
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 13132–13152
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Cultivating Game Sense for Yourself: Making VLMs Gaming Experts
Wenxuan Lu1,2, Jiangyang He3, Zhanqiu Zhang4†, Yiwen Guo5†, Tianning Zang1,2†

Institute of Information Engineering, Chinese Academy of Sciences1

School of Cyber Security, University of Chinese Academy of Sciences2

School of Computer Science and Artificial Intelligence, Wuhan University of Technology3

LIGHTSPEED4

Independent Researcher5

luwenxuan@iie.ac.cn, he_jiang_yang@whut.edu.cn, zqzhang27@gmail.com,
guoyiwen89@gmail.com ,zangtianning@iie.ac.cn

Abstract

Developing agents capable of fluid gameplay
in first/third-person games without API access
remains a critical challenge in Artificial Gen-
eral Intelligence (AGI). Recent efforts leverage
Vision Language Models (VLMs) as direct con-
trollers, frequently pausing the game to ana-
lyze screens and plan action through language
reasoning. However, this inefficient paradigm
fundamentally restricts agents to basic and non-
fluent interactions: relying on isolated VLM
reasoning for each action makes it impossi-
ble to handle tasks requiring high reactivity
(e.g., FPS shooting) or dynamic adaptability
(e.g., ACT combat). To handle this, we pro-
pose a paradigm shift in gameplay agent de-
sign: instead of directly controlling gameplay,
VLM develops specialized execution modules
tailored for tasks like shooting and combat.
These modules handle real-time game inter-
actions, elevating VLM to a high-level devel-
oper. Building upon this paradigm, we in-
troduce GameSense, a gameplay agent frame-
work where VLM develops task-specific game
sense modules by observing task execution
and leveraging vision tools and neural network
training pipelines. These modules encapsu-
late action-feedback logic, ranging from di-
rect action rules to neural network-based de-
cisions. Experiments demonstrate that our
framework is the first to achieve fluent game-
play in diverse genres, including ACT, FPS,
and Flappy Bird, setting a new benchmark for
game-playing agents. The code is available at
https://github.com/ipsss2/GameSense.

1 Introduction

Developing agents that fluidly play first/third-
person games without API access remains a critical
challenge in AGI, where complexity mirrors real-
world embodied tasks (Lu et al., 2024; Wang et al.,
2024). Agents must navigate diverse tasks, ranging

† Corresponding authors

Figure 1: The ‘thinking time’ of direct VLM control
becomes a critical vulnerability in real-time games, high-
lighting the need for a paradigm shift on VLM use: from
direct controller to execution module developer

from combat encounters to environmental naviga-
tion, while executing precise real-time actions (Hu
et al., 2024). Traditional reinforcement learning
(RL) approaches struggle to handle such a broad
spectrum of demands due to their limited task gen-
eralization (de Woillemont et al., 2022; Justesen
et al., 2019). Recently, the emergence of Vision
Language Models (VLMs) has opened new possi-
bilities in this domain. With their strengths in vi-
sual understanding and decision-making, VLMs in-
teract with games purely through visual understand-
ing of game screens. This ability offers a promising
direction for developing non-API-dependent game-
play agents (Tan et al., 2024; Liu et al., 2024a;
Wang et al., 2023b).

Recent VLM-based approaches leverage VLMs
as direct game controllers through a pause-and-plan
paradigm (Tan et al., 2024; Chen et al., 2024): the
agent periodically pauses gameplay, using VLM
and vision tools (e.g., OCR, segmentation) together
to analyze game screens, plan actions and then di-
rectly output key-mouse command to control game.

13132

https://github.com/ipsss2/GameSense

However, this paradigm suffers from fundamental
limitations: (1) it heavily depends on the game’s
support to pause at any moment, which disrupts
the gameplay flow and limits its applicability to
a narrow range of games that support such inter-
ruptions; (2) Requiring VLM reasoning for every
action makes it unsuitable for tasks demanding high
reactivity (e.g., FPS shooting); (3) VLM outputs
simple key-mouse control commands without real-
time interactive logic for game environments, mak-
ing it hard solve tasks demanding dynamic adapta-
tion (e.g., action game combat). These limitations
reflect a fundamental mismatch: VLMs excel at
time-consuming deliberate reasoning (scene under-
standing and planning) but struggle with rapid, con-
tinuous game interactions requiring millisecond-
level responses (shown in Figure 1).

We observe that most human game actions rarely
rely on deliberate reasoning, but rather flows from
quick-fire game sense - a set of trained reflexes and
patterns developed through practice. This observa-
tion suggests a fundamental paradigm shift: Unlike
using VLMs to directly control every game actions,
we should elevate them to develop task-specific
execution modules that can handle real-time inter-
actions autonomously. These specialized modules,
developed by VLM, solve specific tasks requiring
rapid reactions or frequent environmental interac-
tions. This paradigm shift bridges the VLM’s rea-
soning with real-time gameplay demands, enabling
more versatile game agents.

Based on this new paradigm, we present Game-
Sense, a framework that empowers VLMs to de-
velop and optimize task-specific execution mod-
ules, termed Game Sense Modules (GSMs). Game-
Sense equips VLMs with essential tools, including
vision tools and neural network training pipelines,
to create GSMs tailored for diverse gameplay
tasks. These modules can range from simple action-
feedback loops (e.g., combat patterns based on
HP bar monitoring) to complex, learned behaviors
(e.g., boss fight strategies optimized through RL).
These modules are seamlessly integrated into the
gameplay loop: when the agent identifies a spe-
cific task, it activates the corresponding module
and refines it based on execution feedback. By
shifting VLMs’ role from direct controller to the
developer of GSMs, GameSense achieves efficient
execution and promotes continuous improvement
in gameplay performance.

