¢-Decoding: Adaptive Foresight Sampling for Balanced Inference-Time
Exploration and Exploitation

Fangzhi Xu'->¢*

Hang Yan'""

Chang Ma® Haiteng Zhao*

Jun Liu'%" Qika Lin’" Zhiyong Wu?{
School of Computer Science and Technology, Xi’an Jiaotong University

2Shanghai AI Lab
*Peking University

3The University of Hong Kong
SNational University of Singapore

®Ministry of Education Key Laboratory of Intelligent Networks and Network Security
’Shaanxi Province Key Laboratory of Big Data Knowledge Engineering
{fangzhixu98,whucs2013wzy}@gmail.com liukeen@xjtu.edu.cn

Abstract

Inference-time optimization scales computa-
tion to derive deliberate reasoning steps for
effective performance. While previous search-
based strategies address the short-sightedness
of auto-regressive generation, the vast search
space leads to excessive exploration and in-
sufficient exploitation. To strike an efficient
balance to derive the optimal step, we frame
the decoding strategy as foresight sampling,
leveraging simulated future steps to obtain glob-
ally optimal step estimation. Built on it, we
propose a novel decoding strategy, named ¢-
Decoding. To provide a precise and expressive
estimation of step value, ¢-Decoding approxi-
mates two distributions via foresight and clus-
tering. Sampling from the joint distribution,
the optimal steps can be selected for exploita-
tion. To support adaptive computation alloca-
tion, we propose in-width and in-depth prun-
ing strategies, featuring a light-weight solution
to achieve inference efficiency. Extensive ex-
periments across seven benchmarks show ¢-
Decoding outperforms strong baselines in both
performance and efficiency. Additional analy-
sis demonstrates its generalization across vari-
ous LLMs and scalability across a wide range
of computing budgets.!

1 Introduction

Large language models (LLMs) (Achiam et al.,
2023; Team et al., 2023) present remarkable per-
formances in solving reasoning-intensive tasks
through step-by-step thoughts (Wei et al., 2022).
Recent advancements (Team, 2024; Guo et al.,
2025) have significantly boosted LLM reasoning by
large-scale post-training on well-curated datasets.

*means equal contribution. Work done during Fangzhi’s
internship at Shanghai AI Lab.

fdenotes corresponding author.

'The code is released at
xufangzhi/phi-Decoding.

https://github.com/

(a) Auto-Regressive

Preceding Steps

Q Efficiency

6 Performance
e Global Optima

(b) Search-Based

> 6 Efficiency

Ao o
O Bl Q Performance
{ ""{)p ™ Q Global Optima
(c) Foresight Sampling

O_).‘\J > .o a Efficiency

Y @ Performance

Simulated Steps Q Global Optima

Figure 1: Comparisons of different decoding paradigms.
(a) is auto-regressive decoding, which has high effi-
ciency but lacks global awareness. (b) represents search-
based methods, which requires huge search space with
extensive time cost. (c) is the foresight sampling strat-
egy. It leverages the simulated future steps to estimate
the step value, which can strike a balanced inference-
time exploration and exploitation.

Nevertheless, the cost associated with the post-
training procedure hinders its reproducibility. This
naturally motivates us to explore the inference-time
strategy for optimizing the LLM reasoning chains.

Inference-time optimization involves employing
more reasoning tokens that encode thinking steps
to perform effective reasoning. However, the natu-
ral shortsightedness of auto-regressive generation,
which predicts the next step only with preceding
steps, makes most inference algorithms unable to
achieve global optima (Ma et al., 2024) (Fig. 1(a)).
Most previous work solves this by deliberately opti-
mizing each step using search-based methods (Yao

13214

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 13214-13227

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

https://github.com/xufangzhi/phi-Decoding
https://github.com/xufangzhi/phi-Decoding

et al., 2024; Hao et al., 2023; Xie et al., 2024,
Wu et al., 2024), the expanding and backtrack-
ing of tree search algorithms enable LLMs to find
global-optimal reasoning paths (Fig. 1(b)). How-
ever, the vast search space results in excessive ex-
ploration and insufficient exploitation. Conversely,
if we could derive a precise estimation of globally-
aware step values, an efficient balance between
inference-time exploration and exploitation could
be achieved.

Based on this, we frame the decoding strategy
as foresight sampling, as depicted in Fig. 1(c). It
relies on the future simulation to obtain the glob-
ally optimal estimation of the current step. Central
to the foresight sampling is the critical task of how
to estimate step value with the foresight steps. In-
tuitively, the step estimation with foresight can be
derived either by incorporating the process reward
model (PRM) (Snell et al., 2024) or through model
uncertainty (Ma et al., 2024). However, PRMs are
not widely available for all reasoning scenarios,
which poses challenges for scalability. Delegat-
ing the step assessment to model uncertainty risks
the issue of local optima, potentially resulting in
suboptimal performance.

Another issue in stepwise exploration and ex-
ploitation is whether every step requires delibera-
tion for decision-making. Naturally, more compu-
tational resources should be allocated to challeng-
ing steps, while conserving compute for simpler
steps. Previous inference-time optimization meth-
ods widely overlook this principle. In addition,
such concept of over-thinking has been widely ob-
served in the ol-like attempts (Chen et al., 2024;
Manvi et al., 2024). Therefore, it is both intriguing
and promising to develop a light-weight solution
that can adaptively balances computational work-
load without extra training.

In this paper, we propose a novel inference-time
optimization algorithm named ¢-Decoding, which
introduces an adaptive foresight sampling strategy
to achieve efficient exploration and exploitation
during inference. To give the reliable and expres-
sive step value estimation, ¢-Decoding capitalizes
on foresight paths to derive two distributions: one
from the derived step advantage values, captur-
ing uncertainty discrepancies between successive
steps, and another from alignment of these fore-
sight paths via clustering. Sampling from the joint
distribution, ¢-Decoding selects optimal steps for
exploitation. To efficiently allocate the computa-

tions, ¢-Decoding introduces both the in-width and
in-depth pruning strategies, which provides adap-
tive inference-time scaling.

On diverse reasoning benchmarks, ¢-Decoding
improves the average performance of LLaMA3.1-
Instruct-8B by >14% over auto-regressive CoT.
Inference-time scaling across diverse computing
budgets shows the consistent superiority of ¢-
Decoding over other baselines, offering a balance
between performance (Accuracy) and computa-
tional efficiency (#FLOPS). Further analysis of the
generalization across various backbone LLMs and
scalability to the competition-level task highlights
the superiority of ¢-Decoding.

