields”, which are “fox”:1 and
“Chesterfields”:2.

Step 10: Zebra This step fills the last remaining
position for a pet, which is 4, with “Zebra”.
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I.2 Per-step accuracy plots
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Figure 5: Q&A accuracy per reasoning step on Einstein puzzles with unchanged grids (original, rephrased) and
manipulated grids (5-domain, in domain). The dashed line indicates the random baseline.
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Figure 6: Q&A accuracy per reasoning step on Zebra puzzles with unchanged grids (original, rephrased) and
manipulated grids (5-domain, in domain). The dashed line indicates the random baseline.
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I.3 Per-item accuracy tables

Einstein original Q&A per item

4o 4o-mini Qwen2.5 Llama3.1 Llama3.3 Mistral

item step 7B 72B 8B 70B 70B 7B

milk 1 1.00 0.00 0.80 1.00 0.67 1.00 1.00 0.56
norwegian 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.83
blue 2 1.00 1.00 0.44 1.00 0.00 1.00 1.00 0.50
coffee 3 1.00 0.00 0.30 0.43 0.33 0.11 0.30 0.00
green 3 1.00 1.00 0.44 0.75 0.25 0.30 0.20 0.00
white 3 1.00 1.00 0.40 0.88 0.22 0.13 0.25 0.14
brit 4 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
red 4 1.00 1.00 0.30 0.50 0.22 0.33 0.60 0.33
yellow 4 1.00 1.00 0.11 0.86 0.22 0.20 0.20 0.20
dunhill 5 1.00 1.00 0.10 0.67 0.38 0.00 0.10 0.25
horses 5 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
beer 6 1.00 1.00 0.30 0.44 0.17 0.40 0.30 0.56
blend 6 1.00 1.00 0.40 0.33 0.13 0.00 0.00 0.00
bluemaster 6 1.00 1.00 0.10 0.75 0.25 0.57 0.22 0.43
cats 6 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
dane 6 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
tea 6 1.00 1.00 0.22 0.57 0.00 0.22 0.00 0.00
water 6 1.00 1.00 0.10 1.00 0.13 0.43 0.00 0.00
dogs 7 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
german 7 1.00 1.00 0.60 0.78 0.56 0.56 0.70 0.38
prince 7 1.00 1.00 0.30 0.44 0.43 0.44 0.90 0.33
swede 7 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
birds 8 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
pall mall 8 0.00 0.00 0.50 0.38 0.60 0.29 0.80 0.33
fish 9 1.00 1.00 0.40 0.67 0.00 0.25 0.89 0.00

Einstein rephrased Q&A per item

4o 4o-mini Qwen2.5 Llama3.1 Llama3.3 Mistral

item step 7B 72B 8B 70B 70B 7B

milk 1 1.00 1.00 0.80 1.00 0.38 0.90 1.00 0.43
norwegian 1 1.00 1.00 1.00 1.00 0.86 0.89 1.00 0.75
blue 2 1.00 1.00 0.20 0.78 0.17 0.40 0.90 0.17
coffee 3 1.00 0.00 0.11 0.63 0.20 0.11 0.20 0.00
green 3 1.00 1.00 0.11 0.33 0.00 0.20 0.10 0.00
white 3 1.00 1.00 0.30 0.56 0.13 0.40 0.40 0.29
british 4 1.00 1.00 0.22 0.00 0.00 0.33 0.60 0.00
red 4 1.00 1.00 0.00 0.11 0.14 0.10 0.10 0.29
yellow 4 1.00 1.00 0.10 0.67 0.00 0.00 0.00 0.20
dunhill 5 1.00 0.67 0.00 0.75 0.00 0.33 0.00 0.00
horse 5 1.00 1.00 0.22 0.25 0.00 0.11 0.10 0.25
beer 6 0.00 0.00 0.30 0.56 0.29 0.30 0.00 0.13
blend 6 1.00 1.00 0.20 0.40 0.14 0.30 0.20 0.00
bluemaster 6 0.00 0.67 0.56 0.10 0.40 0.00 0.10 0.00
cat 6 0.00 1.00 0.10 0.29 0.00 0.20 0.00 0.00
danish 6 1.00 1.00 0.30 0.80 0.40 0.14 0.80 0.00
tea 6 1.00 0.00 0.22 0.40 0.00 0.00 0.60 0.40
water 6 0.33 1.00 0.00 0.80 0.17 0.44 0.00 0.14
dog 7 1.00 1.00 0.33 0.56 0.25 0.50 0.22 0.17
german 7 1.00 0.00 0.75 0.50 0.25 0.30 0.60 0.00
prince 7 1.00 1.00 0.33 0.11 0.00 0.63 0.70 0.00
swedish 7 1.00 0.00 0.40 0.80 0.29 0.63 0.30 0.40
bird 8 1.00 1.00 0.44 0.20 0.33 0.40 0.80 0.00
pall-mall 8 1.00 1.00 0.10 0.14 0.33 0.22 0.80 0.29
fish 9 1.00 1.00 0.30 0.30 0.50 0.38 0.50 0.20