Experiments demonstrate that GameSense is the
first agent to achieve fluent gameplay in diverse

game genres. In ACT/FPS games, our framework
achieves the highest success rates in combat tasks,
while achieving the highest exploration scores with-
out gameplay pausing. In contrast, existing VLM-
based methods either fail to complete such tasks or
rely heavily on frequent gameplay pausing, disrupt-
ing the flow of real-time interactions. In the reflex-
intensive game Flappy Bird where pausing is not
supported, existing VLM-based methods fail at ba-
sic control, and GameSense develops precise con-
trol modules through iterative refinement. Game-
Sense exhibits significantly improved real-time per-
formance and adaptation capabilities, setting a new
benchmark for game-playing agents. The contribu-
tions of this paper are as follows:

• We identify limitations of existing VLM-
based game-playing approaches, particularly
their inability to handle real-time, high-
reactivity tasks.

• We propose a novel paradigm that uses VLMs
to develop task-specific execution modules for
autonomous real-time interactions.

• We introduce GameSense, a framework that
enables VLMs to create and refine Game
Sense Modules (GSMs).

• Our experiments demonstrate that GameSense
outperforms existing methods and is the first
to master reflex-intensive games.

2 Related Work

2.1 Environment for Video Gameplay and
RL-based Agents

Researchers have made significant strides in var-
ious video game environments, including classic
games like Atari games(Bellemare et al., 2013),
Minecraft(Fan et al., 2022; Guss et al., 2019), Star-
Craft II(Ellis et al., 2023). However, these en-
vironments rely heavily on open-source code or
official APIs, requiring substantial human effort
for implementation. This dependency restricts AI
accessibility to general games. Recent RL-based
approaches have attempted to overcome API de-
pendencies by directly processing game visuals
and simulating keyboard-mouse inputs, including
DQN-play-sekiro(analoganddigital., 2021). How-
ever, these RL methods typically work for specific
tasks and exhibit poor generalization, requiring re-
training for new scenarios. The challenge of devel-
oping agents capable of generalizing across diverse

13133

gaming environments without API access remains
largely unsolved. This limitation motivates our re-
search toward a more adaptable solution using only
visual inputs and key-mouse controls.

2.2 LLM/VLM-Driven Gameplay Agent

Current LLM/VLM-driven gameplay agents fol-
low two main approaches. The first relies on
game APIs for state observation and control, as
seen in Minecraft(Wang et al., 2023a; Liu et al.,
2024a) and Starcraft II agents(Ma et al., 2023).
While effective, this API dependency limits their
application to closed-source commercial games.
The second approach uses VLMs to directly pro-
cess screen information and generate keyboard-
mouse controls, as demonstrated by Cradle(Tan
et al., 2024). Though eliminating API require-
ments, this method’s frame-by-frame analysis and
decision-making process introduce significant la-
tency. This makes such agents unsuitable for tasks
requiring quick reactions or dynamic adaptation.
While recent works like SIMA(Raad et al., 2024)
and VARP(Chen et al., 2024) attempt to improve
performance through behavior cloning, they re-
quire extensive human gameplay data for training.
The challenge of achieving real-time and adaptive
gameplay in VLM-driven agents remains unsolved,
motivating our research toward a new paradigm.

3 Method

3.1 Problem Formulation and Motivation

This work aims to develop a real-time gameplay
agent that operates without relying on game APIs
or pausing the game for action reasoning. The
agent solely depends on real-time game screens and
outputs key-mouse control commands to interact
with the game. This approach aims to create a
truly in-game agent, mirroring how human players
experience and interact with the game environment.

Existing gameplay agents rely on the "pause and
plan for each action" paradigm, which exhibits lim-
itations in fast-paced and dynamic game scenarios.
In contrast, most human gameplay actions do not
stem from deliberate reasoning over each move
but from game sense—an intuitive ability to react
swiftly based on experience. Motivated by this
observation, we propose an agent system capable
of developing its form of "game sense," enabling
more natural and efficient interaction in gameplay.

3.2 Overview of GameSense

GameSense introduces a paradigm shift by ele-
vating the VLM from direct controller to devel-
oper of task-specific execution modules, termed
Game Sense Modules (GSMs). The agent inte-
grates a High-Level VLM Agent and GSMs: the
High-Level VLM Agent is responsible for real-time
game screen analysis, historical reflection, and task
and action planning. The GSMs, independently
developed by the VLM itself, handle tasks requir-
ing rapid response (e.g., combat, shooting, rapid
clicks). As shown in Figure 2, the agent operates
in a continuous loop: it analyzes real-time game
screens, reflects on history, and plans tasks and
actions. Depending on the action requirements,
the agent either directly generates key-mouse con-
trol codes (VLM-executed actions) for straight-
forward actions or invokes GSMs (GSM actions)
for high-speed processing. This process ensures
efficient and natural interaction with the game, mir-
roring human-like gameplay.

3.3 High-Level VLM Agent

The High-Level VLM Agent serves as the brain
of the system, responsible for understanding the
game environment, reflecting on past experiences,
and planning future tasks and actions (both VLM-
executed and GSM actions). This module is struc-
tured into several core components:

Game Environment Analysis: This module
leverages VLM’s visual understanding capabili-
ties to generate a textual description of the current
game screens. It identifies key elements such as the
presence of enemies, bosses, interactable objects,
potential threats, and the player character’s status.
This textual description is then used for historical
reflection and task planning.

