
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 13346–13370
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Adaptive Tool Use in Large Language Models with Meta-Cognition Trigger

Wenjun Li*,†, Dexun Li*, Kuicai Dong, Cong Zhang, Hao Zhang, Weiwen Liu,
Yasheng Wang, Ruiming Tang, Yong Liu

Huawei Noah’s Ark Lab

Abstract

Large language models (LLMs) have shown
remarkable emergent capabilities, transform-
ing the execution of functional tasks by lever-
aging external tools for complex problems
that require specialized processing or up-to-
date data. While existing research expands
LLMs access to diverse tools (e.g., program
interpreters, search engines, calculators), the
necessity of using these tools is often over-
looked, leading to indiscriminate tool invoca-
tion. This naive approach raises two key issues:
increased latency due to unnecessary tool calls,
and potential errors resulting from faulty in-
teractions with external tools. In this paper,
we introduce meta-cognition as a proxy for
LLMs self-assessment of their capabilities, re-
flecting the model’s awareness of its own lim-
itations. Based on this, we propose MeCo, an
adaptive decision-making strategy for external
tool use. MeCo quantifies metacognitive scores
by capturing high-level cognitive signals in the
representation space, guiding when to invoke
tools. Notably, MeCo is fine-tuning-free and in-
curs minimal cost. Experiments across multiple
backbone models and benchmarks show that
MeCo reliably detects LLMs’ internal cogni-
tive signals and significantly improves tool-use
decision-making.

1 Introduction

Equipping large language models (LLMs) with tool
use capabilities allows them to overcome their lim-
itations by accessing external or up-to-date infor-
mation (Komeili, 2021; Tang et al., 2023), domain-
specific knowledge (He-Yueya et al., 2023; Schick
et al., 2024), and advanced specialized functionali-
ties (Yang et al., 2023; Gao et al., 2023; Lu et al.,
2024), thereby enabling them to handle more com-
plex tasks beyond their inherent abilities. While

*Equal contribution.
†Correspondence to wenjunli2017@gmail.com.

prior research has focused on expanding the tool ar-
rays (Qin et al., 2023; Hao et al., 2024) and optimiz-
ing their use (Patil et al., 2023; Shen et al., 2024),
the decision-making process for determining when
tools are necessary remains underexplored.

Naively invoking tools indiscriminately leads to
two major issues: (1) increased latency (Qu et al.,
2024; Wang et al., 2024), as external tools, such as
search engine, typically operates slower compared
to relying on internal knowledge retrieval, and (2)
robustness risks, where dependence on external
APIs increases the likelihood of errors due to tools
malfunction or unnecessary tool use (Qin et al.,
2023; Lu et al., 2024; Wu et al., 2024).

To address these limitations, we propose an
adaptive tool-use strategy that improves decision-
making in LLMs. Our approach, MeCo (Meta-
Cognition-oriented trigger), enables LLMs to self-
assess their capabilities and decide whether exter-
nal tools are needed to answer a given query. MeCo
incorporates three key principles:
• Meta-Cognition: We define meta-cognition in

the context of LLM tool useas the model’s ability
to evaluate its own competence based on internal
representations. This self-awareness is crucial
for minimizing unnecessary tool use.

• Effective Strategy Utilization: We design an ef-
ficient strategy that leverages the quantified meta-
cognition signals to dynamically adjust tool use
decisions, significantly improving decision accu-
racy compared to baseline methods.

• Generability: We demonstrate that MeCo
generalizes well across diverse tasks and do-
mains. Additionally, we treat adaptive Retrieval-
Augmented Generation (RAG) as a special case
of tool use and show MeCo outperforms standard
baselines.
Building on the Representation Engineering

(RepE) (Zou et al., 2023), we develop a compu-
tationally efficient plug-in module to assess meta-

13346

MeCo
Score v

Intervene,
decision
changed

Intervene,
decision
changed

Keep the
decision

Keep the
decision

Decision
Making

Query:
Identify and compare the top-rated tour
guides in Paris based on customer reviews

form the past year on TripAdvisor

Response:
Yes, I need to access external

data source, please wait..

Without TU/RAGWith TU/RAG

LLM Internal
States

Meta-Cognition
Modelling

Meta-Cognition
Scoring

Beyond ability Within ability Beyond ability Within ability

Meta-Cognition

Intervention

Figure 1: Overview of MeCo: Learned Meta-Cognition determines the necessity for tool use or retrieval by using a
trained meta-cognition probe to detect the internal state of an LLM.

cognition in LLMs. Our analysis reveals that meta-
cognition provides strong and interpretable sig-
nals that can effectively guide tool use decisions.
As illustrated in Figure 1, MeCo employs a dual-
thresholding policy to distinguish between strong
and weak meta-cognitive signals, refining decision-
making when uncertainty arises.

In summary, our contributions are four-fold: 1)
We introduce the concept of adaptive tool use,
which enhances both the efficiency and robustness
of LLM tool use paradigms. 2) We unify adap-
tive tool use and adaptive RAG under a shared
framework, with their activation driven by meta-
cognition-based decision-making. 3) We build a
new benchmark, MeCa, to systematially evalu-
ate the effectiveness of our approach. 4) We em-
pirically demonstrate that MeCo significantly en-
hances model awareness in both tool utilization and
RAG scenarios.

2 Background

Recent studies have explored the internal represen-
tations of LLMs to improve interpretability and un-
derstand their implicit beliefs (Bricken et al., 2023;
Levinstein and Herrmann, 2024). Prior work (Zou
et al., 2023; Liu et al., 2023a) shows that abstract
features like happiness, honesty, and confidence
correspond to distinct, linearly separable directions
in the representation space. Figure 2 illustrates the
pipeline for training these feature probes. To de-
tect these signals, contrastive instruction pairs are
typically used to induce their emergence.

Building on these findings, we can capture and
manipulate high-level functions f (e.g., honesty)
in model responses. We follow Zou et al. (2023)
to design an experimental prompt T+

f that requires
function execution and a reference prompt T−

f that
does not. The instruction template is as follows:

USER: ⟨ instruction ⟩ ⟨ experimental / reference
prompt ⟩
ASSISTANT: ⟨ output ⟩

For a function f and model M , given instruction-
response pairs (qi, ai) in set S and denoting a re-
sponse truncated after token k as aki , we collect
internal representations for the experimental and
reference sets:

A±
f =

{
Rep(M,T±

f (qi, a
k
i))[−1] | (qi, ai) ∈ S

}

(1)
where Rep denotes the representation obtaining
operation, [−1] is the last token representation of
ak, and A±

f are the resulted activations consist of
individual vectors.

The goal is to learn a linear model to pre-
dict the direction of the function A±

f based on
internal representations. Specifically, we apply
PCA (Maćkiewicz and Ratajczak, 1993) in an un-
supervised manner to pairwise difference vectors,
deriving the first principal component vf (referred
to as the probe) to identify function directions in
the representation space. Equation (1) is applied at
each layer of M to derive layer-wise probes which

13347

Figure 2: Pipeline for training the meta-cognition probe.

are then used to interact with the LLM’s represen-
tations to monitor and control its behavior.

3 Approach

We define meta-cognition in LLMs as follows:

Definition 1 Meta-cognition refers to an LLM’s
ability to assess and regulate its own knowl-
edge and limitations, enabling informed decision-
making about task execution, including when to
rely on external tools or resources.

In the context of tool use, this involves assessing the
model’s capabilities and limitations to determine
whether a query can be answered independently or
requires external tools, based on the complexity of
the query and the sufficiency of model’s internal
knowledge.

To quantify meta-cognition, we train a probe that
detects the model’s level of meta-cognitive aware-
ness. This probe evaluates the rationale behind
the model’s decision-making process, providing a
score that reflects the model’s self-assessment ac-
curacy. For instance, when the model receives a
complex mathematical query, the meta-cognition
probe assesses whether it correctly decides to solve
the problem itself or delegate it to a calculator. A
high meta-cognition score indicates accurate self-
assessment, while a low score suggests uncertainty
in the model’s decision.

3.1 Meta-Cognition Probe Extraction

Training a meta-cognition probe differs fundamen-
tally from training honesty or confidence probes.
The latter probes are typically trained on true/false
factual statements, e.g., "fire needs oxygen to burn"
and "oxygen is harmful to human breathing". These
statements are independent of specific user queries,
meaning the model produces consistent internal
representations regardless of the prompt context.

