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Abstract

Improving the mathematical reasoning capabil-
ities of Large Language Models (LLMs) is crit-
ical for advancing artificial intelligence. How-
ever, access to extensive, diverse, and high-
quality reasoning datasets remains a significant
challenge, particularly for the open-source com-
munity. In this paper, we propose ScaleQuest,
a novel, scalable, and cost-effective data syn-
thesis method that enables the generation of
large-scale mathematical reasoning datasets us-
ing lightweight 7B-scale models. ScaleQuest
introduces a two-stage question-tuning process
comprising Question Fine-Tuning (QFT) and
Question Preference Optimization (QPO) to
unlock the question generation capabilities of
problem-solving models. By generating di-
verse questions from scratch – without relying
on powerful proprietary models or seed data
– we produce a dataset of 1 million problem-
solution pairs. Our experiments demonstrate
that models trained on our data outperform ex-
isting open-source datasets in both in-domain
and out-of-domain evaluations. Furthermore,
our approach shows continued performance
improvement as the volume of training data
increases, highlighting its potential for ongo-
ing data scaling. The extensive improvements
observed in code reasoning tasks demonstrate
the generalization capabilities of our proposed
method. Our work provides the open-source
community with a practical solution to enhance
the mathematical reasoning abilities of LLMs.1

1 Introduction

How to improve the mathematical reasoning ca-
pabilities of Large Language Models (LLMs) has
attracted significant attention. The success of re-
cent advanced models, such as OpenAI o1 and
Claude-3.5, heavily depends on access to extensive,
diverse, and high-quality reasoning datasets. How-
ever, the proprietary nature of the data presents a
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Figure 1: Results of Llama3-8B-Base fine-tuned on pub-
licly available datasets in MATH and OlympiadBench.
Our approach demonstrates strong scalability and sig-
nificant potential for further improvement.

significant barrier to the open-source community.
Recent works have highlighted data synthesis as
a promising approach (Ntoutsi et al., 2020) to ad-
dress data scarcity for instruction tuning (Inan et al.,
2023). As recent works have disclosed that crafting
the right questions is crucial for eliciting the rea-
soning capabilities of LLMs (Yu et al., 2023a; Shah
et al., 2024), the core of reasoning data synthesis
lies in creating large-scale and novel questions.

Previous efforts in reasoning data synthesis have
demonstrated the effectiveness of leveraging pow-
erful language models to generate instructions.
We categorize these approaches into two types:
question-driven approaches and knowledge-driven
approaches. Question-driven methods include ques-
tion rephrasing (Yu et al., 2023a), evol-instruct (Xu
et al., 2023; Luo et al., 2023; Zeng et al., 2024),
question back-translation (Lu et al., 2024), or
providing few-shot examples (Mitra et al., 2024).
These methods are limited in data diversity, as the
generated problems closely resemble the seed ques-
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tions, with only minor modifications, such as added
conditions or numerical changes. This lack of diver-
sity hampers their potential for scalability. To im-
prove question diversity, recent knowledge-driven
works (Huang et al., 2024b) scale question syn-
thesis by constructing knowledge bases (Li et al.,
2024b) or concept graphs (Tang et al., 2024) and
sampling key points (Huang et al., 2024a) from
them to generate new questions. Nevertheless, the
above two types of approaches rely on strong mod-
els, like GPT-4, to synthesize new questions, but
the high API costs make it impractical to gener-
ate large-scale data. Despite these advancements,
the open-source community still lacks high-quality
data at scale and cost-effective synthesis methods.

To meet this requirement, we explore a scalable,
low-cost method for data synthesis. We observe
that using problem-solving models to directly syn-
thesize reasoning questions, as explored in Yu et al.
(2023b) and Xu et al. (2024), falls short in synthe-
sizing reasoning data, as shown in Figure 1 (see
Llama3-8B-Magpie results). Accordingly, we pro-
pose a novel, scalable, and cost-effective data syn-
thesis method, ScaleQuest, which first introduces
a two-stage question-tuning process consisting of
Question Fine-Tuning (QFT) and Question Prefer-
ence Optimization (QPO) to unlock the question
generation capability of problem-solving models.
Once fine-tuned, these models can then generate
diverse questions by sampling from a broad search
space without the need for additional seed ques-
tions or knowledge constraints. The generated
questions can be further refined through a filtering
process, focusing on language clarity, solvability,
and appropriate difficulty. Moreover, we introduce
an extra reward-based filtering strategy to select
high-quality responses.

We generate data using lightweight 7B-scale
models, producing a final dataset of 1 million
question-answer pairs. As shown in Figure 1, com-
pared with other publicly available datasets such as
MetaMath (Yu et al., 2023a), DART-Math (Tong
et al., 2024), and NuminaMath (Li et al., 2024c),
our approach demonstrates great scalability in both
in-domain and out-of-domain evaluation. In terms
of in-domain evaluation, our method outperforms
existing high-quality open-source datasets, achiev-
ing better results with the same amount of data. For
out-of-domain evaluation, the performance of our
approach continues to show promising trends as the
volume of training data increases, indicating signif-
icant potential for further improvements through

ongoing data scaling. Additionally, we also extend
our approach to long chain-of-thought and code
reasoning tasks, demonstrating its effectiveness,
with details in Appendix C.

2 ScaleQuest: Scaling Question Synthesis
from Scratch

2.1 Question Generation from Scratch
The question generation process involves provid-
ing only a few prefix tokens from an instruction
template (e.g., “<|begin_of_sentence|>User:”)
to guide the model in question generation. A fine-
tuned causal language model, which has learned
to generate responses based on question-answer
pairs (e.g., “<|begin_of_sentence|>User:
{Question}. Assistant: {Response}”), could
potentially be leveraged to generate questions
directly (Xu et al., 2024). This is because, during
instruction tuning, the model is trained using a
causal mask, where each token only attends to
preceding tokens. This ensures that the hidden
states evolve based on past context without future
token influence. However, during instruction
tuning, the actual loss is calculated based on the
response, i.e.,

L = − logP (yi|X, y<i), (1)

where X = {x1, x2, . . . , xm} denotes question
and Y = {y1, y2, . . . , yn} denotes response. Since
P (xi|x<i) is inherently modeled, we need to acti-
vate the model’s capability for question generation.

2.2 Question Fine-Tuning (QFT)
To activate the model’s question generation capabil-
ity, we first perform Question Fine-Tuning (QFT),
where we train the problem-solving model using a
small set of problems. To ensure that the generator
stops after producing the questions and does not
continue generating a response, we add an end-of-
sentence token at the end of each question. We use
approximately 15K problems (without solutions)
by mixing the training set of GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021) datasets
as training samples.

The purpose of utilizing these problems is to ac-
tivate the model’s question-generation capability
rather than to make the model memorize them. To
validate this hypothesis, we train the model sepa-
rately using the GSM8K and MATH datasets and
compare whether the distribution of the generated
questions matched that of the training data. To
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Figure 2: Overview of our ScaleQuest method.

evaluate the question distribution, we use a diffi-
culty classifier, which maps a question into a dif-
ficulty score (details in Section 2.4). We perform
QFT based on Qwen2-Math-7B-Instruct (Yang
et al., 2024a), then use the two QFT models,
Qwen2-QFT-GSM8K and Qwen2-QFT-MATH, to syn-
thesize 10K questions. The difficulty distribution
of these four datasets is shown in Figure 3. We
find that the generated questions separately dif-
fered from both GSM8K and MATH, yet they both
converged toward the same distribution. This sug-
gests that the QFT process enhances the model’s
question-generation capabilities without leading to
overfitting the training data.