Historical Data Reflection: This module per-
forms three parallel types of reflection to learn from
the past: (1) Previous Task Reflection: evaluate the
success of the previous task and suggesting poten-
tial optimizations; (2) Historical Task Summary:
summarize the last 10 task executions to extract
long-term patterns; and (3) Action Design Reflec-
tion: assess VLM-executed actions’ effectiveness
and generating refinements. This mechanism en-
sures continuous self-assessment and refinement.

Memory: This module serves as a structured
repository for Historical Data Reflection and Game
Environment Analysis, which consists of episodic
memory and procedural memory. Episodic mem-

13134

Figure 2: The overall architecture of GameSense. The main loop is governed by the VLM, which analyzes the game
environment, reflects on history, plans tasks and actions, and constructs the code for each action (both VLM-executed
and GSM actions). The VLM acts as a developer to refine GSMs through analysis GSM’s execution process.

ory stores the Game Environment Analysis, Pre-
vious Task Reflection and Historical Task Sum-
mary, providing temporal context for the agent’s
understanding of game progression and task out-
comes. This memory directly passed to the Task
and Action Plan module, enabling the VLM to
make context-aware decisions. Procedural mem-
ory, implemented as a RAG database, specializes
in storing and retrieving action implementation ex-
periences for VLM-executed actions. It stores
action names, the corresponding action code, and
the associated reflection results from Action Design
Reflection. When planning a new VLM-executed
action, the agent queries the procedural memory
using the action name as the key, retrieving relevant
historical data to guide action construction.

Task Plan: Based on the Episodic Memory, this
module determines the next task the agent should
undertake. It considers the overall current situa-
tion and past experiences to generate a high-level
task description, including the key goal, success
criteria, and locations (if needed).

Action Plan: Given the task description and the
Episodic Memory, this module plans a sequence
of action names required to complete the task.
This planning is grounded in a predefined action
mapping table that provides a comprehensive and
conflict-free set of actions, including both VLM-

executed actions (single key-mouse operation, e.g.,
"move forward": "use [key] to move") and GSM
actions (calls to specialized GSMs, e.g., "Fight
mobs": "invoke [Fight GSM] to fight mobs"). Each
action in the table is accompanied by a clear tex-
tual description, enabling the VLM to leverage its
language understanding capabilities to connect the
task’s semantic meaning with appropriate actions.
For instance, when tasked with "engage the mobs
ahead," the VLM references the mapping table to
retrieve possible actions. By analyzing the action
descriptions, the VLM constructs an ordered se-
quence of action names such as ["move forward"
(VLM-executed), "Fight mobs" (GSM action)].

Action Construction: This module translates
the planned action names into executable code, ref-
erencing the action mapping table and procedural
memory. For VLM-executed actions, the VLM
generates the key-mouse code (including both the
specific key and its duration), leveraging the pro-
cedural memory for guidance. For GSM actions,
this module simply outputs the code to call the
appropriate GSM.

The High-Level VLM Agent operates in a
closed-loop process. It begins by analyzing the
game screen to understand the current state. Then,
it reflects on past experiences through the three re-
flection mechanisms. Based on the current state

13135

and reflections, it plans the next task and the se-
quence of actions. Finally, it constructs the code
for each action (both VLM-executed and GSM ac-
tions). This process is driven by the VLM’s rea-
soning and code-generation capabilities, with each
cycle potentially contributing to improving future
decision-making through memory and reflection.
Further details are availabel in AppendixA.

3.4 Game Sense Modules (GSMs)

3.4.1 Motivation and Design Philosophy

Our goal is to achieve a “game sense” similar to
that of human players—the ability to respond to
gameplay dynamically, which is key to a success-
ful real-time gaming experience. Specifically, we
reposition VLM from a direct controller to a de-
veloper and optimizer, creating and continuously
optimizing Game Sense Modules (GSMs). We re-
quire VLM design to follow a “from start to finish”
design, which means each GSM is designed as a
complete execution equipped with adaptive execu-
tion loops and termination criteria, rather than a
mere sequence of actions. This design ensures both
real-time performance and dynamic adaptability.

3.4.2 GSM Types and Application Scope

Our approach categorizes GSM into two types: (1)
RL-based GSM, which is designed for scenarios
requiring high dynamic adaptability where task pat-
terns are difficult to model with fixed rules (e.g.,
boss fights and Flappy Bird control); (2) Rule-
based GSM targets tasks with well-defined rules
that demand rapid, efficient responses (e.g., mob
fights and shooting in FPS games).

In each game, the tasks handled by GSMs are
predefined during Agent initialization. In ACT
games, GSMs handle mob fights and boss fights.
In FPS games, GSMs manage shooting. In Flappy
Bird, GSMs control the bird’s flight. This design is
based on the following reasons: (1) Limited Game
Sense Requirements: For a specific type of game,
a limited number of game sense modules are suf-
ficient to support smooth gameplay (e.g., fight for
ACT, shoot for FPS). (2) Experimental Valida-
tion: Experiments 4.5.3 have shown that allowing
the VLM to autonomously generate GSM mod-
ules is counterproductive. Excessive autonomy can
lead to frequent and redundant GSM creation and
low reusability of GSM, increasing computational
overhead and management complexity.

3.4.3 GSM Toolset
GSM relies on the following general-purpose tools
for task execution. We argue that the use of such
tools is well-justified: (1) it mimics humans’ direct
understanding of game visuals; (2) existing meth-
ods (Tan et al., 2024; Liu et al., 2024a) commonly
depend on general-purpose visual tools.