In contrast, detecting internal cognitive signals
related to tool use requires query-dependent re-
sponses. To achieve this, we use leading propri-
etary LLMs to generate user queries related to tool
use and their corresponding responses (i.e., binary
Yes/No answers with brief explanations). We then
construct the training dataset following the proce-
dures outlined in Section 2.

Notably, only a small dataset suffices for strong
probe performance. Appendix D provides an anal-
ysis of the relationship between probe performance
and training data size. Specifically, after collecting
the instruction-response pairs (qi, ai), we extract
the model’s internal representations and compute
the contrastive representation differences A±

f ac-
cording to Equation (1). We then apply PCA to the
set of difference vectors {(−1)i(A+

f,i − A−
f,i)} to

obtain the first principal component νf as the meta-
cognition probe, which identifies the direction of
the underlying meta-cognition signal.

After the above procedures, we obtain meta-
cognition probes across all model layers (e.g.,
32 probes for Llama-3-8B). We evaluate our
meta-cognition probe against existing probes
for honesty (Zou et al., 2023) and confidence
(Liu et al., 2024a) by measuring the intermedi-
ate classification accuracy on held-out examples
where the model is instructed to exhibit either
honest/confident/strong meta-cognition or dishon-
est/lacking confidence/weak meta-cognition. Inter-
mediate classification accuracy refers to the probe’s
ability to correctly predict the directional align-
ment, i.e., whether the token representation points
in a positive or negative direction along the concept
axis (honesty/confidence/meta-cognition). This
metric does not reflect final tool-use decision ac-
curacy. The results shown in Figure 3 indicates
our meta-cognition probe achieves near-optimal
accuracy, significantly outperforming prior probes.

13348

Figure 3: Comparison between different probes. Note
that -1 means the last layer in the LLMs.

3.2 Decision-Making Strategy based on
Meta-Cognition

With an accurate meta-cognition probe, we design
a decision-making strategy based on the detection
results. For a given query, the LLM generates a
response of m tokens, each with a meta-cognition
score across n layers, forming a detection array
of size (m,n). The final decision—"Yes" (use
external tools/RAG) or "No" (respond indepen-
dently)—is derived from this array.

Reducing m to 1. We examine various prompt-
ing strategies (detailed in Appendix C) and find that
the Yes/No+Explanation strategy, where the model
answers with "Yes/No" followed by a brief expla-
nation, yields the best performance. Hence, we
focus on the first token of the model’s response, as
it provides a clear signal of whether the model de-
cides to rely on external tools. Extracting the meta-
cognition score of the first token to represent the
whole response simplifies our decision-making pro-
cess, since calculating an overall meta-cognition
score for the entire response is challenging due to
varying response lengths and content across differ-
ent queries. As the model consistently responds
with "Yes/No" as the first token, basing the trig-
ger mechanism on the first token’s meta-cognition
score is both reasonable and practical.

Reducing n to 1. In Zou et al. (2023) and Liu
et al. (2024a), a mean score from multiple probes’
results is typically used to represent the token’s fi-
nal quantification. However, our experiments show
that scores predicted by different probes vary signif-
icantly, and simply averaging them does not yield
accurate results. We found that probes in shallower
layers (e.g., layers -5 to -2) tend to be more effec-
tive, with appropriate score distributions, ranges,
and lower variances. Therefore, we select the sin-

gle probe with the highest classification accuracy
within layers -5 to -2 (as shown in Figure 3) as the
final predictor.

Dual-Thresholding. After distilling the meta-
cognition scores into a single scalar value, we adopt
a simple yet effective dual-thresholding strategy
(as illustrated in Figure 1) to determine the opti-
mal thresholds, lyes and lno, using validation data.
These thresholds are then directly applied to the
test data. As shown in Figure 4, we empirically
observe that correct Yes responses tend to have
higher meta-cognition scores than incorrect Yes re-
sponses, while correct No responses tend to have
lower scores than incorrect No responses. Notably,
in both pre- and post-fine-tuning experiments, there
is a clear gap between the meta-cognition scores
of correct and incorrect responses. Our decision-
making strategy identifies and leverages this gap to
make better decisions. This pattern arises because
the meta-cognition score is influenced by the token
embedding of Yes/No, making scores between the
two classes not directly comparable. Consequently,
Yes scores should only be compared with other Yes
scores, and similarly for No scores.

Driven by this empirical observation, we re-
tain the model’s decision when the meta-cognition
score ν is higher than lyes for Yes decisions, or
lower than lno for No decisions; and override the
model’s decision when ν is lower than lyes for Yes
decisions, or higher than lno for No decisions. We
demonstrate the robustness and effectiveness of
this dual-thresholding strategy through comprehen-
sive evaluations on both the MetaTool and MeCa
benchmarks in Section 6.

4 Benchmark-MeCa

We evaluate MeCo using MetaTool (Huang et al.,
2023) and introduce a new benchmark, Meta-
Cognitive Tool Assessment (MeCa), in which each
query undergoes human review. MeCa extends
MetaTool by incorporating a broader range of sce-
narios to assess adaptive tool use and RAG.

MetaTool comprises 1,040 queries designed to
evaluate whether LLMs recognize when to use ex-
ternal tools. In MetaTool, LLMs must decide on
tool usage based solely on user queries, without
tool names or descriptions. We identify the follow-
ing limitations of MetaTool: 1) queries lack sup-
plementary information or explicit tool provisions,
whereas real-world tasks involve more complex
intents and diverse requirements; 2) it primarily

13349

(a) Correct Yes/No (b) Correct/Incorrect Yes (c) Correct/Incorrect No

(d) Correct Yes/No (e) Correct/Incorrect Yes (f) Correct/Incorrect No

Figure 4: Distribution of meta-cognition scores of the first token in model responses. (a), (b), and (c) are from
LM3-8B (pre-fine-tuning), while (d), (e), and (f) are from LM3-8B-sft (post-fine-tuning). The scores are derived
from the train data in MetaTool, using prompts without context.

focuses on single-turn tool usage decisions.
To address these gaps and provide a more robust

evaluation of MeCo, we introduce MeCa, which
includes two main components: MeCa-Tool and
MeCa-RAG. MeCa-Tool extends MetaTool by ex-
panding tool-related assessments across three key
categories:

• Tool Use Assessment: Evaluates whether the
LLM should invoke external tools.

– Queries solvable by the LLM without tools.
– Queries requiring one or more tools due to

insufficient internal capabilities.

• Provided Tool Evaluation: Tests the LLM’s
ability to decide on tool usage when given a pre-
defined set of tools.

– Cases where external tools are unnecessary.
– Cases where essential tools are available

and should be used.
– Cases where required tools are missing.

• Multi-turn Interaction: Assesses tool use deci-
sions in multi-turn dialogues that require adapta-
tion to evolving contexts.

– Cases where external tools are unnecessary.
– Cases where essential tools are available

and should be used.
– Cases where required tools are missing.

Specifically, we create six evaluation tasks in
MeCa-Tool to systematically assess an LLM’s abil-
ity to make tool-related decisions across various
scenarios. Tasks 1 and 4 evaluate whether an exter-
nal tool is necessary to solve a given query. Tasks
2 and 5 assess the LLM’s ability to determine the
relevance of a provided tool, including cases where
the tool is irrelevant. Tasks 3 and 6 further extend
this evaluation by presenting multiple tools (rang-
ing from 2 to 5) and requiring the LLM to select
the appropriate one. Notably, Tasks 1–3 focus on
single-turn settings, while Tasks 4–6 involve multi-
turn dialogues, testing the LLM’s ability to adapt
tool-use decisions to evolving conversational con-
texts. MeCa-Tool significantly expands MetaTool
by covering six tasks with 7,000 queries, provid-
ing a more diverse and comprehensive evaluation
framework. The query composition of MetaTool
and MeCa-Tool is illustrated in Figure 5, and de-
tailed task statistics are provided in Table 7 in Ap-
pendix A.

13350

Figure 5: Overview of benchmarks: Distribution of MetaTool, MeCa-Tool, and MeCa-RAG categories. MetaTool
and MeCa-Tool assess the necessity of tool use, while MeCa-RAG evaluates the necessity of RAG interactions.