Table 16: Q&A results on “Einstein original” and “Einstein rephrased” as per-item accuracy.
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Einstein in domain Q&A per item

4o 4o-mini Qwen2.5 Llama3.1 Llama3.3 Mistral

item orig item step 7B 72B 8B 70B 70B 7B

dutch norwegian 1 1.00 1.00 1.00 1.00 0.89 1.00 1.00 0.50
mirinda milk 1 1.00 1.00 0.75 1.00 0.71 0.67 1.00 0.38
chestnut blue 2 1.00 0.00 0.50 0.25 0.20 0.57 1.00 0.33
7up coffee 3 0.00 0.00 0.10 0.29 0.00 0.00 0.00 0.33
aquamarine white 3 0.00 0.00 0.30 0.50 0.17 0.11 0.20 0.14
grey green 3 0.00 0.33 0.10 0.13 0.20 0.00 0.00 0.00
azure yellow 4 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.20
black red 4 0.00 0.00 0.00 0.00 0.00 0.44 0.40 0.00
japanese english 4 0.00 0.00 0.00 0.25 0.29 0.13 0.70 0.13
game dunhill 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
turtle horse 5 1.00 0.00 0.11 0.10 0.00 0.13 0.00 0.00
almond-milk tea 6 0.00 0.00 0.57 0.11 0.00 0.00 0.00 0.00
australian dane 6 0.00 0.00 0.30 0.10 0.20 0.00 0.20 0.40
chaman blend 6 1.00 1.00 0.00 0.13 0.00 0.13 0.10 0.33
davidoff bluemaster 6 0.00 1.00 0.33 0.38 0.00 0.33 1.00 0.60
fanta beer 6 0.00 1.00 0.56 0.30 0.50 0.25 1.00 0.00
ferret cat 6 0.00 0.00 0.11 0.11 0.00 0.29 0.00 0.00
hot-chocolate water 6 0.00 1.00 0.00 0.60 0.14 0.00 0.00 0.00
french german 7 1.00 0.67 0.30 0.00 0.00 0.13 0.80 0.00
guinea-pig dog 7 0.00 0.00 0.20 0.29 0.50 0.80 0.60 0.43
havana prince 7 0.00 1.00 0.44 0.38 0.60 0.57 1.00 0.00
spanish swedish 7 0.00 0.00 0.10 0.30 0.00 0.33 1.00 0.20
baccarat pall-mall 8 0.00 0.00 0.33 0.00 0.33 0.00 0.80 0.00
chinchilla bird 8 0.00 1.00 0.50 0.22 0.40 0.43 0.70 0.11
lizard fish 9 0.00 0.00 0.40 0.25 0.25 0.10 0.20 0.50