The key tools include: (1) State Reader: An
OpenCV-based game frame analyzer for extract-
ing game states (e.g., HP bars, death status).(2)
Vision Processors: Including ResNet50 (He et al.,
2016) or CNN for feature extraction and Ground-
ing Dino (Liu et al., 2024b) for object detection.
These are standard computer vision models. (3) RL
Training Parent Class: A standard RL training
parent class implementation for building RL-based
GSMs, which requires VLM to instantiate it. (4)
Training Analyzer: For analyzing training pro-
cess data, including reward curves and behavior
statistics, providing optimization insights for VLM.
Further details of toolset and case presentation are
available in Appendix B.1.

These tools are standard components in com-
puter vision and RL. The key innovation of GSM
innovation lies in how VLM develops GSMs rather
than the tools themselves.

3.4.4 RL-based and Rule-based GSMs
RL-based GSM designed for tasks requiring dy-
namic adaptation (e.g., boss fights, Flappy Bird).
VLM firstly designs the state space (by selecting
relevant states from the output of State Reader,
like HP state of character/boss), action space (by
selecting task-relevant controls from key-mouse
mappings) and constructs initial reward functions
based on task objectives. Based on the above, RL
Training Parent Class is instantiated, and then RL
training is initiated. As training begins, VLM opti-
mizes reward function through Training Analyzer.
This process establishes a "train-analyze-optimize"
loop, enabling GSM to progressively master com-
plex task execution strategies.

Rule-based GSM focuses on tasks with clear
logic but demanding quick reactions (e.g., FPS
shooting, mob fights). During creation, VLM first
analyzes task objectives and selects necessary vi-
sual processing tools (e.g., Grounding Dino for
shooting), then designs a complete control loop
with execution logic and end conditions. Dur-
ing execution, VLM optimizes the execution logic
through screen analysis, such as adjusting the
Grounding Dino label list for more precise shooting

13136

target detection. This "execute-analyze-optimize"
loop ensures GSM maintains continuously im-
proved execution precision.

Both GSM approaches have a “from start to fin-
ish” design. And we suggest setting the max opti-
mization iterations of GSMs to 3 (Show in 4.5.2).
Further details are available in Appendix B.2.

3.5 System Integration

Before the agent begins gameplay, the system is ini-
tialized with the following components: (1) Game
Mechanics and Objectives: A detailed description
of the game mechanics, including rules, objectives,
and success criteria; (2) Predefined action mapping
table: serves as the foundation for agent-game in-
teraction, containing both basic key-mouse control
mappings and predefined GSM action, each with
detailed functional descriptions; (3) GSM Module
Initialization: initialization based on the predefined
GSM actions’ description and tool instructions. RL-
based GSM initializes action space, state space, and
reward function. Rule-based GSM initializes ex-
ecution logic and end conditions. Then the agent
operates in a continuous loop (High-Level VLM
Agent) and the GSM module continuously opti-
mizes its performance in a parallel process.

4 Experiment

4.1 Implementation Details

To ensure reproducibility, we adopt an open-source
VLM with Qwen 2.5 VL as the backbone. All
games are run on a single Windows machine
equipped with an NVIDIA 4060 GPU. This setup
guarantees that the experimental results can be reli-
ably reproduced and provides a clear reference for
the hardware environment used in our evaluations.

4.2 Evaluation Methods

Our evaluation focuses on two aspects: (1)Single-
Task Performance: We select important tasks
within each game to assess the agent’s task com-
pletion rate. For instance, in the ACT game (e.g.,
combat with minor monsters and boss battles), in
the FPS game (e.g., shooting and movement), we
evaluate how effectively the agent handles these
critical tasks that demand high real-time respon-
siveness. (2) Complete Game Flow Evaluation:
We let all agents independently engage with and
adapt to the game using a fixed initial scenario. The
evaluation metrics include max exploration scores
(how comprehensively the agent navigates the envi-

ronment) and the average exploration scores, which
validate the agent’s overall gameplay capabilities.

4.3 Baselines
We compare our approach, GameSense, with Cra-
dle—the only general game agent specifically de-
signed for video games (Tan et al., 2024). For a
comprehensive comparison, we evaluate both the
standard Cradle and its variant without the stop
mechanism (Cradle without stop). It is important
to note that GameSense does not require any paus-
ing, thereby offering significant advantages in real-
time performance and seamless gameplay.

4.4 Result of Single-Task
In our experiments on the ACT game “Black Myth:
Wukong”, the following tasks were defined: (1)
UI Operation: Using the in-game UI to restore
blood volume. (2) Map Escape: Resolving issues
where the character gets stuck at the map boundary,
by adjusting the camera view. (3) Approach to
Item Interaction: Moving close to the shrine for
interaction. (4) Normal Mob Battle: A combat
task where a monster can be defeated with three
hits. (5) Harder Mob Battle: A more challenging
combat task requiring six or seven hits. (6) Boss
Battle: A high-difficulty combat task. In our exper-
iments on the FPS game “DOOM”, the following
tasks were defined: (1) UI Operation: Using the
UI to enter the game. (2) Map Escape: Make the
character turn correctly at the right angle of the
road, by adjusting the camera view. (3) Interact
with Door: Moving close to the interactive door
and open it. (4) Normal Mob Battle: A shot task
where the monster has slow movement speed. (5)
Harder Mob Battle: A more challenging shot task
where the monster has fast movement speed. The
experiment for each task was repeated 20 times.

Note on Pause Mechanism: Black Myth:
Wukong does not support an immediate pause dur-
ing combat or under attack. To run Cradle, we
had to implement a mechanism where a pause is
attempted up to 5 times; if pausing still fails, the
system abandons the pause. This increases the risk
of the character being attacked during the VLM’s
reasoning, highlighting a significant compatibility
issue with Cradle. DOOM supports pausing at any
moment, which enables Cradle to run normally.

