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Abstract

Dense retrieval has now become the main-
stream paradigm in information retrieval. The
core idea of dense retrieval is to align document
embeddings with their corresponding query em-
beddings by maximizing their dot product. The
current training data is quite sparse, with each
document typically associated with only one or
a few labeled queries. However, a single doc-
ument can be retrieved by multiple different
queries. Aligning a document with just one or
a limited number of labeled queries results in
a loss of its semantic information. In this pa-
per, we propose a training-free Potential Query
Retrieval (PQR) framework to address this is-
sue. Specifically, we use a Gaussian mixture
distribution to model all potential queries for a
document, aiming to capture its comprehensive
semantic information. To obtain this distribu-
tion, we introduce three sampling strategies to
sample a large number of potential queries for
each document and encode them into a seman-
tic space. Using these sampled queries, we em-
ploy the Expectation-Maximization algorithm
to estimate parameters of the distribution. Fi-
nally, we also propose a method to calculate
similarity scores between user queries and doc-
uments under the PQR framework. Extensive
experiments demonstrate the effectiveness of
the proposed method.1

1 Introduction

Dense retrieval aims to find the most relevant docu-
ments from a large corpus based on a user’s natural
language query. In this approach, both queries and
documents are encoded into dense vectors, and
their similarity score is calculated using dot prod-
uct. It plays a key role in downstream applications
such as Retrieval-Augmented Generation (Lewis
et al., 2020) , Question Answering (Karpukhin

*Corresponding author.
1The source code is released at https://github.com/

tojunfeng/PQR
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Figure 1: During the training phase, the document Doc
is aligned semantically only with the query Q1. How-
ever, during the inference phase, queries like Q2, which
should ideally retrieve the document Doc, end up having
a greater semantic distance from it.

et al., 2020; Sun et al., 2024) and Intelligent Edu-
cation (Liu et al., 2021).

Dense retrieval heavily relies on annotated train-
ing data (Thakur et al., 2021). In existing datasets,
a document is typically associated with only one or
a few annotated queries. However, there is a many-
to-one relationship (Zhang et al., 2022b) between
queries and documents: different potential queries
can retrieve the same document. Aligning a docu-
ment with only one corresponding query can result
in the loss of the document’s semantic information
(Luan et al., 2021). As illustrated in Figure 1, if
the document Doc is aligned with query Q1 during
training, the information in the latter part of the
document might be overlooked. At inference time,
when the system encounters a potential user query
like Q2, it might fail to retrieve the document Doc
because Doc aligns more closely with the semantic
information of Q1. This will inevitably result in
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a drop in retrieval performance. If all potential
queries of a document are available, they can be
leveraged to better measure the similarity between
the user query and the document. This is because
all potential queries of a document can compre-
hensively capture its semantic information, thereby
preventing any loss of document information.

In this paper, we take a fresh look at this prob-
lem from the perspective of the potential queries.
A document can potentially correspond to an in-
finite number of queries. Then, the problem is
how can we model the infinite potential queries
of a document? The traditional approach to doc-
ument modeling employs vector representations
(Karpukhin et al., 2020), but it struggles to repre-
sent infinite queries. Probability distributions, on
the other hand, naturally accommodate infinite data.
This fundamental understanding leads us to model
all potential queries through distribution.

Based on the idea of distribution modeling, the
following two questions arise: how to determine
the parameters of the distribution? And, how to
measure the similarity between a user query and
a document? To address these questions, we intro-
duce the Potential Query Retrieval (PQR) frame-
work, which models the potential queries using a
Gaussian mixture distribution.

To determine distribution parameters, PQR em-
ploys the Expectation-Maximization algorithm to
estimate the parameters of the distribution based on
query samples. In order to acquire these query sam-
ples, we leverage a large language model to sam-
ple potential queries, and propose three sampling
strategies: Zero-shot sampling, Sliding-window
sampling, and Topic-aware sampling. For the ques-
tion of measuring similarity between a user query
and a document, PQR calculates the similarity
score by taking the maximum dot product between
the user query vector and the mean vector of each
Gaussian distribution component in the document.

Compared to traditional dense retrieval meth-
ods, PQR offers the following advantages: (1)
Training-free Framework: PQR is an unsuper-
vised, training-free approach that eliminates the re-
liance on labeled data. (2) Zero-shot Retrieval Ca-
pability: PQR demonstrates strong domain adap-
tation, maintaining high performance in zero-shot
retrieval scenarios.

We conduct extensive experiments on a range
of zero-shot datasets within BEIR (Thakur et al.,
2021), as well as large-scale web search datasets
such as MSMARCO Document Ranking (Bajaj

et al., 2016) and the TREC Deep Learning Track
dataset (Craswell et al., 2020). The results demon-
strate the effectiveness of the proposed PQR frame-
work. Our main contributions can be summarized
as follows:

• We propose a novel, training-free retrieval
framework that models potential queries of
a document as Gaussian mixture distribution,
enabling it to comprehensively capture the
document’s semantic information.