The major contributions of our work are:

(1) An adaptive inference-time optimization al-
gorithm ¢-Decoding without external auxiliary.
¢-Decoding estimates the step value based on the
joint distribution derived from foresight paths. In-
width and in-depth pruning strategies are intro-
duced to alleviate the overthinking issue.

(2) Extensive experiments with state-of-the-art
performances. ¢-Decoding improves the average
reasoning of LLaMA3.1-8B-Instruct by over 14%
across various reasoning benchmarks, presenting a
great trade-off between effectiveness and efficiency
compared with baselines.

(3) Comprehensive analysis and insightful find-
ings. ¢-Decoding proves its generalization abil-
ity to various LLMs, ranging from the 70B-sized
model to Rl-distilled LLM. Additionally, the
inference-time scaling across a wide range of com-
puting budgets reveals the consistent advantages,
where ¢-Decoding matches the performance of the
suboptimal baseline with 6x efficiency.

2 Methodology

2.1 Preliminary

In the context of auto-regressive language genera-
tion, the selection of the current step a; is based on
the following probability distribution:

ar ~ po(at|z, ac) (D
where x is the instruction or the input query, and
a; represents the preceding steps. 6 denotes the
LLM parameters, where py is derived from the
distribution of language modeling.

To overcome the short-sighted limitation of auto-
regressive generation and achieve efficient explo-
ration, foresight sampling conditions the genera-
tion process not only on the preceding steps a—¢

13215

Step Rollout Foresight Advantage Sampling
i
i
PEN i
(\; — > AF of i
Ft—l(l) /)‘_/ adjacent steps E Ft—l(l) .
SN t
> \ > . > =F, — i
s A;=F,-F, A, i R
| — i t
T, ,F
: In-Width tsot . §>§>
Question Btiing §>§> Alignment ‘ j
i
2 Clusterin :
F,® A —_— stering j F @
O S e L 1
AG= DEEESIRN VYRR
_—’ 1 g 1
\N,-\ AA c | T2
1 \ ’ 1
L) I e S i
vl P M ;
T o Y

In-Depth Pruning

Figure 2: The overall framework of ¢-Decoding. We visualize the decoding process at the timestamp t. For
simplicity, we set step beam size M as 2, the number of rollouts IV as 3, and the number of clusters K as 2.

but also on an estimation of future outcomes a-;.
We use the Boltzmann distribution to model the
probabilities of different outcomes during the de-
coding process, incorporating both the influence of
preceding steps and an estimation of future states,
such as:

2

ar ~ po(at|z, acy)Ea. po(ast|z, ar, acy)

It is non-trivial to have a precise calculation of
Ea.,po(as¢|z, ar,a<;). Therefore, we try to de-
rive an estimation of this future simulation quality.

3)

ag ~ po(ax,acs)exp [R(x, a<q, as) /7]

where R denotes the optimized function for step
value estimation based on the foresight steps. 7
represents the temperature hyper-parameter, which
controls the diversity of generation.

Therefore, the ultimate objective of ¢-Decoding
is to design the step value estimation function
R(x,a<t,as¢). We include the key techniques of
¢-Decoding in Fig. 2, which depicts the decoding
process at the timestamp ¢. The complete algo-
rithm as well as the overall decoding pipeline are
presented in Appendix B.

2.2 Step Value Estimation

To thoroughly optimize the formulation, we pro-
pose to evaluate the foresight paths from advantage
(absolute value) and alignment (relative value).

Dynamic Advantage Estimation. We follow the
beam search strategy. At the timestamp ¢, we roll-
out NV candidate steps from each beam. Based on

the idea of foresight sampling, the probability F;
of the foresight path can be derived:
“)

Fy = po(asi|z, ar, a<y),

where the index of the candidate step is omitted for
simplicity.

To measure the advantage brought by the candi-
date step a;, we define the calculation of Advantage
A; as:

Ay = po(asi|z, ar, a<t) — po(asi—1|z, ar—1,a<¢-1)
=F-F
)

It is represented as the A of the foresight prob-
ability F' between the adjacent steps. Notably, we
implement the calculation of py with the averaged
log probability of the sequence, which alleviates
the influence from the foresight length.

Since the calculation of Advantage for each can-
didate step is independent, it estimates the absolute
value of the step. For better illustration, we define
Ry (z,a<,as¢) = exp(A¢/71).

Alignment Assessment by Clustering. One po-
tential risk of the uncertainty-based estimation is
the issue of local optima. That is, LLMs may be
trapped in the incorrect step with exceptionally
high confidence.

To address this limitation, we introduce the def-
inition of alignment to provide the relative prefer-
ence among the foresight paths. This is achieved by
employing a clustering strategy following the fore-
sight sampling process. Specifically, the foresight
paths at each timestamp are grouped into clusters.

13216

The number of clusters is defined as K. The align-
ment value of a; is determined based on the size of
the cluster to which it belongs:

C, - |Cluster(a)|

= 6
#Foresight Paths ©)

where |Cluster(a;)| denotes the size of the cluster
a; belongs to.

Alignment actually provides the relative estima-
tion of the step value, which reflects the consistency
among the foresight paths. The more closely the
expected outcome aligns with those of other candi-
dates, the greater the step value would be. Similarly,
we define Ra(z,a<t,ast) = exp(Cy/m2).

Sampling From Joint Distribution Combining
the rewarding from R; and Rs, we can derive the
definition of R function, which is in the form of:

R(z,a<t,as¢) = Norm(A;) + Norm(Cy)
__exp(Ay/7) exp(Cy/m) (7)
> a, xp(A/T1) Y2, exp(Ci/T2)

Replacing this formulation of R into Eq. 3, the
objective becomes the sampling on the joint distri-
bution of Advantage and Alignment.

In the implementation, we set 7, = 79 = 0.6
and combine R; and Ry with equal weighting for
simplicity. We leave the discussion of the weighted
version in future work.

2.3 Dynamic Pruning Strategy

To optimize the computation allocation and allevi-
ate the over-thinking issue, we introduce an effi-
cient and effective pruning strategy. It is designed
from two dimensions: in-width and in-depth. Fig-
ure 2 visualizes the function of the pruning strat-
gies.