Beyond tool use, MeCa-RAG evaluates adap-
tive RAG—determining whether a query can be
answered directly by the LLM or requires exter-
nal retrieval. RAG is a special case of tool use,
where the LLM’s internal knowledge is insufficient
and necessitates using of a search engine to access
external information. MeCa-RAG includes:

• Positive RAG: Cases where retrieval is essential
to answer complex queries or those requiring up-
to-date information.

• Negative RAG: Cases where the LLM can pro-
vide correct answers using its internal knowledge
without retrieval.

To curate the MeCa-Tool dataset, we employed
a meticulous approach that began with collecting
diverse scenarios from various online corpora, en-
suring our synthetic APIs and conversations were
grounded in realistic contexts. Based on these sce-
narios, we designed 500 distinct synthetic APIs
emulating real-world applications across various
domains. We then generated queries by randomly
sampling from this API pool—queries that either
require tool invocation, rely on the LLM’s internal
knowledge, or expose cases where the provided
APIs are insufficient—followed by rigorous hu-
man verification for accuracy. For the MeCa-RAG
dataset, we selected common fact-based data from
the RepE (Zou et al., 2023) dataset (e.g., "The
Earth orbits the Sun”) to generate negative queries
that do not require retrieval, while positive queries
were generated from crawled recent news unseen
by LLMs, thereby necessitating retrieval of new

information.
By incorporating both adaptive tool usage and

adaptive RAG, MeCa serves as a robust benchmark
for assessing LLM decision-making in complex
scenarios. Detailed benchmark statistics and cre-
ation methodology for MeCa-RAG can be found
in Appendix A.

5 Experiment Setup

Baselines: We evaluate MeCo against two base-
lines: Naive and PYes. The Naive baseline deter-
mines "Yes" or "No" based solely on the first token
generated by the LLM, where "Yes" indicates the
need for external tools, and "No" indicates other-
wise. The PYes baseline refines this by computing
a Yes-score,

Yes-score =
P (Yes | Prompt)

P (Yes | Prompt) + P (No | Prompt)

which ranges from 0 (full "No") to 1 (full "Yes"),
with values near 0.5 indicating uncertainty. Instead
of relying solely on the first token, PYes learns an
optimal threshold: scores above this threshold are
classified as "Yes," while those below are classified
as "No." Further details are in Section C.2.

Backbone LLMs: We employ Llama-3-8B-
Instruct, Mistral-7B-Instruct-v0.3, and Llama-3-
70B-Instruct as backbone models to evaluate
MeCo. For brevity, we refer to them as LM3-8B,
Mist-7B, and LM3-70B. Additionally, we fine-
tune these models on a dataset of 4,000 tool-use
query-response pairs generated by GPT-4-turbo,
denoting the fine-tuned versions as LM3-8B-sft,

13351

Mist-7B-sft, and LM3-70B-sft. We include the
70B variant to demonstrate MeCo ’s effectiveness
on large-scale models and its potential applicability
in industry-grade deployments.

Evaluation: The primary evaluation metric is
decision accuracy—whether the model correctly
identifies when external tools/RAG are genuinely
necessary. Additional metrics (precision, recall,
etc.) are reported in Appendix C.

Prompting Strategies: We experimented with
various prompting strategies, including "Yes/No"
with and without explanations and Chain-of-
Thought (CoT; (Wei et al., 2022)). The best per-
formance was achieved using the "Yes/No + Ex-
planation" strategy, which is used throughout this
paper. Full results for all prompting variants are
provided in Appendix C. We further employ two
types of prompts in our experiments: 1) prompts
with context, which include specific reasons why
LLMs require external tools to complete user tasks,
plus five randomly sampled in-context examples to
guide the model’s decisions; and 2) prompts with-
out context, a concise version containing only the
instruction and query. Exact prompt templates are
detailed in Appendix D.

6 Experiments

We conduct extensive experiments to empirically
reveal the effectiveness of MeCo on MetaTool and
MeCa. Specifically, we assess MeCo in adaptive
tool use on both MetaTool and MeCa-Tool and in
adaptive RAG on MeCa-RAG.

6.1 Reduced Tool Invocations and Latency

Before delving into detailed benchmark perfor-
mance, we first demonstrate that using MeCo in
adaptive tool use and adaptive RAG reduces unnec-
essary tool invocations and overall latency. For this
evaluation, we use the LM3-8B model.

We begin by evaluating the number of tool in-
vocations on MetaTool, which contains an equal
proportion of queries that require and do not re-
quire external tools. Table 1 summarizes the num-
ber of tool invocations made by each method. The
Naive method invokes 296 tool calls before fine-
tuning and 277 after fine-tuning. PYes improves
efficiency by reducing the number of invocations to
208 and 273, respectively. Notably, MeCo achieves
the lowest number of tool invocations—206 before
fine-tuning and 240 after—while maintaining the
highest decision accuracy. These results highlight

Method Pre Fine-tuning Post Fine-tuning

Always Call 520 (50.0%) 520 (50.0%)
Naive 296 (61.9%) 277 (82.1%)
PYes 208 (63.5%) 273 (81.7%)
MeCo 206 (65.0%) 240 (84.3%)

Table 1: Number of tool invocations and decision accu-
racy (in parentheses) of different methods on MetaTool.

Method Search Overhead (s) w/ ctx w/o ctx

Always Call 14.8 0.00 0.00
Naive 14.8 0.94 0.85
PYes 14.8 0.98 0.89
MeCo 14.8 1.74 0.95

Table 2: Increased latency (in seconds) introduced by
different methods when deciding whether to invoke a
search on MeCa-RAG. With context and without con-
text are abbreviated as w/ cts and w/o ctx for brevity.

MeCo’s effectiveness in addressing the two key
issues associated with indiscriminate tool use:

• Reduced Latency: By minimizing unnecessary
tool calls, MeCo lowers response latency, par-
ticularly for queries that do not require external
tools (e.g., retrieval tools can take up to 14.8 sec-
onds, as shown in Table 2).

• Improved Robustness: Avoiding unnecessary
tool invocations reduces reliance on potentially
unreliable external APIs, thereby mitigating risks
and malfunctions caused by unnecessary tool use.

Secondly, we evaluate the latency overhead in-
troduced by MeCo on MeCa-RAG. This experi-
ment adopts a standard RAG pipeline involving a
retrieval tool, consisting of the following stages:

• Pre-processing: Queries are rewritten to be
clearer and more specific for search. If the query
is complex, it is decomposed into simpler, related
sub-queries.

• Search Engine: Google Search is used to re-
trieve the top-5 most relevant web pages.

• Post-processing: The model integrates the origi-
nal query with the retrieved content to generate
an answer. When needed, relevant details are
summarized or extracted to directly address the
user’s query.

The average response time for invoking the re-
trieval tool (including pre-processing, search, and
post-processing) is 14.8 seconds. While MeCo

13352

Method
Pre Fine-tuning Post Fine-tuning

w/ ctx w/o ctx w/ ctx w/o ctx

LM
3-

8B Naive 61.9 58.3 82.1 80.8
PYes 63.5 62.7 81.7 80.8
MeCo 65.0 74.0 84.3 82.3

LM
3-

70
B Naive 84.6 68.8 86.0 77.7

PYes 84.8 73.7 86.2 77.1
MeCo 85.4 79.6 87.3 81.2

M
is

t-7
B Naive 69.0 68.5 89.2 86.0

PYes 71.2 73.1 89.2 85.0
MeCo 75.4 74.7 90.2 86.5

GPT-4-turbo 84.4 61.3 - -

Table 3: Decision accuracy (%) comparison between
Naive, PYes and MeCo on the MetaTool benchmark.
Note that we are unable to calculate PYes or detect
the internal states of proprietary LLMs such as GPT-4-
turbo. As a result, GPT-4-turbo uses the Naive decision-
making strategy.

introduces a slight latency overhead due to the
computation of meta-cognition scores, this cost
is minimal. As shown in Table 2, the additional
latency incurred by MeCo is negligible relative to
the overall retrieval time, particularly for searches
without context. For instance, MeCo adds only
0.95 seconds (a 6.4% increase over PYes), which
is marginal compared to the 14.8-second baseline.
More importantly, MeCo avoids unnecessary tool
invocations, particularly in multi-round retrieval
settings, thereby improving overall response effi-
ciency and mitigating the significant delays intro-
duced by external tools.