• We introduce three sampling strategies for
generating potential queries from documents.

• We propose a method to calculate similarity
scores between user queries and documents
under the PQR framework.

• We demonstrate the effectiveness of our ap-
proach via comprehensive experiments across
various datasets.

2 Related Work

2.1 Dense Retrieval
Dense retrieval involves encoding both queries
and documents into dense vectors, then calculat-
ing their relevance using methods like dot prod-
uct or cosine similarity. Pre-training followed by
fine-tuning is the mainstream paradigm for dense
retrieval. To bridge the gap between pre-training
tasks (Zhang et al., 2022a) and retrieval tasks, vari-
ous approaches have been employed, such as weak
decoders (Lu et al., 2021), masked autoencoders
(Wang et al., 2023a; Xiao et al., 2022), and informa-
tion bottleneck techniques (Gao and Callan, 2021).

During the fine-tuning phase, methods like nega-
tive sample mining (Xiong et al., 2020), knowledge
distillation (Ren et al., 2021) and multi-vector re-
trieval methods (Santhanam et al., 2022; Zhang
et al., 2022b) have also been extensively studied.
However, these dense retrieval methods rely heav-
ily on labeled data for training and face challenges
in zero-shot retrieval scenarios.

In contrast, the PQR approach adopts a radically
different method that not only eliminates the need
for any labeled data but also demonstrates strong
zero-shot retrieval performance.

2.2 LLM-assisted Retrieval
With the advancement of large language models
(Mao et al., 2024), interest grows in using their
reasoning and generation capabilities for retrieval
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Figure 2: An overall diagram of the PQR framework. The process involves using a Gaussian mixture distribution to
model a document’s potential queries. First, sampling algorithms are employed to generate potential queries for the
document, which are then encoded into a semantic space. Next, the EM algorithm is used to estimate the parameters
of the distribution.

tasks. Given a query, some approaches (Sun et al.,
2023; Qin et al., 2024) use large language models to
rerank a small set of candidate documents. some re-
searchers (Sachan et al., 2022; Muennighoff, 2022)
directly utilize the logits of the language model
to estimate the probability that a document can
answer a given query. Other methods, such as
HyDE (Gao et al., 2023) and GRM (Mackie et al.,
2023), employ large language models to generate
pseudo-documents based on user queries, using
these pseudo-documents to assist in the retrieval
process. Additionally, some researchers (Lewis
et al., 2021; Bonifacio et al., 2022; Wang et al.,
2023b; Dai et al., 2022) utilize synthetic data gen-
erated by language models to assist in training re-
trieval models.

Although the use of query generation from doc-
uments and synthetic data methods has been ex-
plored, they often overlook the many-to-one rela-
tionship between queries and documents, which is
the central focus of our PQR method.

3 Methodology

In this section, we first formally define the problem
of dense retrieval. Then, we provide a detailed
introduction to the design of the PQR method.

3.1 Preliminaries

The goal of dense retrieval is to find the top-k doc-
uments most relevant to a given query from a large

document corpus. The relevance score between
a query and a document is typically based on dot
product or cosine similarity. For a given query q
and document d, a query encoder encq and a doc-
ument encoder encd are used to encode the query
and document into dense vectors vq and vd respec-
tively. The relevance score between q and d is then
calculated using the dot product of vq and vd :

sim(q, d) = ⟨vq, vd⟩

The core of dense retrieval is to align the se-
mantics of queries and documents. However, since
queries often focus on only parts of a document,
this can lead to a loss of semantic information
during the alignment process. Most current meth-
ods rely on training data where documents have
only one or a few labeled queries, which makes it
difficult to avoid this loss of information. In the
PQR framework, we propose to model all potential
queries of a document using a Gaussian mixture
distribution, which helps prevent the issue of infor-
mation loss.

3.2 Model Overview
PQR assumes that the probability distribution of
the semantic vectors of potential queries for a doc-
ument in the d-dimensional semantic space fol-
lows a Gaussian mixture distribution P (x). As
shown in Figure 2, to obtain the distribution of
potential queries P (x) for a document, we first em-
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ploy a large language model to sample N potential
queries. Next, we use a text similarity model to en-
code these queries into the semantic space. Finally,
we apply the Expectation-Maximization algorithm
to estimate the parameters of the Gaussian mixture
distribution P (x). We will provide a detailed in-
troduction to the PQR method from three aspects:
potential query sampling algorithms, distribution
estimation, and similarity calculation methods.