Variance 0.44 0.47 0.26 0.27 0.25 0.28 0.43 0.20

Einstein in domain Q&A per item

4o 4o-mini Qwen2.5 Llama3.1 Llama3.3 Mistral

item orig item step 7B 72B 8B 70B 70B 7B

folk norwegian 1 1.00 1.00 0.90 1.00 1.00 1.00 1.00 0.50
gothic-revival milk 1 1.00 1.00 1.00 1.00 0.60 1.00 1.00 0.38
motorbike blue 2 0.00 0.67 0.00 0.40 0.50 0.70 0.90 0.50
snowmobile white 3 0.33 1.00 0.30 0.63 0.00 0.11 0.30 0.00
subway green 3 0.00 0.00 0.00 0.20 0.25 0.10 0.10 0.00
wooden coffee 3 0.00 0.00 0.20 0.13 0.29 0.22 0.10 0.00
quad-bike yellow 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
train red 4 1.00 1.00 0.22 0.50 0.25 0.50 0.80 0.00
trance english 4 1.00 1.00 0.63 0.40 0.25 0.38 0.60 0.25
july horse 5 0.00 0.00 0.10 0.00 0.00 0.00 0.11 0.00
mechanic dunhill 5 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.25
futuristic water 6 0.00 0.00 0.00 0.13 0.50 0.13 0.11 0.17
june cat 6 0.00 0.00 0.30 0.00 0.33 0.00 0.00 0.00
librarian blend 6 0.00 0.00 0.10 0.20 0.00 0.25 0.20 0.40
motorbikemaster bluemaster 6 0.00 0.00 0.50 0.13 0.00 0.13 0.00 0.00
palace tea 6 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.17
ranch-style beer 6 0.00 0.00 0.50 0.40 0.00 0.11 0.00 0.00
rock dane 6 0.00 0.00 0.13 0.30 0.00 0.13 0.00 0.29
ambient german 7 1.00 0.00 0.30 0.40 0.00 0.20 0.70 0.20
bartender prince 7 0.00 0.00 0.50 0.30 0.00 0.13 0.10 0.33
reggae swedish 7 0.67 1.00 0.22 0.56 0.00 0.86 0.60 0.00
september dog 7 1.00 1.00 0.44 0.50 0.33 0.78 0.75 0.14
architect pall-mall 8 1.00 0.00 0.44 0.50 0.17 0.44 0.00 0.33
may bird 8 1.00 0.00 0.10 0.30 0.60 0.56 0.33 0.00
february fish 9 0.00 1.00 0.33 0.11 0.20 0.13 0.00 0.00

Variance 0.47 0.48 0.27 0.28 0.26 0.33 0.36 0.18

Table 17: Q&A results on “Einstein” in domain and Einstein in domain as per-item accuracy.
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Zebra original Q&A per item

4o 4o-mini Qwen2.5 Llama3.1 Llama3.3 Mistral

item step 7B 72B 8B 70B 70B 7B

milk 1 1.00 1.00 1.00 1.00 0.56 1.00 1.00 0.67
norwegian 1 1.00 1.00 1.00 1.00 0.75 1.00 1.00 0.50
blue 2 1.00 1.00 0.10 0.78 0.38 0.90 1.00 0.50
fox 3 0.00 0.00 0.11 0.20 0.38 0.63 0.00 0.00
lucky-strike 3 1.00 1.00 0.10 0.60 0.13 0.00 0.00 0.11
yellow 3 1.00 1.00 0.10 0.67 0.00 0.11 0.00 0.13
tea 4 1.00 0.00 0.20 0.90 0.13 0.20 0.11 0.38
ukrainian 4 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
water 5 1.00 1.00 0.11 1.00 0.25 0.86 0.33 0.40
coffee 6 0.00 0.00 0.00 0.00 0.13 0.10 0.10 0.13
green 6 1.00 0.00 0.00 0.20 0.33 0.30 0.50 0.00
ivory 6 1.00 0.00 0.22 0.11 0.57 0.80 0.80 0.13
horse 7 0.00 0.33 0.44 0.25 0.38 0.50 1.00 0.25
orange-juice 7 0.67 1.00 0.10 0.43 0.00 0.22 0.57 0.13
dog 8 0.00 0.00 0.10 0.29 0.17 0.33 0.44 0.00
english 8 1.00 1.00 0.00 0.63 0.17 0.11 0.67 0.00
japanese 8 1.00 0.00 0.56 0.63 0.38 0.30 0.80 0.71
old-gold 8 1.00 1.00 0.22 0.20 0.00 0.33 0.40 0.25
parliaments 8 1.00 1.00 0.40 0.80 0.38 0.70 0.89 0.67
red 8 1.00 0.33 0.50 0.20 0.13 0.22 0.10 0.00
snails 8 1.00 1.00 0.00 0.10 0.29 0.50 0.00 0.00
spanish 8 0.67 0.00 0.10 0.56 0.33 0.63 0.89 0.00
kools 9 1.00 1.00 0.33 0.63 0.33 0.20 0.00 0.00
zebra 9 0.00 1.00 0.11 0.20 0.00 0.13 0.33 0.14
chesterfields 10 1.00 1.00 0.30 0.60 0.00 0.29 0.14 0.29

