
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 13168–13193
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Extending Complex Logical Queries on Uncertain Knowledge Graphs

Weizhi Fei∗♣, Zihao Wang* †, Hang Yin♣, Yang Duan⋆, Yangqiu Song†

♣ Department of Mathematical Sciences, Tsinghua University, Beijing, China
† CSE, HKUST, HKSAR, China

⋆ Department of Computer Science, Princeton University, Princeton, United States
{fwz22,h-yin20}@mails.tsinghua.edu.cn

{zwanggc,yqsong}@cse.ust.hk, yd1202@cs.princeton.edu

Abstract

The study of machine learning-based logical
query answering enables reasoning with large-
scale and incomplete knowledge graphs. This
paper advances this area of research by ad-
dressing the uncertainty inherent in knowledge.
While the uncertain nature of knowledge is
widely recognized in the real world, it does
not align seamlessly with the first-order logic
that underpins existing studies. To bridge this
gap, we explore the soft queries on uncertain
knowledge, inspired by the framework of soft
constraint programming. We propose a neu-
ral symbolic approach that incorporates both
forward inference and backward calibration to
answer soft queries on large-scale, incomplete,
and uncertain knowledge graphs. Theoretical
discussions demonstrate that our method avoids
catastrophic cascading errors in the forward in-
ference while maintaining the same complexity
as state-of-the-art symbolic methods for com-
plex logical queries. Empirical results validate
the superior performance of our backward cali-
bration compared to extended query embedding
methods and neural symbolic approaches. 1

1 Introduction

Representing and reasoning with factual knowl-
edge are essential functionalities of artificial intelli-
gence systems. As a powerful way of knowledge
representation, Knowledge Graphs (KGs) (Miller,
1995; Suchanek et al., 2007; Vrandečić and
Krötzsch, 2014) use nodes to represent entities and
edges to encode the relations between entities. Re-
cently, Complex Query Answering (CQA) over
KGs has attracted considerable attention because
this task requires multi-hop logical reasoning over
KGs and supports many applications (Ren et al.,
2023; Bai et al., 2024b,a; Hu et al., 2024). This task
requires answering the existential First Order Logic

*Equal Contribution
1Our data and code are available in https://github.

com/HKUST-KnowComp/Soft-Queries-on-Uncertain-KG.

(FOL) query, involving existential quantification
(∃), conjunction (∧), disjunction (∨), and negation
(¬). While answering FOL queries has been exten-
sively researched by database community (Riesen
et al., 2010; Hartig and Heese, 2007), such studies
overlook the incompleteness of most KGs. Con-
sequently, conventional graph traversal methods
for relational database queries may neglect certain
answers due to the missing links of KGs. In recent
studies on complex logical queries on knowledge
graphs, the generalizability of machine learning
models is leveraged to predict the missing links
of observed KGs and conduct first-order logic rea-
soning (Ren and Leskovec, 2020; Arakelyan et al.,
2021; Liu et al., 2021; Wang et al., 2023b). This
combination of machine learning and logic enables
further possibilities in data management (Ren et al.,
2023).

The uncertainty of knowledge is widely ob-
served ranging from daily events (Zhang et al.,
2020) to complex biological systems (Szklarczyk
et al., 2023). To represent the uncertain knowl-
edge, confidence values p are associated with facts
to augment the KG (Carlson et al., 2010; Speer
et al., 2017; Szklarczyk et al., 2023), known as
the uncertain KG. As exemplified in the right of
Figure 1, which illustrates the Job Candidates un-
certain KG, confidence values are used to quantify
the degree of practice level associated with specific
skills. Uncertainty is prevalent in existing KGs pri-
marily because most are constructed using machine
learning models, where the predicted likelihood of
relational facts inherently introduces uncertainty.
Notable examples include O*NET (Pai and Costa-
bello, 2021), STRING (Szklarczyk et al., 2023),
ConceptNet (Speer et al., 2017), and AESR (Zhang
et al., 2020). To address the incompleteness of
uncertain KGs, recent studies estimate the confi-
dence values of missing facts with the generaliza-
tion power of ML models (Chen et al., 2019; Pai
and Costabello, 2021).

13168

https://github.com/HKUST-KnowComp/Soft-Queries-on-Uncertain-KG
https://github.com/HKUST-KnowComp/Soft-Queries-on-Uncertain-KG

Lead Dev

Junior Software Developer

0.7Necessity

1Importance

0.5Necessity

3Importance

¬

Lead ML

Principle Investigator in ML

0.7Necessity

3Importance

0.9Necessity

1Importance

Query Structure

Soft Requirements

Uncertain KG for Job Candidates

Person 1

Person 3

Leading a team (Lead)

Developing large project (Dev)
Candidate Resume Skillset

Conducting ML research (ML)

0.0
0.8

Person 2

0.7 0.10.3

0.7
0.9

Soft Query for Candidate Search

0.1 (estimated)

0.9

(a) (b)

Figure 1: (a) Examples of two soft queries in the candidate search procedure. The soft queries introduced in this
paper are jointly defined by first-order logic and soft requirements. In particular, soft requirements (necessity and
importance) are introduced to characterize fine-grained decision-making preferences, distinguishing them from
first-order queries. (b) Incomplete uncertain KG for to what extent a candidate possesses a skill. Solid lines indicate
the observed knowledge, while dashed lines indicate the unobserved data. Values indicate confidence level, where
the higher value indicates the fact is more likely to be true.

Table 1: Comparison of different problem settings. FO: First Order, EFO: Existential First Order.

Problem Settings Language of reasoning Uncertainty of Knowledge Unobserved Knowledge

Relational database FO - -
Probablistic database FO Confidence value p -
Open world probablistic database FO Confidence value p Uniformed pu for all unobserved facts
Complex logical queries on KG EFO - ML generalization to unobserved facts
Soft queries on uncertain KG (Ours) EFO + Soft requirements Confidence value p ML generalization to unobserved facts and confidence p

To reason with uncertainty, many extensions of
first-order logic have been made to cope with the
uncertainty in knowledge representation systems
formally (Adams, 1996). It is noteworthy to men-
tion that the study of probabilistic databases also
extends the relational databases with a confidence
value p ∈ [0, 1] (Cavallo and Pittarelli, 1987; Suciu
et al., 2022). From a machine learning perspec-
tive, however, previous studies in open world prob-
abilistic databases are limited from two aspects:
(1) They assume uniform uncertainty for all unob-
served knowledge (Ceylan et al., 2021), leading to
weaker characterization of the incomplete knowl-
edge without the generalization. (2) They focus
on first-order logic, which might be insufficient to
describe practical reasoning processes with uncer-
tainty. To address the limitations, we extend the
complex query answering to uncertain KG and pro-
pose soft queries combining query structure and
soft requirements, as shown in the left of Figure 1.

This paper studies the machine learning method
for reasoning with incomplete and uncertain knowl-
edge, advancing previous studies in symbolic prob-
abilistic databases. Its contribution is threefold.

Contribution 1: A novel and practical setting.
We propose a novel setting of Soft Queries on Un-
certain KG (SQUK). Our setting extends the previ-
ous setting of complex logical queries on KGs in
two ways: (1) For the incomplete knowledge base,
SQUK extends the incomplete KG to incomplete
and uncertain KG. (2) For the language describing
reasoning, SQUK extends first-order language to
uncertainty-aware soft queries with soft require-

ments, which are motivated by real-world reason-
ing with uncertainty and the establishment in soft
constraint programming (Schiex, 1992; Rossi et al.,
2006). We also introduce the formal definition in
Section 3. The comparison of SQUK against other
settings is detailed in Table 1.

Contribution 2: ML method for soft queries. We
bridge machine learning and SQUK by proposing
Soft Reasoning with calibrated Confidence values
(SRC), which uses Uncertain Knowledge Graph
Embeddings (UKGEs) to tackle the unobserved
information and achieves the same computational
complexity as the state-of-the-art inference algo-
rithms (Bai et al., 2023b; Yin et al., 2024). The
error analysis is also conducted for SRC given
the error bound function, characterizing how the
performance is affected by UKGEs and the query
structures. Based on our analysis, we suggest cali-
brating the confidence by debiasing and learning,
which further boosts the performance of SRC.

Contribution 3: Extensive empirical studies.
We also conduct extensive empirical studies to
benchmark the performance of a broad spectrum
of methods under the UKGE (Chen et al., 2019)
settings. The calibrated SRC is compared against
baselines including Query Embedding (Ren and
Leskovec, 2020) methods with Number Embed-
dings (QE+NE) (Vaswani et al., 2017) and sym-
bolic search method (Yin et al., 2024). In particu-
lar, we compared the differences between QE+NE
and SRC under various soft query settings, demon-
strating the advantage of SRC. We also make a fair
comparison with large language models on anno-

13169

tated soft queries in a natural language setting.
We highlight the uniqueness of the SQUK setting

by examining the differences between uncertain
KGs and KGs, comparing soft queries with logi-
cal queries, and addressing the challenges posed
by two versions of incomplete knowledge. These
differences are also summarized in Table 1. Addi-
tionally, we present the related work concerning
complex logical query answering and uncertain
knowledge graph embedding in Appendix A.

2 Background

Uncertain KGs enhance traditional KGs by aug-
menting each triple fact with a confidence value,
thereby facilitating the modeling of uncertain
knowledge, which is particularly useful in vari-
ous domains. Figure 1 illustrates uncertainty in
job backgrounds. We formally define an uncertain
knowledge graph as a set of knowledge as follows:

Definition 1 (Uncertain knowledge graph). Let E
be the set of entities and R be the set of relations,
an uncertain knowledge graph G is a set of quadru-
ple {(si, ri, oi, pi)}, where si, oi ∈ E are entities,
ri ∈ E is relation and pi ∈ [0, 1]2 represents the
confidence value for the relation fact (si, ri, oi).
This confidence value pi indicates the degree of
certainty regarding the truth of the fact.

Following the closed-world assumption (Reiter,
1981) and treating all unobserved facts as false,
we can derive the weight graph form for uncertain
KG and represent it with the confidence function
P : E ×R× E 7→ [0, 1] as follows:

P (hi, ri, ti) =

{
pi (hi, ri, ti, pi) ∈ G,
0 otherwise.

(1)

Uncertain KGs also suffer incomplete is-
sues (Chen et al., 2019, 2021a), with observed
knowledge representing only a small portion of
the total facts. The assumption that all unseen rela-
tional facts are false is inappropriate in real-world
scenarios. To address this challenge, previous re-
search on uncertain KGs has proposed a machine
learning task to predict the confidence scores of
these unseen relational facts (Chen et al., 2019,
2021a). Typically, the observed knowledge in un-
certain KGs is split into three nested sets of facts,
where Gtrain ⊊ Gvalid ⊊ Gtest. The training set Gtrain
is used to train the model, while the validation and

2The values of uncertain KGs also indicate the strength or
importance. For simplify, previous work (Pai and Costabello,
2021) normalized the range of values into the interval [0, 1].

test sets are used to evaluate its performance in
predicting the confidence scores of unseen facts.

Uncertain Knowledge Graph Embeddings
(UKGEs) (Chen et al., 2019, 2021a) have been
the mainstream methods for predicting unseen re-
lational facts in uncertain KGs, as they learn low-
dimensional representations that effectively capture
the semantics between relations and facts, demon-
strating strong generalizability. UKGEs are trained
on partial facts Gtrain and approximate the confi-
dence function P deriving from complete facts,
defined as the following confidence function:

Definition 2. An UKGE parameterizes a differen-
tiable confidence function P̂ : E ×R×E 7→ [0, 1].

In practice, obtaining complete facts is challeng-
ing, so Ptest induced by Gtest are usually substituted
for P , which adhere to previous approaches (Chen
et al., 2019; Pai and Costabello, 2021). We present
the connection between this setting and the open-
world assumption in Appendix E.

3 Soft Queries

The uncertainty inherent in KGs can be modeled
using confidence values for each knowledge. How-
ever, current complex logical queries are defined
on a boolean basis 3, which is not compatible with
uncertain KGs. This uncertainty necessitates new
definitions for logical operations and answer sets.
In this section, we introduce the definition of our
extended soft queries.