3.3 Sampling Algorithm

3.3.1 Zero-shot Sampling
During the decoding process of large language
models, sampling randomly from the distribution
of logits allows the model to generate a diverse
range of possible outputs. This inherent random-
ness in the decoding process enables us to intro-
duce the Zero-shot Sampling strategy. Specifi-
cally, as illustrated in Figure 2(a), given a prompt
that instructs the language model to infer poten-
tial queries from a document, the model is in-
dependently run N times to produce N distinct
sampled queries. Formally, for a given prompt
Promptd, the model generates a sequence of to-
kens Ti = {t1, t2, . . . , tk} for i = 1, 2, . . . , N ,
where each sequence Ti is sampled from the proba-
bility distribution P (tj |t<j , P romptd). By repeat-
ing this process N times, we obtain a diverse set
of potential query samples that reflect the model’s
understanding of the document.

3.3.2 Sliding-window Sampling
The semantic information in a document is spread
across different parts of the text, and the length of
text associated with various semantic elements can
vary greatly. To ensure that language models focus
on different sections of the document, we propose
a multi-granularity sliding window sampling algo-
rithm. As shown in Figure 2(b), we utilize three dis-
tinct window sizes (fine-grained, medium-grained,
and coarse-grained) to segment the document. This
method enables us to capture semantic information
at multiple levels of granularity. Using the sliding
window technique, we extract fragments of the doc-
ument and apply zero-shot sampling to generate
potential queries corresponding to each fragment.
This process is repeated iteratively until we obtain
N potential query samples. The sliding window
sampling algorithm is specifically described as in
Algorithm 1.

This strategy ensures that semantic information
is captured comprehensively at different scales, and

Algorithm 1 Sliding-Window Sampling Algorithm

Require: Document D (a sequence of sentences),
sliding window steps {Sf , Sm, Sc}, number of
queries to generate N

Ensure: Potential queries {q1, q2, . . . , qN}
1: Initialize query set Q← ∅
2: for S ∈ {Sf , Sm, Sc} do
3: Sliding window size: W ← max

(
|D|
S , 5

)

4: Get fragment set F by applying a sliding
window of size W over document D

5: Queries per fragment: k ←
⌈

N
3×|F |

⌉

6: for f ∈ F do
7: Get potential queries {q1, q2, . . . , qk} for

fragment f using zero-shot sampling
8: Q← Q ∪ {q1, q2, . . . , qk}
9: end for

10: end for
11: Randomly sample N queries from Q to form

the final query set {q1, q2, . . . , qN}
12: return {q1, q2, . . . , qN}

the generated queries effectively represent the doc-
ument’s content.

3.3.3 Topic-aware Sampling
Large language models are highly proficient at rea-
soning, making them well-suited for tasks such as
understanding a document and identifying its key
topics. As shown in Figure 2(c), given a document
D, the language model can analyze its content and
extract a set of topics T = {t1, t2, . . . , tk}. Once
the topics are identified, we can select a specific
topic ti ∈ T and use the original document D
as context to generate a set of potential queries
Qi = {qi1, qi2, . . . , qim} related to ti. This pro-
cess can be iteratively repeated for multiple topics
until we have accumulated N query samples across
all topics:

Q =

k⋃

i=1

Qi, where |Q| = N.

This approach leverages the reasoning capabil-
ities of large language models to systematically
generate diverse and relevant queries based on the
document’s content.

3.4 Distribution Estimation
We start by assuming that the potential queries for
a document D follow a Gaussian mixture distribu-
tion P (x). For a given document D, we combine
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the samples obtained from the three sampling algo-
rithms mentioned above, resulting in M samples.
Each of these M potential query samples is then
represented as a d-dimensional dense vector x. The
probability of x belonging to the k-th Gaussian
distribution is given by P (x|k) = N (x;µk,Σk),
where µk and Σk are the mean and covariance of
the k-th Gaussian distribution, respectively. The
overall distribution of the document’s potential
queries is modeled as a weighted mixture:

P (x) =

K∑

k=1

πkN (x;µk,Σk),

where πk represents the mixture weight of the k-th
Gaussian distribution.

After obtaining a set of sample points from the
distribution, we use the Expectation-Maximization
algorithm (Moon, 1996) to estimate the mean
µk and covariance Σk by maximizing the log-
likelihood of these samples. To determine the op-
timal number of components K in the Gaussian
mixture distribution, we applied the Bayesian In-
formation Criterion (BIC). BIC (Schwarz, 1978)
balances model complexity and goodness of fit by
penalizing overly complex models while rewarding
better fit.