2.3 Question Preference Optimization (QPO)

The model is able to generate meaningful and di-
verse questions after QFT, but the quality is still not
high enough, as shown in Figure 2. This is reflected
in two aspects: (1) solvability: the math problem
should have appropriate constraints and correct an-
swers, and (2) difficulty: the model needs to learn
from more challenging problems, yet some of the
generated questions are still too simple. To address
these two aspects, we apply Question Preference
Optimization (QPO).

We first use the model after QFT to generate
10K questions. Subsequently, we aim to refine
these samples with a primary focus on solvability
and difficulty. We leverage an external LLM for
optimization as an alternative to manual annotation.
However, we find that simultaneously optimizing
both poses a challenge for the LLMs. Therefore,
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Figure 3: The difficulty distribution of two real-world
datasets and two synthetic datasets. The difficulty score
is calculated based solely on the problem part.

for each sample, we randomly select one of the
two optimization directions, prioritizing either solv-
ability or difficulty (with optimization prompts in
Figure 10 and 11). The optimized questions, de-
noted as yw, are treated as preferred data, while the
original questions, denoted as yl, are considered
dispreferred data. Inspired by Direct Preference
Optimization (DPO) (Rafailov et al., 2024), we
propose QPO for question optimization:

LQPO(πθ;πref) = −E(yw,yl)∼D

[

log σ

(
β log

πθ(yw)

πref(yw)
− β log

πθ(yl)

πref(yl)

)]
.

(2)
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Figure 4: The solvability and difficulty of the raw ques-
tions generated by the QFT model and the optimized
ones. We use GPT-4o as a manual substitute to evaluate
the effectiveness of solvability and difficulty optimiza-
tion, with evaluation prompt in Figure 12 and 13.

In terms of model selection, we experiment with
three models: Qwen2-Math-7B-Instruct, GPT-4o-
mini, and Llama3.1-70B-Instruct. The results are
shown in Figure 4. In terms of solvability, Qwen2-
Math-7B-Instruct proves inadequate for this task,
as the optimized questions result in decreased solv-
ability. A possible reason for this is the model’s
insufficient ability to follow instructions accurately,
resulting in many answers that fail to meet the spec-
ified optimization constraints.

2.4 Question Filtering
After the QFT and QPO phases, we obtain the ques-
tion generators Qwen2-Math-QGen. There are still
some minor issues in the generated questions, pri-
marily related to language, solvability, and diffi-
culty. To address these challenges, we apply the
filtering steps:

Language Filtering The question generator mod-
els still produce a substantial number of math ques-
tions in other languages, accounting for approxi-
mately 20%. Since our focus is on English math
questions, we remove non-English questions by
identifying questions containing non-English char-
acters and filtering out those samples.

Solvability Filtering Although QPO effectively
enhances the solvability of generated questions,
some questions remain nonsensical. To filter out
such samples, we use Qwen2-Math-7B-Instruct to
evaluate whether the question is meaningful and

whether the conditions are sufficient, with filtering
prompts provided in Figure 12.

Difficulty Sampling We measure the difficulty
of a question using the fail rate (Tong et al., 2024)
— the proportion of incorrect responses when sam-
pling n responses for a given question. This metric
aligns with the intuition that harder questions tend
to result in fewer correct responses. Following
Tong et al. (2024), we use DeepSeekMath-7B-RL
as the sampling model to evaluate the difficulty of
each question in the training sets of GSM8K and
MATH, obtaining the fail rate for each question as
its difficulty score. We then use this data to train a
difficulty scorer based on DeepSeekMath-7B-Base
with mean squared error (MSE) loss. We then use
the scorer to predict the difficulty of each synthetic
question. A portion of overly simple questions is
then filtered out, which is empirically determined
based on the difficulty distribution of the questions.

2.5 Response Generation

We use the reward model score as a metric for eval-
uating the quality of responses. For each question,
we generate 5 solutions and select the solution with
the highest reward model scores as the preferred
solution. In our experiments, we use InternLM2-
7B-Reward (Cai et al., 2024) as our reward model.
This choice is primarily guided by the model’s per-
formance on the reasoning subset of the Reward
Bench (Lambert et al., 2024).

3 Experiment

3.1 Experimental Setup

Training Problem Designers In addition to
Qwen2-Math-QGen, we also train another question
generator based on DeepSeekMath-7B-RL. We find
that combining questions synthesized by multiple
generators enhances data diversity, leading to im-
proved final performance, as further discussed in
section 3.3. In this process of the overall data syn-
thesis, many models are mentioned in the context
of QFT and QPO. We explain the inherent insights
behind the model selection in Appendix D.

Question & Response Generation The two
question generation models are then utilized to gen-
erate a total of 2 million questions, with 1 million
from each model. For difficulty filtering, we filter
out a portion of overly simple questions generated
by DeepSeekMath-QGen and keep the questions
generated by Qwen2-Math-QGen as the difficulty
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Model Synthesis Model GSM8K MATH College
Math

Olympiad
Bench Average

Teacher Models in Data Synthesis

GPT-4-0314 - 94.7 52.6 24.4 - -
GPT-4-Turbo-24-04-09 - 94.5 73.4 - - -
GPT-4o-2024-08-06 - 92.9 81.1 50.2 43.3 66.9
DeepSeekMath-7B-RL - 88.2 52.4 41.4 19.0 49.3
Qwen2-Math-7B-Instruct - 89.5 73.1 50.5 37.8 62.7

General Base Model

Mistral-7B-WizardMath GPT-4 81.9 33.3 21.5 8.6 36.3
Mistral-7B-MetaMath GPT-3.5 77.7 28.2 19.1 5.8 32.7
Mistral-7B-MMIQC GPT-4 75.7 36.3 24.8 10.8 36.9
Mistral-7B-MathScale GPT-3.5 74.8 35.2 21.8 - -
Mistral-7B-KPMath GPT-4 82.1 46.8 - - -
Mistral-7B-DART-Math DSMath-7B-RL 81.1 45.5 29.4 14.7 42.7
Mistral-7B-NuminaMath GPT-4o 82.1 49.4 33.8 19.4 46.2
Mistral-7B-ScaleQuest Qwen2-Math-7B-Ins 88.5 62.9 43.5 26.8 55.4

Llama3-8B-MetaMath GPT-3.5 77.3 32.5 20.6 5.5 34.0
Llama3-8B-MMIQC GPT-4 77.6 39.5 29.5 9.6 39.1
Llama3-8B-DART-Math DSMath-7B-RL 81.1 46.6 28.8 14.5 42.8
Llama3-8B-NuminaMath GPT-4o 77.2 50.7 33.2 17.8 44.7
Llama3-8B-ScaleQuest Qwen2-Math-7B-Ins 87.9 64.4 42.8 25.3 55.1