In-Width Pruning. Although foresight sampling
addresses the short-sightedness of language mod-
els, it inevitably introduces additional computa-
tional cost. Intuitively, some steps with obvious
errors can be filtered out directly, without needing
to simulate future steps. To achieve this, we assess
the generation confidence of each step a; based on
its probability:

St = pg(at]a:, a<t)- (8)

There are in total M * N candidate steps at times-
tamp ¢t. We then calculate the mean and variance

of these step confidence:

_ 1 @ o_ 1 (i) N2
’LLt_M*NZi:St’Ut_M*NZ(St 1)

7
©)
where 11 and 0% denote the mean and variance
values respectively. M x N is the number of can-
didates under the setting of step beam search as
defined in Sec. 2.2.

Based on this calculation, we exclude any steps
with generation confidence that is exceptionally
low, i.e., those with ng) < p — o. The remaining
steps are kept for foresight:

S =Aa|p—o < s} (10)

Adhering to this principle enables the attainment
of in-width pruning. Notably, the extent of pruning
can be regulated by adjusting the threshold using
pu— ko, where k € Z7.

In-Depth Pruning. Foresight sampling enables
the deliberate thinking of each step. Previous
work (Wang and Zhou, 2024) uncovers that the
early steps are much more important, necessitat-
ing increased computational resources for optimiza-
tion. As the final answer approaches, LLMs exhibit
greater determination in their reasoning paths. Mo-
tivated by it, we can save some computational costs
with the strategy of early stopping.

To avoid extra computing and make the solution
as simple as possible, we employ the clustering re-
sult introduced in Sec. 2.2. In detail, we derive the
size of the largest cluster, written as |Cluster;,qz|.
The condition of early-stopping is controlled by the
threshold:

|Cluster,,qz |
#Foresight Paths —

(11)

Then, the LLM completes the remaining reason-
ing steps under the auto-regressive setting. For
convenience, we set = 0.7 for all experiments.

3 Experiments

3.1 Evaluation Benchmarks and Metrics

Benchmarks To comprehensively evaluate the
LLM performances on downstream tasks, we
mainly include the following 6 representative
reasoning benchmarks: GSMS8K (Cobbe et al.,
2021), MATH-500 (Hendrycks et al., 2021),
GPQA (Rein et al., 2023), ReClor (Yu et al.,

13217

2020), LogiQA (Liu et al., 2021), and ARC-
Challenge (Clark et al., 2018). Furthermore,
we incorporate the competition-level benchmark
AIME (Jia, 2024) to highlight the scalability of ¢-
Decoding to address more challenging scenarios.

Metrics We report the Pass@ 1 accuracy (Acc.)
for each benchmark. To better illustrate the
trade-off between efficiency and performance, the
FLOPS metric is also computed, following the def-
inition of (Kaplan et al., 2020). Please refer to
Appendix A.1 for more evaluation details.

3.2 Baselines and Backbone LLMs

In the experiments, we compare ¢-Decoding with
the following 5 baseline methods.

Auto-Regressive (CoT). It produces the chain-
of-thought reasoning through the auto-regressive
language generation.

Tree-of-Thought (ToT) (Yao et al., 2024). It
builds a tree structure for a given problem, where
each node represents a reasoning step. We use the
BFS version as the implementation.

Monte Carlo Tree Search (MCTS). It con-
structs a search tree and dynamically updates the
step value via expanding and backtracking. We
follow Reasoning as Planning (RaP) (Hao et al.,
2023) for implementation.

Guided Decoding (Xie et al., 2024). It utilizes
self-evaluation at each step to perform a stochastic
beam search.

Predictive Decoding (Ma et al., 2024). It pro-
poses the look-ahead strategy and leverages Model
Predictive Control to reweigh LLLM distributions,
producing non-myopic language modeling.

For the 6 reasoning benchmarks in the main
experiments, all the baseline methods are eval-
uated on two backbone LLMs: LLaMA3.1-8B-
Instruct (Dubey et al., 2024) and Mistral-v0.3-
7B-Instruct (Jiang et al., 2023). To assess gen-
eralization and scalability, we further evaluate the
Qwen2.5-3B (Yang et al., 2024) and LLaMA3.1-
70B (Dubey et al., 2024) LLMs, while also boost-
ing Deepseek Rl-series LLM (i.e., R1-Distill-
LLaMA-8B) (Guo et al., 2025) for competition-
level tasks.

All the experiments are implemented on A100 of
80GB VRAM GPUs. The inference process is ac-
celerated by the vLLM engine (Kwon et al., 2023).

Inference-Time Scaling Law (LLaMA3.1)
1 == $-Decoding

| Predictive-Decoding
=@~ Guided-Decoding

ToT

MCTS

[@))
S =

=]

o]
s

P WVN6X Speed Up

Vb

S e .
L

N

W

Average Accuracy (%)
W L Lﬂ (Y, BV, o))

Ny

\

4 8 16 32 64 128
Inference FLOPS (10716)

Figure 3: Inference-time scaling law on LLaMA3.1-8B-
Instruct. The horizontal axis denotes the inference-time
computational cost, while the vertical axis represents
the average performances on 6 benchmarks.

The generation temperature is set to 0.6. Please
refer to Appendix A.2 for more implementation
details.

3.3 Main Results

Table 1 presents the results on 6 reasoning bench-
marks across 2 representative open-source LLMs.

¢-Decoding significantly enhances the average
performances of backbone LLLMs. Compared
with the standard CoT strategy, ¢-Decoding can
achieve the inference-time optimization without
extra training. Specifically, notable average im-
provements of 14.62% and 6.92% are observed in
LLaMA3.1-Instruct and Mistral-v0.3-Instruct mod-
els respectively.

¢-Decoding strikes a superior balance between
effectiveness and efficiency over strong base-
lines. In general, ¢-Decoding outperforms the
four strong baselines by a large margin, with consis-
tent lower computational cost. Compared with the
recent promising MCTS-style method, ¢-Decoding
showcases a notable average improvement of 3.25-
5.70%, achieved with one-third of the cost. When
contrasted with the recent SOTA baseline Predic-
tive Decoding, ¢-Decoding shows remarkable su-
periority particularly in its adeptness at generaliz-
ing across various backbone LLMs.