3.5 Similarity Calculation

Unlike traditional methods, PQR models a docu-
ment as a Gaussian mixture distribution based on
the distribution of its potential queries. Therefore,
we cannot directly compute the similarity between
a query and a document using the dot product of
their vectors. In a Gaussian mixture distribution,
the k-th Gaussian distribution represents the k-th
type of semantic information. We use the mean vec-
tor of the k-th Gaussian distribution, denoted as vk,
as a representation of the k-th semantic type. The
similarity between the query and the k-th semantic
type of the document is then computed as the dot
product between the query vector vq and vk. Fi-
nally, the overall similarity between the query and
the document is defined as the maximum similarity
across all K semantic components:

sim(q, d) = max
1≤k≤K

⟨vq,vk⟩,

where ⟨vq,vk⟩ denotes the dot product between the
query vector vq and the k-th Gaussian distribution
mean vector vk.

4 Experiments

4.1 Setup

Datasets and Evaluation: We evaluated the ef-
fectiveness of our approach on the BEIR (Thakur
et al., 2021) benchmark. Specifically, following
prior studies (Wang et al., 2022; Gao et al., 2023;
Shen et al., 2023), we selected six low-resource
datasets from BEIR for our experiments: Sci-
Fact (scientific paper abstracts), FiQA (financial
articles), TREC-COVID (COVID-19 scientific pa-
pers), NFCorpus (medical information retrieval),
ArguAna (argument retrieval), and SciDocs (scien-
tific document retrieval). Additionally, we assessed
the performance of PQR on MS MARCO docu-
ment dataset (Bajaj et al., 2016) and the TREC
Deep Learning 2019 and 2020 (Craswell et al.,
2020) test set (referred to as TREC-DL’19 and
TREC-DL’20). MS MARCO is a popular docu-
ment retrieval dataset containing approximately
3.2 million documents and around 5k queries in
its validation set. TREC-DL’19 and TREC-DL’20
serve as test sets for the MS MARCO document
ranking task, containing 43 and 45 queries respec-
tively, with more detailed annotations. We report
MRR@10, Recall@100, and Recall@1K on the
MS MARCO document development set, as well
as nDCG@10 on TREC-DL’19 and TREC-DL’20.
For the BEIR benchmark datasets, we focus on
NDCG@10 as the evaluation metric.

Implementation Details: In our sampling algo-
rithm, We use the SGLang (Zheng et al., 2024)
framework to deploy the Llama-3.1 8B model
(Dubey et al., 2024) on four RTX 4090 GPUs, serv-
ing as the base large language model for query sam-
pling. The model’s temperature is set to 1.2, and the
maximum token length for each query is limited to
28. Using the three sampling algorithms mentioned
above, we generate 100 potential query samples for
each algorithm, resulting in a total of 300 potential
queries. For encoding these queries, we use three
models: Sentence-T5-base (Ni et al., 2021), BGE-
m3 (Chen et al., 2024), and all-MiniLM-L12-v2
(Reimers and Gurevych, 2019). In our experiments,
we refer to these as PQRSentence-T5, PQRBGE-m3,
and PQRMiniLM, respectively. We use the EM al-
gorithm in the "GaussianMixture" class from the
sklearn 2 library to estimate the parameters of a dis-
tribution. When determining the optimal number
of Gaussian distribution components for the query

2https://scikit-learn.org/stable/
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Model FiQA ArguAna SciDocs SciFact NFCorpus TREC- Avg.COVID

BM25 0.236 0.315 0.158 0.665 0.325 0.656 0.393
docT5query 0.291 0.349 0.162 0.675 0.328 0.713 0.420
DPR 0.224 0.323 0.103 0.479 0.244 0.604 0.330
ANCE 0.295 0.415 0.122 0.507 0.237 0.654 0.372
RocketQAv2 0.302 0.451 0.131 0.568 0.293 0.675 0.403
SPLADE 0.289 0.445 0.149 0.633 0.322 0.661 0.417
ColBERTv2 0.356 0.463 0.154 0.693 0.338 0.738 0.457
COIL 0.313 0.294 0.155 0.707 0.331 0.668 0.412
CITADEL 0.332 0.490 0.147 0.695 0.337 0.680 0.447
HyDELlama-8B 0.220 0.299 0.133 0.639 0.312 0.604 0.368

Sentence-T5 0.348 0.448 0.142 0.458 0.286 0.407 0.348
BGE-m3 0.410 0.540 0.163 0.644 0.314 0.549 0.437
MiniLM 0.373 0.471 0.218 0.626 0.323 0.508 0.420

PQRSentence-T5 0.360 0.504 0.149 0.534 0.272 0.575 0.399↑0.051

PQRBGE-m3 0.403 0.478 0.178 0.669 0.334 0.608 0.445↑0.008

PQRMiniLM 0.401 0.521 0.208 0.688 0.348 0.617 0.464↑0.044

Table 1: The zero-shot retrieval results on the BEIR dataset, evaluated using the NDCG@10 metric, achieved by our
method and baseline models.

distribution, we select the number of components
with the lowest BIC value from a range of 4 to 10.
Refer to the appendix A.1 for more details.