Math-Specialized Base Model

DeepSeekMath-7B-Instruct - 82.7 46.9 37.1 14.2 45.2
DeepSeekMath-7B-MMIQC GPT-4 79.0 45.3 35.3 13.0 43.2
DeepSeekMath-7B-KPMath-Plus GPT-4 83.9 48.8 - - -
DeepSeekMath-7B-DART-Math DSMath-7B-RL 86.8 53.6 40.7 21.7 50.7
DeepSeekMath-7B-Numina-Math GPT-4o 75.4 55.2 36.9 19.9 46.9
DeepSeekMath-7B-ScaleQuest Qwen2-Math-7B-Ins 89.5 66.6 47.7 29.9 58.4

Qwen2-Math-7B-MetaMath GPT-3.5 83.9 49.5 39.9 17.9 47.8
Qwen2-Math-7B-DART-Math DSMath-7B-RL 88.6 58.8 45.4 23.1 54.0
Qwen2-Math-7B-Numina-Math GPT-4o 84.6 65.6 45.5 33.6 57.3
Qwen2-Math-7B-ScaleQuest Qwen2-Math-7B-Ins 89.7 73.4 50.0 38.5 62.9

Table 1: Main results on four mathematical reasoning benchmarks. Bold means the best score with the same base
model. The baselines use different synthesis models for both question synthesis and response generation, such as
GPT-3.5, GPT-4, and GPT-4o. For our approach, DSMath-7B-QGen and Qwen2-Math-7B-QGen are utilized for
question synthesis, with Qwen2-Math-7B-Instruct used for response generation. If multiple models are used, only
the latest released one is marked. More details about these datasets are shown in Table 7.

distribution is more balanced. Based on the prob-
lems, we synthesize responses (section 2.5) using
Qwen2-Math-7B-Instruct (Yang et al., 2024a). For
each problem, we sample 5 solutions and select
the one with the highest reward score as the final
response. The final dataset consists of 1 million
problem-solution pairs. A detailed analysis of our
constructed dataset is provided in Appendix B.

Instruction Tuning We conduct instruction tun-
ing on the synthetic problems and solutions us-
ing two general base models, Mistral-7B (Jiang
et al., 2023) and Llama3-8B (Dubey et al., 2024),
as well as two math-specialized base models,
DeepSeekMath-7B (Shao et al., 2024) and Qwen2-
Math-7B (Yang et al., 2024a). More hyperparame-

ters in the process are provided in Appendix A.

Evaluation and Metrics We assess the fine-
tuned models’ performance across four datasets
of increasing difficulty. Along with the widely
used GSM8K (elementary level) and MATH (com-
petition level), we include two more challenging
benchmarks: College Math (Tang et al., 2024) (col-
lege level) and Olympiad Bench (He et al., 2024)
(Olympiad level). For evaluation, we employ the
script from Tong et al. (2024) to extract final an-
swers and determine correctness by comparing an-
swer equivalency. The generated outputs are all
in the form of natural language Chain-of-Thought
(CoT) reasoning (Wei et al., 2022) through greedy
decoding, with no tool integration, and we report
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zero-shot pass@1 accuracy. We also conduct more
comprehensive evaluation, with details shown in
Appendix E. We also extend our approach to the
long cot and code reasoning task, with details and
experiments provided in Appendix C.

Compared Baselines We mainly compare with
data synthesis methods, including question-driven
approach such as WizardMath (Luo et al., 2023),
MetaMath (Yu et al., 2023a), MMIQC (Liu
and Yao, 2024), Orca-Math (Mitra et al., 2024)
and knowledge-driven approach such as KP-
Math (Huang et al., 2024a), MathScale (Tang et al.,
2024). In addition to this, we also involve other
large math corpus like DART-Math (Tong et al.,
2024) and Numina-Math (Li et al., 2024c). More
details of these datasets are shown in Table 7.

3.2 Main Results
ScaleQuest significantly outperforms other base-
lines Table 1 presents the results. ScaleQuest
significantly outperforms previous synthetic meth-
ods, with average performance improvements rang-
ing from 5.6% to 11.5% over the prior state-
of-the-art (SoTA) on both general base models
and math-specialized foundation models. Qwen2-
Math-7B-ScaleQuest achieve a zero-shot pass@1
accuracy of 73.4 on the MATH benchmark, match-
ing the performance of GPT-4-Turbo. For out-of-
domain tasks, Qwen2-Math-7B-ScaleQuest outper-
form its teacher model, Qwen2-Math-7B-Instruct,
with scores of 89.7 on the GSM8K benchmark,
73.4 on the MATH benchmark, and 38.5 on the
Olympiad benchmark. In this experiment, we
do not strictly control for identical training data
volumes due to practical constraints (i.e., some
datasets are not publicly available). To address
this, we compare the results with publicly available
datasets under equal data volumes in Appendix E.2.
It’s important to highlight that Qwen2-Math-7B-
Instruct has undergone preference alignment, utiliz-
ing the powerful reward model Qwen2-Math-RM-
72B (Yang et al., 2024a), while our model is only
an instruction tuning version.

ScaleQuest scales well with increasing data We
also compare the scalability of our dataset with
other publicly available datasets, including Meta-
Math (Yu et al., 2023a), DART-Math (Tong et al.,
2024), and Numina-Math (Li et al., 2024c). We
train Llama3-8B on these datasets and compare
their performance changes with increased data
size. The results are presented in Figure 1. For

Question
Source GSM8K MATH CM OB Avg

MetaMath 84.5 53.8 40.1 22.1 50.1
OrcaMath 84.2 53.7 40.5 23.7 50.5
NuminaMath 86.0 65.9 46.1 30.2 57.1
ScaleQuest 89.5 66.6 47.7 29.9 58.4

Table 2: Comparison of question quality across different
datasets. To ensure consistency, all responses are gen-
erated using Qwen2-Math-7B-Instruct with the same
reward filtering process. CM and OB refer to College
Math and Olympiad Bench, respectively. Additional
results based on the other three backbone models are
shown in Appendix E.4.

the in-domain evaluation (MATH), our method
demonstrates high data efficiency, achieving su-
perior results with the same amount of data. In out-
of-domain evaluations (Olympiad Bench), it also
shows strong scalability, continuing to improve
even as other datasets reach their limits. A limited
question set leads to constrained improvements in
model performance, as demonstrated by the results
of DART-Math, which relies on a small number
of questions and generates numerous correct an-
swers through rejection sampling. Our results fur-
ther demonstrate that diverse questions support sus-
tained performance growth, emphasizing the need
for broader and more varied question generation.

3.3 Ablation study
Each sub-method contributes to the final perfor-
mance To validate the effectiveness of each of
our sub-methods, including QFT, QPO, and reward
filtering, we conduct an ablation study. We evaluate
the quality of the questions generated by the mod-
els across three dimensions: solvability, difficulty,
and performance in instruction tuning. For solv-
ability and difficulty, we use the same evaluation
process as stated in section 2.3.

The results are shown in Figure 5. The “raw
model” refers to using the instruct model to directly
generate instructions and responses, as done in Xu
et al. (2024). To ensure fairness, we also gener-
ate 1M question-response pairs using their method
based on Qwen2-Math-7B-Instruct, which are used
to train Llama3-8B-Base. After applying QFT and
QPO, the model’s performance improves across
all three evaluation dimensions, demonstrating the
effectiveness of each sub-method.