3.4 On the Inference-Time Scaling

Figure 3 presents the inference-time scaling law on
LLaMA3.1-8B-Instruct. From the scaling curves,
¢-Decoding presents the consistent superiority on
each computational budget, ranging from 8 x 106

13218

Models | GSMSK Math-500 GPQA ReClor LogiQA ARC-c | Avg. FLOPS
LLaMA3.1-8B-Instruct
Auto-Regressive (CoT) 70.28 31.00 26.56 49.40 33.33 5891 | 44.91 1.34 x 10°
Tree-of-Thoughts 75.74 31.60 31.25 59.00 45.93 80.72 | 54.04 7.03 x 10'7
MCTS 80.44 34.40 24.11 61.40 42.70 79.95 | 53.83 17.90 x 10'7
Guided Decoding 75.51 31.20 30.58 60.20 43.47 81.74 | 5378 6.54 x 10'7
Predictive Decoding 81.43 34.00 31.03 64.00 46.70 84.56 | 56.95 6.89 x 10'7
¢-Decoding | 86.58 38.20 34.60 64.00 48.39 8541 | 59.53 6.43 x 107
Mistral-v0.3-7B-Instruct
Auto-Regressive (CoT) 49.05 12.20 23.88 52.20 37.02 69.54 | 40.65 0.81 x 10'°
Tree-of-Thoughts 53.90 10.80 26.34 55.60 41.63 73.63 | 43.65 4.99 x 10'7
MCTS 60.12 10.80 22.77 56.80 40.71 7474 | 4432 9.33 x 10'7
Guided Decoding 53.90 10.80 27.46 53.20 36.71 73.55 | 42.60 7.03 x 10'7
Predictive Decoding 58.00 11.00 22.10 54.20 39.78 73.55 | 43.11 4.73 x 10*7
¢-Decoding | 60.42 16.40 2924 5820 4301 7816 | 47.57 3.55 x 10'7

Table 1: Main results. The optimal results are highlighted in bold, whereas suboptimal results are underlined. The
Avg. column indicates the averaged results across the six benchmarks. FLOPS denotes the calculated computational

cost, with lower values indicating lower costs.

to 64 x 10'6 FLOPS. Furthermore, when consid-
ering similar performance levels (e.g., an average
performance of ~ 57%), ¢-Decoding demonstrates
over 6x efficiency compared to even suboptimal
methods. Meanwhile, it is observed that Predictive
Decoding and ToT also exhibit the stable improve-
ment trend with the inference cost increasing.

4 Analysis
4.1 Ablation Studies

Some key components of ¢-Decoding are ablated
to verify their contributions to the overall perfor-
mances in Table 2. w/o foresight sampling indi-
cates that the look-ahead process is ablated, relying
solely on step uncertainty for sampling. w/o cluster
denotes that we simply sample on the foresight un-
certainty distribution without considering the clus-
ter distribution. w/o dynamic pruning means the
breadth and depth pruning strategies are ablated.
We have the following findings.

Foresight sampling mitigates auto-regressive
generation limitations with extra inference cost.
As the basis of our sampling strategy, simulating
the future steps brings remarkable performance
gains (2.98%-6.09%). It proves the finding that the
short-sightedness of the standard auto-regressive
language generation can be reduced by increasing
the inference-time computation.

Cluster distribution is beneficial to the overall
performances. As one of the contributions, we

incorporate the cluster of foresight steps to miti-
gate the unreliability of the accumulated generation
probability. The results demonstrate that the cluster
can calibrate the sampling distribution, leading to
0.95%-1.97% average gains.

Dynamic pruning largely reduces the computa-
tional costs. It is observed that the dynamic prun-
ing strategy provides obvious efficiency improve-
ment from the metric of FLOPS. Also, the dynamic
pruning strategy surprisingly enhances model per-
formance by eliminating distractions from negative
rollouts during sampling.

4.2 Generalization and Scalability

Next, we analyze the generalization and scalability
of ¢-Decoding to (i) larger backbone LLM; and (ii)
competition-level benchmarks.

¢-Decoding still works when scaling to 70B
model size. Figure 3 shows the results on
LLaMA3.1-70B-Instruct across four benchmarks.
The model performance is further enhanced with
the proposed algorithm. It uncovers the superior
generalization capability of ¢-Decoding. Lim-
ited by space, we leave the discussion of smaller
backbone LLM (i.e., Qwen2.5-3B-Inst.) for Ap-
pendix C. The experiments on the 3B-sized model
also reflect the obvious advantages brought by ¢-
Decoding. Across the 6 reasoning benchmarks, ¢-
Decoding improves the backbone LLM by 3.80%
in average. Combining all these generalization ex-
periments, it is concluded that ¢-Decoding works

13219

Models | GSMSK Math-500 GPQA ReClor LogiQA ARC-c | Avg. FLOPS
LLaMA3.1-8B-Instruct

¢-Decoding 86.58 38.20 34.60 64.00 48.39 8541 | 59.53 6.43 x 10'7

w/o foresight sampling | 81.80 35.00 3058 60.60 46.39 8490 | 56.55 1.27 x 10'7

w/o cluster 85.60 37.40 30.58 61.00 4547 8532 | 57.56 6.37 x 10'7

w/o dynamic pruning 86.35 38.20 29.46 61.00 46.39 85.67 | 57.85 8.00 x 10'7
Mistral-v0.3-7B-Instruct

¢-Decoding 60.42 16.40 29.24 58.20 43.01 78.16 | 47.57 3.55 x 10*7

w/o foresight sampling 57.54 11.40 25.22 42.40 36.70 75.60 | 4148 1.19 x 10Y7

w/o cluster 60.19 15.00 29.24 56.60 42.24 76.45 | 46.62 3.55 x 10'7

w/o dynamic pruning 59.97 15.20 26.56 53.20 36.41 75.77 4452 6.41 x 10'7

Table 2: Ablation Studies on LLaMA3.1-8B-Instruct and Mistral-v0.3-7B-Instruct models. w/o foresight sampling
ablates the simulation of future steps. w/o cluster ablates the calculation of Alignment value. w/o dynamic pruning

ablates both of the pruning strategies.

Tasks | AR (CoT) ¢-Decoding A
GSM8K 92.27 94.31 +2.04
MATH-500 41.40 44.80 +3.40
ReClor 67.60 84.80 +17.20
LogiQA 51.00 56.37 +5.37

Table 3: Generalization experiments on LLaMA3.1-
70B-Instruct. The improvements over Auto-Regressive
(CoT) are reported in the last columnn.