Baselines: Since PQR requires no training or la-
beled data, we primarily focus on its performance
in zero-shot retrieval settings. Specifically, we
compare it with retrieval methods that do not re-
quire training data, such as BM25 (Robertson et al.,
1995) and docT5query (Nogueira et al., 2019). Ad-
ditionally, we include HyDE (Gao et al., 2023),
an advanced zero-shot retrieval approach based on
large language models, for comparison. We uti-
lized Llama-8B to reproduce HyDE(referred to as
HyDELlama-8B). To further validate the effective-
ness of our method, we benchmark it against sev-
eral popular methods, including DPR (Karpukhin
et al., 2020), ANCE (Xiong et al., 2020), Rock-
etQAv2 (Ren et al., 2021), SPLADE (Formal et al.,
2021), Sentence-T5-base (Ni et al., 2021) (referred
to as Sentence-T5), BGE-m3 (Chen et al., 2024)
and all-MiniLM-L12-v2 (Reimers and Gurevych,
2019) (referred to as MiniLM). Multi-vector ap-
proaches demonstrate strong zero-shot retrieval ca-
pabilities in dense retrieval. We therefore compare
our approach with multi-vector models, including
ColBERTv2 (Santhanam et al., 2022), COIL (Gao
et al., 2021) and CITADEL (Li et al., 2023).

4.2 Retrieval Performance

We compare PQR with mainstream baseline re-
trieval models, as shown in Table 1. Overall, the
PQR method achieves a higher average nDCG@10
score across six datasets in zero-shot retrieval
tasks compared to other models. While multi-
vector models demonstrate strong performance in
zero-shot retrieval, PQR method performs signif-
icantly better on the ArguAna, FiQA, NFCorpus
and SciDocs datasets and remains competitive on
the others. Moreover, all three PQR methods em-
ploying different encoding models (PQRSentence-T5,
PQRBGE-m3, and PQRMiniLM) outperform their re-
spective base encoding models. This demonstrates
both the effectiveness and generalizability of the
PQR modeling approach.

In Table 2, for a fair comparison, we selected
models that were not trained on the MS MARCO
document dataset. The results show that our
PQR method outperforms other approaches on
the dev set in terms of MRR@10, Recall@100,
and Recall@1K. On the TREC-DL dataset, our
PQR method also demonstrates competitive per-
formance. More importantly, all three PQR meth-
ods using different encoder models (PQRSentence-T5,
PQRBGE-m3, and PQRMiniLM) show significant im-
provements over their respective base encoders
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Model MS MARCO DEV TREC-DL’19 TREC-DL’20
MRR@10 Recall@100 Recall@1K NDCG@10 NDCG@10

BM25 0.230 0.808 0.886 0.519 0.506
docT5query 0.288 0.861 0.926 0.597 0.582
HyDELlama-8B 0.213 0.745 0.911 0.612 0.519

Sentence-T5 0.200 0.718 0.882 0.399 0.403
BGE-m3 0.317 0.807 0.905 0.601 0.527
MiniLM 0.295 0.814 0.922 0.587 0.537

PQRSentence-T5 0.247↑0.047 0.775↑0.057 0.905↑0.023 0.500↑0.101 0.480↑0.077

PQRBGE-m3 0.301↓0.016 0.858↑0.051 0.951↑0.046 0.606↑0.005 0.546↑0.019

PQRMiniLM 0.308↑0.013 0.865↑0.051 0.951↑0.029 0.617↑0.030 0.566↑0.029

Table 2: Our method’s results on the MS MARCO document retrieval task are compared with those of baseline
models that require no supervised training.

Model SciDocs FiQA ArguAna

docT5query 0.162 0.291 0.349
docT5query300 0.140 0.293 0.470
PQR 0.208 0.401 0.521

Table 3: The results compare the PQR with approach
that does not use distribution modeling, evaluated using
NDCG@10. docT5query300 refers to the use of 300
queries to enhance the docT5query approach. PQR uses
MiniLM as its encoder. The highest value is highlighted
in bold.

Model SciDocs FiQA ArguAna

PQRzs 0.207 0.401 0.509
PQRsw 0.203 0.388 0.517
PQRta 0.209 0.396 0.512
PQR 0.208 0.401 0.521

Table 4: The impact of three query sampling algorithms
on experimental results, evaluated using NDCG@10.
All PQR models use MiniLM as its encoder. The highest
value is highlighted in bold.

across all metrics, except for PQRBGE-m3, which ex-
hibits a slight decrease in MRR@10. These results
further demonstrate the effectiveness and general-
izability of our proposed PQR method.