Zebra rephrased Q&A per item

4o 4o-mini Qwen2.5 Llama3.1 Llama3.3 Mistral

item step 7B 72B 8B 70B 70B 7B

milk 1 1.00 1.00 0.50 0.90 1.00 0.89 1.00 0.17
norwegian 1 1.00 1.00 0.78 1.00 1.00 1.00 1.00 0.00
blue 2 0.00 0.33 0.43 0.70 1.00 0.20 0.56 0.20
horse 3 0.00 0.00 0.00 0.22 0.00 0.00 0.00 0.20
kools 3 0.00 1.00 0.13 0.00 0.00 0.00 0.25 0.00
yellow 3 0.00 0.00 0.00 0.22 0.00 0.00 0.00 0.00
tea 4 1.00 1.00 0.40 0.22 0.30 0.00 0.89 0.00
ukrainian 4 0.00 1.00 0.13 0.20 0.40 0.00 0.67 0.00
water 5 1.00 1.00 0.00 0.22 0.00 0.00 1.00 0.17
coffee 6 0.67 0.33 0.00 0.25 0.00 0.10 0.30 0.20
green 6 0.33 0.00 0.00 0.22 0.00 0.10 0.40 0.00
ivory 6 0.00 0.00 0.29 0.33 0.20 0.11 0.14 0.00
lucky-strike 7 1.00 0.67 0.17 0.50 0.78 0.29 0.33 0.00
orange-juice 7 0.00 1.00 0.00 0.60 0.11 0.44 0.44 0.29
dog 8 0.00 0.00 0.00 0.22 0.30 0.00 0.30 0.13
english 8 1.00 1.00 0.57 0.13 0.20 0.20 0.25 0.00
japanese 8 1.00 1.00 0.29 0.88 1.00 0.78 0.67 0.20
old-gold 8 1.00 1.00 0.25 0.25 0.00 0.10 0.14 0.25
parliament 8 0.33 1.00 0.38 0.75 1.00 0.80 0.60 0.75
red 8 0.00 0.67 0.57 0.20 0.10 0.30 0.25 0.00
snails 8 1.00 1.00 0.13 0.10 0.00 0.00 0.22 0.17
spanish 8 0.00 0.00 0.20 0.57 0.70 0.10 0.20 0.29
chesterfield 9 0.33 0.00 0.00 0.11 0.20 0.50 0.33 0.33
fox 9 1.00 0.67 0.00 0.22 0.00 0.00 0.10 0.00
zebra 10 0.0 0.67 0.40 0.13 0.40 0.40 0.63 0.50

Table 18: Q&A results on “Zebra original” and “Zebra rephrased” as per-item accuracy.
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Table 19: Generated by Spread-LaTeX