Comparison of question quality To directly
compare the question quality of our constructed
data with other open-source datasets, we use the
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Dataset GSM8K MATH CM OB Avg

SQ-DSMath 87.6 52.2 39.8 19.4 49.8
SQ-Qwen2 86.8 56.1 39.6 18.7 50.3

Mixed 87.8 58.0 40.1 22.2 52.0

Table 3: The performance of Mistral-7B fine-tuned on
ScaleQuest-DSMath, ScaleQuest-Qwen2, and a mix of
both. We fix the training data size at 400K and find that
the mixed data results in the largest improvement.

same model, Qwen2-Math-7B-Instruct, to generate
responses. We then fine-tune DeepSeekMath-7B-
Base using these synthetic datasets. As shown in
Table 2, our model outperforms other synthetic
datasets like MetaMath and OrcaMath, highlight-
ing the high quality of our questions. NuminaMath
also demonstrates competitive performance, largely
due to the fact that many of its questions are drawn
from real-world scenarios. This highlights the im-
portance of question quality for synthetic data.

Multiple question generators enhance data di-
versity We use two models as question gener-
ators: DSMath-QGen and Qwen2-Math-QGen,
which are based on DeepSeekMath (Shao et al.,
2024) and Qwen2-Math (Yang et al., 2024a), re-
spectively. To explore the impact of using multiple
question generators, we compare the effects of us-
ing data synthesized by a single generator versus
a mix of data from both. As shown in Table 3,
we find that the mixed data outperforms the data
generated by either single generator. A possible
explanation for this improvement is the increased

data diversity. In fact, we observe that DSMath-
QGen tends to generate simpler, more real-world-
oriented questions, while Qwen2-Math-QGen pro-
duces more challenging, theory-driven ones.

3.4 Human Evaluation Results

We conduct a human evaluation of the generated
data, focusing on three aspects: clarity, reason-
ableness, and real-world relevance. For reference,
we also include two high-quality, human-curated
datasets, GSM8K and MATH. A total of 40 exam-
ples are sampled from each dataset and evaluated
based on clarity, coherence, and real-world rele-
vance, with scores ranging from 1 to 5. The results
are presented in Table 5. In terms of clarity and
reasonableness, our synthetic data surpasses Numi-
naMath but still falls short of the high-quality, real-
world datasets like the training sets of GSM8K and
MATH. Regarding real-world relevance, GSM8K
leans toward practical, real-life scenarios, while
MATH focuses more on theoretical mathematical
derivations. Our generated data can be seen as a
balance between the two.

3.5 Cost Analysis

The data synthesis process is conducted on a server
with 8 A100-40G-PCIe GPUs. We summarize our
overall costs in Table 4. Generating 1 million data
samples requires only 522.9 GPU hours (approx-
imately 2.7 days on an 8-GPU server), with an
estimated cost of $680.8 for cloud server rental.2

2https://lambdalabs.com/service/gpu-cloud
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Phase Type # Samples GPU hours Cost ($)

QFT Training DSMath-QFT Train 15K 2.0 2.6
Training Qwen2-Math-QFT Train 15K 1.9 2.5

QPO
Generate Questions Infer 10K×2 0.4 0.5
Construct Preference Data API 10K×2 - 6.2
QPO Training Train 10K×2 6.6 8.5

Data Synthesis

Question Generation Infer 2M 38.4 49.5
solvability & difficulty check Infer 2M 110.6 142.7
Response Generation Infer 1M×5 251.0 323.8
Reward Scoring Infer 1M×5 112.0 144.5

Total 1M 522.9 680.8

GPT-4 cost (generating the same number of tokens) - - 24,939.5
GPT-4o cost (generating the same number of tokens) - - 6,115.9

Table 4: Cost analysis of the entire data synthesis process. We also estimate the cost of generating the same number
of tokens using proprietary models GPT-4 and GPT-4o for comparison.

Dataset Clarity Reasonableness Real-world
relevance

GSM8K 4.4 4.5 3.9
MATH 4.1 4.3 2.4
NuminaMath 3.8 4.0 2.4

ScaleQuest 3.9 4.0 2.8

Table 5: Human Evaluation Results.

This is only about 10% of the cost of generating
the same data using GPT-4o, demonstrating the
cost-effectiveness of our method.

4 Related Work

4.1 Mathematical Reasoning

Solving math problems is regarded as a key mea-
sure of evaluating the reasoning ability of LLMs.
Recent advancements in mathematical reasoning
for LLMs, including models like OpenAI o1,
Claude-3.5, Gemini (Reid et al., 2024), DeepSeek-
Math (Shao et al., 2024), InternLM2-Math (Cai
et al., 2024), and Qwen2.5-Math (Yang et al.,
2024b), have spurred the development of various
approaches to improve reasoning capabilities of
LLMs on math-related tasks. To strengthen the
math reasoning capabilities of LLMs, researchers
have focused on areas such as prompting tech-
niques (Chia et al., 2023; Chen et al., 2023;
Zhang et al., 2023), data construction for pretrain-
ing (Lewkowycz et al., 2022; Azerbayev et al.,
2023; Zhou et al., 2024; Shao et al., 2024) and in-
struction tuning (Luo et al., 2023; Yue et al., 2023),
tool-integrated reasoning(Chen et al., 2022; Gao
et al., 2023; Gou et al., 2023; Wang et al., 2023;
Yue et al., 2024; Yin et al., 2024; Zhang et al.,

2024), and preference tuning (Ma et al., 2023; Lu-
ong et al., 2024; Shao et al., 2024; Lai et al., 2024).
Our work primarily focuses on math data synthesis
for instruction tuning.

4.2 Data Synthesis for Instruction Tuning
High-quality reasoning data, particularly well-
crafted questions, is in short supply. Prior efforts
have mostly started with a small set of human-
annotated seed instructions and expanded them
through few-shot prompting. We categorize them
into two types: question-driven augmentation (Luo
et al., 2023; Yu et al., 2023a; Li et al., 2024a; Liu
and Yao, 2024; Li et al., 2024b) and knowledge-
driven augmentation (Didolkar et al., 2024; Shah
et al., 2024; Tang et al., 2024; Huang et al., 2024a).
There are other methods for enhancing dataset qual-
ity as well. DART-Math (Tong et al., 2024) focuses
on enhancing the quality of responses by using
difficulty-aware rejection sampling. In contrast,
Numina-Math (Li et al., 2024c) improves its dataset
by collecting more real-world and synthetic data.
These high-quality datasets can be integrated with
our constructed dataset, resulting in an improved
data mix for more effective instruction tuning.

5 Conclusion

In this work, we propose ScaleQuest, a novel data
synthesis framework that unlocks the ability of
lightweight models to independently generate large-
scale, high-quality reasoning data from scratch, at a
low cost. Using this dataset, we fine-tune the model
and achieve remarkable improvements, with gains
ranging from 29.2% to 46.4% compared to the base
model, outperforming the strong baselines.
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Limitation

We explore the potential of lightweight open-
sourced models to generate high-quality instruction
tuning data. However, the effectiveness on larger
and more powerful models, such as Qwen2.5-Math-
72B-Instruct and Llama3.3-70B-Instruct, remains
uncertain. Our future research will focus on ex-
perimenting with these larger models. Addition-
ally, although the optimizations for solvability and
difficulty have shown positive effects, the model-
generated responses still fall short of being fully
satisfactory. Therefore, further improvements in
question preference alignment are crucial and will
be an important direction for our future work.
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A Hyper-parameters settings

Training Problem Designers During the QFT
stage, both models are trained on a mixed training
subset of GSM8K and MATH problems, containing
a total of 15K problems. We train for only 1 epoch,
considering that training for more epochs might
cause the models to overfit the training problems
and negatively impact the diversity of generated
questions. We also use sequence packing (Krell
et al., 2021) to accelerate training. In the QPO
stage, we use 10K preference data for training, with
a learning rate of 5e-7 and a batch size of 128.