6.2 MeCo in Adaptive Tool Use

In this experiment, we sampled a subset of queries
from the MetaTool benchmark to construct valida-
tion data for determining the optimal thresholds
for PYes and MeCo. These thresholds were then
applied to the test queries in both MetaTool and
MeCa-Tool (Task 1 and 4). Given the fundamen-
tal differences between the queries in MetaTool
and those in Task 2, 3, 5, and 6 of MeCa-Tool,
we randomly sampled 100 queries from each of
these categories to serve as held-out test data. The
thresholds for both PYes and MeCo were fit us-
ing the remaining data in each respective category.
Comprehensive evaluation results are reported in
Table 3, Table 4, and Table 5. We report the deci-
sion accuracy of GPT-4-turbo as a reference point

to illustrate the difficulty level of the queries in
the MetaTool benchmark. We highlight two key
observations:

1. Superiority of MeCo: Across both bench-
marks, MeCo significantly improves the model’s
decision accuracy regarding tool use, outperform-
ing the PYes baseline by a notable margin. This
highlights the effectiveness of the meta-cognition-
based trigger mechanism. Crucially, MeCo’s ad-
vantages are consistent across different backbone
models and evaluation settings—both with and
without context, as well as before and after fine-
tuning.

Importantly, the gains from MeCo come at mini-
mal cost: it is a fine-tuning-free, easily integrable
module. Note that fine-tuning and MeCo are two
orthogonal approaches, and MeCo can provide ad-
ditional benefits to fine-tuned models. Notably,
fine-tuned models often struggle to generalize to
"out-of-distribution" scenarios. For instance, we
observed a performance drop in the fine-tuned
LM3-8B on Tasks 2 and 3 of MeCa-Tool. In con-
trast, MeCo’s improvements are robust and consis-
tently maintained across varied testing conditions.

The strong performance of MeCo on MeCa is
particularly noteworthy, as MeCa presents more
complex and realistic queries and user–assistant in-
teractions that better reflect real-world usage. This
underscores MeCo ’s potential for practical deploy-
ment and its effectiveness in diverse and realistic
settings.

2. Transferability: Results from Tasks 1 and
4 in Table 4 and Table 5 show that both PYes and
MeCo, when fitted on one benchmark, can gener-
alize effectively to others. Despite the differences
in tool sources and query styles between MetaTool
and MeCa benchmarks, both methods demonstrate
promising cross-benchmark performance. We hy-
pothesize that an LLM’s internal meta-cognition
is primarily model-dependent, and once a decision
strategy (i.e., thresholds) is learned on one dataset,
it can generalize to others. Although aligning the
decision strategy with the target data is always
preferable, MeCo performs robustly even in di-
rect transfer settings, highlighting its robustness
and adaptability.

6.3 MeCo in Adaptive RAG
We further evaluate the effectiveness of MeCo in
the adaptive RAG task, where LLMs must decide
whether to retrieve external information to accu-
rately answer a user query. In line with standard

13353

Method
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

w/ ctx w/o ctx w/ ctx w/o ctx w/ ctx w/o ctx w/ ctx w/o ctx w/ ctx w/o ctx w/ ctx w/o ctx
LM

3-
8B

Naive 70.0 65.0 62.3 80.3 54.3 78.7 66.0 50.0 70.5 54.0 60.5 53.5

PYes 74.0 67.0 78.0 80.7 66.0 81.3 66.0 62.0 72.0 71.5 62.0 64.5

MeCo 79.0 72.0 80.1 81.3 73.3 79.5 69.0 69.0 74.0 78.5 63.5 67.0

M
is

t-7
B Naive 54.0 63.0 42.3 55.7 55.7 67.3 60.5 70.0 73.5 76.0 73.0 62.5

PYes 54.0 63.0 45.0 60.0 56.7 70.7 66.5 71.0 73.0 76.0 73.5 63.0

MeCo 58.0 67.0 66.7 66.0 74.8 78.3 69.0 78.5 76.2 80.0 74.0 65.5

Table 4: Decision accuracy (%) comparison between Naive, PYes, and MeCo on MeCa-Tool before fine-tuning.
"With context" and "without context" are abbreviated as w/ ctx and w/o ctx, respectively.

Method
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

w/ ctx w/o ctx w/ ctx w/o ctx w/ ctx w/o ctx w/ ctx w/o ctx w/ ctx w/o ctx w/ ctx w/o ctx

LM
3-

8B
-s

ft Naive 69.0 80.0 53.3 61.0 59.0 68.7 74.0 77.0 71.0 78.5 78.5 83.0

PYes 70.0 78.0 58.3 68.7 57.7 70.0 75.0 77.0 80.5 84.0 81.5 82.0

MeCo 69.0 80.0 59.9 70.3 60.0 73.4 75.0 84.5 79.5 82.0 80.0 86.5

M
is

t-7
B

-s
ft Naive 68.0 64.0 52.3 53.0 58.3 73.7 92.5 77.5 87.5 82.0 85.0 70.5

PYes 69.0 63.0 55.3 62.3 61.0 75.0 92.5 80.5 87.5 83.0 86.5 78.0

MeCo 71.0 66.0 60.7 66.3 65.7 82.0 95.0 87.0 88.0 82.0 88.0 80.5

Table 5: Decision accuracy (%) comparison between Naive, PYes and MeCo on MeCa-Tool after fine-tuning on the
crafted SFT data. "With context" and "without context" are abbreviated as w/ ctx and w/o ctx, respectively.

Model Method Accuracy (%)

LM3-8B
Naive 63.0
PYes 75.0
MeCo 76.0

Mist-7B
Naive 84.0
PYes 84.0
MeCo 86.0

GPT-4-Turbo Naive 84.0

Table 6: Decision accuracy (%) comparison between
Naive, PYes and MeCo on MeCa-RAG.

settings for adaptive RAG, no explicit reasons or
examples are provided in the prompts—only the
raw query is given. To contextualize the difficulty
of the queries in MeCa-RAG, we report the deci-
sion accuracy of GPT-4-turbo as a reference. As
shown in Table 6, MeCo consistently demonstrates
robust performance across multiple models and out-
performs the baseline methods, validating its utility
as a general-purpose trigger mechanism beyond
tool use.

7 Conclusion

We introduce the concept of adaptive tool use,
which advances traditional tool-learning paradigms
that often invoke external tools indiscriminately.
We propose MeCo, a lightweight and fine-tuning-
free plug-in module that leverages meta-cognitive
signals within LLMs to make more informed de-
cisions about tool invocation. MeCo uses a prob-
ing mechanism to assess internal representations,
enabling more precise determinations of when ex-
ternal tools and retrieval are truly necessary. To
support rigorous evaluation, we introduce MeCa,
a new benchmark that captures both tool-use and
retrieval-awareness across realistic and diverse sce-
narios. Through extensive experiments on both the
MetaTool and MeCa benchmarks, we demonstrate
that MeCo significantly enhances decision accu-
racy regarding the necessity of external tools and
retrieval, across multiple models and settings. Our
findings suggest that incorporating meta-cognition
into the LLM tool-use framework can yield more
efficient and reliable decision-making in practical
applications.

13354

8 Limitations

Our current evaluation of the MeCa benchmark
primarily focuses on the decision-making com-
ponent—whether tool use or retrieval is neces-
sary—rather than the full end-to-end performance
of LLMs in completing tasks using tools. This in-
cludes downstream tasks such as selecting the cor-
rect tool, filling in parameters appropriately, and
generating accurate final responses. Evaluating
these stages would require substantial human anno-
tation effort and introduces complexity beyond the
current scope. While MeCo could be extended to
assist in downstream tasks such as parameter filling,
doing so would increase inference latency. Explor-
ing how to effectively integrate MeCo into the full
tool-use pipeline—balancing accuracy, efficiency,
and usability—remains an important avenue for
future research.

References
Omer Antverg and Yonatan Belinkov. 2021. On the

pitfalls of analyzing individual neurons in language
models. arXiv preprint arXiv:2110.07483.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
arXiv preprint arXiv:2310.11511.