3.1 Syntax and semantic

Definition 3 (Syntax of soft queries). Soft queries
are the disjunction of soft conjunctive queries ϕi:

Φ(y) = ϕ1(y) ∨⃝ · · · ∨⃝ ϕq(y), (2)

where y is the free variable. Each ϕi(y) is the
conjunction of the soft atomic formula:

ϕi(y) = ∃x1, . . . , xn.ai1 ∧⃝ · · · ∧⃝ aij , i = 1, ..., q, (3)

where x1, . . . , xn represent existentially quantified
variables. Each ai is a soft atomic formula of the
form (h, r, t, α, β) or its negation ¬(h, r, t, α, β).
Here, r denotes the relation, h and t can be either
an entity in E or a variable in {y, x1, ..., xn}. α
represents the necessity value, and β represents the
importance value. The ∧⃝ and ∨⃝ represent soft
conjunction and disjunction operation.

3For details on logical queries, please refer to Appendix D.

13170

Definition 4 (Substitution). For a soft query in-
volving variables, the substitution replaces all oc-
currences of the variable x (or y) with any entity
s ∈ E simultaneously, denoted as s/x (or s/y).

We denote ϕ(s) for the result of substituting s for
the free variable y. When all variables in the soft
query ϕ have been substituted, we refer to it as the
substituted query. Next, we define the semantics of
the soft queries, starting with the soft atomic for-
mula. Specially, the soft atomic formula involves
two novelty concepts: α necessity and β impor-
tance, which are inspired form soft Constraint Sat-
isfaction Problems (CSPs) (Rossi et al., 2006) to
manipulate the uncertainty of facts. We introduce
the related work of soft CSPs in Appendix F.

1. The α necessity component draws inspiration
from possibilistic CSPs (Schiex, 1992) and is de-
signed to capture necessity criteria. It serves the
purpose of filtering out unnecessary constraints and
involves a thresholding operation. The threshold-
ing operation [p]α is defined as follows:

[p]α =

{
p p ≥ α,

0 otherwise.
(4)

2. The β importance component is influenced by
weighted CSPs (Bistarelli et al., 1999) to describe
preference, which is the weight employed to adjust
the relative significance of different conditions.

Definition 5 (Semantic of soft queries). Given a
semiring (R+,⊕,⊗, 0) over R+, the confidence
function P induced by an uncertain knowledge
graph G, and a soft query ϕ, let s and o be entities
in E . The confidence value U(ϕ, P) is recursively
defined as follows:

1. If ϕ is the substituted soft atomic query
(s, r, o, α, β), then U(ϕ, P) = β[P (s, r, o)]α;

2. If ϕ is the negation of the substituted soft
atomic ¬(s, r, o, α, β), thenU(ϕ, P) = β[1−
P (s, r, o)]α;

3. If ϕ = ∃xiψ(y;xi) is the soft query involv-
ing existentially quantified variables, then
U(ϕ, P) = ⊕s∈EU(ϕ(y; s/xi), P);

4. If ϕ is the conjunctive query (ϕ1 ∧⃝ ϕ2), then
U(ϕ, P) = U(ϕ1, P)⊗ U(ϕ2, P).

5. If Φ is the disjunctive query (Φ1 ∨⃝ Φ2), then
U(Φ, P) = U(Φ1, P)⊕ U(Φ2, P).

To align with the semantics of the confidence
value, we instantiate the semiring as (⊗,⊕, 0) =
(+,max,−∞). We discuss the utilized semiring of
the previous soft CSP setting in Appendix F. With
semantics, we can compute the utility of entity s

for the soft query ϕ. The utility of all entities can
be conveniently represented as a vector.

Definition 6 (Utility vector). Given a confidence
function P induced by an uncertain knowledge
base and a soft query ϕ, the utility vector of soft
query Φ, denoted as u ∈ R|E|, is defined as:

ui = U(Φ(si/y), P), (5)

where si denotes the entity indexed by i.

3.2 Example to explain the soft queries, as
well as the necessity and importance

Soft queries are a powerful tool for modeling candi-
date searches across various job positions, enabling
nuanced assessments of qualifications. To illustrate
this, we present an example of using soft queries
to model candidate searches for two roles: Junior
Software Developer (JSD) and Principal Investiga-
tor (PI) in machine learning. Let HAS denote the
relation describing a candidate’s possession of a
skill, while LEAD, DEV, and ML represent lead-
ership, development, and machine learning skills,
respectively. Regarding leadership, the Principal
Investigator places a significantly high emphasis
on it, while the Junior Software Developer does
not. This distinction is captured by the importance
parameter β, which assigns greater weight to lead-
ership in the query for the Principal Investigator.
Additionally, the necessity parameter α serves as
a threshold to filter out candidates who lack the re-
quired skills. The two roles can be modeled using
the following soft queries, as further explained in
Figure 1:

ϕJSD(y) =¬(y, HAS, LEAD, 0.7, 1)) ∧⃝ (y, HAS, DEV, 0.5, 3),

ϕPI(y) =(y, HAS, LEAD, 0.7, 3) ∧⃝ (y, HAS, ML, 0.9, 1)).

Beyond recruitment, soft queries provide an ef-
fective and tailored strategy for modeling logical
queries on uncertain KGs. This capability can ex-
tend the application of logical queries to uncertain
KGs, enabling use cases such as product recom-
mendation (Bai et al., 2024b) and understanding
user intentions (Bai et al., 2024a).

3.3 Soft query graph and utility vector
Definition 7 (Soft query graph). Given a soft
query ϕ(y;x1, ..., xn) = ∃x1, ..., xn.a1 ∧⃝ · · · ∧⃝
am, the soft query graph Gϕ is defined by tu-
ples induced by soft atomic formulas or its
negation: Gϕ = {(hi, ri, ti, αi, βi,NEGi)}mi=1,

13171

where (hi, ri, ti, αi, βi,NEGi)) is induced by
(hi, ri, ti, αi, βi) or ¬(hi, ri, ti, αi, βi). NEGi is
the bool variable indicating if ai is negated.

If h (or t) is a variable, we say the corresponding
node in Gϕ is a variable node. V (Gϕ) indicates
the set of all variable nodes in Gϕ. If h (or t)
is an entity, we say the corresponding node is an
constant node. The leaf node is a node that is only
connected to one other node in the query graph.
Compared to the operation tree in complex logical
queries (Ren and Leskovec, 2020), the soft query
graph can model any conjunctive soft queries.

4 Methodology

In this section, we propose Soft Reasoning with
calibrated Confidence values (SRC) to facilitate
reasoning with various query structures and soft re-
quirements. SRC is a symbolic reasoning method
that utilizes UKGE to provide confidence values.
Since UKGE inevitably has prediction errors, we
present a mild assumption regarding the UKGE
error bound in Equation (7). Our error analysis
over SRC indicates that the inference error is man-
ageable as the complexity of the query structure
increases. To further reduce this error, we introduce
two orthogonal calibration strategies: Debiasing
(D) and Learning (L).

4.1 Forward inference

The main paper discusses soft queries in which
the query graphs are acyclic simple graphs. Cases
with the complete case (cycles and self-loops) are
detailed in Appendix H.

Given the soft query ϕ, SRC efficiently de-
rives the utility vector U(ϕ, P̂) based on the con-
fidence function P̂ approximated by UKGE. The
core idea is to progressively prune the edges of the
soft query graph while preserving the constraints
of the remaining edges, ensuring that the final util-
ity vector remains unchanged. State vectors are
used to record the constraints of the pruned edges
during the inference process. Specifically, each
variable node z ∈ Gϕ is described by a state vector
Cz ∈ R|E|. The notation (Gϕ, {Cz : z ∈ V (Gϕ)})
denotes a soft query graph with state vectors.

We define equivalent transformations as T :

T (Gϕ, {Cz : z ∈ V (Gϕ)}) = (Gψ, {C′
z : z ∈ V (Gψ)}), (6)

where Gψ is a subgraph of Gϕ (with at least one
edge eliminated), C ′

z is the updated state vector,
and T guarantees the utility vector û unchanged.

Algorithm 1 SRC (simple acyclic case)

Require: Input soft query graph Gϕ and initialize
the state vectors {Cz}.

Ensure: Output utility vector û(Gϕ, {Cz}).
(Gϕ, {Cz})← REMOVECONSTNODE(Gϕ, {Cz})
while There exists a leaf node do

(Gϕ, {Cz})← REMOVELEAFNODE(Gϕ, {Cz})
end while
Get the utility vector by retrieving Cy.

Two lemmas are presented to induce two equiva-
lent transformations, denoted as Te and Tl, respec-
tively. The proof can refer to Appendix H.

Lemma 1. For each constant node in Gϕ, an
O(|E|) transformation Tc exists to remove it.

Realization of the equivalent transformation Tc
induces a function REMOVECONSTNODE.

Lemma 2. For each leaf node in Gϕ, an O(|E|2)
transformation Tl exists to remove it.

Realization of the equivalent transformation Tl
induces a function REMOVELEAFNODE.

The above two transformations are constructive
and can be applied to remove edges once the cor-
responding nodes are found. Until the soft query
graph only contains a free variable node, the state
vector of the free variable Cy is the desired util-
ity vector. The procedure of SRC for acyclic soft
query graphs is presented in Algorithm 1 and one
toy example of the execution is visualized in Fig-
ure 3. We first remove constant nodes, as these
are commonly found and can be easily eliminated
using Lemma 1. Subsequently, we identify and
remove leaf nodes step by step, according to the
Lemma 2, noting that the leaf node always exists
for acyclic queries.
Complexity analysis. We begin with a rough es-
timation of the complexity. The space complex-
ity of the inference algorithm is O(|R||E|2). Let
ne denote the number of edges involving exis-
tential variables and nr represent the remaining
edges. For acyclic queries, the time complexity is
O(ne|E|2 + nr|E|). We further reduce complex-
ity by leveraging sparsity, a natural characteris-
tic of knowledge graphs. For space complexity,
only non-zero values or those exceeding a thresh-
old δ1 are stored and the average sparsity ratio of
our constructed neural matrices is approximately
3.4%, reducing storage requirements by 97%. For
time complexity, sparsity can be used to acceler-
ate computation. Removing a leaf node x typi-

13172

Lemma 1 Lemma 2

1.7
1.2
2.5

0.8
0.4
1.0

0.5
0.7
1.2

0
0
0

0.1
0.3
0.2

0.3
0.1
0.5

0
0
0

0
0
0

0
0
0

Lemma 2

Figure 2: A toy model illustrating the process of the SRC. Each variable node is assigned a state vector, which is
updated through the algorithm as edges are removed. The final state vector of the free variable is the desired.

cally involves O(E2) operations, but by consider-
ing only rows where Cx is non-zero, this reduces to
O(E ·(|Cx > δ2|)), where |Cx > δ2| represents the
non-zero number of Cx. Thus, the time complexity
becomes O(neE ·maxx(|Cx > δ2|)), where ne is
the number of edges involving existential variables.

4.2 Error analysis
The current model still exhibits significant pre-
diction errors, with the mean absolute error on
CN15K generally reaching around 0.2 (Chen et al.,
2021a,b). To facilitate the error analysis of our
proposed search algorithm, we introduce the error
bound ε(δ) as the following:
Definition 8. Let ε be a function that maps the
error δ to a tail probability which can uniformly
bounds the error of P̂ for some kind of norm:

Pr

(
max
(s,r,o)

∥P̂ (s, r, o)− P(s, r, o)∥ > δ

)
< ε(δ). (7)

We note that ε(δ) < 1 is guaranteed for all δ
and ε(δ) decreases monotonically with δ, though a
better link predictor provides a tighter ε(δ). This
definition provides a practical and flexible approach
for analyzing the errors over uncertain KGs. We
look into the error of each soft atomic query:
Theorem 1. For any soft atomic query ψ =
(h, r, y, α, β), let the uniform inference error be

max
ψ,s∈E

∥U(ψ(s/y), P̂)−U(ψ(s/y),P)∥ = ϵ(α, β)

Then we estimate the distribution of ϵ(α, β) by the
uniform error-bound ε(δ) provided in Equation (7)
and assume the probability density function of P is
f(ξ) :

Pr (ϵ(α, β) > δ) < ε(
δ

β
) + (1 − ε(

δ

β
))

∫ 1

0

ε(|α − ξ|)f(ξ)dξ.