Question Generation During this process, we
set the maximum generation length to 512, a tem-
perature of 1.0, and a top-p value of 0.99. To ensure
quality, we apply a question filtering pipeline (sec-
tion 2.4) that involves language filtering, solvabil-
ity filtering, and difficulty sampling. This process
refines the dataset, leaving approximately 1M ques-
tions, 400K from DeepSeek-QGen and 600K from
Qwen2-Math-QGen.

Response Generation In the process, we set the
maximum generation length to 2048, with a tem-
perature of 0.7 and top-p of 0.95. We use chain-
of-thought prompt (Wei et al., 2022) to synthesize
solutions. We use vLLM (Kwon et al., 2023) to
accelerate the generation and Ray (Moritz et al.,
2018) to deploy distributed inference.

Instruction Tuning All models are fine-tuned
for 3 epochs in our experiments unless specified
otherwise. We use a linear learning rate schedule
with a 3% warm-up ratio, reaching a peak of 5e-5
for Llama3 and DeepSeekMath and 1e-5 for the
other models, followed by cosine decay to zero.

B Additional Data Statistics

Filtering process The entire data generation pro-
cess is illustrated in Figure 6. After using the two
question generators to produce 2 million questions
from scratch, we perform a filtering process, in-
cluding language filtering, solvability checks, and
difficulty sampling. These steps filter out 20.1%,
19.4%, and 9.2% of the samples, respectively, re-
sulting in a final question set of 1 million ques-
tions. In the subsequent response generation pro-
cess, we filter out responses without answers by
checking for key phrases such as “The answer is”
or “\boxed{}”. This step eliminates a negligible
portion of the samples, as most of the filter ques-

tions are solvable and did not pose any confusion
for the response generation model.
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Figure 6: Overview of our filtering process.

Dataset Coverage We analyze the dataset cover-
age through two aspects: (1) Problem Topic Cov-
erage, such as algebra and geometry. Following
Huang et al. (2024a), we use GPT-4o to categorize
the topics of the given questions, with prompt illus-
trated in Figure 14. Figure 7 presents the results.
We find that the topics cover the major areas of
mathematics, such as arithmetic, algebra, geom-
etry, and others. (2) Embedding space analysis.
Following Zhao et al. (2024) and Xu et al. (2024),
we first compute the input embeddings of the ques-
tions and then project them into a two-dimensional
space using t-SNE (Van der Maaten and Hinton,
2008). We include only real-world datasets, such as
GSM8K (Cobbe et al., 2021), MATH (Hendrycks
et al., 2021), and NuminaMath (Li et al., 2024c)
(which contains a small portion of synthetic ques-
tions). As shown in Figure 8, our synthetic data
closely resembles the real-world questions.

Data Leakage Analysis We conduct an n-gram
similarity analysis between the generated questions
and all test sets from both our dataset and other
baseline datasets. Based on prior empirical analy-
sis (Brown, 2020; Wei et al., 2021), we set n=13
to prevent spurious collisions and calculate how
much the test sets overlap with training data to as-
sess data contamination. Table 6 shows the clean
ratio of our dataset and other baseline datasets. The
results demonstrate that our dataset achieves a rel-
atively high level of data cleanliness compared to
other datasets, suggesting that our method gener-
ates novel questions instead of memorizing existing
ones.

Safety Analysis We use Llama3-8B-Guard (Inan
et al., 2023) as a discriminator model to detect any
unsafe elements in the data. After sampling 10K
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erated dataset.
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Figure 8: t-SNE plot of our dataset, with GSM8K, MATH, and
NuminaMath.

Dataset GSM8K MATH CM OB Avg

MetaMath 99.8 92.2 100 99.7 97.9
NuminaMath 99.8 89.8 99.9 86.8 94.1
DART-Math 99.8 91.5 100.0 99.6 97.7
MMIQC 99.8 88.0 98.9 97.9 96.2

SQ (Ours) 99.9 92.8 99.8 97.2 97.4

Table 6: Overlap statistics for the datasets used. We
report the clean ratio of the test set, representing the
percentage of test samples that have no matching n-
grams with samples in the training set.

instances from the 1 million samples, we find that
only 0.1% are flagged as unsafe.

Generated Examples We sample several gener-
ated examples from our datasets, as shown in Fig-
ure 17, 18 and 19. The generated math problems
are of high quality, driving effective learning.

C ScaleQuest for Broader tasks

C.1 Long Chain-of-Thought Mathematical
Reasoning

DeepSeek-R1 (Guo et al., 2025) demonstrated the
effectiveness of Long Chain-of-Thought (CoT) rea-
soning in tackling challenging mathematical rea-
soning tasks. In this part, we further investigate the
capability of ScaleQuest to generate high-quality
long CoT data.

Settings We utilize the latest Qwen2.5-Math-7B
model (Yang et al., 2024b) for question fine-tuning
and preference optimization. To construct long
CoT data, we select DeepSeek-R1-Distill-Qwen-
7B as the response generator. The rest of the
pipeline remains unchanged from prior work. In to-

tal, we synthesized 150K Long Chain-of-Thought
training samples.

Results We then fine-tuned DeepSeek-R1-Distill-
Qwen-7B on this dataset, which also serves as
the teacher model during data synthesis. Table 8
presents the results, showing that the fine-tuned
model outperforms its teacher, demonstrating a
strong potential for self-improvement.

C.2 Code Reasoning

We also extend our ScaleQuest method to the Code
Reasoning Task as a simple validation. We made
the following modifications to adapt to the code
reasoning task:

Settings We choose DeepSeek-Coder-7B-
Instruct (Guo et al., 2024) and Qwen2.5-Coder-7B-
Instruct (Hui et al., 2024) as two problem-solving
models to perform question fine-tuning on 20K
questions randomly sampled from CodeFeed-
Back (Zheng et al., 2024). For Question Preference
Optimization, we also focus on solvability
and difficulty, making slight modifications to
the prompts based on the code reasoning task.
Our evaluation cover HumanEval (Chen et al.,
2021), MBPP (Austin et al., 2021), and Big-
CodeBench (Zhuo et al., 2024), using the same
evaluation script as Qwen2.5-Coder. We report
pass@1 results using greedy search.

Results The results are presented in Table 9.
Compared to the widely used refined version of
CodeFeedback, namely CodeFeedback-Filtered,
our generated data outperforms it, with an aver-
age improvement of 5.9 across the three baselines.
Additionally, we enhance the Response portion of
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Dataset Size Synthesis Model Public

WizardMath (Luo et al., 2023) 96K GPT-4 ✗
MetaMath (Yu et al., 2023a) 395K GPT-3.5-Turbo ✓
MMIQC (Liu and Yao, 2024) 2294K GPT-4 & GPT-3.5-Turbo & Human ✓
Orca-Math (Mitra et al., 2024) 200K GPT-4-Turbo ✓
Xwin-Math (Li et al., 2024a) 1440K GPT-4-Turbo ✗
KPMath-Plus (Huang et al., 2024a) 1576K GPT-4 ✗
MathsScale (Tang et al., 2024) 2021K GPT-3.5 & Human ✗
DART-Math (Tong et al., 2024) 585K DeepSeekMath-7B-RL ✓
Numina-Math (Li et al., 2024c) 860K GPT-4 & GPT-4o ✓

ScaleQuest 1000K DeepSeekMath-7B-RL
✓Qwen2-Math-7B-Instruct

Table 7: Comparison between our constructed dataset and previous datasets.