Methods | AIME2024 A
LLaMA3.1-8B-Instruct 9.17 -
+ Predictive Decoding 13.33 +4.16
+ ¢-Decoding 16.67 +7.50
R1-Distill-LLaMA-8B 37.81 -
+ Predictive Decoding 20.00 -17.81
+ ¢-Decoding 46.67 +8.86

Table 4: Results on AIME 2024. We compare ¢-
Decoding with Predictive-Decoding based on two back-
bone LLMs: LLaMA3.1-8B-Instruct and R1-Distill-
LLaMA-8B.

well with a wide size range of LLMs, showcasing
the superiority.

Our inference-time optimization can scale to
improve performances on the competition-level
task even with the strongest reasoning LLM.
Table 4 shows the results on AIME 2024 bench-
mark. In addition to LLaMA3.1-8B-Instruct.
and Mistral-v0.3-7B-Instruct., we also incorporate
the DeepSeek-R1 model, utilizing the R1-Distill-
LLaMA-8B variant due to resource constraints.
Even based on a well-trained deep thinking model,
¢-Decoding can still help push the upper bound-
ary on the competition-level task. Such findings

1.0 60
° [Acc. of Step Value
-c—i 0.81 I Task Acc.] 58
-~ S
§ 0.6 56 2
wn <
%5 0.41 54 E
g
< 0.2 r52
0.0 ; ; — ; -50
Auto ToT Predictive Ours
Regressive Decoding

Figure 4: Analysis on the accuracy of step value esti-
mation. The bar in light blue represents the accuracy of
the step values, while the bar in dark blue denotes the
averaged task performances.

are exciting and insightful to implement inference-
time optimization aimed at addressing challenging
problems with LLM.

4.3 Accuracy of Step Value Estimation

The core of these decoding approaches is to esti-
mate the precise step value through self-rewarding.
To measure how the estimated step value matches
the actual rewards, we employ the calculation of
the Accuracy of Step Value via distribution match.
Please refer to Appendix D for details. Based on
the calculation, we visualize the results in Figure 4,
revealing the following finding.

The estimation of step value is positively corre-
lated with the correctness of the final answer.
Of the four inference-time decoding approaches il-
lustrated in Figure 4, a more accurate estimation of
the step value results in improved task performance.
Among them, ¢-Decoding achieves the optimal es-
timation of step values as well as the final accuracy

13220

I Ours (After Pruning)
GPQA [LLaMA3.1]

GSMSK [LLaMA3.1] MATH-500 [LLaMA3.1]

0.00
1.00

0.75
=
2
£ 0.50
=]
=¥
0.25
0'0012345678 12345678 12345678
#Step #Step #Step

GSMSK [Mistral-v0.3] MATH-500 [Mistral-v0.3] GPQA [Mistral-v0.3]

Ours (Saved)

ReClor [LLaMA3.1] LogiQA [LLaMA3.1] ARC-C [LLaMA3.1]

ReClor [Mistral-v0.3] LogiQA [Mistral-v0.3] ARC-C [Mistral-v0.3]

12345678
#Step

12345678
#Step

12345678
#Step

Figure 5: Visualization of step-wise effects with alleviated overthinking. The first row displays the results for each
independent benchmark using the LLaMA backbone, whereas the second row reflects the results with the Mistral

backbone.

with obvious advantages.

4.4 Analysis on Step-wise Overthinking

Beyond simply reporting the FLOPS metric, a de-
tailed analysis of the effects of pruning strategies is
presented in Figure 5. It is observed that early steps
are more critical, which involves relatively more
computational costs. At these early steps, it mainly
relies on breadth pruning strategy to avoid redun-
dant step exploration, reducing ~ 20% of the costs.
With the steps growing, depth pruning takes over to
alleviate overthinking through early stopping. This
finding inspires us to allocate more inference-time
computational resources to the early steps, which
are proved to be critical for the reasoning tasks.

5 Related Works

Inference-Time Optimization. To alleviate the
post-training workload (Zelikman et al., 2024; Liu
et al., 2024; Team, 2024; Guo et al., 2025; Sun
et al., 2024b), inference-time optimization meth-
ods arouse wide concerns, showcasing a notable
performance boost in reasoning scenarios (Snell
et al., 2024; Sun et al., 2023; Zhao et al., 2024,
Zhang et al., 2025). Mainstream methods can be
categorized into searching-based (Yao et al., 2024;
Hao et al., 2023; Xie et al., 2024; Wu et al., 2024)
and sampling-based (Ma et al., 2024; Chen et al.,
2023; Zhang et al., 2024). Although these works
achieve the globally-optimal inference, they either
induce large computation costs or yield inadequate
step value estimation. Other classical methods,
such as Best-of-N, usually involve delegating the

step selection to the external reward model (Wang
et al., 2024; Guan et al., 2025), and self-reflection
strategies (Cheng et al., 2024; Xu et al., 2024) usu-
ally involve extra training. ¢-Decoding stands out
as an optimal and efficient decoding choice without
reliance on external auxiliary.

Adaptive Inference-time Scaling. Though scal-
ing of inference-time computations has proved
to be effective (Snell et al., 2024), the issue of
over-thinking is widely observed and remains to
be addressed (Chen et al., 2024). One line of
works (Team et al., 2025; Han et al., 2024) stress
on the control of the generation length, while an-
other line of methods (Manvi et al., 2024; Sun et al.,
2024a) leverage the idea of early-stopping. In con-
trast, the adaptive scaling technique presented in
our work is training-free and independent of exter-
nal models. Based on the self-evaluation of step-
wise value, ¢-Decoding introduces the comprehen-
sive pruning strategy from the dimensions of width
and depth. It stands out as a light-weight solution
to alleviate the inference-time over-thinking.

6 Conclusion

This work focuses on inference-time optimization
for LLMs, leveraging computational scaling to en-
hance performance. Building on stepwise reason-
ing and foresight sampling, we address two key
research questions: (1) How can we achieve su-
perior step value estimation? and (2) Is deliber-
ative planning necessary for every step? We in-
troduce a novel decoding strategy, ¢-Decoding,

13221

that efficiently balances exploration and exploita-
tion during inference. Extensive evaluations across
seven diverse LLM benchmarks demonstrate ¢-
Decoding’ state-of-the-art performance and effi-
ciency. Furthermore, its ability to generalize to a
wide range of LLMs (3B, 7B, 8B, and 70B) and
scale across various computational budgets under-
scores the superiority of ¢-Decoding in inference-
time optimization.