Moreover, the numerical stability is guaranteed:
Theorem 2. For a soft conjunctive query ϕ =
∃x1, ..., xn.a1 ∧⃝ · · · ∧⃝ am, where ai =
(hi, ri, ti, αi, βi), and any entity s ∈ E , the error
accumulated is at most linear:

∥U(ϕ(s), P̂)− U(ϕ(s),P)∥ ≤ Σm
i=1ϵ(αi, βi). (8)

This conclusion ensures that there is no catas-
trophic cascading error in our forward inference
algorithm. The proof of all the above theorems can
refer to Appendix N.

4.3 Two calibration strategies

Debiasing. The confidence function P̂ of UKGE
is biased towards zero. We propose a debiasing
strategy for the inference. We modify the soft re-
quirements α as α − ∆α. We can see that this
simple debiasing strategy improves performance.
SRC with this strategy is denoted as SRC(D).
Learning. The pre-trained UKGE is not optimal
for SRC in the incomplete uncertain KGs. We pro-
pose the calibration by learning (L) strategy by
learning the calibrated confidence function. Specif-
ically, we calibrate the confidence function P̂c by
learnable affine transformation (Arakelyan et al.,
2023) as following:

P̂c(s, r, o) = P̂ (s, r, o)(1 + ρθ(s, r, o)) + λθ(s, r, o), (9)

[ρθ(s, r, o), λθ(s, r, o)] =
∑

j∈{s,r,o}
(Wjej + bj).

Here, ρθ(s, r, o) and λθ(s, r, o) are the affine pa-
rameters. ej ∈ Rd represents the embedding for
entity or relation j ∈ {s, r, o} with embedding di-
mension d. Meanwhile, Wj ∈ R2×d and bj ∈ R2

are the learnable parameters associated with j.
As implied by both Theorem 1 and Theorem 2,

the error of SRC is rooted in the error bound of
UKGE. As we can see from Equation (8) the error
bound is governed by both ε and the integral of ε
over the domain [0,max(α, 1− α)]. An important
implication is that when α = 0, the integral of
ε will be fully [0, 1]4. Therefore, our theoretical
analysis motivates the goal of calibration as the
minimization of the mean squared error between

4The case of α = 1 ruled out almost all uncertain cases,
which is not applicable in differentiable learning.

13173

the predicted utility and the observed utility of an-
swers:

L =
∑

u(s)>0

(U(ϕ(s), P̂c)− U(ϕ(s),P))2, (10)

where U(ϕ(s), P̂c) represents the predicted utility
vector of a soft query ϕ according to Definition 6.
SRC with this strategy is denoted as SRC(L).

Notably, we only need to train the calibration
transformation in the cases of α = 0, achieving a
simpler training strategy but better generalization
capability when compared to the QE+NE baselines,
as will be presented in Appendix B.

5 SQUK Dataset Construction

We provide a brief overview of dataset construction
and the details can refer to Appendix K.

5.1 Useful queries and evaluation protocols

The validation/test uncertain knowledge graph in-
corporates new facts that will update the utility
vectors of specific soft queries. Only these par-
ticular queries are considered meaningful and in-
cluded in the evaluation. The evaluation of soft
queries not only considers recall but also accounts
for the values of the recalled answers. Therefore,
we adopt metrics from the learning-to-rank frame-
work (Liu et al., 2009) as our evaluation protocol,
which includes Mean Average Precision (MAP),
Normalized Discounted Cumulative Gain (NDCG),
Spearman’s rank correlation coefficient (ρ), and
Kendall’s rank correlation coefficient (τ).

We choose 1P, 2P, 2I, 2IN, and 2IL as train query
types and add 3IN, INP, IP, 2M, and IM as valida-
tion/test query types. The training query types en-
compass basic operations, allowing us to evaluate
the ability of machine learning methods to gener-
alize to commonly used unseen query types (Yin
et al., 2024). We visualize the structure of these
types in Figure 4. Additionally, Table 8 shows the
statistics of training queries of our dataset.

Table 2: The statistics of train queries.

KG 1P 2P 2I 2IN 2IL

PPI5k 9,724 9,750 9,754 1,500 1,500
O*NET20k 18,266 18,300 18,300 1,850 1,850

CN15k 52,887 52,900 52,900 5,300 5,300

5.2 Uncertain KGs

We utilize three standard uncertain KGs:
CN15k (Chen et al., 2019) for encompassing

commonsense, PPI5k (Chen et al., 2019) for
biology, and O*NET20K (Pai and Costabello,
2021) for employment domains. These uncertain
KGs are noisy and incomplete, requiring the ML
models to predict the confidence values.

5.3 Soft requirements

For the α parameter, we establish connections with
the percentile value of the relation to represent the
necessity value effectively. We assign specific per-
centiles to different necessity levels: the 25th, 50th,
and 75th percentiles correspond to “low”, “normal”,
and “high” necessity criteria, respectively. We en-
sure that a “zero” requirement is assigned when
the necessity criteria reaches 0. We also introduce
a hybrid strategy that randomly selects necessity
values, enabling a comprehensive evaluation.

For the β importance setting, we employ two
strategies: “equal” and “random”. Under the
“equal” strategy, all importance values are assigned
an importance value of 1.0. In contrast, the “ran-
dom” strategy introduces variability by assigning
random decimal numbers between 0 and 1 to repre-
sent the importance of each soft atomic formula.

Soft queries feature flexible settings for α and
β, allowing users to customize them according to
their varying needs. To facilitate the evaluation of
our method’s practicality in real-world situations,
the proposed “random” strategy simulates a diverse
range of query options.

6 Experiments

In this section, we empirically explore how to an-
swer soft queries. We mainly compare our method
with generalized SoTA CQA models on SQUK
dataset, including commonly used query embed-
ding models and advanced symbolic search meth-
ods. Additionally, we evaluate the performance
of advanced commercial LLMs on soft queries
with clear natural language descriptions. The im-
plementation details of these experiments are in
Appendix G. We also conduct the ablation study
regarding the distribution and impact of two param-
eters α and β on both kinds of approaches, which
is presented in Appendix B due to page limitations.
We also provide the qualitative analysis of the ex-
periments in Appendix C.

6.1 Main results

Baselines We select two mainstream CQA meth-
ods as baselines: query embedding and symbolic

13174

Table 3: Result of answering soft queries. Logic+NE and ConE+NE refer to the query embedding with number
embedding extensions. SRC is our inference method, and SRC(D), SRC(L), and SRC(D+L) are explained in
Section 4.3. The four metrics are all higher, indicating better performance.

Uncertain KG Models τ AVG. ρ AVG. MAP AVG. NDCG
1P 2P 2I 2IN 2IL 2M 2U 3IN IP IM INP UP AVG.

CN15k

LogicE+NE 9.1 -1.5 4.8 6.0 18.3 5.1 -14.1 3.5 -2.4 6.4 -0.9 9.6 4.8 5.8 7.0 11.2
ConE+NE 5.3 4.3 3.5 6.3 18.4 6.9 20.5 2.9 1.8 10.4 1.7 14.9 8.1 10.0 7.7 13.2
LMPNN 22.8 9.2 4.8 10.9 15.5 9.7 9.7 4.3 5.7 9.1 4.9 1.5 9.0 11.4 14.7 21.2

SRC 15.0 2.4 -0.0 2.1 10.7 9.2 25.5 -2.0 -9.0 7.9 -4.4 13.0 5.9 8.9 9.2 15.5
SRC(D) 16.6 11.8 -0.6 6.9 10.9 11.7 34.4 0.1 5.2 12.5 4.7 24.2 11.5 15.1 12.9 21.8
SRC(L) 15.8 11.8 -0.4 2.4 11.0 12.4 32.3 -0.8 3.6 11.1 1.1 22.8 10.3 13.7 12.6 21.1

SRC(D+L) 15.6 13.4 -0.3 5.2 11.2 13.5 36.8 -0.4 8.2 12.2 4.8 28.2 12.4 16.2 13.7 23.2

PPI5k

LogicE+NE 20.5 22.6 17.1 10.4 24.4 20.0 30.4 9.1 12.4 14.1 -2.6 32.9 14.8 20.7 8.0 16.4
ConE+NE 29.2 42.5 26.4 20.7 32.6 33.9 35.9 16.6 36.6 29.4 22.5 42.2 30.7 40.8 44.1 49.2
LMPNN 30.1 38.2 20.2 14.0 34.0 27.2 18.0 13.7 34.3 27.5 25.7 29.1 26.0 35.2 32.0 39.0

SRC 66.6 70.9 49.9 42.7 71.0 42.9 71.6 32.7 65.6 37.1 57.2 70.4 56.5 66.7 68.4 70.7
SRC(D) 66.7 68.7 53.1 44.9 73.1 46.7 73.3 37.7 63.7 41.3 56.9 69.9 58.0 68.5 64.0 69.8
SRC(L) 66.8 71.7 52.7 43.4 72.8 43.8 72.7 34.4 66.6 38.3 58.0 71.4 57.7 67.8 69.8 71.6

SRC(D+L) 66.9 69.0 53.5 45.1 73.5 46.9 73.4 38.1 63.8 41.6 57.1 69.9 58.2 68.7 64.1 70.1

O*NET20k

LogicE+NE 6.3 9.5 43.5 3.9 36.6 9.7 15.3 8.3 11.1 8.8 3.8 -9.8 13.8 18.5 3.5 6.4
ConE+NE 30.8 41.9 57.0 21.8 46.0 37.7 49.7 48.0 22.7 21.7 14.2 53.1 36.8 47.2 27.5 38.7
LMPNN 20.6 24.9 40.9 12.9 45.7 21.5 18.9 29.1 21.2 17.0 22.5 12.1 23.9 31.9 13.8 21.2

SRC 72.0 54.9 68.6 67.6 67.3 36.9 76.0 59.2 47.6 29.1 48.9 52.4 57.3 65.3 27.1 41.3
SRC(D) 71.7 55.2 74.3 67.7 70.9 49.3 80.1 65.0 52.7 44.7 48.9 55.4 61.8 70.2 26.6 41.5
SRC(L) 71.6 56.7 69.8 66.8 68.4 38.2 77.6 59.9 51.3 32.1 49.8 55.4 58.7 66.5 27.6 41.8

SRC(D+L) 71.7 55.6 74.3 67.5 71.0 49.7 80.2 65.0 52.9 45.2 49.2 55.9 61.9 70.5 26.7 41.7

search. Specifically, we focus on two classical
query embedding methods: LogicE (Luus et al.,
2021) and ConE (Zhang et al., 2021). To enable
soft queries, we incorporate the relation projection
network with Number Embedding (NE) and ad-
just the loss function accordingly. 5 The forward
inference of our method, SRC, is directly general-
ized from SoTA symbolic methods FIT (Yin et al.,
2024), which serve as baselines for search methods.
Models analysis. The main results are presented in
Table 3, demonstrating that our proposed method
significantly outperforms both query embedding
methods and directly generalized symbolic meth-
ods. By leveraging the two calibration strategies,
debiasing (D) and learning (L), as explained in
Section 4.3, our method achieves superior results
across most KGs and metrics on average.
Query structure analysis. Although ConE per-
forms well on some trained query types, it strug-
gles with newly emerged query types and those
involving negation, such as INP and IM. In con-
trast, our method exhibits excellent performance
across the majority of query types, demonstrating
robust combinatorial generalization capabilities on
complex queries. Our method particularly excels
in handling challenging query types that involve
existential variables, such as 2P, 2M, IM, and INP,
highlighting its advantages in these scenarios.

6.2 The comparison with LLMs

We devise an evaluation framework to assess the
performance of LLMs, benchmarking their power-

5Detailed information can be found in Appendix J.

Table 4: The accuracy of manually annotated queries.