Model GSM8k MATH500 AIME24 AMC25 Average

DS-R1-Distill-Qwen-7B 91.5 90.2 43.3 75.0 75.0
DS-R1-Distill-Qwen-7B-ScaleQuest 93.0 91.0 53.3 90.0 81.8

Table 8: Results of ScaleQuest-LongCoT.

CodeFeedback-Filtered using Qwen2.5-Coder-7B-
Instruct, and the results indicate that our generated
questions are of higher quality. This further demon-
strates the effectiveness of the ScaleQuest method.

D Insights behind model selection

In our works, we use multiple models, e.g.,
DSMath-7B-RL, Qwen2-Math-7B-Ins, GPT-4o-
mini, and DSMath-7B-Base, which may cause con-
fusion for model selection. In response, we also
supplement our approach with a simpler setup. We
use Qwen2-Math-7B-Ins for training question gen-
erators, constructing optimization data for QPO,
and performing solvability & difficulty filtering,
as well as for response generation. For reward fil-
tering, InternLM-7B-Reward remained unchanged.
The results, as shown in Figure 11 (ScaleQuest-
Simple result), indicate that our approach contin-
ues to demonstrate superior performance compared
to existing datasets. Additionally, we summarize
these insights on model selection for domain adap-
tation:

• Selection of base model for training ques-
tion generator: The self-synthesis generation
paradigm heavily relies on the inherent knowl-
edge of the problem-solving model itself (Xu
et al., 2024). Therefore, a domain-specific model
is essential. For example, Qwen2-Math-Ins
is suitable for mathematical reasoning, while
Qwen2.5-Coder-Ins fits well for code reasoning.
Furthermore, using multiple question generators
often leads to more diverse and higher-quality

questions (as discussed in section 3.3).
• Selection of model for constructing optimiza-

tion data: Well-aligned, general-purpose mod-
els, such as Llama3.1-70B and GPT-4o-mini,
tend to perform better than domain-specific mod-
els, as illustrated in Figure 4.

• Selection of Response Generation Model &
Reward Model: These can be selected based on
their performance on the corresponding mathe-
matical tasks.

We believe that the methodology and the experi-
ence in selecting models are always more critical
than the chosen models themselves. With the con-
tinuous advancements in the open-source commu-
nity, we are confident that stronger models will
undoubtedly produce even better datasets when ap-
plying our approach.

E Additional Experiments

E.1 Evaluation Results on More
Out-of-Domain (OOD) Benchmarks

In addition to College Math and Olympiad Bench,
we include two additional OOD benchmarks:
GSM-Hard (Gao et al., 2023) and MathChat (Liang
et al., 2024). GSM-Hard is constructed by modi-
fying the questions in GSM8K, replacing the num-
bers with larger, less common ones. From Math-
Chat, we select two problem-solving tasks: follow-
up QA and error correction. The results are sum-
marized in Table 10. In more fine-grained OOD
evaluations, our model continues to perform on par
with Qwen2-Math-7B-Ins, further demonstrating
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Model # Samples (K) HumanEval MBPP BigCodeBench Average

Qwen2.5-Coder-CFB 156 79.3 77.2 35.6 64.0
Qwen2.5-Coder-CFB-Aug 156 84.1 84.7 39.0 69.3
Qwen2.5-Coder-ScaleQuest 156 86.6 83.1 40.0 69.9

Table 9: Results of ScaleQuest in Code Reasoning Task. All results are based on Qwen2.5-Coder-7B-Base. CFB
refers to the CodeFeedBack-Filtered Dataset. We augment the responses for the problems in CodeFeedback-Filtered
using Qwen2.5-Coder-7B-Instruct with reward filtering, creating a new dataset referred to as CFB-Aug.

our ScaleQuest Model’s generalization capability
and highlighting the generated data’s robustness.

E.2 Comparison Under Equal Training Data
Volume

In the right panel of Figure 1, we plot the scaling
trends of model performance with increasing data
volume, showcasing the superiority of the Scale-
Quest method when using the same amount of data.
To further ensure a fair comparison, we randomly
sample the same number of training examples from
open-source datasets for training. Specifically, we
sample 400K examples from MetaMath, DART-
Math, NuminaMath, and our dataset (for Meta-
Math, which contains 395K examples in total, all
samples are used). The results are presented in Ta-
ble 11. We observe that with the same amount of
training data, our dataset demonstrates significantly
higher instruction tuning effectiveness compared
to other datasets.

E.3 Training Data Volume on QPO

QPO is designed to enhance the solvability and
difficulty of the question generator. We investigate
the impact of training data volume by using GPT-
4o-mini as the optimization model. The training
data volume is controlled at 5K, 10K, 15K, 20K,
and 40K, with Qwen2-Math-7B-QFT serving as
the base model. We evaluate the performance of
the trained question generator in terms of solvabil-
ity and difficulty. The results are shown in Figure 9.
As the amount of training data increases, both the
solvable rate and difficulty of the questions gener-
ated by the question generator improve, gradually
converging around 20K training examples. We
believe that maintaining the training data at approx-
imately 10K represents a more suitable balance
between training cost and model performance.

E.4 Additional Results Based on Different
Base Models

We have supplemented Table 2 with the results
for the other three base models, as shown in Ta-
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Figure 9: Performance of QPO in different training data
volume. The evaluation covers the solvable ratio and
difficulty score, following the same evaluation proce-
dure as in Figure 5.

ble 12. Under the same response generation pro-
cess, our approach consistently outperforms exist-
ing datasets across all four base models, further
demonstrating the superiority of our method.

F Prompt Template
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Model GSM-Hard Follow-up QA Error Correction AverageR1 R2 R3

Qwen2-Math-7B-Instruct 68.3 89.5 62.4 53.5 89.9 72.7
Qwen2-Math-7B-ScaleQuest 66.3 89.7 61.7 53.5 91.1 72.5

Table 10: The comparison between Qwen2-Math-7B-Ins and the ScaleQuest Model on GSM-Hard and MathChat.
We choose Follow-up QA and Error Correction from MathChat for evaluation in problem-solving. R1, R2, and R3
represent different rounds in Follow-up QA.

Model # Samples (K) GSM8K MATH College
Math

Olympiad
Bench Average

Qwen2-Math-7B-MetaMath 395 84.3 48.6 40.5 15.6 47.3
Qwen2-Math-7B-DART-Math 400 88.6 58.2 45.2 22.8 53.7
Qwen2-Math-7B-NuminaMath 400 82.0 65.8 44.9 29.2 55.5

Qwen2-Math-7B-ScaleQuest 400 90.6 71.6 50.2 36.2 62.1
Qwen2-Math-7B-ScaleQuest-Simple 400 89.4 69.9 48.8 33.6 60.4

Table 11: Results on four mathematical reasoning benchmarks. All results are based on Qwen2-Math-7B-Base.
ScaleQuest-Simple is a simplified version that only utilizes Qwen2-Math-7B-Ins for QFT, QPO, and question
filtering, and InternLM-7B-Reward for reward filtering.