Acknowledgement

This work was supported by National Key
Research and Development Program of China
(2022YFC3303600), National Natural Science
Foundation of China (No. 62137002, 62293550,
62293553, 62293554, 62437002, 62477036,
62176209, 62176207), "LENOVO-XJTU" Intel-
ligent Industry Joint Laboratory Project, Shaanxi
Undergraduate and Higher Education Teaching Re-
form Research Program (No. 23BY195), and Xi’an
Jiaotong University City College Research Project
(No. 2024Y01), Project of China Knowledge Cen-
tre for Engineering Science and Technology, the
Youth Al Talents Fund of China Association of Au-
tomation (Grant No.HBRC-JKYZD-2024-311).

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He,
Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. 2024. Do
not think that much for 2+ 3=? on the overthinking
of ol-like llms. arXiv preprint arXiv:2412.21187.

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Kefan
Xiao, Pengcheng Yin, Sushant Prakash, Charles Sut-
ton, Xuezhi Wang, and Denny Zhou. 2023. Universal
self-consistency for large language model generation.
arXiv preprint arXiv:2311.17311.

Kanzhi Cheng, Yantao Li, Fangzhi Xu, Jianbing Zhang,
Hao Zhou, and Yang Liu. 2024. Vision-language
models can self-improve reasoning via reflection.
arXiv preprint arXiv:2411.00855.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang,
Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
2025. rstar-math: Small llms can master math reason-
ing with self-evolved deep thinking. arXiv preprint
arXiv:2501.04519.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Tingxu Han, Chunrong Fang, Shiyu Zhao, Shiqing
Ma, Zhenyu Chen, and Zhenting Wang. 2024.
Token-budget-aware 1lm reasoning. arXiv preprint
arXiv:2412.18547.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with
world model. arXiv preprint arXiv:2305.14992.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Maxwell Jia. 2024. Aime 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2021. Logiqa: a

13222

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2311.17311
https://arxiv.org/abs/2311.17311
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2501.04519
https://arxiv.org/abs/2501.04519
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2412.18547
https://arxiv.org/abs/2305.14992
https://arxiv.org/abs/2305.14992
https://mathai-iclr.github.io/papers/papers/MATHAI_24_paper.pdf
https://mathai-iclr.github.io/papers/papers/MATHAI_24_paper.pdf
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2001.08361
https://dl.acm.org/doi/abs/10.1145/3600006.3613165
https://dl.acm.org/doi/abs/10.1145/3600006.3613165
https://dl.acm.org/doi/abs/10.1145/3600006.3613165
https://dl.acm.org/doi/abs/10.5555/3491440.3491941

challenge dataset for machine reading comprehen-
sion with logical reasoning. In Proceedings of the
Twenty-Ninth International Conference on Interna-
tional Joint Conferences on Artificial Intelligence,

pages 3622-3628.

Zihan Liu, Yang Chen, Mohammad Shoeybi, Bryan
Catanzaro, and Wei Ping. 2024. Acemath: Advanc-
ing frontier math reasoning with post-training and
reward modeling. arXiv preprint arXiv:2412.15084.

Chang Ma, Haiteng Zhao, Junlei Zhang, Junxian He,
and Lingpeng Kong. 2024. Non-myopic genera-
tion of language models for reasoning and planning.
arXiv preprint arXiv:2410.17195.

Rohin Manvi, Anikait Singh, and Stefano Ermon. 2024.
Adaptive inference-time compute: Llms can predict
if they can do better, even mid-generation. arXiv
preprint arXiv:2410.02725.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R Bowman. 2023. Gpqa: A
graduate-level google-proof q&a benchmark. arXiv
preprint arXiv:2311.12022.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao
Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter
Bartlett, and Andrea Zanette. 2024a. Fast best-of-n
decoding via speculative rejection. arXiv preprint
arXiv:2410.20290.

Qiushi Sun, Zhirui Chen, Fangzhi Xu, Kanzhi
Cheng, Chang Ma, Zhangyue Yin, Jianing Wang,
Chengcheng Han, Renyu Zhu, Shuai Yuan, et al.
2024b. A survey of neural code intelligence:
Paradigms, advances and beyond. arXiv preprint
arXiv:2403.14734.

Qiushi Sun, Zhangyue Yin, Xiang Li, Zhiyong Wu,
Xipeng Qiu, and Lingpeng Kong. 2023. Corex:
Pushing the boundaries of complex reasoning
through multi-model collaboration. arXiv preprint
arXiv:2310.00280.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie
Millican, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing,
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. 2025.
Kimi k1. 5: Scaling reinforcement learning with 1lms.
arXiv preprint arXiv:2501.12599.

Qwen Team. 2024. Qwq: Reflect deeply on the bound-
aries of the unknown.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
2024. Math-shepherd: Verify and reinforce llms step-
by-step without human annotations. In Proceedings
of the 62nd Annual Meeting of the Association for
ComputatDo NOT Think That Much for 2+3=? On
the Overthinking of ol-Like LLMsional Linguistics
(Volume 1: Long Papers), pages 9426-9439.

Xuezhi Wang and Denny Zhou. 2024. Chain-of-
thought reasoning without prompting. arXiv preprint
arXiv:2402.10200.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck,
and Yiming Yang. 2024. Inference scaling laws:
An empirical analysis of compute-optimal inference
for problem-solving with language models. arXiv
preprint arXiv:2408.00724.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu
Zhao, Min-Yen Kan, Junxian He, and Michael Xie.
2024. Self-evaluation guided beam search for rea-
soning. Advances in Neural Information Processing
Systems, 36.

Fangzhi Xu, Qiushi Sun, Kanzhi Cheng, Jun Liu,
Yu Qiao, and Zhiyong Wu. 2024. Interactive
evolution: A neural-symbolic self-training frame-
work for large language models. arXiv preprint
arXiv:2406.11736.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi Feng.
2020. Reclor: A reading comprehension dataset re-
quiring logical reasoning. In International Confer-
ence on Learning Representations.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna
Jayasiri, Nick Haber, and Noah D Goodman. 2024.
Quiet-star: Language models can teach them-
selves to think before speaking. arXiv preprint
arXiv:2403.09629.