Model Llama3.3 70B Gemini-1.5-pro GPT-3.5-turbo GPT-4-preview SRC

Accuracy 42.6 37.1 34.3 37.8 48.9

ful reasoning abilities over uncertain knowledge.
To ensure fairness of the comparison, we consider
the queries sampled from CN15k and we choose
four candidate answers for each query. These
queries have also been manually filtered and la-
beled to ensure clearness and correctness. We de-
scribe the syntax and semantics of soft queries us-
ing natural language, prompting LLMs to select the
most suitable answer. The details on this setting
construction can refer to Appendix M.

The results, shown in Table 4, indicate that
even the simple symbolic SRC achieves signif-
icantly higher accuracy compared to Llama3.3
70B, Gemini-1.5-pro, GPT-3.5-turbo, and GPT-4-
preview. This demonstrates that large language
models (LLMs) struggle with complex arithmetic
operations involving uncertain values of knowl-
edge. Our evaluation is fair, as the required uncer-
tain knowledge is derived from well-known com-
monsense KGs ConceptNet, and the logical opera-
tions are expressed in natural language. Neverthe-
less, even advanced commercial LLMs struggle to
select the highest-scoring answer. This further em-
phasizes the difficulties presented by the proposed
soft queries and highlights the ongoing need for the
development of symbolic approaches.

13175

7 Conclusion

In this paper, we introduce a novel setting, soft
queries on uncertain KGs, which further extends
complex logical queries on KG. The soft queries
consider the incompleteness of large-scale uncer-
tain KGs and require the incorporation of ML meth-
ods to estimate scores for new relational linking
while handling semiring algebraic structures. Our
proposed soft queries also propose the soft require-
ments inspired by soft constraint satisfaction prob-
lems to control the uncertainty of knowledge. To
facilitate the research of soft queries, we construct
a soft query answering dataset consisting of three
uncertain KGs. Furthermore, we propose a new
neural-symbolic approach with both forward infer-
ence and backward calibration. Both theoretical
analysis and experimental results demonstrate that
our method has satisfactory performance.

8 Limitation

Soft queries extend complex logical queries over
Knowledge Graphs (KGs) by incorporating soft
requirements within uncertain KGs. However, the
scope of the proposed soft queries is limited, as it
primarily focuses on conjunctive queries. While
conjunctive queries form the foundation of com-
plex logical queries, this restriction may hinder the
expressiveness and applicability of the proposed
soft queries. Furthermore, the dataset does not in-
clude cyclic queries, which are NP-complete, even
though their complexity can be more easily ad-
dressed.

9 Potential Impact

Soft queries have the potential to perpetuate exist-
ing biases present in the underlying knowledge
graphs. If these graphs contain skewed or dis-
criminatory information, the results generated by
soft queries may reflect and amplify these biases,
leading to unfair outcomes in applications such as
hiring, credit scoring, or law enforcement. This
raises significant ethical concerns about fairness,
as marginalized groups may be disproportionately
affected by biased query results, resulting in sys-
temic inequality.

The utilization of soft queries to extract infor-
mation from knowledge graphs can pose serious
privacy risks. If queries access sensitive personal
data without proper safeguards, there is a potential
for unauthorized disclosures that violate individu-
als’ privacy rights. This concern is heightened in

contexts where the data might be used for profiling
or surveillance, making it imperative to establish
robust privacy protections and ethical guidelines
to ensure that individuals’ information is handled
responsibly and transparently.

10 Acknowledge

The authors of this paper were supported by the
ITSP Platform Research Project (ITS/189/23FP)
from ITC of Hong Kong, SAR, China, and the AoE
(AoE/E-601/24-N), the RIF (R6021-20) and the
GRF (16205322) from RGC of Hong Kong,SAR,
China.

References
Ernest Wilcox Adams. 1996. A primer of probability

logic.

Alfonso Amayuelas, Shuai Zhang, Xi Susie Rao, and
Ce Zhang. 2021. Neural Methods for Logical Rea-
soning over Knowledge Graphs.

Erik Arakelyan, Daniel Daza, Pasquale Minervini, and
Michael Cochez. 2021. Complex Query Answering
with Neural Link Predictors. In International Con-
ference on Learning Representations.

Erik Arakelyan, Pasquale Minervini, and Isabelle Au-
genstein. 2023. Adapting Neural Link Predictors
for Complex Query Answering. arXiv preprint.
ArXiv:2301.12313 [cs].

Jiaxin Bai, Xin Liu, Weiqi Wang, Chen Luo, and
Yangqiu Song. 2023a. Complex query answering
on eventuality knowledge graph with implicit log-
ical constraints. Advances in Neural Information
Processing Systems, 36:30534–30553.

Jiaxin Bai, Chen Luo, Zheng Li, Qingyu Yin, and
Yangqiu Song. 2024a. Understanding inter-session
intentions via complex logical reasoning. In Pro-
ceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 71–
82.

Jiaxin Bai, Yicheng Wang, Tianshi Zheng, Yue Guo, Xin
Liu, and Yangqiu Song. 2024b. Advancing abduc-
tive reasoning in knowledge graphs through complex
logical hypothesis generation. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1312–1329.

Jiaxin Bai, Zihao Wang, Hongming Zhang, and Yangqiu
Song. 2022. Query2Particles: Knowledge Graph
Reasoning with Particle Embeddings. In Findings
of the Association for Computational Linguistics:
NAACL 2022, pages 2703–2714.

13176

https://openreview.net/forum?id=tgcAoUVHRIB
https://openreview.net/forum?id=tgcAoUVHRIB
https://doi.org/10.48550/arXiv.2301.12313
https://doi.org/10.48550/arXiv.2301.12313

Jiaxin Bai, Zihao Wang, Yukun Zhou, Hang Yin, Weizhi
Fei, Qi Hu, Zheye Deng, Jiayang Cheng, Tianshi
Zheng, Hong Ting Tsang, et al. 2025. Top ten chal-
lenges towards agentic neural graph databases. arXiv
preprint arXiv:2501.14224.

Yushi Bai, Xin Lv, Juanzi Li, and Lei Hou. 2023b. An-
swering Complex Logical Queries on Knowledge
Graphs via Query Computation Tree Optimization.
In Proceedings of the 40th International Conference
on Machine Learning, pages 1472–1491. PMLR.
ISSN: 2640-3498.

Stefano Bistarelli, Ugo Montanari, Francesca Rossi,
Thomas Schiex, Gérard Verfaillie, and Hélene Fargier.
1999. Semiring-based csps and valued csps: Frame-
works, properties, and comparison. Constraints,
4:199–240.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating Embeddings for Modeling Multi-
relational Data. In Advances in Neural Information
Processing Systems, volume 26. Curran Associates,
Inc.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr
Settles, Estevam Hruschka, and Tom Mitchell. 2010.
Toward an architecture for never-ending language
learning. In Proceedings of the AAAI conference on
artificial intelligence, volume 24, pages 1306–1313.

Roger Cavallo and Michael Pittarelli. 1987. The the-
ory of probabilistic databases. In VLDB, volume 87,
pages 1–4.

Ismail Ilkan Ceylan, Adnan Darwiche, and Guy Van den
Broeck. 2021. Open-world probabilistic databases:
Semantics, algorithms, complexity. Artificial Intelli-
gence, 295:103474.

Jianshu Chen. 2023. Learning Language Representa-
tions with Logical Inductive Bias. arXiv preprint.
ArXiv:2302.09458 [cs].

Xuelu Chen, Michael Boratko, Muhao Chen,
Shib Sankar Dasgupta, Xiang Lorraine Li, and
Andrew McCallum. 2021a. Probabilistic box em-
beddings for uncertain knowledge graph reasoning.
arXiv preprint arXiv:2104.04597.

Xuelu Chen, Muhao Chen, Weijia Shi, Yizhou Sun, and
Carlo Zaniolo. 2019. Embedding uncertain knowl-
edge graphs. In Proceedings of the AAAI conference
on artificial intelligence, volume 33, pages 3363–
3370.

Xuelu Chen, Ziniu Hu, and Yizhou Sun. 2022. Fuzzy
logic based logical query answering on knowledge
graphs. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 3939–3948.
Issue: 4.

Zhu-Mu Chen, Mi-Yen Yeh, and Tei-Wei Kuo. 2021b.
Passleaf: A pool-based semi-supervised learning

framework for uncertain knowledge graph embed-
ding. Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 35(5):4019–4026.

Nurendra Choudhary, Nikhil Rao, Sumeet Katariya,
Karthik Subbian, and Chandan Reddy. 2021. Proba-
bilistic entity representation model for reasoning over
knowledge graphs. Advances in Neural Information
Processing Systems, 34:23440–23451.

Weizhi Fei, Xueyan Niu, Guoqing Xie, Yingqing Liu,
Bo Bai, and Wei Han. 2025a. Efficient prompt com-
pression with evaluator heads for long-context trans-
former inference. arXiv preprint arXiv:2501.12959.

Weizhi Fei, Xueyan Niu, Guoqing Xie, Yanhua Zhang,
Bo Bai, Lei Deng, and Wei Han. 2024a. Re-
trieval meets reasoning: Dynamic in-context edit-
ing for long-text understanding. arXiv preprint
arXiv:2406.12331.

Weizhi Fei, Xueyan Niu, Pingyi Zhou, Lu Hou, Bo Bai,
Lei Deng, and Wei Han. 2024b. Extending context
window of large language models via semantic com-
pression. In ACL (Findings).

Weizhi Fei, Zihao Wang, Shukai Zhao, Wei Zhang,
Yangqiu Song, et al. 2025b. Efficient and scalable
neural symbolic search for knowledge graph complex
query answering. arXiv preprint arXiv:2505.08155.

Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Juraf-
sky, and Jure Leskovec. 2018. Embedding logical
queries on knowledge graphs. Advances in neural
information processing systems, 31.

Olaf Hartig and Ralf Heese. 2007. The sparql query
graph model for query optimization. In European
Semantic Web Conference, pages 564–578. Springer.

Qi Hu, Haoran Li, Jiaxin Bai, Zihao Wang, and
Yangqiu Song. 2024. Privacy-preserved neural graph
databases. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Min-
ing, pages 1108–1118.

Shuang Liang. 2023. Knowledge graph embedding
based on graph neural network. In 2023 IEEE
39th International Conference on Data Engineering
(ICDE), pages 3908–3912.

Lihui Liu, Boxin Du, Heng Ji, ChengXiang Zhai, and
Hanghang Tong. 2021. Neural-Answering Logical
Queries on Knowledge Graphs. In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pages 1087–1097.

Lihui Liu, Zihao Wang, Jiaxin Bai, Yangqiu Song, and
Hanghang Tong. 2024a. New frontiers of knowl-
edge graph reasoning: Recent advances and future
trends. In Companion Proceedings of the ACM Web
Conference 2024, pages 1294–1297.

Lihui Liu, Zihao Wang, and Hanghang Tong. 2024b.
Neural-symbolic reasoning over knowledge graphs:
A survey from a query perspective. arXiv preprint
arXiv:2412.10390.

13177

https://proceedings.mlr.press/v202/bai23b.html
https://proceedings.mlr.press/v202/bai23b.html
https://proceedings.mlr.press/v202/bai23b.html
https://papers.nips.cc/paper_files/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://papers.nips.cc/paper_files/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://doi.org/10.48550/arXiv.2302.09458
https://doi.org/10.48550/arXiv.2302.09458
https://doi.org/10.1609/aaai.v35i5.16522
https://doi.org/10.1609/aaai.v35i5.16522
https://doi.org/10.1609/aaai.v35i5.16522
https://doi.org/10.1109/ICDE55515.2023.00379
https://doi.org/10.1109/ICDE55515.2023.00379

Tie-Yan Liu et al. 2009. Learning to rank for informa-
tion retrieval. Foundations and Trends® in Informa-
tion Retrieval, 3(3):225–331.

Francois Luus, Prithviraj Sen, Pavan Kapanipathi,
Ryan Riegel, Ndivhuwo Makondo, Thabang Lebese,
and Alexander Gray. 2021. Logic embeddings
for complex query answering. arXiv preprint
arXiv:2103.00418.

George A. Miller. 1995. WordNet: A lexical database
for English. Communications of the ACM, 38(11):39–
41.

Sumit Pai and Luca Costabello. 2021. Learning em-
beddings from knowledge graphs with numeric edge
attributes. arXiv preprint arXiv:2105.08683.