Model GSM8K MATH College
Math

Olympiad
Bench Average

Mistral-7B-MetaMath-Aug 77.0 34.1 18.6 8.6 34.6
Mistral-7B-OrcaMath-Aug 84.4 31.6 20.9 8.2 36.3
Mistral-7B-NumiMath-Aug 79.5 62.8 40.4 30.4 53.3
Mistral-7B-ScaleQuest 88.5 62.9 43.5 28.8 55.9

Llama3-8B-MetaMath-Aug 77.6 33.1 20.6 9.2 35.1
Llama3-8B-OrcaMath-Aug 83.2 32.6 19.4 8.6 36.0
Llama3-8B-NumiMath-Aug 79.1 62.9 39.3 25.4 51.7
Llama3-8B-ScaleQuest 87.9 64.4 42.8 25.3 55.1

Qwen2-Math-7B-MetaMath-Aug 88.5 68.5 47.1 33.0 59.3
Qwen2-Math-7B-OrcaMath-Aug 89.3 68.3 46.6 31.9 59.0
Qwen2-Math-7B-NumiMath-Aug 89.5 72.6 49.5 36.3 62.0
Qwen2-Math-7B-ScaleQuest 89.7 73.4 50.0 38.5 62.9

Table 12: Additional results of Table 2 on the other base models. All responses are generated using Qwen2-Math-
7B-Instruct with the same reward filtering process. For baseline datasets, “-Aug” indicates that the responses have
been enhanced.
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Prompts for Problem Solvability Optimization

Please act as a professional math teacher.
Your goal is to create high quality math word problems to help students learn
math.
You will be given a math question. Please optimize the Given Question and
follow the instructions.
To achieve the goal, please follow the steps:
# Please check that the given question is a math question and write detailed
solution to the Given Question.
# Based on the problem-solving process, double check the question is solvable.
# If you feel that the given question is not a meaningful math question, rewrite
one that makes sense to you. Otherwise, modify the Given question according to
your checking comment to ensure it is solvable and of high quality.
# If the question can be solved with just a few simple thinking processes, you
can rewrite it to explicitly request multiple-step reasoning.

You have five principles to do this:
# Ensure the optimized question only asks for one thing, be reasonable and
solvable, be based on the Given Question (if possible), and can be answered
with only a number (float or integer). For example, DO NOT ask, ‘what is the
amount of A, B and C?’.
# Ensure the optimized question is in line with common sense of life. For
example, the amount someone has or pays must be a positive number, and the
number of people must be an integer.
# Ensure your student can answer the optimized question without the given
question. If you want to use some numbers, conditions or background in the
given question, please restate them to ensure no information is omitted in your
optimized question.
# Please DO NOT include solution in your question.

Given Question: problem
Your output should be in the following format:
CREATED QUESTION: [your created question]
VERIFICATION AND MODIFICATION: [solve the question step-by-step and modify it
to follow all principles]
FINAL QUESTION: [your final created question]

Figure 10: Prompts used to optimize the solvability of questions for QPO Training.
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Prompts for Problem Difficulty Optimization

You are an Math Problem Rewriter that rewrites the given #Problem# into a more
complex version.
Please follow the steps below to rewrite the given "#Problem#" into a more
complex version.

Step 1: Please read the "#Problem#" carefully and list all the possible
methods to make this problem more complex (to make it a bit harder for
well-known AI assistants such as ChatGPT and GPT4 to handle). Note that the
problem itself might be erroneous, and you need to first correct the errors
within it.
Step 2: Please create a comprehensive plan based on the #Methods List# generated
in Step 1 to make the #Problem# more complex. The plan should include several
methods from the #Methods List#.
Step 3: Please execute the plan step by step and provide the #Rewritten
Problem#. #Rewritten Problem# can only add 10 to 20 words into the "#Problem#".
Step 4: Please carefully review the #Rewritten Problem# and identify any
unreasonable parts. Ensure that the #Rewritten Problem# is only a more complex
version of the #Problem#. Just provide the #Finally Rewritten Problem# without
any explanation and step-by-step reasoning guidance.

Please reply strictly in the following format:
Step 1 #Methods List#:
Step 2 #Plan#:
Step 3 #Rewritten Problem#:
Step 4 #Finally Rewritten Problem#:

#Problem#: Problem

Figure 11: Prompts used to optimize the difficulty of questions for QPO Training.

Prompts for Problem Solvability Check

Please act as a professional math teacher.
Your goal is to determine if the given problem is a valuable math problem. You
need to consider two aspects:
1. The given problem is a math problem.
2. The given math problem can be solved based on the conditions provided in
the problem (You can first try to solve it and then judge its solvability).

Please reason step by step and conclude with either ‘Yes’ or ‘No’.

Given Problem: Problem

Figure 12: Prompts used to check the solvability of questions.
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Prompts for Difficulty Classification

# Instruction

You first need to identify the given user intent and then label the
difficulty level of the user query based on the content of the user query.

## User Query
Input

## Output Format
Given the user query, in your output, you first need to identify the user
intent and the knowledge needed to solve the task in the user query.
Then, rate the difficulty level of the user query as very easy, easy, medium,
hard, or very hard.

Now, please output the user intent and difficulty level below in a json
format by filling in the placeholders in []:
{{
“intent”: “The user wants to [....]”,
“knowledge”: “To solve this problem, the models need to know [....]”,
“difficulty”: “[very easy/easy/medium/hard/very hard]”
}}

Figure 13: The prompts used to judge the difficulty level of questions.
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Prompts for Topic Classification

As a mathematics education specialist, please analyze the topics of the
provided question and its answer.
Specific requirements are as follows:
1. You should identify and categorize the main mathematical topics involved
in the problem. If knowledge from non-mathematical fields is used, it is
classified into Others - xxx, such as Others - Problem Context.
2. You should put your final answer between <TOPIC> and </TOPIC>.
——
Question: Compute cos 330◦.

Answer: We know that 330◦ = 360◦ − 30◦.
Since cos(360◦ − θ) = cos θ for all angles θ,
we have cos 330◦ = cos 30◦.
Since cos 30◦ =

√
3
2 ,

we can conclude that cos 330◦ =

√
3

2
.

Analysis: <TOPIC>Trigonometry - Cosine Function</TOPIC>
——
Question: Question

Answer: Answer

Analysis:

Figure 14: The prompts used for topic classification.

Examples for Solvability Optimization

Problems 1 (Before Optimization):
There are 10 survivors in an emergency room. Each survivor is either a child,
a woman, or a man. If there are 4 men and 3 times as many women as men, how
many children are there?
Problems 1 (After Optimization):
There are 10 survivors in an emergency room. Each survivor is either a child,
a woman, or a man. If there are 4 men and an equal number of women as men, how
many children are there?

Problems 2 (Before Optimization):
How many sides does a polygon have if it is a regular polygon?
Problems 2 (After Optimization):
How many sides does a regular polygon have if each interior angle is 120 degrees?

Problems 3 (Before Optimization):
Find the sum of the first three terms of this series.
Problems 3 (After Optimization):
Calculate the sum of the first three terms of the arithmetic series where the
first term is 5 and the common difference is 3.