Steven Bills, Nick Cammarata, Dan Mossing, Henk
Tillman, Leo Gao, Gabriel Goh, Ilya Sutskever,
Jan Leike, Jeff Wu, and William Saunders. 2023.
Language models can explain neurons in language
models. URL https://openaipublic. blob. core. win-
dows. net/neuron-explainer/paper/index. html.(Date
accessed: 14.05. 2023), 2.

Trenton Bricken, Adly Templeton, Joshua Batson,
Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell,
Robert Lasenby, Yifan Wu, Shauna Kravec, Nicholas
Schiefer, Tim Maxwell, Nicholas Joseph, Zac
Hatfield-Dodds, Alex Tamkin, Karina Nguyen, Bray-
den McLean, Josiah E Burke, Tristan Hume, Shan
Carter, Tom Henighan, and Christopher Olah. 2023.
Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Cir-
cuits Thread.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang,
Chenfei Yuan, Chi-Min Chan, Heyang Yu, Yaxi Lu,
Yi-Hsin Hung, Chen Qian, et al. 2023. Agentverse:
Facilitating multi-agent collaboration and exploring
emergent behaviors. In The Twelfth International
Conference on Learning Representations.

Hanxing Ding, Liang Pang, Zihao Wei, Huawei Shen,
and Xueqi Cheng. 2024. Retrieve only when it needs:

Adaptive retrieval augmentation for hallucination mit-
igation in large language models. arXiv preprint
arXiv:2402.10612.

Kuicai Dong, Yujing Chang, Shijie Huang, Yasheng
Wang, Ruiming Tang, and Yong Liu. 2025. Bench-
marking retrieval-augmented multimomal generation
for document question answering. arXiv preprint
arXiv:2505.16470.

Andrew Drozdov, Shufan Wang, Razieh Rahimi, An-
drew Mccallum, Hamed Zamani, and Mohit Iyyer.
2022. You can’t pick your neighbors, or can you?
when and how to rely on retrieval in the knn-lm. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2022, pages 2997–3007.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764–10799. PMLR.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu.
2024. Toolkengpt: Augmenting frozen language
models with massive tools via tool embeddings. Ad-
vances in neural information processing systems, 36.

Junxian He, Graham Neubig, and Taylor Berg-
Kirkpatrick. 2021. Efficient nearest neighbor lan-
guage models. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 5703–5714.

Joy He-Yueya, Gabriel Poesia, Rose E Wang, and
Noah D Goodman. 2023. Solving math word prob-
lems by combining language models with symbolic
solvers. arXiv preprint arXiv:2304.09102.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan,
Neil Zhenqiang Gong, and Lichao Sun. 2023. Meta-
tool benchmark: Deciding whether to use tools and
which to use. arXiv preprint arXiv: 2310.03128.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas
Hosseini, Fabio Petroni, Timo Schick, Jane Dwivedi-
Yu, Armand Joulin, Sebastian Riedel, and Edouard
Grave. 2023. Atlas: Few-shot learning with retrieval
augmented language models. Journal of Machine
Learning Research, 24(251):1–43.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure
of language? In ACL 2019 - 57th Annual Meeting of
the Association for Computational Linguistics, Flo-
rence, Italy.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput.
Surv., 55(12).

13355

https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://inria.hal.science/hal-02131630
https://inria.hal.science/hal-02131630
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing
Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
Jamie Callan, and Graham Neubig. 2023. Ac-
tive retrieval augmented generation. arXiv preprint
arXiv:2305.06983.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom
Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli
Tran-Johnson, et al. 2022. Language models
(mostly) know what they know. arXiv preprint
arXiv:2207.05221.

M Komeili. 2021. Internet-augmented dialogue genera-
tion. arXiv preprint arXiv:2107.07566.

Benjamin A. Levinstein and Daniel A. Herrmann. 2024.
Still no lie detector for language models: probing
empirical and conceptual roadblocks. Philosophical
Studies.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Jiaoda Li, Ryan Cotterell, and Mrinmaya Sachan.
2022. Probing via prompting. arXiv preprint
arXiv:2207.01736.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li API-bank. 2023. A comprehensive
benchmark for tool-augmented llms. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 3102–3116.

Huanshuo Liu, Hao Zhang, Zhijiang Guo, Kuicai Dong,
Xiangyang Li, Yi Quan Lee, Cong Zhang, and Yong
Liu. 2024a. Ctrla: Adaptive retrieval-augmented
generation via probe-guided control. arXiv preprint
arXiv:2405.18727.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao,
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan,
Zhengying Liu, Yuanqing Yu, et al. 2024b. Toolace:
Winning the points of llm function calling. arXiv
preprint arXiv:2409.00920.

Wenhao Liu, Xiaohua Wang, Muling Wu, Tianlong Li,
Changze Lv, Zixuan Ling, Jianhao Zhu, Cenyuan
Zhang, Xiaoqing Zheng, and Xuanjing Huang. 2023a.
Aligning large language models with human pref-
erences through representation engineering. arXiv
preprint arXiv:2312.15997.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue,
Shelby Heinecke, Rithesh Murthy, Yihao Feng,
Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit,
et al. 2023b. Bolaa: Benchmarking and orchestrating
llm-augmented autonomous agents. arXiv preprint
arXiv:2308.05960.

Zuxin Liu, Thai Quoc Hoang, Jianguo Zhang, Ming
Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran
Yao, Zhiwei Liu, Yihao Feng, et al. 2024c. Apigen:
Automated pipeline for generating verifiable and di-
verse function-calling datasets. In The Thirty-eight
Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. 2024. Chameleon: Plug-and-play com-
positional reasoning with large language models. Ad-
vances in Neural Information Processing Systems,
36.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning. In Proceedings of the 13th In-
ternational Joint Conference on Natural Language
Processing and the 3rd Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 305–329.

Andrzej Maćkiewicz and Waldemar Ratajczak. 1993.
Principal components analysis (pca). Computers &
Geosciences, 19(3):303–342.

Shishir G Patil, Tianjun Zhang, Xin Wang, and
Joseph E Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Matthew E Peters, Mark Neumann, Luke Zettlemoyer,
and Wen-tau Yih. 2018. Dissecting contextual word
embeddings: Architecture and representation. arXiv
preprint arXiv:1808.08949.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong
Wen. 2024. Tool learning with large language mod-
els: A survey. arXiv preprint arXiv:2405.17935.

Ruiyang Ren, Yuhao Wang, Yingqi Qu, Wayne Xin
Zhao, Jing Liu, Hao Tian, Hua Wu, Ji-Rong Wen,
and Haifeng Wang. 2023. Investigating the fac-
tual knowledge boundary of large language mod-
els with retrieval augmentation. arXiv preprint
arXiv:2307.11019.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2024.
Toolformer: Language models can teach themselves
to use tools. Advances in Neural Information Pro-
cessing Systems, 36.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2024. Hugging-
gpt: Solving ai tasks with chatgpt and its friends

13356

https://doi.org/10.1007/s11098-023-02094-3
https://doi.org/10.1007/s11098-023-02094-3

in hugging face. Advances in Neural Information
Processing Systems, 36.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei
Han, Qiao Liang, Boxi Cao, and Le Sun. 2023.
Toolalpaca: Generalized tool learning for language
models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301.

Tu Vu, Mohit Iyyer, Xuezhi Wang, Noah Constant, Jerry
Wei, Jason Wei, Chris Tar, Yun-Hsuan Sung, Denny
Zhou, Quoc Le, et al. 2023. Freshllms: Refreshing
large language models with search engine augmenta-
tion. arXiv preprint arXiv:2310.03214.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. 2024. A survey on large
language model based autonomous agents. Frontiers
of Computer Science, 18(6):186345.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Di Wu, Wasi Uddin Ahmad, Dejiao Zhang, Murali Kr-
ishna Ramanathan, and Xiaofei Ma. 2024. Repo-
former: Selective retrieval for repository-level code
completion. In Forty-first International Conference
on Machine Learning.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji,
Tianjun Zhang, Shishir G. Patil, Ion Stoica, and
Joseph E. Gonzalez. 2024. Berkeley function calling
leaderboard. https://gorilla.cs.berkeley.
edu/blogs/8_berkeley_function_calling_
leaderboard.html.