4.3 Ablation Study

Effectiveness of Distribution Modeling: To
compare PQR with document expansion methods
like docT5query, we enhanced the original doc-
ument representation by appending 300 sampled
queries to their corresponding documents. These

queries were generated using our proposed sam-
pling algorithm. We then performed retrieval us-
ing the BM25 method, and the results are shown
in Table 3. From the results, it is clear that the
PQR method, which models potential queries as
a Gaussian mixture distribution and uses sampled
queries to estimate the distribution parameters, sig-
nificantly outperforms the approach of directly en-
hancing document representation with generated
queries. This demonstrates the effectiveness of our
proposed PQR method.

Analysis of Sampling Algorithms: We explored
the retrieval performance of three different sam-
pling algorithms, each generating 300 potential
query samples, as well as the performance of com-
bining these three algorithms to obtain a mixed set
of 300 query samples. As shown in Table 4, the re-
sults of the zero-shot sampling method, sliding win-
dow sampling method, and topic-aware sampling
method are denoted as PQRzs, PQRsw, and PQRta,
respectively. From the experimental results, it can
be observed that each sampling method demon-
strates a certain degree of effectiveness. However,
when the three sampling algorithms are combined,
the retrieval performance is improved. We believe
this is likely because the combined approach gen-
erates a more comprehensive and diverse set of po-
tential queries by leveraging the strengths of each
individual sampling method.

5 Further Analysis

In this section, we provide a more detailed analysis
of the PQR method. In all experiments, the encoder
used for the PQR method is MiniLM.
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Figure 3: Visualization of the potential queries for 10 randomly selected documents from the SciFact dataset. Points
with the same color represent samples belonging to the same Gaussian distribution component.

Figure 4: The impact of using different generative mod-
els for potential query sampling on model performance.

5.1 Visualization

As shown in Figure 3, we randomly selected 10
documents from the SciFact dataset to visualize the
distribution of their corresponding potential queries
in the semantic space. The encoded queries were
dimensionally reduced using the UMAP (McInnes
et al., 2018) method and then plotted on a 2D plane,
as shown in the figure above. For each document,
we used different colors to represent the various
semantic queries associated with it. From the visu-
alization, we can observe that the potential queries
corresponding to a single document tend to clus-
ter at various locations within the semantic space.
This demonstrates PQR’s ability to model different
semantic information within document.

Figure 5: The impact of the number of potential query
samples on model performance.

5.2 Generative Models Analysis

We used different sizes of the Llama 3 (Dubey et al.,
2024) series models (1B, 3B, and 8B) as generative
models for potential query sampling. Addition-
ally, we compared them with other open-source
models, including Qwen2.5-7B (Yang et al., 2024)
and Ministral-8B (Mistral, 2024). Our experiments
were conducted on the FiQA, SciDocs, and Ar-
guAna datasets. As shown in Figure 4, the results
indicate that the retrieval performance of PQR im-
proves significantly as the size of the Llama model
increases. Moreover, using different types of large
language models of similar scale as the generative
model for potential query sampling also affects the
final PQR performance. These findings suggest that
the generative capability of large language models
has a notable impact on PQR’s performance. Em-

13462



ploying more capable large language models can
significantly enhance PQR’s effectiveness. This
also indicates that as large language models con-
tinue to evolve, the performance of PQR is likely
to improve further.

5.3 Analysis of Sample Size

As shown in Figure 5, we studied the impact of the
number of sampled potential queries on PQR re-
trieval performance across three datasets: SciDocs,
ArguAna, and FiQA. The experimental results in-
dicate that when the number of sampled queries
is fewer than 50, the overall performance of PQR
decreases significantly. However, when the number
of sampled queries exceeds 200, further increasing
the sample size continues to improve PQR perfor-
mance, but the improvements begin to level off.
In practical applications, to balance performance
and sampling efficiency, it is recommended to keep
the sample size within the range of 50 to 500 for
optimal results.

6 Conclusion

In this paper, we propose a novel potential query
retrieval framework. Specifically, we first assume
that the potential queries of documents follow a
Gaussian mixture distribution in the semantic space.
Then, we leverage large language models to gen-
erate potential query samples for documents using
our proposed query sampling algorithms and en-
code them into the semantic space. Finally, we
estimate the parameters of the distribution using
the Expectation-Maximization algorithm. We con-
duct experiments on zero-shot retrieval datasets
and the MS MARCO document dataset to validate
the effectiveness of the proposed PQR method.