Zebra in domain Q&A per item

4o 4o-mini Qwen2.5 Llama3.1 Llama3.3 Mistral

item orig item step 7B 72B 8B 70B 70B 7B

german norwegian 1 1.00 1.00 1.00 1.00 0.83 1.00 1.00 0.14
lemonade milk 1 0.00 1.00 0.80 1.00 0.00 1.00 1.00 0.50
coral blue 2 1.00 1.00 0.33 0.50 0.00 0.78 1.00 0.20
chestnut yellow 3 0.00 0.00 0.22 0.10 0.00 0.00 0.00 0.00
havana kools 3 0.00 0.00 0.10 0.11 0.00 0.00 0.00 0.00
mouse horse 3 0.00 0.00 0.22 0.22 0.20 0.00 0.00 0.44
almond-lemonade tea 4 1.00 0.67 0.22 0.13 0.33 0.83 1.00 0.00
dutch ukrainian 4 1.00 1.00 0.22 0.38 0.20 0.33 1.00 0.89
hot-chocolate water 5 0.00 1.00 0.20 0.13 0.00 0.33 0.00 0.00
aquamarine ivory 6 0.00 0.00 0.20 0.11 0.20 0.22 0.30 0.13
black green 6 0.00 0.00 0.40 0.29 0.33 0.25 0.60 0.00
cola coffee 6 0.00 0.00 0.11 0.29 0.33 0.20 1.00 0.00
baccarat lucky-strike 7 1.00 0.00 0.56 0.38 0.33 0.57 0.00 0.00
iced-tea orange-juice 7 1.00 0.00 0.44 0.29 0.40 0.50 0.00 0.00
bird snails 8 0.00 0.00 0.30 0.13 0.40 0.11 0.00 0.00
fonseca old-gold 8 1.00 0.00 0.00 0.11 0.25 0.22 0.00 0.13
goldfish dog 8 0.00 0.00 0.00 0.00 0.33 0.25 0.10 0.25
italian spanish 8 0.00 0.00 0.22 0.40 0.22 0.30 0.00 0.13
malaysian english 8 0.00 0.00 0.10 0.00 0.14 0.22 0.10 0.20
mexican japanese 8 1.00 0.67 0.70 0.29 0.38 0.89 1.00 0.33
orange red 8 0.00 0.33 0.00 0.00 0.50 0.11 0.00 0.14
tiparillo parliaments 8 0.00 1.00 0.60 0.67 1.00 0.80 1.00 0.25
lizard fox 9 0.00 0.67 0.00 0.13 0.00 0.00 0.00 0.00
Pall-mall chesterfields 9 0.00 0.00 0.30 0.11 0.20 0.25 0.60 0.00
cat zebra 10 0.00 0.00 0.22 0.11 0.20 0.33 0.11 0.20

Variance 0.48 0.44 0.26 0.27 0.25 0.32 0.46 0.21

Zebra in domain Q&A per item

4o 4o-mini Qwen2.5 Llama3.1 Llama3.3 Mistral

item orig item step 7B 72B 8B 70B 70B 7B

electronic norwegian 1 1.00 1.00 0.89 1.00 0.57 1.00 1.00 0.57
monopoly milk 1 1.00 1.00 0.80 1.00 0.50 1.00 1.00 0.29
lettuce blue 2 0.67 1.00 0.33 0.33 0.00 1.00 1.00 0.00
orchid horse 3 0.67 0.00 0.00 0.00 0.00 0.00 0.33 0.29
radish yellow 3 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.33
victorian kools 3 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00
domino tea 4 0.33 1.00 0.00 0.13 0.20 0.00 0.20 0.33
techno ukrainian 4 0.00 0.33 0.11 0.13 0.00 0.20 0.00 0.13
chess water 5 0.33 1.00 0.11 0.00 0.25 0.11 0.00 0.25
carrot ivory 6 0.67 0.33 0.20 0.33 0.25 0.20 0.40 0.00
go coffee 6 0.00 0.67 0.10 0.33 0.14 0.14 0.22 0.00
zucchini green 6 0.00 0.00 0.00 0.29 0.25 0.00 0.20 0.17
mah-jongg orange-juice 7 1.00 0.00 0.30 0.33 0.14 0.56 0.78 0.33
townhouse lucky-strike 7 1.00 0.33 0.20 0.29 0.43 0.33 0.90 0.13
azalea dog 8 0.00 1.00 0.11 0.11 0.25 0.40 0.50 0.13
bellflower snails 8 0.33 0.00 0.14 0.00 0.00 0.25 0.00 0.00
colonial old-gold 8 0.00 0.00 0.20 0.00 0.14 0.00 0.30 0.17
futuristic parliaments 8 1.00 1.00 0.70 0.78 0.71 1.00 1.00 0.00
indie english 8 0.00 0.00 0.11 0.44 0.14 0.00 0.00 0.00
onion red 8 0.00 1.00 0.00 0.13 0.17 0.00 0.00 0.11
pop spanish 8 1.00 0.00 0.20 0.11 0.29 0.25 0.10 0.00
trance japanese 8 1.00 1.00 1.00 1.00 0.14 1.00 1.00 0.43
gothic-revival chesterfields 9 0.33 0.00 0.20 0.60 0.10 0.44 0.90 0.00
marigold fox 9 0.00 0.00 0.11 0.20 0.00 0.13 0.00 0.14
dahlia zebra 10 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.60

Variance 0.43 0.47 0.29 0.33 0.19 0.38 0.41 0.18

Table 20: Q&A results on Zebra in domain and Zebra in domain as per-item accuracy.
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