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter
Abbeel, and Dale Schuurmans. 2023. Foundation
models for decision making: Problems, methods, and
opportunities. arXiv preprint arXiv:2303.04129.

Delvin Ce Zhang and Dongwon Lee. 2025. Cor-
rect: Context-and reference-augmented reasoning
and prompting for fact-checking. arXiv preprint
arXiv:2502.09635.

Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu,
Huiqi Deng, Hengyi Cai, Shuaiqiang Wang, Dawei
Yin, and Mengnan Du. 2024. Explainability for large
language models: A survey. ACM Transactions on
Intelligent Systems and Technology, 15(2):1–38.

Andy Zou, Long Phan, Sarah Chen, James Campbell,
Phillip Guo, Richard Ren, Alexander Pan, Xuwang
Yin, Mantas Mazeika, Ann-Kathrin Dombrowski,
et al. 2023. Representation engineering: A top-
down approach to ai transparency. arXiv preprint
arXiv:2310.01405.

13357

https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html

A MeCa Statistics

A.1 MeCa Statistics
Table 7 summarizes the statistics of MeCa. In Tasks 1 and 4, positive queries require a specific external
tool to address the user queries, while negative queries can be answered using the LLM’s internal
capabilities alone. In Tasks 2 and 5, a tool name and its description are provided alongside the user query;
the LLM must determine whether this specific tool is necessary to resolve the query. Neutral queries in
Tasks 2 and 3 indicate that external tools are needed, but the given tool is irrelevant to solving the query.
In Tasks 3 and 6, a list of tools (ranging from two to five) is provided with the user query. For multi-turn
queries, a dialogue between the user and the assistant is presented, and the assistant must decide whether
to rely on external tools to respond to the final turn.

Task Category Count

MeCa-Tool-Task1
Positive queries without tools 500
Negative queries without tools 500

MeCa-Tool-Task2
Positive queries with relevant tools 500
Negative queries with tools 500
Neutral queries with irrelevant tools 500

MeCa-Tool-Task3
Positive queries with a tool list 500
Negative queries with a tool list 500
Neutral queries with a tool list 500

MeCa-Tool-Task4
Multi-turn Negative queries without tools 500
Multi-turn Positive queries without tools 500

MeCa-Tool-Task5
Multi-turn Positive queries with relevant tools 500
Multi-turn Negative queries with tools 500

MeCa-Tool-Task6
Multi-turn Positive queries with a tool list 500
Multi-turn Negative queries with a tool list 500

MeCa-RAG
Positive RAG 150
Negative RAG 150

Table 7: Tool use categories and counts.

We directly transfer the lyes and lno thresholds of MeCo, fitted on the MetaTool dataset, to Tasks 1 and
4 in MeCa-Tool, with results shown in Table 4 and Table 5. Since the remaining tasks in MeCa-Tool
(Tasks 2, 3, 5, and 6) differ significantly from MetaTool and involve more complex user queries, we
randomly sample 100 queries from each of these tasks as hold-out test data. The remaining data is used to
fit the thresholds for Pyes and MeCo.

A.2 MeCa Creation
MeCa-Tool To construct the MeCa-Tool dataset, we followed a meticulous and structured process to
ensure the queries are aligned with current LLM capabilities:
1. Collection of diverse scenarios: We began by gathering a wide range of domains and conversational

scenarios from various online corpora. This step ensured that the subsequent synthetic APIs and
conversations were grounded in realistic and diverse contexts.

2. Synthetic API design: Based on the collected scenarios, we synthetically created 500 distinct APIs,
emulating patterns from real-world applications to span multiple domains.

3. Query generation: For each query, APIs were randomly sampled from the synthetic API pool. User
queries were then constructed to reflect one of the following types: (i) Queries that require invoking
the provided APIs; (ii) Queries solvable without external tools, relying solely on the LLM’s internal

13358

knowledge; or (iii) Queries where the provided APIs do not include the necessary tools to directly
answer the query.

4. Human verification: All generated queries underwent a rigorous human review process to ensure
validity, correctness, and proper categorization. This step guaranteed high-quality annotations and
alignment with task definitions.

MeCa-RAG The dataset was constructed as follows: we selected a subset of fact-based entries from
the RepE dataset (Zou et al., 2023), which contains well-known facts such as "The Earth orbits the Sun."
These facts were used as target responses, and the leading proprietary LLM (i.e., GPT-4-turbo) was
prompted to generate corresponding user queries. Since these queries involve widely known information
already embedded in LLMs, they do not require retrieval and thus serve as negative RAG examples. For
positive RAG examples, we scraped recent news articles from the past few months, ensuring that the
content was unlikely to have been seen during LLM training. Using a similar prompting process, we
generated user queries based on this up-to-date information. These queries require retrieval, as they
concern facts that are either unknown to or not yet encoded in the model’s training data. The overall
distribution of MeCa is illustrated in Figure 5.

B Related Work

Tool Use in LLMs LLMs have progressed from understanding and generating human-like text to
utilizing external tools based on natural language instructions. This evolution expands their application
beyond basic conversational tasks to enable dynamic interactions across diverse functional domains,
such as facility management and professional services (Patil et al., 2023; Liu et al., 2023b; Qin et al.,
2023; Chen et al., 2023; Zhang and Lee, 2025). For example, Toolformer (Schick et al., 2024) enables
LLMs to use external tools via simple APIs through a supervised fine-tuning (SFT) model. (Liu et al.,
2024c) demonstrates strong executable functional API calls across different domains. ToolACE (Liu et al.,
2024b) trained on synthesized data, achieves state-of-the-art results on the Berkeley Function-Calling
Leaderboard (Yan et al., 2024), even with a relatively small model size of 8B parameters. Despite their
growing popularity and capabilities, tool use in LLMs often depends on strategies like verbal feedback,
which are hampered by the quality of the datasets used for fine-tuning. Several benchmarks/datasets have
been developed to support tool use in a data-centric way, such as API-Bank (Li et al., 2023), which provides
a set of tool-use dialogues with various APIs to assess the LLM’s tool use capabilities, Toolalpaca (Tang
et al., 2023) constructs a comprehensive tool-use corpus derived from collected real-world APIs, designed
specifically to fine-tune LLMs for better tool utilization. ToolBench (Qin et al., 2023) focuses on creating
a synthetic instruction-tuning dataset for tool use. However, these methods rely solely on superficial
textual information, without probing deeper into the LLM’s internal states to explain or justify when and
why a tool should be called, resulting in an inability to accurately determine the optimal timing for tool
invocation.

Adaptive RAG RAG has shown success in supporting AI systems that require up-to-date information or
access domain-specific knowledge, particularly where the scope of queries is not seen in the training data
of LLMs (Lewis et al., 2020; Ren et al., 2023; Vu et al., 2023; Izacard et al., 2023; Dong et al., 2025). This
paper is also consistent with the trend towards the adaptive RAG paradigm, which is designed to assess
whether a query can be directly answered by the LLMs or requires external data retrieval (Asai et al., 2023;
Jiang et al., 2023). Specifically, a simple query within the LLM’s knowledge should be directly answered
by the LLMs themselves. On the other hand, for complex queries or questions about data they have not
been trained on, RAG intervenes to prevent incorrect out-of-date answers or hallucination (Ji et al., 2023).
This mechanism allows RAG to dynamically adjust operational strategies of retrieval-augmented LLMs
by assessing the boundary of LLM’s self-knowledge and the complexity of the query, thereby minimizing
unnecessary computational overhead when the queries are answerable by LLMs themselves. Similar to
the LLMs function-calling, the decision of retrieval timing typically hinges on three primary methods: (i)
explicit verbal feedback from LLMs (Ding et al., 2024), (ii) enhancements through fine-tuning (Asai et al.,
2023), or (iii) probability-based metrics (Kadavath et al., 2022; Jiang et al., 2023). Specifically, He et al.

13359

(2021) proposed enhancing the retrieval time efficiency by computing the probability of the next token
via interpolating an LLM with a distribution calculated from the k nearest context-token pairs. Drozdov
et al. (2022) further extends kNN-LM to the adaptive paradigm by assigning the interpolation coefficient
according to the retrieval quality measured by semantic similarity. Asai et al. (2023) introduces Self-RAG
to improve generation quality and factuality by enabling adaptive retrieval and self-reflection. In contrast,
this paper conceptualizes RAG as an external tool and highlights the importance of understanding the
internal states of an LLM when developing the retrieval policy.