Raymond Reiter. 1981. On closed world data bases.
In Readings in artificial intelligence, pages 119–140.
Elsevier.

Raymond Reiter. 1986. A sound and sometimes
complete query evaluation algorithm for relational
databases with null values. Journal of the ACM
(JACM), 33(2):349–370.

H Ren, W Hu, and J Leskovec. 2020. Query2box: Rea-
soning Over Knowledge Graphs In Vector Space Us-
ing Box Embeddings. In International Conference
on Learning Representations (ICLR).

Hongyu Ren, Mikhail Galkin, Michael Cochez,
Zhaocheng Zhu, and Jure Leskovec. 2023. Neu-
ral Graph Reasoning: Complex Logical Query An-
swering Meets Graph Databases. arXiv preprint.
ArXiv:2303.14617 [cs].

Hongyu Ren and Jure Leskovec. 2020. Beta embed-
dings for multi-hop logical reasoning in knowledge
graphs. Advances in Neural Information Processing
Systems, 33:19716–19726.

Kaspar Riesen, Xiaoyi Jiang, and Horst Bunke. 2010.
Exact and inexact graph matching: Methodology
and applications. Managing and mining graph data,
pages 217–247.

Francesca Rossi, Peter van Beek, and Toby Walsh. 2006.
Handbook of Constraint Programming. Elsevier Sci-
ence Inc., USA.

Thomas Schiex. 1992. Possibilistic constraint satisfac-
tion problems or “how to handle soft constraints?”.
In Uncertainty in Artificial Intelligence, pages 268–
275. Elsevier.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, AAAI’17,
page 4444–4451. AAAI Press.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowledge.
In Proceedings of the 16th international conference
on World Wide Web, pages 697–706.

Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph
Koch. 2022. Probabilistic databases. Springer Na-
ture.

Damian Szklarczyk, Rebecca Kirsch, Mikaela
Koutrouli, Katerina Nastou, Farrokh Mehryary,
Radja Hachilif, Annika L Gable, Tao Fang,
Nadezhda T Doncheva, Sampo Pyysalo, et al.
2023. The string database in 2023: protein–protein
association networks and functional enrichment
analyses for any sequenced genome of interest.
Nucleic acids research, 51(D1):D638–D646.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In Interna-
tional conference on machine learning, pages 2071–
2080. PMLR.

Hong Ting Tsang, Zihao Wang, and Yangqiu Song.
2025. Transformers for complex query answer-
ing over knowledge hypergraphs. arXiv preprint
arXiv:2504.16537.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78–85. Publisher: ACM
New York, NY, USA.

Zihao Wang, Weizhi Fei, Hang Yin, Yangqiu Song,
Ginny Y Wong, and Simon See. 2023a. Wasserstein-
Fisher-Rao Embedding: Logical Query Embeddings
with Local Comparison and Global Transport. arXiv
preprint arXiv:2305.04034.

Zihao Wang, Yangqiu Song, Ginny Wong, and Simon
See. 2023b. Logical Message Passing Networks
with One-hop Inference on Atomic Formulas. In
The Eleventh International Conference on Learning
Representations.

Zihao Wang, Hang Yin, and Yangqiu Song. 2021.
Benchmarking the Combinatorial Generalizability of
Complex Query Answering on Knowledge Graphs.
Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks, 1.

Yao Xu, Shizhu He, Jiabei Chen, Zihao Wang, Yangqiu
Song, Hanghang Tong, Guang Liu, Jun Zhao, and
Kang Liu. 2024. Generate-on-graph: Treat llm as
both agent and kg for incomplete knowledge graph
question answering. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, pages 18410–18430.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2015. Embedding entities and relations
for learning and inference in knowledge bases. In
3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings.

13178

https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
http://arxiv.org/abs/2303.14617
http://arxiv.org/abs/2303.14617
http://arxiv.org/abs/2303.14617
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=SoyOsp7i_l
https://openreview.net/forum?id=SoyOsp7i_l
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/7eabe3a1649ffa2b3ff8c02ebfd5659f-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/7eabe3a1649ffa2b3ff8c02ebfd5659f-Abstract-round2.html
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575

Dong Yang, Peijun Qing, Yang Li, Haonan Lu, and Xi-
aodong Lin. 2022a. GammaE: Gamma Embeddings
for Logical Queries on Knowledge Graphs. arXiv
preprint. ArXiv:2210.15578 [cs].

Haotong Yang, Zhouchen Lin, and Muhan Zhang.
2022b. Rethinking knowledge graph evaluation un-
der the open-world assumption. Advances in Neural
Information Processing Systems, 35:8374–8385.

Hang Yin, Zihao Wang, and Yangqiu Song. 2024. Re-
thinking existential first order queries and their infer-
ence on knowledge graphs. In The Twelfth Interna-
tional Conference on Learning Representations.

Hongming Zhang, Xin Liu, Haojie Pan, Yangqiu Song,
and Cane Wing-Ki Leung. 2020. Aser: A large-scale
eventuality knowledge graph. In Proceedings of the
web conference 2020, pages 201–211.

Zhanqiu Zhang, Jie Wang, Jiajun Chen, Shuiwang Ji,
and Feng Wu. 2021. Cone: Cone embeddings for
multi-hop reasoning over knowledge graphs. Ad-
vances in Neural Information Processing Systems,
34:19172–19183.

Tianshi Zheng, Jiaxin Bai, Yicheng Wang, Tianqing
Fang, Yue Guo, Yauwai Yim, and Yangqiu Song.
2024. Clr-fact: Evaluating the complex logical rea-
soning capability of large language models over fac-
tual knowledge. arXiv preprint arXiv:2407.20564.

Tianshi Zheng, Jiazheng Wang, Zihao Wang, Jiaxin
Bai, Hang Yin, Zheye Deng, Yangqiu Song, and
Jianxin Li. 2025. Enhancing transformers for gener-
alizable first-order logical entailment. arXiv preprint
arXiv:2501.00759.

Zhaocheng Zhu, Mikhail Galkin, Zuobai Zhang, and
Jian Tang. 2022. Neural-Symbolic Models for Log-
ical Queries on Knowledge Graphs. arXiv preprint
arXiv:2205.10128.

13179

https://doi.org/10.48550/arXiv.2210.15578
https://doi.org/10.48550/arXiv.2210.15578

Appendix
A Related Work

A.1 Complex logical queries

Answering complex logical queries over knowledge graphs is naturally extended from link prediction and
aims to handle queries with complex conditions beyond simple link queries. This task gradually grows
by extending the scope of complex logical queries, ranging from conjunctive queries (Hamilton et al.,
2018) to Existential Positive First-Order (EPFO) queries (Ren et al., 2020), Existential First-Order (EFO)
queries (Ren and Leskovec, 2020), real Existential First-Order queries (Yin et al., 2024; Zheng et al.,
2025). The primary method is query embedding, which maps queries and entities to a low-dimensional
space. The form of embedding has been well investigated, such as vectors (Hamilton et al., 2018; Chen
et al., 2022; Bai et al., 2022), geometric regions (Ren et al., 2020; Zhang et al., 2021), and probabilistic
distributions (Ren and Leskovec, 2020; Choudhary et al., 2021; Yang et al., 2022a; Wang et al., 2023a).
These methods not only explore knowledge graphs embedding but also leverage neural logical operators
to generate the embedding of complex logical queries.

There are also neural-symbolic models to answer complex logical queries. Gradient optimization
techniques were employed to estimate the embedding existential variables (Amayuelas et al., 2021;
Arakelyan et al., 2023). Graph neural network (Zhu et al., 2022) was adapted to execute relational projects
and use logical operations over fuzzy sets to deal with more complex queries. Efficient search algorithms
based on link predictor over knowledge graphs were presented (Yin et al., 2024; Bai et al., 2023b; Fei
et al., 2025a). While symbolic methods demonstrate good performance and offer interpretability for
intermediate variables, they often struggle to scale with larger graphs due to their high computational
complexity.

In addition to uncertain knowledge graphs (KGs), research is also exploring hypergraphs (Tsang et al.,
2025) and event-based graphs (Bai et al., 2023a). Due to the strong knowledge representation and logical
reasoning of large language models (Fei et al., 2024b,a, 2025b), several studies utilize LLMs to tackle
complex logical queries (Xu et al., 2024; Zheng et al., 2024). Numerous other models and datasets have
been proposed to enhance query performance and introduce additional features; for a comprehensive
overview, see the survey by (Ren et al., 2023; Bai et al., 2025; Liu et al., 2024a,b).

A.2 Uncertain knowledge graph embedding

Uncertain knowledge graph embedding methods aim to map entities and relations into low-dimensional
space, enabling the prediction of unknown link information along with confidence values. There are two
primary research directions in this field.

The first line of research focuses on predicting the confidence score of uncertain relation facts. UKGE
(Chen et al., 2019) was the pioneering effort to model triple plausibility as the activated product of
these embedding vectors. UKGE incorporates soft probabilistic logic rules to provide the plausibility of
unseen facts. Building upon this, BEUrRE (Chen et al., 2021a) utilizes complex geometric boxes with
probabilistic semantics to represent entities and achieve better performance. Semi-supervised learning was
applied (Chen et al., 2021b)to predict the associated confidence scores of positive and negative samples.
And graph neural networks were used (Liang, 2023) to represent and predict uncertain knowledge graphs.

The other line of research aims to address link prediction on uncertain knowledge graphs by fitting
the likelihood of uncertain facts. To adjust the similar task, FocusE (Pai and Costabello, 2021) was
introduced, an additional layer to the knowledge graph embedding architecture. They provide variants
of classical embedding methods such as TransE (Bordes et al., 2013), DistMult (Yang et al., 2015), and
ComplEx (Trouillon et al., 2016).

B Ablation study: The impact of soft requirements

The two parameters, α and β play a crucial role in controlling soft constraints, thus we construct settings
with varying values. Specifically, we select “zero”(Z) and “random”(R) for α, and “equal”(E) and

13180

Table 5: The mean NDCG of varing α and β.

Model Train
Test

AVG.
Z+E Z+R N+E N+R

ConE+NE

Z+E 39.3 35.6 31.9 31.5 34.6
Z+R 39.0 42.2 27.8 28.7 34.4
N+E 26.6 23.6 46.3 44.1 35.2
N+R 14.0 7.5 43.5 42.2 26.8

SRC - 34.3 37.2 46.7 45.8 41.0

“random”(R) for β, as explained in Section 5.3. Moreover, we sample 12 query types from O*NET20k
KG. The detailed construction is in Appendix L. For ConE, we train it on each setting and test it across all
settings. As for SRC, we directly test it on all settings.

The results in Table 5 demonstrate that SRC outperforms ConE trained on four different settings in
terms of average scores. In the “Z+E” and “Z+R” settings, although ConE achieves higher scores when
trained and tested within the same setting, its performance considerably declines when generalizing to
other settings. Our method SRC exhibits consistent performance across various settings due to its strong
generalization by theoretical foundations in Section 4.2.

C Qualitative analysis

We select the following query for the LLM to conduct a qualitative analysis: “ Soft query: (bread, is
related to, f1, 0.3, 0.9) ∧ (rice, is related to, f1, 0.7, 0.3). Four candidate entities: basic, wheat, white,
and food. ” Among the four candidates, basic and wheat are weakly related to the two soft constraints.
While white and food exhibit higher relevance, the constraints related to bread carry greater importance.
Consequently, the final answer is bread. However, some LLMs may often select rice due to a tendency to
hallucinate the concept of white bread. Such errors highlight the challenges in accurately interpreting soft
constraints and the need for more robust mechanisms to handle nuanced queries.

D Logical queries on knowledge graphs

Definition 9 (Knowledge graphs). Let E be the set of entities and R be the set of relations. A knowledge
graph is a set of triples G = {(si, ri, oi)}, where si, oi ∈ E are entities and ri ∈ E is relation.

The fundamental challenge of knowledge graphs lies in dealing with the Open World Assumption
(OWA). Unlike the Closed World Assumption (CWA), which considers only observed triples as facts,
OWA acknowledges that unobserved triples may also be valid.

The study of logical queries on KG considers the Existential First-Order (EFO) queries, usually with
one free variable (Ren and Leskovec, 2020; Wang et al., 2021; Yin et al., 2024).