13223

https://dl.acm.org/doi/abs/10.5555/3491440.3491941
https://dl.acm.org/doi/abs/10.5555/3491440.3491941
https://arxiv.org/abs/2412.15084
https://arxiv.org/abs/2412.15084
https://arxiv.org/abs/2412.15084
https://arxiv.org/abs/2410.17195
https://arxiv.org/abs/2410.17195
https://arxiv.org/abs/2410.02725
https://arxiv.org/abs/2410.02725
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2410.20290
https://arxiv.org/abs/2410.20290
https://arxiv.org/abs/2403.14734
https://arxiv.org/abs/2403.14734
https://arxiv.org/abs/2310.00280
https://arxiv.org/abs/2310.00280
https://arxiv.org/abs/2310.00280
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2501.12599
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://aclanthology.org/2024.acl-long.510/
https://aclanthology.org/2024.acl-long.510/
https://arxiv.org/abs/2402.10200
https://arxiv.org/abs/2402.10200
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2408.00724
https://proceedings.neurips.cc/paper_files/paper/2023/hash/81fde95c4dc79188a69ce5b24d63010b-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/81fde95c4dc79188a69ce5b24d63010b-Abstract-Conference.html
https://arxiv.org/abs/2406.11736
https://arxiv.org/abs/2406.11736
https://arxiv.org/abs/2406.11736
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://proceedings.neurips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
https://arxiv.org/abs/2002.04326
https://arxiv.org/abs/2002.04326
https://arxiv.org/abs/2403.09629
https://arxiv.org/abs/2403.09629

Xiaoying Zhang, Baolin Peng, Ye Tian, Jingyan Zhou,
Lifeng Jin, Linfeng Song, Haitao Mi, and Helen
Meng. 2024. Self-alignment for factuality: Mitigat-
ing hallucinations in llms via self-evaluation. arXiv
preprint arXiv:2402.09267.

Xinyu Zhang, Yuxuan Dong, Yanrui Wu, Jiaxing Huang,
Chengyou Jia, Basura Fernando, Mike Zheng Shou,
Lingling Zhang, and Jun Liu. 2025. Physreason:
A comprehensive benchmark towards physics-based
reasoning. arXiv preprint arXiv:2502.12054.

Haiteng Zhao, Chang Ma, Guoyin Wang, Jing Su,
Lingpeng Kong, Jingjing Xu, Zhi-Hong Deng, and
Hongxia Yang. 2024. Empowering large language
model agents through action learning. arXiv preprint
arXiv:2402.15809.

13224

https://arxiv.org/abs/2402.09267
https://arxiv.org/abs/2402.09267
https://arxiv.org/abs/2502.12054
https://arxiv.org/abs/2502.12054
https://arxiv.org/abs/2502.12054
https://arxiv.org/abs/2402.15809
https://arxiv.org/abs/2402.15809

A Implementation Details

A.1 Calculation of FLOPS

Following (Kaplan et al., 2020), we calculate the
inference-time FLOPS to measure the computa-
tional efficiency. The definition of the metric
FLOPS is:

FLOPS ~ 6nP (12)
where n represents the total number of the output
tokens, and P is the number of parameters of the
LLM. In the tables above, we report the average
results of FLOPS across the benchmarks.

A.2 Inference Setup

We provide the detailed implementation setup in
Table 5. Considering the huge cost ahead, the hy-
perparameters are merely searched within a very
small range. We leave it for future works to derive
the optimal experimental configuration.

Task \ Hyper-Parameter Setup
LLaMA3.1-8B-Instruct
GSMSK M=4 N=4 (Tmin,Tmax)=(4,8) K=3 =07
MATH-500 | M=4 N=4 (TwinTma)=(48) K=3 6=0.7
GPQA M=4 N=4 (Trin>Tmax)=(1,8) K=3 6=0.7
ReClor M=4 N=4 (Tmin,Tmax)=(4,8) K=3 =07
LogiQA M=4 N=4 (TwinTmax)=(48) K=3 =07
ARC-C M=4 N=4 (Twin,Tmax)=(4.8) K=3 6=0.7
AIME2024 | M=3 N=2 (Tmin,Tmax)=(32,64) K=3 6=0.7
Mistralv0.3-7B-Instruct
GSMSK M=4 N=4 (Tmin,Tmax)=(2,8) K=3 =07
MATH-500 | M=4 N=4 (TminsTmax)=(1,8) K=3 0=0.7
GPQA M=4 N=4 (Twin,Tmax)=(1,8) K=3 6=0.7
ReClor M=4 N=4 (Tmin,Tmax)=(2,8) K=3 =07
LogiQA M=4 N=4 (TwinTmax)=28) K=3 =07
ARC-C M=4 N=4 (Toin.Tmax)=2,8) K=3 =07
Qwen2.5-3B-Instruct
GSMS8K M=4 N=4 (Trin>Tmax)=(4,8) K=3 6=0.7
MATH-500 | M=4 N=4 (Tmin,Tmax)=(4,8) K=3 =07
GPQA M=4 N=4 (Twin,Tmax)=3.8) K=3 6=0.7
ReClor M=4 N=4 (Tnin,Tmax)=4.8) K=3 6=0.7
LogiQA M=4 N=4 (Twin.Tmax)=4.8) K=3 =07
ARC-C M=4 N=4 (Tmin,Tmax)=(4,8) K=3 0=0.7
LLaMA3.1-70B-Instruct
GSMS8K M=4 N=4 (TminsTmax)=(7,8) K=3 0=0.7
MATH-500 | M=4 N=4 (TininsTmax)=(3,8) K=3 6=0.7
ReClor M=4 N=4 (Trmin,Tmax)=(2.8) K=3 =07
LogiQA M=4 N=4 (TwinTmax)=(68) K=3 =07
DeepSeek R1-Distill-LLaMA-8B
AIME2024 | M=4 N=4 (TminTmax)=(1632) K=3 6=0.7

Table 5: Experimental setup of ¢-Decoding. M denotes
the step beam size. NV is the number of rollouts for
each step beam. Tiy,;, and Ty, .« represent the least and
the most foresight step number respectively. K is the
number of clusters while § means the early-stopping
threshold using clustering.

B Algorithm of ¢-Decoding

The pseudo code of ¢-Decoding is presented in
Algorithm 1. To make a high-level overview of ¢-
Decoding, we also provide the pipeline in Figure 6.