Explainability of LLMs However, there is a considerable discrepancy between the LLM’s decision
mechanisms (often based on verbalized responses) and their internal cognition (Zou et al., 2023). The
internal workings of LLMs are usually unclear, and this lack of transparency poses unwanted risks in
downstream decision-making. Therefore, understanding and interpreting LLMs is crucial for elucidating
their behaviors and limitations. To address this challenge, various explanations that provide insights into
the inner workings of LLMs have been proposed (Zhao et al., 2024): (i) Probing-based explanations:
Probing uses vector representations to measure embedded knowledge (Peters et al., 2018; Jawahar
et al., 2019) or examines specific knowledge during the LLM’s generation process (Li et al., 2022),
(ii) Neuron-level explanation: neuron analysis identifies critical neurons that are essential for model’s
performance (Antverg and Belinkov, 2021; Bills et al., 2023), (iii) representation engineering (RepE):
RepE leverages techniques inspired by cognitive neuroscience to identify and enhance the transparency of
LLMs by uncovering their internal cognitive states (Zou et al., 2023). In this paper, we aim to detect the
internal cognition of LLMs, and intervene in LLM’s decisions, i.e., ensuring more precise decisions on
tool use and retrieval timing.

C Extended Results

C.1 Prompting Strategies
To determine the best prompting strategy for tool use, we explore five prompting strategies with multiple
base models. The results are summarized in Table 8.

1. Yes/No + Explanation: The model first answers with "Yes" or "No" and then provides a brief
explanation for its decision.

2. Yes/No: The model answers solely with "Yes" or "No," without providing any explanation.

3. No/Yes + Explanation: The model first answers with "No" or "Yes" and then provides a brief
explanation for its decision.

4. No/Yes: The model answers solely with "No" or "Yes," without providing any explanation.

5. CoT (Chain of Thought): The model is instructed to think step-by-step, reasoning why it does or
does not need external tools to address the user query, and finally concludes its decision with "Yes"
or "No."

Note that there are no results for the CoT prompting strategy for the Mistral-7b-instruct-v0.3
model. Regardless of the prompts used, the model consistently responds with "Yes/No" at the beginning,
followed by an explanation of its decision. This behavior effectively mirrors the Yes/No+Explanation
prompting strategy. Based on Table 8, we make the following observations and provide corresponding
analysis:

1. Yes/No + Explanation generally performs the best out of the five prompting strategies. This approach
provides a clear decision followed by reasoning, enhancing the model’s reliability and user trust.

2. CoT is not performing as well as expected. Through close human examination, we found that CoT
results in long, complex answers where the model might ultimately conclude with a decision that
contrasts with its prior reasoning process. This phenomenon is referred to as reasoning inconsistency,
a challenge also reported in the literature (Wei et al., 2022; Lyu et al., 2023). Specifically, LLMs

13360

sometimes generate the correct answer following an invalid reasoning path or produce a wrong
answer after a correct reasoning process, leading to inconsistency between the derived answer and
the reasoning process. In contrast, the "Yes/No-Explanation" prompting strategy does not suffer from
this reasoning inconsistency in our experiments, thereby achieving better performance compared to
CoT.

3. Yes/No prompting strategy works better than No/Yes prompting. We hypothesize that this phe-
nomenon is due to the data format in the pre-training data. For example, there are likely many
more Yes/No answers and reasoning processes in the training data compared to No/Yes answers,
influencing the model’s performance.

Chain of Thought Prompting.

You are an intelligent agent, and you need to constantly be aware of your own limitations. I will
provide you with a user’s query, and you should assess, based on your own capabilities, whether
you need to use external tools to better address the user’s query. Typically, there are four reasons
why you might need to use external tools:

• A. Solving issues with real-time or external data, databases, or APIs

• B. Handling specialized inputs/outputs

• C. Enhancing domain tasks beyond LLM’s capabilities

• D. User customization, personalization, and interaction

Please think step by step, and provide a brief explanation for your decision at first. At last, please
conclude with "Yes" if you need to use external tools, or "No" if you do not need external tools.

{Few-shot Examples}
User query: {query}
Answer:

We adopt Llama-3-8b-instruct and Mistral-7b-instruct-v0.3 as our backbone models because
they exhibit strong performance in adaptive tool use. We exclude Llama-2-7b-chat due to its poor
performance and lack of discernment regarding the necessity of external tools. Additionally, we exclude
Llama-3.1-8b-instruct as its performance is almost identical to that of Llama-3-8b-instruct.

C.2 P(Yes) Approach

The PYes baseline introduces a Yes-score, as defined in Section 5. This score provides a nuanced measure
of the model’s confidence, refining the binary approach taken by the Naive baseline. The Yes-score spans
from 0 to 1, where a score of 0 signifies a definite "No" and a score of 1 signifies a definite "Yes". Scores
close to 0.5 reflect lower certainty in the model’s response, signifying ambiguity in decision-making. By
adjusting the model’s output in cases where the Yes-score is near 0.5 to always "Yes/No" answer, we aim
to enhance the accuracy of both tool use and RAG timing. We employ Equation (2) to determine the
optimal threshold l for the Yes-score based on training data, which is then applied to the test data.

Decision =

{
Yes if Yes-score > l

No if Yes-score ≤ l
(2)

C.3 Distribution of P(Yes) and Meta-Cognition Scores

Before delving into the analysis, we provide some background on the concept of calibration in the
context of Large Language Models (LLMs). Calibration refers to the alignment between a model’s

13361

Model Prompting Strategies Accuracy Precision Recall F1 Score

Llama-2-7b-chat

Yes/No+Explanation 0.51 0.51 1.0 0.67
Yes/No 0.51 0.5 1.0 0.67
No/Yes+Explanation 0.52 0.51 1.0 0.67
No/Yes 0.51 0.5 1.0 0.67
CoT 0.51 0.5 0.99 0.67

Llama-3-8b-instruct

Yes/No+Explanation 0.72 0.82 0.57 0.67
Yes/No 0.63 0.61 0.72 0.66
No/Yes+Explanation 0.52 0.51 0.99 0.67
No/Yes 0.5 0.5 1.0 0.67
CoT 0.62 0.59 0.84 0.69

Llama-3.1-8b-instruct

Yes/No+Explanation 0.71 0.66 0.87 0.75
Yes/No 0.64 0.59 0.95 0.73
No/Yes+Explanation 0.57 0.54 0.97 0.69
No/Yes 0.53 0.51 0.99 0.68
CoT 0.63 0.62 0.91 0.71

Mistral-7b-instruct-v0.3

Yes/No+Explanation 0.74 0.68 0.89 0.77
Yes/No 0.70 0.64 0.92 0.75
No/Yes+Explanation 0.70 0.64 0.88 0.74
No/Yes 0.71 0.57 0.82 0.74

Table 8: Performance comparison of different prompting strategies.

predicted probabilities and the actual likelihood of those predictions being correct. A well-calibrated
model generates probability scores that accurately reflect the true probability of its predictions.

In Figure 6, we present the distribution of PYes scores for both correct and incorrect Yes/No decisions.
Our key observations are as follows:

1. When the model is given detailed instructions and few-shot examples, it demonstrates poor calibration.
As illustrated in Figure 6(a), the distributions of PYes scores for correct and incorrect decisions do
not show a clear distinction.

2. Conversely, when the model lacks detailed context and must rely on its internal beliefs to make
decisions, it exhibits improved calibration. In Figure 6(b), the peak of the distribution for correct
scores clearly deviates from that of incorrect scores.

3. After fine-tuning, the model displays significantly better calibration, as shown in Figures 6(c) and (d).
Most correct decisions have PYes scores of either 1 (indicating "Yes") or 0 (indicating "No"), while
the PYes scores for incorrect decisions vary between 0 and 1.