Definition 10 (Syntax of existential first-order queries). The disjunctive normal form of an existential
first-order query Γ is:

Γ(y) = γ1(y) ∨ · · · ∨ γq(y), (11)

where y is the variable to be answered. Each γi(y) is a conjunctive query that is expanded as

γi(y) = ∃x1, . . . , xn.ai1 ∧ · · · ∧ aimi , i = 1, ..., q, (12)

where x1, . . . , xn are existentially quantified variables, each aij = r(h, t) or aij = ¬r(h, t), j = 1, ...,mi

is an atomic query, r is the relation, h and t are either an entity in E or a variable in {y, x1, ..., xn}.

Definition 11. Γ(s/y) denotes the substitution of the entity s for the variable y.

When all free variables are substituted, a query Γ(y) is transformed into a sentence Γ(s/y). Given G,
answering a query Γ(y) means finding all substitutions, such that the sentence Γ(s/y) is entailed by G,
i.e., G |= Γ(s/y). The answer set is defined as

13181

Definition 12 (The Answer Set of first-order 1uery). The answer set of an first-order query is defined by

A[Φ(y)] = {a ∈ E| Φ(a) is True} (13)

The answers in the answer set derived from Gtrain is easy answers. hard answers are the answers in
the set difference between the answers from Gvalid and Gtrain (Wang et al., 2021; Ren et al., 2023). The
traditional graph-matching methods can not find the answers introduced by new facts (Riesen et al., 2010).
Thus, we should develop new methods.

D.1 ML-based method for logical queries on KG
Recent works are dedicated to introducing ML methods, i.e., knowledge graph embeddings, to generalize
from G to Ĝ, so that it approximates Gtest.
Query Embeddings (QE). Query embedding methods generally map the query Γ as an embedding (Ren
and Leskovec, 2020; Liu et al., 2021; Wang et al., 2023b). One dominant way is to “translate” the
procedure of solving logical formulas in Equation (11) into the set operations, such as set projection,
intersection, union, and complement. Then, the neural networks are designed to model such set operations
in the embedding space. We can see that direct modeling of set operations is incompatible with the
concept of necessity and importance introduced in Section 3.
Inference methods. Other methods solve the open world query answering methods in a two-step
approach (Arakelyan et al., 2021; Bai et al., 2023b; Yin et al., 2024). In the first step, the pre-trained
knowledge graph embedding estimates the Gtest. Then, the answers are derived by the fuzzy logic
inference or optimization. These methods rely on the standard logic calculation and cannot be directly
applied to our SQUK setting introduced in Section 3.

E Connection with Open World Assumption

Evaluating queries over deductive question-answering systems generally follows either the closed-world
assumption (CWA) or the open-world assumption (OWA) (Reiter, 1981). Under CWA, only known facts
are considered true, whereas OWA assumes that the absence of knowledge does not imply falsity (Reiter,
1986). Since knowledge graphs (KGs) are often incomplete, knowledge graph completion (KGC) has
been proposed to address this challenge. In KGC, the observed knowledge in KGs is divided into three
nested subsets: Gtrain ⊂ Gvalid ⊂ Gtest. The KGC model is trained on the Gtrain subset and evaluated on the
Gvalid subset to assess its performance. For complex logical query answering, the evaluation considers
"hard answers," defined as the set difference between the answers from Gvalid and Gtrain (Wang et al.,
2021; Ren et al., 2023). This approach assesses the model’s ability to handle incomplete knowledge and
make inferences beyond the observed facts in the training set. The evaluation of complex logical query
answering extends beyond CWA but does not fully align with OWA. The same applies to the evaluation of
soft query answering. Evaluating under the Open-World Assumption represents a promising avenue for
future work (Yang et al., 2022b).

F Constraint Satisfaction Problem and Soft Constraint Satisfaction Problems

Constraint Satisfaction Problems (CSP) is a mathematical question defined as a set of objects whose
state must satisfy several constraints or limitations. Each instance of it can be represented as a triple
(Z,D,C), where Z = (z1, · · · , zn) is a finite tuple of n variables, D = (D1, · · · , Dn) is the tuple of
the domains corresponding to variables in Z, and C = {(C1

1 , C
2
1), · · · , (C1

t , C
2
t)} is the finite set of t

constraints. Di is the domain of zi, and C1
i ⊂ Z is the scope of the i-th constraint and C2

i specifies how
the assignments allowed by this constraint. In general definitions, the constraints in classical Constraint
Satisfaction Problems are hard, meaning that none of them can be violated.

Many problems can be viewed as CSP, which include workforce scheduling and the toy 8-queens
problem. Conjunctive queries are a special case to be reduced as CSP under open-world assumptions if
we set the constant variable’s domain as itself, set the domain of the existential variable and free variable
as the entity set E of knowledge graphs, and treat atomic formula or its negation as binary constraint by
knowledge graph.

13182

Table 6: Different specific soft CSP frameworks modeled as c-semirings.

Semiring E ×s +s

Classical {T, F} ∧ ∨
Fuzzy [0, 1] min max

k-weighted {0, . . . , k} + min
Probabilistic [0, 1] xy max

Valued E ⊕ minv

Soft Constraint Satisfaction Problems
Though CSP is a very powerful formulation, it fails when real-life problems need to describe the

preference of constraint. It usually returns null answers for problems with many constraints, which are
called over-constraints. To tackle the above weakness, many versions of Soft Constraint Satisfaction
Problems (SCSP) are developed, such as fuzzy CSP, weighted CSP, and probabilistic CSP, which all follow
a common semiring structure, where two semiring operations ×s,+s are utilized to model constraint
projection and combination respectively. Based on this theoretical background, we propose soft queries
based on SCSP. The proposed soft queries will have the advantages of SCSPs and can handle the numeric
facts representing uncertainty.

G Details of Implementation

Our experiments are run on the Nvidia V100-32G.

G.1 adaptive scoring
Let Es, Er, and Et be the embedding vectors of entity s, relation r, and entity t respectively. We
parameterize the adaptive scoring calibration using the following learnable affine transformations:

ρθ(s, r, o) =W 1
1Es + b11 +W 1

2Er + b12 +W 1
3Et + b13, (14)

λθ(s, r, o) =W 2
1Es + b21 +W 2

2Er + b22 +W 2
3Et + b23, (15)

where {W i
j , b

i
j} for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3 are the learnable parameters.

G.2 Uncertain knowledge graph embedding
We reproduce previous results (Chen et al., 2019, 2021a) and use the same embedding dimension. We
search the other parameters including the learning rate from {1e− 3, 5e− 4, 1e− 4} and regularization
term λ from {0.1, 0.01, 0.05}.

G.3 Query embedding with number embedding
We follow the same hyperparameter of origin paper (Luus et al., 2021; Zhang et al., 2021) but search the
learning rate and margin. The embedding dimension of number embedding is the same as the dimension
of entity embedding.

G.4 Two strategies of calibration
For learning strategy, we search learning rate from {5e− 4, 5e− 5, 1e− 5}. For Debiasing strategy, we
search ϵ from {0.05, 0.1, 0.15}.

G.5 Running times
When inferring simple queries such as 1p, 2i, and 2in, our method can be parallelized to dynamically
compute truth values, resulting in inference times comparable to LMPNN and LogicE. For more complex
queries like 2p and 2im, we need to perform serial inference using sparse relation matrices. The inference
time for 2,000 2p queries on CN15K is 150 seconds, whereas LogicE and LMPNN take about 10 seconds.
Although our approach requires more time, it yields better results than these methods.

13183

0.3
0.1
0.5

Lemma 5.3
Enumerate a
variable in cycle

Lemma 5.3 Lemma 5.4

Group

1.8
1.4
2.5

1.7
1.2
2.5

0.8
0.4
1.0

0.5
0.7
1.2

0
0
0

0.3
0.1
0.5

0
0
0

0.1
0.3
0.2

0.3
0.1
0.5

0
0
0

0
0
0

0
0
0

Figure 3: A toy model to present the process of SRC algorithm.

H Details of Soft Reasoning with Calibrated Confidence Values

H.1 Uncertain value definition

By indexing all entities and relations, we represent s, r, and o as integers. Confidence score prediction
over uncertain knowledge graphs can be conceptualized by the neural link predictor as |R| relation
matrices P̂r ∈ R|E|×|E|, where P̂r(s, o) is the predicted score of fact triple (s, r, o) and n is the number of
entities. We denote Ur(s) as a vector formed by the elements of the s-th row. The symbol + also denotes
element-wise plus operation when used in vector-vector or matrix-matrix operations. We also define two
new plus operations in matrix-vector operations.

Definition 13. Given a matrix M1 ∈ R|E|×|E| and a vector b ∈ R|E|, We define two new addition
operations: column-wise addition and row-wise addition as following:

M2 = M1 +r b,M2(s, o) = M1(s, o) + b(s), (16)

M2 = M1 +c b,M2(s, o) = M1(s, o) + b(o). (17)

Definition 14 (Membership function). Given a soft query and a variable x, µ(x,Cx) is a membership
function to check the current confidence value, where Û(µ(s/x,Cx)) = Cx(s).

H.2 Details of the inference of SRC

Since the effect α and β are equivalent to modifying the uncertain values, we will focus on explaining how
the method works in the basic scenario where α = 0.0 and β = 1.0. Our goal is to infer the utility vector
Û [ϕ(y)] by estimating the confidence value Û [ϕ](o) = [P̂ |=s ϕ(o/y)], for all o ∈ E . In the following
content, we will cut the query graph step by step while recording any lost information on the remaining
nodes. After removing nodes from the soft query ϕ, we denote the remaining sub-query graph as ψ.

H.2.1 Step 1. Initialization.

We initialize each variable x as a candidate state vector C with all zero elements, denoted as C = 0 ∈ R|E|

This vector records the candidates and their corresponding values. Throughout the algorithmic process,
the vectors C are updated iteratively, ultimately yielding the final answers represented by the resulting
vector Cy.

H.2.2 Step 2. Remove constant nodes.

For constant nodes in a query graph, we can easily remove their whole edges and update the information
to connected nodes by the following lemma.

Lemma 3. For the constant nodes in a soft query, there exists an O(|E|) transformation Tc to remove
them.

Proof. Without loss of generality, we consider the situation that a constant node with entity e connects an
existential variable x that there is only one positive edge from e to x, one negative edge from e to x, and

13184

one positive edge from x to e. To simplify, we also denote e as the related grounded entity.

Û [ϕ](o) = Û(∃x.µ(x,Cx) ∧ r1(e, x) ∧ ¬r2(e, x) ∧ r3(x, e) ∧ ψ(o/y))
= max

s∈E
[Cx(s) + P̂r1(e, s) + (1− P̂r2)(e, s) (18)

+ P̂ Tr3(e, s) + Û(ψ(o/y; s/x))]

= max
s∈E

[C ′
x(s) + Û(ψ(o/y; s/x))],

where C ′
x = Cx + P̂r1(e) + (1 − P̂r2)(e) + P̂ Tr3(e) is updated candidate vector and 1 ∈ R|E|×|E| is all

one matrix. The situation where a constant node connects a free variable node is similar and even easier
to handle.

In the above derivation, we retain the value of answers by updating the candidate state vector of an
existential variable.

H.2.3 Step 3. Remove self-loop edges.
Lemma 4. For a soft query having self-loop edges, there exists an O(|E|) transformation Tc to remove
self-loop edges.

Proof. Without loss of generality, we consider the situation in which an existential variable x contains
one positive loop.

Û [ϕ](o) = Û(∃x.µ(x,Cx) ∧ r(x, x) ∧ ψ(o/y;x))
= max

s∈E
[Cx(s) + P̂r(s, s) + Û(ψ(o/y; s/x))]

= max
s∈E

[C ′
x(s) + Û(ψ(o/y; s/x))],

where C ′
x = Cx + diag(P̂r) and diag(P̂r) is a vector formed by the diagonal elements of matrix P̂r.

Previous research (Yin et al., 2024) has demonstrated the difficulty of sampling high-quality self-loop
queries due to the rarity of self-loop relations in real-life knowledge graphs. Similarly, in our specific
uncertain knowledge graph, it is challenging to sample meaningful queries.