Limitations

Our PQR method requires generating hundreds
of query data points for each document, making
it highly dependent on computing power. How-
ever, with the decreasing cost of hardware and ad-
vancements in model inference techniques, we re-
main optimistic about the time efficiency of PQR,
especially since it is used during the offline pre-
processing stage. Additionally, the storage space re-
quired for PQR depends on the number of Gaussian
distribution components, which presents a storage
efficiency challenge similar to many existing multi-
vector methods. Fortunately, ongoing research on
improving storage efficiency for multi-vector re-

trieval methods has made this issue increasingly
manageable. For a detailed analysis, please see the
appendix A.2.
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A Appendix

A.1 Other Implementation Details

When the input document exceeds 6K tokens, it
will be truncated. For the sliding window sampling
algorithm, the number of steps for coarse-grained,
medium-grained, and fine-grained sampling are 1,
2, and 4, respectively. Additionally, each window
must contain at least 5 sentences. When estimating
the parameters of the Gaussian mixture distribution
using the sklearn library, we set the random seed
to 42 and the maximum number of iterations for
the EM algorithm to 50, while keeping all other
settings at their default values.

A.2 Computational Overhead Analysis

Model Tokens Latency

HyDE 2755.3 1.798s
PQR 2380.9 1.623s

Table 5: Result of computational overhead analysis.
Experiments were conducted on the NFCorpus dataset.

High computational costs remain a significant chal-
lenge when applying large language models to re-
trieval tasks. To address concerns regarding the
computational efficiency of PQR, we conducted
a comparative analysis with the influential HyDE
(Gao et al., 2023) method. As presented in Ta-
ble 5, PQR generates queries with an average
length of 23.809 tokens during sampling. In prac-
tical scenarios where 100 queries are sampled per
document—a setting empirically shown to be ef-
fective—this results in the generation of approxi-
mately 2,380.9 tokens per document. In contrast,
HyDE generates 8 pseudo-documents per query,
each averaging 344.407 tokens, amounting to a to-
tal of 2,755.256 tokens per query. Our experiments,
conducted on a single A800 GPU using Llama-8B,
demonstrate that HyDE requires 1.798 seconds per
query for pseudo-document generation, whereas
PQR only requires 1.623 seconds per document
for query sampling. Notably, PQR supports of-
fline document processing, thereby eliminating any
additional latency during online retrieval.

A.3 Distribution Modeling Analysis

Model SciDocs FiQA ArguAna

PQRK-means 0.205 0.403 0.518
PQRMeanScore 0.196 0.360 0.465
PQRMeanPool 0.198 0.332 0.446
PQR 0.208 0.401 0.521

Table 6: The impact of different modeling methods on
experimental results, evaluated using NDCG@10. All
PQR models use MiniLM as its encoder. The highest
value is highlighted in bold.

We explored different approaches for processing
potential queries after encoding them into seman-
tic space. PQRK-means replaces Gaussian Mixture
Distribution modeling with K-means clustering;
PQRMeanScore computes the similarity score by aver-
aging the dot products between the user query vec-
tor and the mean vectors of each distribution in the
document (whereas PQR uses the maximum value);
PQRMeanPool directly applies mean pooling to all
potential query vectors to obtain the final document
representation. The experimental results are shown
in Table 6. Both PQRMeanScore and PQRMeanPool ex-
hibit significant performance drops, demonstrating
the effectiveness of the original PQR modeling ap-
proach. PQRK-means performs slightly worse than
PQR, which is expected since K-means is a special
case of GMM with constrained covariance.

A.4 Example Display

We randomly selected a document from the NF-
Corpus dataset and present its potential query ex-
amples generated using three different sampling
algorithms.

Document ID: MED-3457

Reactive oxygen species produced dur-
ing vigorous exercise may permeate into
cell nuclei and induce oxidative DNA dam-
age, but the supporting evidence is still lack-
ing. By using a 42 km marathon race as
a model of massive aerobic exercise, we
demonstrated a significant degree of un-
repaired DNA base oxidation in periph-
eral immunocompetent cells, despite a con-
current increase in the urinary excretion
of 8-hydroxy-2’-deoxyguanosine. Single
cell gel electrophoresis with the incorpo-
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ration of lesion-specific endonucleases fur-
ther revealed that oxidized pyrimidines (en-
donuclease III-sensitive sites) contributed to
most of the postexercise nucleotide oxida-
tion. The oxidative DNA damage correlated
significantly with plasma levels of creati-
nine kinase and lipid peroxidation metabo-
lites, and lasted for more than 1 week fol-
lowing the race. This phenomenon may be
one of the mechanisms behind the immune
dysfunctions after exhaustive exercise.

Below are queries obtained using three different
sampling algorithms. For each sampling algorithm,
we randomly selected 4 queries for display.