Table 1 summarizes the success rates for each
task. In non-real-time tasks, all three methods
demonstrated similar performance (typically rang-
ing from 50% to 95%). However, Cradle (with-

13137

Black Myth: Wukong (not support an immediate pause during combat or under attack)
UI Operation Map Escape Item Interaction Normal Mob Battle Harder Mob Battle Boss Battle

Cradle 95% 55% 75% 25% 10% 0%
Cradle w/o stop 95% 50% 70% 0% 0% 0%
GameSense 100% 60% 70% 95% 70% 60%

DOOM (supports pausing at any moment)
UI Operation Map Escape Interact with Door Normal Mob Shot Harder Mob Shot

Cradle 95% 45% 35% 10% 5%
Cradle w/o stop 100% 30% 35% 0% 0%
GameSense 95% 50% 40% 85% 65%

Table 1: Single-task experiment on Black Myth: Wukong and DOOM. Before testing, we let Cradle run 10 steps
in specific scenarios to adapt to the situation. For GameSense, we run 10 steps in specific scenarios and optimize
the GSM through three iterations. For GSMs, Mob battle/shot corresponds to rule-based GSMs and Boss battle
corresponds to RL-based GSMs.

out stop) showed a significant decrease to 30% in
DOOM’s map escape task due to potential unex-
pected monster encounters, where its inferior reac-
tion capability renders it completely ineffective. In
combat scenarios, GameSense demonstrated over-
whelming superiority, achieving success rates of
60%-95% in Black Myth: Wukong and 65%-85%
in DOOM, while other methods were practically
unusable in combat situations (with success rates
of only 0-25%). These results convincingly demon-
strate the exceptional capabilities of the Game-
Sense framework in handling complex real-time
interaction scenarios.

4.4.1 Result of Complete Game Flow

Map of "Black Myth: Wukong" and "DOOM", as
shown in Figure 3. To evaluate the complete game
flow, we use the exploration progress in games as
a performance metric, with different criteria de-
fined for each game. For "Black Myth: Wukong,"
considering its open-world map, we score based
on the consecutive tasks completed by the Agent:
defeating a normal mob scores 1 point, success-
fully navigating a junction scores 1 point, defeating
a harder mob scores 2 points, and successful in-
teraction with items (such as collecting herbs or
treasures) scores 1 point. For "DOOM," given its
linear map, we have marked key points on the map,
including turning, shooting enemies, and interact-
ing with doors, with each key point passed scoring
1 point. For "Flappy Bird," we measure how many
pipes the bird passes, with each pipe scoring 1 point.
For all games, we calculate the total score from the
starting point to the character’s death. In our exper-
imental setup, each game was run 20 times from a
fixed initial position, and two primary metrics were

recorded: the average number of explored scores
and the maximum score achieved by the agent.

As shown in figure 3, the experimental results
clearly demonstrate the superior performance of
GameSense in-game exploration tasks: in the
open-world ACT game "Black Myth: Wukong," it
achieved an average exploration score of 4.5 and
a maximum score of 6.0; in the linear level game
"DOOM," it reached an average score of 3.5 and a
maximum score of 5.0; and in the continuous reac-
tion game "Flappy Bird," it impressively scored an
average of 28.3 and a maximum of 35. In contrast,
Cradle performed poorly or failed to effectively
play the games at all, strongly validating Game-
Sense’s significant advantages in achieving authen-
tic gameplay experiences and its versatility across
different game genres.

4.5 Ablation Study

4.5.1 RL-based GSM
Although our RL-based GSM utilizes a general-
purpose RL Training Parent Class rather than one
specifically tailored for individual game scenarios,
the stringent requirements for training RL models
still make it challenging to establish complete train-
ing protocols across all gaming environments. This
raised concerns about whether Rule-based GSM
alone could enhance agent capabilities, when RL
training is prohibited. Therefore, we conducted
experiments in boss battle scenarios, where VLM
solely develop Rule-based GSM. As shown in Ta-
ble2, Rule-based GSM still managed to reduce
the boss’s health to 34.6% and achieve a success
rate of 10%. These results indicate that rule-based
GSM also significantly enhance the Agent’s com-
bat capabilities. Furthermore, this indicates that

13138

Figure 3: Complete game flow performance on Black Myth: Wukong, DOOM, and Flappy Bird.

our paradigm shift, which transforms VLM from
a direct controller to a GSM observer, is the key to
enhancing agent capabilities. Detailed analysis and
experiment setting can be seen in appendix C.1.

GSM Type Success Rate Avg Blood
RL-based 60% 12.3%
Rule-based 15% 34.6%
Cradle 0% 90.2%
Cradle w/o Stop 0% 95.8%

Table 2: Avg Blood means the average remaining health
of the boss, which also represents the combat ability of
different agents.

Opt Num
Battle Tasks in ACT Game Flappy Bird

Success Rate (Mobs) Success Rate (Boss) Pipes Passed
0 70% 10% 18.3
1 90% 40% 28.1
2 100% 50% 27.3
3 90% 60% 28.2

Table 3: Impact of GSM optimization iterations on gam-
ing tasks. The first two columns show task success rates
as percentages, while the last column indicates the aver-
age number of pipes passed in Flappy Bird.

4.5.2 Optimization Iterations of GSM
We investigated the impact of GSM optimization
iterations on its performance by extracting multiple
iterative versions of GSM and testing their perfor-
mance. As shown in table3, while one to two opti-
mization iterations are sufficient for simpler tasks,
more complex challenges like boss battles benefit
from additional optimization cycles, highlighting
the importance of iterative refinement in GSM’s

performance. Detailed analysis and experiment
setting can be seen in appendix C.2.