Question

v Tlimestamp t)
)

1

Step
Rollout

i

In-Width
Next Pruning

timestamp

i

Step
Foresight

J

Calculate
Step Value
&
Sample

In-Depth
Pruning
—

\ (break

Complete
&
Sample

Y

Step Sequence

Figure 6: Overall pipeline of ¢-Decoding.

C Generalization to Smaller LL.Ms

Besides the generalization to 70B-sized backbone,
we also supplement the evaluations on 3B-sized
model. Table 8 presents the performances on
Qwen2.5-3B-Instruct model.

Compared with the auto-regressive chain-of-
thought baseline, ¢-Decoding provides obvious
performance gains across 6 reasoning benchmarks,
improving the average performance by 3.80%.

D Accuracy of Step Value Estimation

To measure whether the estimated step value aligns
with the actual rewards, we conduct the analysis

13225

Algorithm 1 ¢-Decoding

Input: Input query x, LLM 7y, step beam size M, number of rollouts on each beam N, minimum and
maximum number of step foresight 71, and Thyin, number of clusters K, early-stopping threshold 9.
Output: Step sequence.

fort =1,2,...,Thix do
> Step Rollout (In Parallel)
form=1,...,M do
forn=1,2,...., Ndo
Sample single step agm’n), Simm) ~ po(+|z, a(g))
end for
end for
> In-Width Pruning (filter erroneous candidates)
Derive mean p; and variance O't2 from these step confidence s;
Prune steps and keep the remaining ones for foresight: .} < {aﬁm’") e — o < ng,n)}
> Step Foresight (In Parallel)
for each agm’") in.% do
Derive foresight steps and foresight scores: ag’z’n), Ft(m’n) ~ po(-|x,a
end for
> Step Value Esitimation (In Parallel)
fori=1,2,...,].%]| do
m, n < the superscript of i** candidate in .7}
Derive Advantage via AF of adjacent steps: Agm’n) — Ft(m’n) - Ft(lnl)

&)

>

Derive Alignment via clustering: C\"™") « Cluster({a(;?’n)})
Combine Advantage and Alignment: R(x, a(ST'Z’n), a(g’n)) — Norm(Agm’n)) + Norm(Ct(m’n))

w; < exp R(x,a(S"Z’n), a(;?’n))/T

end for
>Sample M Steps
form=1,2,.... M do
: o . i 1Al
Sample without replace: i ~ Categorlcal({ﬁ}i:t1)

Sampled step: agm) — Ali]

end for

> In-Depth Pruning (early-stop)

break if ¢ > T}y, and EarlyStop(9d) is True;
end for
Complete all candidates at the last foresight step and sample only one based on the R function.
Return Step sequence.

13226

Cluster Methods | GSM8SK

Math-500 GPQA ReClor

LogiQA ARC-c | Avg. FLOPS

¢-Decoding (LLaMA3.1-8B-Instruct)

TF-IDF 86.58 38.20 3460 64.00 4839 8541 | 59.53 6.43 x 10'7

SBERT (109M) 86.43 39.20 33.26 63.20 47.48 8541 | 59.16 6.52 x 107

SBERT (22.7M) 86.05 36.80 33.26 62.40 45.47 8541 | 5823 6.61 x 10*7
Table 6: Variants of cluster strategies.

K o | GSMSK Math-500 GPQA ReClor LogiQA ARC-c | Avg. FLOPS
¢-Decoding (LLaMA3.1-8B-Instruct)

3 07 86.58 38.20 34.60 64.00 48.39 8541 | 59.53 6.43 x 10*7

2 08| 8552 39.40 33.04 6420 4685 8541 | 59.07 6.26 x 10'7

4 05 83.93 38.20 32.37 64.00 43.78 84.81 | 57.85 6.15 x 10'7

Table 7: Various setups of cluster.
Tasks | AR(CoT) ¢-Decoding A E In-depth Analysis of Cluster Strategies
Qwen2.5-3B-Instruct E.1 Variants of Cluster

GSM8K 78.62 85.60 +6.98 In the main experiments, we implement the cluster

MATH-500 41.00 45.20 +4.20 strategy with TF-IDF, which is from the syntax

GPQA 28.57 28.79 +0.22 . .

ReClor 5360 59 40 +5.80 perspective. It can also be replaced with sentence-

LogiQA 42.70 46.08 +3.38 BERT (SBERT) (Reimers and Gurevych, 2019) to

ARC-C 77.47 79.69 +2.22 obtain the sentence embedding for clustering.

Avg. | 53.66 57.46 +3.80 Table 6 presents the comparisons between dif-

Table 8: Generalization to smaller backbone Qwen2.5-
3B-Instruct.

in Sec. 4.3. At each timestamp ¢, we can derive
the value estimation of the candidate steps via the
decoding strategy. These step values can approxi-
mate a distribution ;. Meanwhile, we can derive
the explicit outcome of each candidate step using
the foresight paths. Comparing the outcome with
ground-truth, the outcome accuracy for these can-
didate steps can also form a distribution P, where
|P1| = | P2|. We derive the distribution matching
as the accuracy of step value estimation:

S (PL(0) — Po(i))?
|P1|

Accuracy =1 — 13)
where Pi(i) € Pi, P»(i) € P, In the imple-
mentation of P;, we use the model estimated step
values for sampling-based methods (¢-Decoding
and Predictive Decoding). For auto-regressive and
ToT methods, we allocate binary rewards for the
selected steps (rewarded as 1) and other candidates
(rewarded as 0). The final accuracy score is calcu-
lated by averaging the results on each timestamp.

ferent cluster strategies. SBERT (109M) em-
ploys the pretrained sentence embedding model
of multi-ga-mpnet-base-dot-v1, while SBERT
(22.7M) utilizes the model of all1-MinilM-L6-v2.
From the results, clustering with the external
embedding model can also lead to similar competi-
tive performances, slightly lower than the TF-IDF
strategy. Also, it is observed that increasing the
size of the sentence embedding models can bring
improvements in the average performances.

E.2 Hyperparameters of Cluster

Table 7 offers the analysis on different hyper-
parameters. We keep the other configuration fixed
for fair comparison, where M=4 and N=4. Un-
der this setting, the maximum number of foresight
paths for clustering is 16. Based on the results, the
cluster size K=2 or 3 would be good choices. With
K increasing, it may bring much uncertainty.

13227