Zero-shot Sampling

1. What is the physiological effect of 42 km
marathon racing on human DNA.
2. Do intense periods of exercise correlate
with long-term cellular damage.
3. What is the extent and duration of ox-
idative DNA damage in human peripheral
leukocytes after a marathon?
4. Can massive aerobic exercise cause DNA
damage in human peripheral leukocytes and
what are the associated physiological ef-
fects?

Sliding-window Sampling

1. What types of cellular damage have been
discovered in immunocompetent cells sub-
ject to extremely strenuous physical exer-
cise?
2. How long did oxidative DNA damage
from a marathon last after the event?
3. Does massive aerobic exercise cause un-
repaired DNA base oxidation in peripheral
leukocytes?
4. What types of cellular and molecular ef-
fects occur due to massive aerobic exercise
in the human body and how long do these
changes last?

Topic-aware Sampling

1. Does exhaustive physical activity have
a measurable impact on the rate of DNA
damage in immune cells after a prolonged

duration?
2. What are the potential long-term health
consequences associated with unrepaired
oxidative DNA damage in athletes sub-
jected to extreme physical activity?
3. What is the impact of a marathon race on
oxidative DNA damage in human peripheral
leukocytes?
4. What is a possible cause of immune dys-
function that is triggered by prolonged phys-
ical activity?

A.5 Prompting Template

The Prompting Templates for Zero-shot Sampling
and Sliding-window Sampling are as follows:

NFCorpus

{PASSAGE}
Please read the above passage about medi-
cal information, and write a Question from
a different perspective that dense retrieval
model could use to find this Passage. Di-
rectly output the Question without any ad-
ditional information.
Question:

SciFact

{PASSAGE}
Please read the above Passage about scien-
tific claim, and write a Question from a dif-
ferent perspective that dense retrieval model
could use to find this Passage. Directly out-
put the Question without any additional in-
formation.
Question:

SciDocs

{PASSAGE}
Please read the above Passage about scien-
tific claim, and write a Question from a dif-
ferent perspective that dense retrieval model
could use to find this Passage. Directly out-
put the Question without any additional in-
formation.
Question:
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ArguAna

{PASSAGE}
Please read the above Passage, and write a
Question from a different perspective that
a dense retrieval model can use to find this
passage. Directly output the Question with-
out any additional information.
Question:

FiQA

{PASSAGE}
Please read the above Passage about finan-
cial information, and write a Question from
a different perspective that dense retrieval
model could use to find this Passage. Di-
rectly output the Question without any ad-
ditional information.
Question:

TREC-COVID

{PASSAGE}
Please read the above Passage about
biomedical information, and write a Ques-
tion from a different perspective that dense
retrieval model could use to find this Pas-
sage. Directly output the Question without
any additional information.
Question:

MS MARCO

{PASSAGE}
Please read the above Passage, and write a
Question from a different perspective that
dense retrieval model could use to find this
Passage. Directly output the Question with-
out any additional information.
Question:

The prompting template for sampling the topics
of all documents is as follows:

Topic Sampling Prompt Template

{PASSAGE}
Please read the above Passage and summa-
rize a Topic it includes. Output the Topic
directly without any additional information.
Topic:

The Prompting Templates for Topic-aware Sam-
pling are as follows:

NFCorpus

{PASSAGE}
Please read the above Passage about med-
ical information, and write a Question re-
lated to "{TOPIC}" from from a different
perspective that dense retrieval model could
use to find this Passage. Directly output the
Question without any additional informa-
tion.
Question:

SciFact

{PASSAGE}
Please read the above Passage about scien-
tific claim, and write a Question related to
"{TOPIC}" that dense retrieval model could
use to find this Passage. Directly output the
Question without any additional informa-
tion.
Question:

SciDocs

{PASSAGE}
Please read the above Passage about scien-
tific claim, and write a Question related to
"{TOPIC}" that dense retrieval model could
use to find this Passage. Directly output the
Question without any additional informa-
tion.
Question:

ArguAna

{PASSAGE}
Please read the above Passage, and write a
Question related to "{TOPIC}" that a dense
retrieval model can use to find this Passage.
Directly output the Question without any
additional information.
Question:

FiQA

{PASSAGE}
Please read the above Passage about fi-
nancial information, and write a Question
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related to "{TOPIC}" that dense retrieval
model could use to find this Passage. Di-
rectly output the Question without any ad-
ditional information.
Question:

TREC-COVID

{PASSAGE}
Please read the above Passage about
biomedical information, and write a Ques-
tion related to "{TOPIC}" that dense re-
trieval model could use to find this Passage.
Directly output the Question without any
additional information.
Question:

MS MARCO

{PASSAGE}
Please read the above Passage, and write a
Question related to "{TOPIC}" from from
a different perspective that dense retrieval
model could use to find this Passage. Di-
rectly output the Question without any ad-
ditional information.
Question:
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