Additionally, we found that there is a certain
probability of degradation occurring when the num-
ber of GSM optimizations is too high. This is due to
the accumulation during the optimization process,
with more bad cases and optimization case-by-case
analysis as shown in the appendixC.4. So we sug-
gest setting the maximum number of iterations for
optimization to 3.

4.5.3 Unfixed GSM
Although we have emphasized that the fixed GSMs
are sufficient for specific gaming scenarios, we re-
main concerned about whether allowing the VLM
to autonomously develop GSMs could broaden
their applicability. Therefore, we integrated an
additional step in the high-level VLM agent, per-
mitting the VLM to independently reason about and
design GSMs. Unfortunately, we observed that the
GSMs autonomously generated by the VLM were
often repetitive, with the VLM designing duplicate
GSMs for each encountered mob. This frequent
construction of GSMs not only places extra opera-
tional demands on the Agent but also necessitates
prolonged decision-making times, compelling us
to pause the game frequently, contrary to our initial
objectives. Appendix C shows more details.

5 Conclusion

In this paper, we first identify a common issue with
existing VLM-based gameplay agents: the VLM
infers each action individually, resulting in signifi-
cant "thinking delays", which limits their capabil-

13139

ity to handle real-time and dynamically adaptive
tasks. To address this issue, we propose a paradigm
shift, transforming the VLM’s role from a direct
controller to a developer of game action execution
modules. Furthermore, we developed the Game-
Sense, which is the first agent capable of perform-
ing tasks such as shooting in FPS games and boss
fights in ACT games without game’s pause func-
tion. This provides a new paradigm for construct
VLM-based gameplay agents.

Limitation

This paper introduces a paradigm shift in the design
of VLM gameplay agents: transforming VLMs
from direct action controllers to developers of
Game Sense Modules (GSMs). Although our ex-
periments have proven the effectiveness of this ap-
proach, there remains an issue. For each game, the
types and functions of GSMs are fixed. While we
have discussed that this fixed nature is sufficient for
gameplay and that complete autonomy in design
by the VLM would introduce catastrophic delays,
exploring how to enable VLMs to autonomously
recognize and reuse GSMs is still worthwhile, as
it could broaden the applicability of Gameplay
Agents.

References
analoganddigital. 2021. Dqn play sekiro. GitHub repos-

itory.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and
Michael Bowling. 2013. The arcade learning envi-
ronment: An evaluation platform for general agents.
Journal of Artificial Intelligence Research, 47:253–
279.

Peng Chen, Pi Bu, Jun Song, Yuan Gao, and Bo Zheng.
2024. Can vlms play action role-playing games? take
black myth wukong as a study case. arXiv preprint
arXiv:2409.12889.

Pierre Le Pelletier de Woillemont, Rémi Labory, and
Vincent Corruble. 2022. Automated play-testing
through rl based human-like play-styles generation.
In Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment,
volume 18, pages 146–154.

Benjamin Ellis, Jonathan Cook, Skander Moalla,
Mikayel Samvelyan, Mingfei Sun, Anuj Maha-
jan, Jakob Foerster, and Shimon Whiteson. 2023.
Smacv2: An improved benchmark for cooperative
multi-agent reinforcement learning. Advances in
Neural Information Processing Systems, 36:37567–
37593.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Man-
dlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar.
2022. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. Advances in
Neural Information Processing Systems, 35:18343–
18362.

William H Guss, Brandon Houghton, Nicholay Topin,
Phillip Wang, Cayden Codel, Manuela Veloso, and
Ruslan Salakhutdinov. 2019. Minerl: A large-scale
dataset of minecraft demonstrations. arXiv preprint
arXiv:1907.13440.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recogni-
tion. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770–778.

Sihao Hu, Tiansheng Huang, Fatih Ilhan, Selim Tekin,
Gaowen Liu, Ramana Kompella, and Ling Liu. 2024.
A survey on large language model-based game agents.
arXiv preprint arXiv:2404.02039.

Niels Justesen, Philip Bontrager, Julian Togelius, and
Sebastian Risi. 2019. Deep learning for video game
playing. IEEE Transactions on Games, 12(1):1–20.

Shaoteng Liu, Haoqi Yuan, Minda Hu, Yanwei Li,
Yukang Chen, Shu Liu, Zongqing Lu, and Ji-
aya Jia. 2024a. Rl-gpt: Integrating reinforce-
ment learning and code-as-policy. arXiv preprint
arXiv:2402.19299.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Qing Jiang, Chunyuan Li, Jianwei
Yang, Hang Su, et al. 2024b. Grounding dino: Mar-
rying dino with grounded pre-training for open-set
object detection. In European Conference on Com-
puter Vision, pages 38–55. Springer.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. 2024. Chameleon: Plug-and-play com-
positional reasoning with large language models. Ad-
vances in Neural Information Processing Systems,
36.

Weiyu Ma, Qirui Mi, Yongcheng Zeng, Xue Yan,
Yuqiao Wu, Runji Lin, Haifeng Zhang, and Jun
Wang. 2023. Large language models play starcraft ii:
Benchmarks and a chain of summarization approach.
arXiv preprint arXiv:2312.11865.

Maria Abi Raad, Arun Ahuja, Catarina Barros, Frederic
Besse, Andrew Bolt, Adrian Bolton, Bethanie Brown-
field, Gavin Buttimore, Max Cant, Sarah Chakera,
et al. 2024. Scaling instructable agents across many
simulated worlds. arXiv preprint arXiv:2404.10179.