Figure 15: Three examples for solvability optimization by GPT-4o-mini.
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Examples for Difficulty Optimization

Problems 1 (Before Optimization):
How many 4-digit positive integers are there?
Problems 1 (After Optimization):
How many 4-digit positive integers can be formed using non-repeating digits
where the sum of these digits must be even, and the integers fall within the
range of 1000 to 9999?

Problems 2 (Before Optimization):
The average of 15 numbers is 32. An additional number is then added to the list,
and the new average of the 16 numbers is 34. What number was added to the list?
Problems 2 (After Optimization):
The average of 15 positive integers is 32, but one integer fluctuates to 30
before adding a new number. After adding this new number, the average of the 16
integers becomes 34. Calculate the added number and find the standard deviation
of all 16 integers, considering their ascending order.

Problems 3 (Before Optimization):
A fair coin is tossed 50 times, what is the probability of getting heads at
least 25 times?
Problems 3 (After Optimization):
A fair coin is tossed 50 times; what is the probability of obtaining heads at
least 25 times, and can you also calculate the expected number, variance, and
standard deviation of heads while determining the likelihood that the total
number of heads exceeds 30?

Figure 16: Three examples for difficulty optimization by GPT-4o-mini.
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ScaleQuest Data Example 1

QUESTION:
My orthogonal projection matrix P projects onto the plane with equation

x+ y + z = 0.

Find the matrix P.

SOLUTION:
To find the orthogonal projection matrix P that projects onto the plane with the equation
x+ y + z = 0, we can follow these steps:
1. Identify the normal vector to the plane:

The plane x+ y + z = 0 has a normal vector n =



1
1
1


.

2. Express the projection matrix in terms of the normal vector:
The orthogonal projection matrix P onto the plane can be written as:

P = I − nnT

nTn

where I is the 3 × 3 identity matrix, n is the normal vector, and nT is the transpose of the
normal vector.
3. Calculate nTn:

nTn =
(
1 1 1

)


1
1
1


 = 12 + 12 + 12 = 3

4. Calculate nnT :

nnT =



1
1
1


(

1 1 1
)
=



1 1 1
1 1 1
1 1 1




5. Substitute these into the projection matrix formula:

P = I − 1

3



1 1 1
1 1 1
1 1 1




where I is the 3× 3 identity matrix:

I =



1 0 0
0 1 0
0 0 1




6. Perform the matrix subtraction:

P =



1 0 0
0 1 0
0 0 1


− 1

3



1 1 1
1 1 1
1 1 1




P =




2
3

− 1
3

− 1
3

− 1
3

2
3

− 1
3

− 1
3

− 1
3

2
3




Therefore, the orthogonal projection matrix P is:




2
3

− 1
3

− 1
3

− 1
3

2
3

− 1
3

− 1
3

− 1
3

2
3




Figure 17: An example from our constructed dataset.
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ScaleQuest Data Example 2

QUESTION:
Suppose a, b are positive real numbers such that a+ b = 1.
(a) minimize 1

a
+ 1

b
;

(b) minimize a2 + b2.

SOLUTION:
To solve these problems, we will use the method of Lagrange multipliers and the AM-HM inequality.
Part (a): Minimize 1

a
+ 1

b
given a+ b = 1

First, we use the method of Lagrange multipliers. Define the function f(a, b) = 1
a
+ 1

b
and the

constraint g(a, b) = a+ b− 1 = 0.
The Lagrangian is:

L(a, b, λ) = 1

a
+

1

b
+ λ(a+ b− 1)

Taking the partial derivatives and setting them to zero, we get:

∂L
∂a

= − 1

a2
+ λ = 0 =⇒ λ =

1

a2

∂L
∂b

= − 1

b2
+ λ = 0 =⇒ λ =

1

b2

∂L
∂λ

= a+ b− 1 = 0

Since λ = 1
a2 and λ = 1

b2
, we have:

1

a2
=

1

b2
=⇒ a2 = b2 =⇒ a = b (since a, b > 0)

Substituting a = b into the constraint a+ b = 1, we get:

a+ a = 1 =⇒ 2a = 1 =⇒ a =
1

2
=⇒ b =

1

2

Now, we calculate 1
a
+ 1

b
:

1

a
+

1

b
=

1
1
2

+
1
1
2

= 2 + 2 = 4

Thus, the minimum value of 1
a
+ 1

b
is 4 .

Part (b): Minimize a2 + b2 given a+ b = 1
We use the identity for the square of a sum:

(a+ b)2 = a2 + b2 + 2ab

Given a+ b = 1, we have:

12 = a2 + b2 + 2ab =⇒ 1 = a2 + b2 + 2ab =⇒ a2 + b2 = 1− 2ab

To minimize a2 + b2, we need to maximize ab. Using the AM-GM inequality:

a+ b

2
≥

√
ab =⇒ 1

2
≥

√
ab =⇒

(
1

2

)2

≥ ab =⇒ 1

4
≥ ab

The maximum value of ab is 1
4
, which occurs when a = b = 1

2
.

Substituting ab = 1
4

into the expression for a2 + b2:

a2 + b2 = 1− 2ab = 1− 2

(
1

4

)
= 1− 1

2
=

1

2

Thus, the minimum value of a2 + b2 is
1

2
.

Figure 18: An example from our constructed dataset.
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ScaleQuest Data Example 3

QUESTION:
Compute

∞∑

n=1

4n + 5n + 6n

12n
.

SOLUTION:
To compute the sum

∑∞
n=1

4n+5n+6n

12n
, we can split the sum into three separate sums:

∞∑

n=1

4n + 5n + 6n

12n
=

∞∑

n=1

4n

12n
+

∞∑

n=1

5n

12n
+

∞∑

n=1

6n

12n
.

Each of these sums is a geometric series. Let’s evaluate each one separately.
1. For the first sum

∑∞
n=1

4n

12n
:

∞∑

n=1

4n

12n
=

∞∑

n=1

(
4

12

)n

=
∞∑

n=1

(
1

3

)n

.

The sum of an infinite geometric series
∑∞

n=1 ar
n−1 is given by a

1−r
for |r| < 1. Here, a = 1

3
and

r = 1
3
, so:

∞∑

n=1

(
1

3

)n

=
1
3

1− 1
3

=
1
3
2
3

=
1

2
.

2. For the second sum
∑∞

n=1
5n

12n
:

∞∑

n=1

5n

12n
=

∞∑

n=1

(
5

12

)n

.

Here, a = 5
12

and r = 5
12
, so:

∞∑

n=1

(
5

12

)n

=
5
12

1− 5
12

=
5
12
7
12

=
5

7
.

3. For the third sum
∑∞

n=1
6n

12n
:

∞∑

n=1

6n

12n
=

∞∑

n=1

(
6

12

)n

=
∞∑

n=1

(
1

2

)n

.

Here, a = 1
2

and r = 1
2
, so:

∞∑

n=1

(
1

2

)n

=
1
2

1− 1
2

=
1
2
1
2

= 1.

Adding these three results together, we get:

∞∑

n=1

4n + 5n + 6n

12n
=

1

2
+

5

7
+ 1.

To add these fractions, we need a common denominator. The least common multiple of 2, 7, and 1
is 14. So we convert each fraction:

1

2
=

7

14
,

5

7
=

10

14
, 1 =

14

14
.

Adding these fractions together, we get:

7

14
+

10

14
+

14

14
=

7 + 10 + 14

14
=

31

14
.

Thus, the sum is:

31

14
.

Figure 19: An example from our constructed dataset.
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