C.4 Meta-Cognition Scores at Different Layers
We examine the meta-cognition scores at various layers in the model and visualize the results in Figure
7. We focus on the meta-cognition scores at layers -2, -5, -8, -11, and -15 because these layers exhibit
the highest classification accuracy, where layer -1 refers to the last layer before the output. Notably, the
meta-cognition scores at different layers have distinct value ranges and slightly different distributions.
Therefore, it is not reasonable to simply average the scores from different layers as the final score for a
token, which has been a common approach in other research works based on RepE. In this study, we use
the meta-cognition score from the second-to-last layer as the final score, as this layer demonstrates the
highest classification accuracy and effectively differentiates between correct and incorrect responses.

13362

(a) Llama-3-8b with context (b) Llama-3-8b without context

(c) Llama-3-8b-sft with context (d) Llama-3-8b-sft without context

Figure 6: Distribution of the PYes scores of the correct Yes/No and incorrect Yes/No. Llama-3-8b is the model
pre-fine-tuning and Llama-3-8b-sft is the model post-fine-tuning. Note that the scores are collected on the training
data in the MetaTool benchmark.

13363

Figure 7: Distribution of meta-cognition scores for the first token at different layers. The results are collected using
the Llama-3-8b model on the training data from the MetaTool benchmark.

13364

D Probe Training

D.1 Different Training Strategies
Although it increases the length of the instructions and thus may degrade the signal we are detecting, we
found that it is much better to provide the model with the query in the instruction than solely instruct
the model to follow the ground truth explanations. Therefore, we include the queries in the contrastive
instructions below.

Figure 8: The classification accuracy of different probes trained with the query in the instruction and without the
query in the instruction. Training data size is fixed as 2048 in this experiment.

D.2 Different Size of Training Data
We further examine how the size of the training data affects the outcomes of the meta-cognition probe.
Specifically, we analyze the performance of the trained probes with varying sizes of training data, as
illustrated in Figure 9 and Figure 10. According to Equation (1), a sentence with 10 tokens can be used to
create 10 training data pairs of experimental prompts and reference prompts. Typically, a brief explanation
of why or why not to use external tools/RAG corresponds to around 30 to 50 tokens. Thus, a training data
size of 256 requires fewer than 10 queries and their associated explanations.

Although different backbone models exhibit significantly varying classification accuracies—with
Llama-3-8b achieving the highest and Llama-3-70b the lowest—we found that only a small amount of
training data is sufficient to train a probe with near-optimal performance. We hypothesize that this is due
to the linear nature of the PCA methods adopted in RepE.

Figure 9: Training data size vs classification accuracy of meta-cognition probe in adaptive tool use.

D.3 Contrastive Instructions for Various Probes
We used the following instruction pair to collect contrastive data and train the honesty probe. Specifically,
we instructed the model to be both honest and untruthful when explaining its reasoning for the necessity
of tool use tes

13365

(a) Llama-3-8b-instruct (b) Mistral-7b-instruct-v0.3

Figure 10: Train data size vs classification accuracy of meta-cognition probe in adaptive RAG.

Contrastive Instructions for training Honesty Probe

Honest Instruction

Imagine you are an honest intelligent assistant explaining why you need or do not need to
use an external tool to respond to the following user query.

User Query: {query}
Answer:

Untruthful Instruction

Imagine you are an untruthful intelligent assistant explaining why you need or do not need
to use an external tool to respond to the following user query.

User Query: {query}
Answer:

Similarly, we instructed the model to exhibit both confidence and unconfidence when we trained the
confidence probe.

13366

Contrastive Instructions for training Confidence Probe

Confident Instruction

Imagine you are a confident intelligent assistant explaining why you need or do not need to
use an external tool to respond to the following user query.

User Query: {query}
Answer:

Unconfident Instruction

Imagine you are an unconfident intelligent assistant explaining why you need or do not
need to use an external tool to respond to the following user query.

User Query: {query}
Answer:

For the meta-cognition probe, we instruct the model to exhibit strong meta-cognition by being constantly
aware of its own limitations and capabilities and accurately assessing whether an external tool is necessary.
Conversely, with weak meta-cognition, the model is often unaware of its own limitations and capabilities
and struggles to assess the necessity of tool use.

Contrastive Instructions for training Meta-Cognition Probe

Strong Meta-Cognition Instruction in Adaptive Tool Use

Imagine you are an intelligent assistant with strong meta-cognition, constantly aware of
your own limitations and capabilities. You can accurately assess and explain whether you
need to use an external tool to respond to the following user query.

User Query: {query}
Answer:

Weak Meta-Cognition Instruction

Imagine you are an assistant with weak meta-cognition, often unaware of your own
limitations and capabilities. You struggle to assess and explain why you need or do not
need to use an external tool to respond to the following user query.

User Query: {query}
Answer:

The meta-cognition instruction for Adaptive RAG is similar to that in the adaptive tool use setting, with
the only difference being that we replace the necessity of tool use with the necessity of RAG.

13367

Contrastive Instructions for training Meta-Cognition Probe in Adaptive RAG

Strong Meta-Cognition Instruction

Imagine you are an intelligent assistant with strong meta-cognition, constantly aware of
your own limitations and capabilities. You can accurately assess and explain whether you
need to perform Retrieval Augmented Generation (RAG) to respond to the following user
query.

User Query: {query}
Answer:

Weak Meta-Cognition Instruction

Imagine you are an assistant with weak meta-cognition, often unaware of your own
limitations and capabilities. You struggle to assess and explain why you need or do not
need to perform Retrieval Augmented Generation (RAG) to respond to the following user
query.

User Query: {query}
Answer:

13368

E Prompts

E.1 Prompts in Adaptive Tool Use

We employ two types of prompts in our experiments: 1) prompts with context, which provide specific
reasons for why LLMs may require external tools to complete user tasks. These prompts also include five
randomly sampled examples to assist the model in making decisions; and 2) prompts without context,
which are more concise and contain only the instruction and query. The exact prompts are provided below.
Note that the example queries are randomly sampled in the MetaTool benchmark and we follow their
setup and don’t change the examples associated with queries.

Prompt with context.

You are an intelligent agent, and you need to constantly be aware of your own limitations. I will
provide you with a user’s query, and you should assess, based on your own capabilities, whether
you need to use external tools to better address the user’s query. Typically, there are four reasons
why you might need to use external tools:

• A. Solving issues with real-time or external data, databases, or APIs

• B. Handling specialized inputs/outputs

• C. Enhancing domain tasks beyond LLM’s capabilities

• D. User customization, personalization, and interaction

If you think it’s necessary to use external tools, please respond with "Yes"; otherwise, respond
with "No". Additionally, you should provide a very brief explanation for your answer. Here are
some examples:

• Query: "Write an opinion piece about why diversity and inclusion is super important for the
tech industry. The essay should be targeted at ’tech bros’, and should avoid alienating them,
but instead appeal to their logic; it should explain how diversity and inclusion of women,
immigrants, etc. could benefit them specifically." Answer: No

• Query: "Are there any loopholes that hackers can exploit on my website?" Answer: Yes

• Query: "Plan a weekly lunch menu for a school. Write down a main dish, a carbohydrate side
dish, a vegetable side dish, and a dessert for each day." Answer: No

• Query: "Can you break down the main points of this TED talk for me? Here’s the YouTube
link." Answer: Yes

• Query: "How’s the weather in London right now?" Answer: No

User query: {query}
Answer:

13369

Prompt without context.

You are an intelligent agent, and you need to constantly be aware of your own limitations. I will
provide you with a user’s query, and you should assess, based on your own capabilities, whether
you need to use external tools to better address the user’s query. If you think it’s necessary to use
external tools, please respond with "Yes"; otherwise, respond with "No". Additionally, you should
provide a very brief explanation for your answer.

User Query: {query}
Answer:

E.2 Prompts in Adaptive RAG
In adaptive RAG task, LLMs are typically not provided with any reasons or examples to help them make a
decision. Following this setting, we conduct the experiments in adaptive RAG without providing context
in the prompts as shown below.

Prompt without context.

Imagine you are an intelligent assistant with strong meta-cognition, constantly aware of your own
limitations and capabilities. Your task is to accurately assess and explain whether you need to
perform Retrieval Augmented Generation (RAG) to respond to the following user query. If you
determine that performing RAG is necessary, please respond with "Yes"; otherwise, respond with
"No". Additionally, provide a very brief explanation for your decision.

User Query: {query}
Answer:

13370