Weihao Tan, Wentao Zhang, Xinrun Xu, Haochong
Xia, Gang Ding, Boyu Li, Bohan Zhou, Junpeng
Yue, Jiechuan Jiang, Yewen Li, et al. 2024. Cra-
dle: Empowering foundation agents towards general
computer control. In NeurIPS 2024 Workshop on
Open-World Agents.

13140

https://github.com/analoganddigital/DQN_play_sekiro
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and An-
ima Anandkumar. 2023a. Voyager: An open-ended
embodied agent with large language models. arXiv
preprint arXiv:2305.16291.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. 2024. A survey on large
language model based autonomous agents. Frontiers
of Computer Science, 18(6):186345.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu,
Xiaojian Ma, and Yitao Liang. 2023b. Describe,
explain, plan and select: Interactive planning with
large language models enables open-world multi-task
agents. arXiv preprint arXiv:2302.01560.

13141

A Detail for High-Level VLM Agent

A.1 Detailed Input/Output for Each Module

1. Game Environment Analysis

• Input: Real-time game screen images cap-
tured directly from the game.

• Output: A detailed textual description that
identifies key elements in the scene—such as
enemies, bosses, interactable objects, poten-
tial threats, and the current state of the player.

2.1 Previous Task Reflection (Historical Data
Reflection)

• Input: Data from the most recent task execu-
tion (screenshots), description of the previous
task, and action design. description.

• Output: A detailed evaluation of the latest
task’s performance that highlights immediate
strengths, weaknesses, and suggestions for the
next task design.

2.2 Historical Task Summary (Historical Data
Reflection)

• Input: Aggregated data from a sliding win-
dow of recent tasks (e.g., the last 10 tasks),
including task description, logs, and task re-
flection.

• Output: A synthesized summary that iden-
tifies long-term trends, and recurring pat-
terns, providing broader context for decision-
making.

2.3 Action Design Reflection (Historical Data
Reflection)

• Input: Data related to VLM-generated action
executions including screenshots, design of
task and action.

• Output: A detailed evaluation of the action
design of the latest task that highlights imme-
diate strengths, weaknesses, and suggestions
for optimization.

3. Memory:

• Input: Reflection outputs from the Historical
Data Reflection module.

• Output: Two types of stored memory:

– Episodic Memory: Time-indexed
records of past task outcomes (both
Previous Task Reflection and Historical
Task Summary).

– Procedural Memory: A RAG database
mapping action names to their corre-
sponding key-mouse control codes and
associated reflection data.

4. Task Planning:

• Input: The textual description from Game
Environment Analysis along with contextual
insights from Episodic Memory.

• Output: A high-level task description that
specifies the core objective, success criteria,
and any relevant spatial or situational details
for the current game scenario.

5. Action Planning:

• Input: The high-level task description gener-
ated by Task Planning.

• Output: An ordered list of action names de-
rived from a predefined action mapping table.

6. Action Construction:

• Input: The ordered list of action names from
Action Planning, along with reference data
from Procedural Memory and the action map-
ping table.

• Output: Executable control codes that trans-
late into either detailed key-mouse commands
(for VLM-executed actions) or invocation in-
structions that trigger the corresponding Game
Sense Modules (for GSM actions), enabling
real-time game control.

A.2 Implementation Details of FPS Game
FPS games have a unique mechanism where at-
tacks are primarily executed through shooting. This
means that players can open fire as soon as they
spot an enemy, and similarly, enemies will shoot
upon detecting the player. To cater to the game’s
demand for shooting at any moment, we have au-
tomated the invocation of the Shooting GSM after
each module in the high-level VLM agent for FPS
games, significantly reducing the risk of the agent
being attacked by enemies. During the design pro-
cess of the GSMs by the VLM, termination and exit
mechanisms were also considered. For instance, if

13142

the Grounding Dino fails to detect enemies multi-
ple times, it will exit the Shooting GSM, ensuring
that this mechanism does not interfere with other
processes of the high-level VLM agent. Addition-
ally, the Action Planning module is still allowed
to invoke the Shooting GSM to handle a variety of
game scenarios.

B Detail for Game Sense Modules

B.1 Detailed Introduce for Part of Tool Set

The RL Training Parent Class is a universal RL
training class that defines a complete RL training
workflow skeleton. At its core is the QNetwork
neural architecture, which employs a triple-branch
parallel processing design: a vision model (normal
CNN for Flappy Bird, Resnet50 for ACT Boss Bat-
tle) branch for visual feature processing, a state
branch for state information processing, and an ac-
tion history branch using LSTM for processing his-
torical action sequences. These three branches ul-
timately merge their features for decision-making,
making it particularly suitable for handling com-
plex state spaces and action sequences in video
games.

The parent class includes the DoubleDQN Train-
ing Module, which implements core DoubleDQN
algorithm functionalities, featuring experience re-
play memory, exploration strategy, and soft tar-
get network updates. The parent class also pro-
vides interfaces for model saving and loading,
supporting training interruption and resumption.
The training process is uniformly managed by
the train() method, supporting multiple training
episodes, with each episode executing standard op-
erations such as environment interaction, experi-
ence collection, parameter updates, and training
log recording.