H.2.4 Step 4. Remove leaf nodes.
The leaf node u, which is only connected to one other node v in the soft query graph. After removing the
constant nodes, if the query graph contains no circles, we can get the utility vector by removing the leaf
nodes step by step. Next, we present how to handle leaf nodes by the three lemmas.

Lemma 5. If the leaf node u is an existential variable x and v is the free variable y, there exists an
O(|E|2) transformation Tl to shrink its graph.

Û [ϕ](o) = Û(∃x.µ(x,Cx) ∧ r(x, o) ∧ µ(o, Cy) ∧ ψ(o/y))
= max

s∈E
[Cx(s) + P̂r(s, o) + Cy(o) + Û(ψ(o/y))]

= max
s∈E

[Cx(s) + P̂r(s, o) + Cy(o)] + Û(ψ(o/y))

= C ′
y(o) + Û(ψ(o/y)),

where C ′
y(o) = maxs∈E M1(s, o) and M1 = [(P̂r +c Cy) +r Cx].

Lemma 6. If the leaf node u is a free variable y and v is the existential variable x, we can first solve the
subgraph obtained by removing u, and then remove v.

13185

Proof. Denote ψ is the subgraph obtained by removing u, we treat y as the free variable to get its utility
vector Û(ψ(y)). Then we can remove u by the following.

Û [ϕ](o) = Û(µ(o, Cy) ∧ [∃x.r(x, o) ∧ ψ(x)])
= Cy(o) + Û(∃x.r(x, o) ∧ ψ(x))
= Cy(o) + max

s∈E
[P̂r(s, o) + Û(ψ(o))]

= Cy(o) + max
s∈E

M2(s, o), (19)

where M2 = P̂r +c Û [ψ].

Lemma 7. If the leaf node u and its connected node v both are the existential variable, we can remove
the leaf node u when the existential quantifier is maximization.

Proof. It will be difficult when trying to cut the leaf node x1,

Û [ϕ](o) = Û(∃x1, x2.µ(x1, Cx1) ∧ r(x1, x2) ∧ µ(x2, Cx2) ∧ ψ(o))
= max

s1∈E,s2∈E
[Cx1(s1) + P̂r(s1, s2) + Cx2(s2) + Û(ψ(o, s2/x2))]

= max
s2∈E

max
s1∈E

[Cx1(s1) + P̂r(s1, s2) + Cx2(s2) + Û(ψ(o, s2/x2))]. (20)

While the existential quantifier is maximization, it is noteworthy that for any s1, s2, o ∈ E ,

max
s1∈E

[M3(s1, s2) + Û(ψ(o; s2/x2))] = max
s1∈E

[M3(s1, s2)] + Û(ψ(o; s2/x2))

= C ′
x2(s2) + Û(ψ(o; s2/x2)), (21)

where M3 = (P̂r +r Cx1) +c Cx2 and C ′
x2(s2) = maxs1∈E [M3(s1, s2)].

Therefore, we can remove x1 by updating x2 as follows,

Û [ϕ](o) = max
s2∈E

[C ′
x2(s2) + Û(ψ(o/y; s2/x2))]. (22)

Combining the above three lemmas, we can step by step find a leaf node and remove it when the query
graph has no cycles.

Lemma 8. If the soft query contains no circles, we can get the utility vector by removing leaf nodes when
the existential quantifier is maximization.

H.2.5 Step 5. Enumerate on the cycle.
To the best of our knowledge, the only precise approach for addressing cyclic queries is perform-
ing enumeration over one existential node involved in the cycle, which reads Û(∃x.ϕ(o/y;x)) =
maxs∈E Û(ϕ(o/y; s/x)). Then, we apply Step 4 to remove this fixed existential variable since this
variable is equivalent to the constant variable. The query graph breaks this cycle and becomes smaller.
The remaining query can be solved by applying Step 4. When solving cyclic queries, the time complexity
of this algorithm is exponential.

H.2.6 Step 6. Getting the utility vector.
Following the aforementioned steps, the query graph will only contain the free node y, resulting in the
formula µ(y, Cy). By definition, the desired utility vector will be Cy, which provides the confidence
values of all the candidate entities.

13186

Table 7: The results of answering complex soft queries with different backbone models.

Models Metrics 1P 2P 2I 2IN 2IL 2M 2U 3IN IP IM INP UP AVG

CN15k

SRC (UKGE)

MAP 20.6 7.1 7.9 14.4 14.6 3.3 14.7 7.7 6.2 3.2 4.2 6.5 9.2
NDCG 27.7 15.4 10.1 23.8 22.6 7.9 24.3 10.4 11.1 6.9 10.5 14.9 15.5

ρ 21.9 6.4 0.2 5.9 14.3 11.2 32.0 -1.5 -7.0 8.4 -2.3 17.4 8.9
τ 15.0 2.4 -0.0 2.1 10.7 9.2 25.5 -2.0 -9.0 7.9 -4.4 13.0 5.9

SRC (BEUrRE)

MAP 32.2 11.5 13.2 25.9 29.2 3.9 26.6 13.9 12.8 5.3 8.4 11.6 16.2
NDCG 41.5 21.3 15.3 37.4 39.7 9.7 40.5 17.6 19.0 10.4 17.1 22.8 24.3

ρ 25.7 13.9 -2.3 11.6 19.0 17.4 33.5 -0.3 -0.4 21.3 5.2 21.5 13.8
τ 18.7 8.7 -3.5 7.7 14.8 14.7 27.2 -1.9 -3.6 20.3 1.8 16.3 10.1

PPI5k

SRC (BEUrRE)

MAP 78.2 78.4 72.9 67.0 72.0 52.0 73.7 58.6 76.4 54.2 69.2 67.8 68.4
NDCG 80.8 78.2 77.3 68.7 78.0 52.3 79.9 62.9 76.2 52.4 69.4 72.4 70.7

ρ 77.7 82.3 57.9 50.9 80.6 54.3 83.0 38.8 76.2 47.6 68.3 82.2 66.7
τ 66.6 70.9 49.9 42.7 71.0 42.9 71.6 32.7 65.6 37.1 57.2 70.4 56.5

SRC (BEUrRE)

MAP 71.0 67.8 63.3 56.3 63.6 51.8 66.3 49.4 67.7 52.6 57.7 58.8 60.5
NDCG 74.8 70.5 68.7 61.5 70.0 49.7 74.2 55.5 68.5 49.1 61.8 66.5 64.2

ρ 72.7 76.4 51.6 47.1 73.9 51.3 77.3 39.0 68.5 43.2 63.2 75.0 61.6
τ 59.7 62.3 41.8 37.7 61.9 39.4 64.2 32.0 55.8 32.6 50.6 61.5 50.0

O*NET20k

SRC (BEUrRE)

MAP 24.9 6.4 70.6 26.0 63.3 5.6 32.8 68.5 7.7 7.3 5.2 7.7 27.1
NDCG 44.9 19.5 80.4 46.1 74.0 17.2 57.2 76.3 19.2 17.1 17.7 24.6 41.3

ρ 77.9 64.8 79.1 73.7 79.6 43.7 83.3 69.4 53.8 33.3 58.0 60.7 65.3
τ 72.0 54.9 68.6 67.6 67.3 36.9 76.0 59.2 47.6 29.1 48.9 52.4 57.3

SRC (BEUrRE)

MAP 29.0 8.3 65.2 29.6 55.2 7.2 32.3 62.1 9.9 8.8 6.9 9.6 27.1
NDCG 53.4 29.2 78.8 52.4 71.0 21.5 60.2 72.7 26.5 20.4 25.5 34.1 45.8

ρ 69.0 59.1 78.1 63.6 76.4 40.1 78.3 66.8 47.6 30.4 51.2 57.2 60.2
τ 58.4 47.1 66.6 53.6 62.8 32.0 67.4 55.9 39.2 24.9 40.5 46.8 49.9

I Uncertain Knowledge Graph Embeddings

We introduce the backbone models for uncertain knowledge graph embedding. The results of changing
the backbone are presented in Table 7.

UKGE (Chen, 2023) is a vector embedding model designed for uncertain knowledge graphs. It has
been tested on three tasks: confidence prediction, relational fact ranking, and relational fact classification.
To address the sparsity issue in the graph, UKGE utilizes probabilistic soft logic, allowing for the inclusion
of additional unseen relational facts during training.

BEUrRE (Chen et al., 2021a) is a probabilistic box embedding model that has been evaluated on two
tasks: confidence prediction and relational fact ranking. This model represents each entity as a box and
captures relations between two entities through affine transformations applied to the head and tail entity
boxes.

J Float Embedding for query Embedding

To enable query embedding methods to handle soft requirements in soft queries, we employ floating-
point encoding to map floating-point numbers into vectors. These vectors are then added to the relation
projection in the query embedding method.

J.1 Float embedding
We consider the sinusoidal encoding g : R → Rd introduced in Transformer (Vaswani et al., 2017) and
map the values of α and β into vector embedding, which can be formulated as:

g(vi) =

{
sin(vi/1000

i/(2k)) i = 2k,

cos(vi/1000
i/(2k)) i = 2k + 1,

(23)

where d is the embedding dimension.

J.2 Modified relation projection
The query embedding methods usually learn a Multi-Layer Perceptron (MLP) for each relation r, which
reads as:

S′ = MLPr(S), (24)

13187

1P 2I 2IN 2IL2P

2M3IN IP 2U UPIMINP

Train:
Operator Queries

Valid/Test :
Composed Queries

Figure 4: Query structures of query types. The white, yellow, and red circles represent constant, existential, and
free nodes, respectively. The negative atomic formulas are represented by red edges, while atomic formulas are
represented by black edges. Like the previous naming convention (Ren and Leskovec, 2020; Yin et al., 2024), we
use ”P” for projection, “I” for intersection, “N” for negation, “M” for multi-edge, and “L” for existential leaf.

where S is an embedding. Furthermore, the modified relation projection can be expressed as:

S′ = MLPr(S + g(α) + g(β)) (25)

Here, g(α) and g(β) are the embedding of soft requirements α and β, respectively. By incorporating
g(α) and g(β) into the relation project net, we enhance the representation of relation projection to better
capture the soft requirement.

K Details in the Main Dataset Construction

K.1 Uncertain knowledge graphs
We sample soft queries from three standard uncertain knowledge graphs6, covering diverse domains such
as common sense knowledge, bioinformatics, and the employment domain.

CN15k (Chen et al., 2019) is a subset of the ConceptNet (Speer et al., 2017), a semantic network
aimed at comprehending connections between words and phrases.

PPI5k (Chen et al., 2019) is a subset of STRING (Szklarczyk et al., 2023), which illustrates protein-
protein association networks collected from organisms. It assigns probabilities to the intersections among
proteins.

O*NET20K (Pai and Costabello, 2021) is a subset of O*NET, a dataset that describes labeled binary
relations between job descriptions and skills. The associated values are to evaluate the importance of the
link within the triple.

We present the statistics of these three uncertain knowledge graphs in Table ??.

K.2 Soft requirements
In the main experiment, we aim for the sampled data to allow the machine learning methods to generalize to
various scenarios of soft requirements. Therefore, for α necessity, we employ a hybrid strategy, randomly
selecting from four modes (“zero”, “low”, “normal”, “high”) for each query. As for β importance, we
utilize a random strategy, randomly choosing a decimal value for different atomic soft formulas in each
query.

K.3 Query types
The goal of our proposed dataset is to represent the family of existential first-order soft queries systemati-
cally. However, including too many query formulas poses challenges in analyzing and evaluating. We
select query graphs including operations as train queries and unitize composed query graphs to evaluate
the combinatorial generalization.

For training queries, we choose 1P, 2P, 2I, and 2IN, which include soft operators. Additionally, we
select 2P for chain queries (Hamilton et al., 2018), 2M for multi-edge graphs (Yin et al., 2024), and 2IL
for graphs containing ungrounded anchors (Yin et al., 2024). More complex soft query graphs can be
generated from these basic graphs. We present the statistics of sampled queries in Table 8 and Tabel 9.

6We leave the exploration of Nl27k (Chen et al., 2019) for future work as it involves an inductive setting where the valid/test
graphs contain unseen relations.

13188

Table 8: The statistics of valid/test queries on the main dataset. Different query types have the same number in given
uncertain knowledge graph.

KG CN15k PPI5k O*NET20k

valid 3,000 2,000 2,000
test 3,000 2,000 2,000

Table 9: The statistics of train queries on the main dataset.

KG 1P 2P 2I 2IN 2IL

CN15k 52887 52900 52900 5300 5300
PPI5k 9724 9750 9754 1500 1500
PPI5k 18266 18300 18300 1850 1850

K.4 Evaluation protocol

The open world assumption in uncertain knowledge graphs not only establishes new links between entities
but can also potentially refine the values of existing triples. As more observed facts become available,
the answers to soft queries not only increase in number but also undergo modifications in terms of their
priority. Therefore, to evaluate the relevance judgment, we select several popular metrics commonly used
in information retrieval (Liu et al., 2009), including MAP, DCG, NDCG, and Kendall’s tau.

For each q, we denote the set of answers as A, where ai ∈ A represents the i-th answer based on its
score, and r(a), a ∈ A denotes the predicted ranking of answer a ∈ A. Our objective is to focus on the
precision of answers and the associated predicted ranking information.

Mean Average Precision (MAP): To define MAP, we first introduce Precision at a given position,
defined as:

P@k(q) = |{a ∈ A|r(a) ≥ k}|/k. (26)

Then, Average Precision is defined as follows:

AP(q) = (

|A|∑

k=1

P@k(q) · lk)/|A|, (27)

where lk is a binary judgment indicating the relevance of the answer at the kth position. Mean Average
Precision is the average AP value across all test queries.

Discounted Cumulative Gain (DCG): To calculate the DCG, we utilize the Reciprocal Rank as a
relative score for the answers:

R(ai) = 1/r(ai). (28)

To incorporate the ranking position, we introduce an explicit position discount factor ηi. The DCG is then
computed as:

DCG@k(q) =
k∑

i=1

R(ai)η(i), (29)

where η(i) is commonly expressed as η(i) = 1/ log2(i+ 1).
Normalized Discounted Cumulative Gain (NDCG): By normalizing the ideal Discounted Cumulative

Gain denoted as Zk, we obtain NDCG:

NDCG@k(q) = DCG@k(q)/Zk. (30)

Kendall’s tau: Kendall’s tau is a statistical measure that quantifies the correspondence between two rank-
ings. Values close to 1 indicate strong agreement, while values close to −1 indicate strong disagreement.

13189

Table 10: The additional results of varying soft requirements

Mode Z+E Z+R N+E N+R
Metric NDCG τ NDCG τ NDCG τ NDCG τ

ConE Z+E 39.3 8.0 35.6 11.6 31.9 30.4 31.5 28.9

ConE Z+R 39.0 6.7 42.2 14.9 27.8 29.0 28.7 30.3

ConE N+E 26.6 32.8 23.6 27.4 46.3 38.7 44.1 36.7

ConE N+R 14.0 24.7 7.5 14.4 43.5 38.7 42.2 38.6

SRC 34.3 47.8 37.2 41.5 46.7 51.8 45.8 49.9

Table 11: The number of annotated queries.

Query type 1P 2P 2I 2IN 2IL 2M 3IN IP IM SUM

Number 100 50 100 50 15 10 15 15 15 370

L Details in Varying Soft Requirements Setting

In this setting, we aim to test the model’s generalization ability on soft requirements under different
strategies. We have chosen a pair of different strategies for each of the two parameters, resulting in a
total of four groups. Specifically, we selected "zero" and "normal" for parameter "a," and "equal" and
"normal" for parameter "b." Detailed statistics for this setting can be found in the table below. For each
group, we follow the procedure and sample train, valid, and test queries. We present the additional results
in Table 10.

M Details of Large Language Model Evaluation Setting

Since the entities and relations in CN15k are English words and phrases, the queries sampled from CN15k
can be well understood by LLM. In our evaluation, we manually marked and removed meaningless queries.
To facilitate our testing process, we selected only four candidate entities for each query. These four
candidate entities have large distinctions in terms of scores. To avoid unexpected situations, we manually
checked all chosen queries and confirmed that their correct answers could be selected without ambiguity.
We present the total numbers and types of selected queries in Table 11.

We articulate the syntax and semantics of our proposed soft queries by using clear natural language.
The provided prompts are presented in the subsequent subsection. Through combining queries with
prompts, we enable LLM to select the most appropriate answer.

M.1 Prompt

Background
Given a soft query containing a free variable f, there are four candidate entities for
this variable and you need to choose the best of them to satisfy the soft query most. In
order to do so, you can first compute the confidence value to see whether the chosen
candidate entity satisfies the soft query after substituting the free variable with a
given candidate entity. After computing the confidence values for each corresponding
candidate entity, you need to pick the entity that leads to the highest confidence value.
The detailed steps are described below:

Definition of Soft Atomic Constraint:
A soft atomic constraint c, a.k.a. a soft atomic formula or its negation, is in the form
of (h, r, t, \alpha, \beta) or \\neg (h, r, t, \alpha, \beta).

13190

Notation Description:
In each constraint, we have four different types of variables.
1. r is a relation;
2. h and t are two terms. Each term represents an entity or a variable whose values
are entities. And free variable is a term.
3. \alpha is called the necessity value, which represents the minimal requirement
of the uncertainty degree of this constraint. It can be any decimal between 0.0 and
1.0. If the confidence value is less than the necessity value, the constraint is
not satisfied, and thus the final confidence value becomes negative infinity;
4. \beta represents the priority of this constraint and can be any decimal
between 0.0 and 1.0.

Confidence Value of Soft Constraints V(c):
1. The triple (h,r,t) comes from the relation fact in the knowledge graph. In our
setting, the relation fact r(h,t) is not boolean, and it has a confidence value
in the range [0.0,1.0] according to its plausibility. When the constraint is
negative, you need to first estimate r(h,t)—the confidence value of r(h,t)—and
use 1-r(h,t) as the final confidence value for this negative constraint.
2. \alpha is the threshold in our filter function, working as follows:
f(v, \alpha) = v, if v \geq \alpha,

-\infty, if v < \alpha.
3. \beta is a coefficient.

Thus, the final equation becomes:
V(h, r, t, \alpha, \beta) = \beta \times f(r(h,t), \alpha),
V(\\neg (h, r, t, \alpha, \beta)) = \beta \times f(1-r(h,t), \alpha).

Definition of Conjunctive Queries \phi:
Soft conjunctive queries are composed of soft constraints.

Notation Description:
Conjunctive query \phi = c_1 \land \dots \land c_n, where c_i is a soft constraint.

Confidence Value of Soft Conjunctive Queries V(\phi) :
First, you need to compute the confidence values of all soft constraints in
this soft conjunctive query. Then, you can simply sum up these confidence
values as the final confidence value of the soft conjunctive query as follows:
V(\phi) = \sum_i V(c_i).

If the conjunctive query has an existential variable e, you should find an
entity to replace it and then compute the confidence value of this query.

Output Format
Please output your response in the JSON format, where the first element
is the best candidate entity among the four options, and the second element
is your explanation for your choice.

Question
Soft query:(h_1,r_1,f,\alpha_1,\beta_1) \land (h_2,r_2,f,\alpha_2,\beta_2)
Four candidate entities: s_1, s_2, s_3, s_4

13191

Please return the best candidate for f1 to satisfy the above soft query.

N Proof for Error Analysis

N.1 Proof of Theorem 1
Firstly, we give the proof of Theorem 1:

Proof. Consider the atomic query ψ = (a, (α, β)). Firstly, we consider whether the soft atomic query is
positive or negative.

Let us assume a = r(y, o), with y be the only free variable
Then for arbitrary r, h, t, α, β:

Pr
(
∥Û [ψ](s)− U [ψ](s)∥ > δ)

)
= Pr

(
β∥[P̂ (s, r, o)]α − [P(s, r, o)]α∥ > δ

)
(31)

= Pr

(
∥[P̂ (s, r, o)]α − [P(s, r, o)]α∥ >

δ

β

)
(32)

We note that even if a = ¬r(y, o), the result is the same:

Pr
(
∥Û [ψ](s)− U [ψ](s)∥ > δ)

)
= Pr

(
β∥[1− P̂ (s, r, o)]α + [P(s, r, o)]α − 1∥ > δ

)

= Pr

(
∥[P̂ (s, r, o)]α − [P(s, r, o)]α∥ >

δ

β

)

For convenience, we write x̂, x as the abbreviation of P̂ (s, r, o),P(s, r, o), correspondingly, then the
initial formula becomes:

Pr

(
∥x̂− x∥ > δ

β

)

= Pr

(
∥x̂− x∥ > δ

β
| x̂ > α, x > α

)
Pr(x̂, x > α) + Pr

(
∥x̂∥ > δ

β
| x̂ > α, x < α

)
Pr (x̂ > α, x < α)

+ Pr

(
∥x∥ > δ

β
| x̂ < α, x > α

)
Pr(x̂ < α, x > α) + Pr

(
∥0∥ > δ

β
| x̂ < α, x < α

)
Pr(x̂ < α, x < α)

≤ ε(
δ

β
) Pr(x̂ > α, x > α) + Pr(x̂ > α, x < α) + Pr(x̂ < α, x > α)

= ε(
δ

β
) + (1− ε(

δ

β
))[Pr(x̂ > α, x < α) + Pr(x̂ < α, x > α)]− ε(

δ

β
) Pr(x̂ < α, x < α)

≤ ε(
δ

β
) + (1− ε(

δ

β
))[Pr(x̂ > α, x < α) + Pr(x̂ < α, x > α)]

Moreover, we use the Total Probability Theorem once again and assume f(ξ) as the probability density
function of x:

Pr(x̂ > α, x < α) + Pr(x̂ < α, x > α)

=

∫ 1

0
Pr(x̂ > α | x = ξ < α)f(ξ)dξ +

∫ 1

0
Pr(x̂ < α | x = ξ > α)f(ξ)dξ

=

∫ α

0
Pr(x̂ > α | x = ξ)f(ξ)dξ +

∫ 1

α
Pr(x̂ < α | x = ξ)f(ξ)dξ

By noting that if x̂ > α while x = ξ < α, it must have |x̂− x| > α− ξ, we know that:

13192

Pr(x̂ < α | x = ξ > α) ≤ Pr(|x̂− x| > α− ξ)

Therefore

∫ α

0
Pr(x̂ > α | x = ξ)f(ξ)dξ +

∫ 1

α
Pr(x̂ < α | x = ξ)f(ξ)dξ

≤
∫ α

0
Pr(|x̂− x| > α− ξ)f(ξ)dξ +

∫ 1

α
Pr(|x̂− x| > ξ − α)f(ξ)dξ

≤
∫ α

0
ε(α− ξ)f(ξ)dξ +

∫ 1

α
ε(ξ − α)f(ξ)dξ

=

∫ 1

0
ε(|α− ξ|)f(ξ)dξ

Therefore we finish the proof.

N.2 Proof of Theorem 2
Then for Theorem 2, consider the query ϕ = ∃x1, ..., xn.ψ1 ∧⃝ · · · ∧⃝ ψm, where ψi = (ai, (αi, βi)), the
final error should be no more than a linear combination of each soft atomic query:

Proof.

∥Û [ϕ](s)− U [ϕ](s)∥
= ∥ max

x1=s1,··· ,xn=sn
(Û [ψ1](s) + · · ·+ Û [ψm](s))− max

x1=s1,··· ,xn=sn
(U [ψ1](s) + · · ·+ U [ψm](s))∥

≤ ∥ max
x1=s1,··· ,xn=sn

(
[Û [ψ1](s)− U [ψ1](s)] + · · ·+ [Û [ψm](s)− U [ψm](s)]

)
∥

≤ max
x1=s1,··· ,xn=sn

(
∥Û [ψ1](s)− U [ψ1](s)∥+ · · ·+ ∥Û [ψm](s)− U [ψm](s)∥

)

≤ Σmi=1ϵ(αi, βi)

The final line relies on the definition of ϵ, which gives the upper bound of error that only depends on
α, β.

13193