To utilize this training parent class, specific
scene subclasses need to be instantiated through
VLM, primarily customizing state space, action
space, and reward functions. Once the subclass
is instantiated, training can be initiated directly
using the parent class’s train() method. During
training, the framework automatically manages
model checkpoint saving and training log recording.
Through VLMs overriding of the reward function
method, reward strategies can be flexibly adjusted.
This design pattern allows VLM to focus on strat-
egy optimization for specific games while reusing
standard training workflows, making it applicable
to various video games requiring visual input and

continuous action decision-making.
Training Analyzer analyzes the training record

data generated during the RL training process. Its
purpose is to analyze and compile training statis-
tics, which are then submitted to the VLM to as-
sess whether the RL training meets expectations
and optimize the reward accordingly. The mod-
ule analyzes character state data (including health,
mana, stamina, etc.) and action data, calculates
key metrics such as total training steps, average
rewards, and action usage frequency, and generates
visualization charts including cumulative reward
curves and state variable trends. These comprehen-
sive statistical results enable the VLM to evaluate
the model’s training effectiveness and optimize the
reward design accordingly. Based on these com-
prehensive statistical results, VLM can evaluate
whether the RL model has learned to use various
actions reasonably, whether the training process is
stable, whether it has achieved the expected game
goals (such as reducing Boss health), and whether
the reward design is reasonable.

B.2 Detailed Pipeline for RL-base GSM

B.2.1 Overview

The RL Training Parent Class can be instantiated
by VLM through a systematic process tailored to
different game environments. The implementation
consists of several key components and processes.

The RL Training Parent Class can be instanti-
ated by VLM through a systematic process tailored
to different game environments. First, we provide
an RL training environment restart functionality to
VLM. For ACT games, we leverage in-game tele-
portation cheats to enable precise character repo-
sitioning after respawn. For Flappy Bird, where
revival requires a simple click, we implement a
game-over detection module.

In instantiating the RL Training Parent Class,
VLM employs the state reader to design the state
space (e.g., character/boss status) and action space.
Based on task objectives, VLM constructs an initial
reward function. For example, in ACT games, the
state space might include character health, boss
health percentage, and relative positions, while in
Flappy Bird, it might track bird height and scores
achieved.

As training commences, VLM utilizes its Train-
ing Analyzer to optimize the reward function.
This creates a "train-analyze-optimize" loop where
VLM: (1) Monitors agent performance through

13143

training logs; (2) Adjusts reward signals to encour-
age desired behaviors; (3) Updates the reward func-
tion implementation.

This iterative process enables GSM to progres-
sively master complex task execution strategies,
adapting to different game scenarios while main-
taining the fundamental training structure defined
in the parent class. The flexibility of this approach
allows for continuous refinement of the training
process while ensuring consistency in the underly-
ing RL framework.

B.2.2 Details of Initialization
For the state space, we provide the VLM game
task description (e.g. your task is to defeat the boss
in the scene) and the State Reader. VLM selects
task-related states to form a state space. This state
space would be used to design the reward function.

Example of State Space Design

Boss Blood (idx: 0)
Player Blood (idx: 1)
Potion Percentage (idx: 2)

For the action space, we provide the VLM
game task description and the game’s action and
key mode mapping table. VLM selects task-related
actions from the mapping table to form an action
space.

Example of Action Space Design

• Move Forward (idx: 0)
Basic movement action, no resource
consumption or attack behavior in-
volved.

• Move Backward (idx: 1)
Basic movement action, no resource
consumption or attack behavior in-
volved.

• Move Left (idx: 2)
Basic movement action, no resource
consumption or attack behavior in-
volved.

• Move Right (idx: 3)
Basic movement action, no resource
consumption or attack behavior in-
volved

• Light Attack (idx: 4)

Light attack deals damage to the Boss
but consumes some stamina.

• Heavy Attack (idx: 5)
Heavy attack requires charging time
and can be interrupted, but deals higher
damage. Best used when opportunity
arises.

• Dodge (idx: 6)
Dodge is used to avoid attacks, pre-
venting HP loss when successful, but
consumes stamina.

• Drink Health Potion (idx: 7)
Drinking potion recovers HP but con-
sumes potion stock. Suitable to use
when HP is low.

• Cast Body Fixing (idx: 8)
Casting immobilization spell requires
mana, can control the Boss for a pe-
riod of time, creating opportunity for
damage output.

For the initial reward function, we provide the
VLM game task description, the state space, the
action space, and Reward Function Template (stan-
dardizes input and output to ensure correct invoca-
tion by RL training classes, providing basic design
ideas). Then, VLM independently designed reward
function.

Reward Function Template:

def reward_function(prev_state ,
next_state , action_idx , done ,
action_history , action_state_changes
, episode_start_time , step_time ,
step):
Initialize reward
reward = 0.0

Game over logic
if done:

Reward based on boss health
reduction

boss_health_reduction = 1-
prev_state["boss_percentage"
]

Design your reward logic
......
return reward

Boss health change reward; Suggest
giving linear rewards

boss_health_change = prev_state["
boss_percentage"] - next_state["
boss_percentage"]

Design your reward logic
......

13144

reward+ =

Player health change reward;
Suggest giving linear rewards

player_health_change = next_state["
blood_percentage"] - prev_state[
"blood_percentage"]

Design your reward logic
reward -=

Dodge -specific reward
action = action_state_changes[

action_idx]
if action["action_name"] == "Dodge":

Design your reward logic
......
reward+ =

Combo rewards/penalties
def calculate_combo_reward(

action_history):
combo_reward = 0
Reward for consecutive light

attacks

if action_history [-4:] ==
......:

Design your reward logic
combo_reward +=

Penalty for excessive dodging
if action_history.count (6)

......:
Design your reward logic
combo_reward +=

Penalty for excessive potion
use

if action_history.count (7)
.....:
Design your reward logic
combo_reward +=

return combo_reward

reward += calculate_combo_reward(
action_history)

return reward

Example of reward function designed by VLM

def reward_function(prev_state ,
next_state , action_idx , done ,
action_history , action_state_changes
, episode_start_time , step_time ,
step):
Initialize reward
reward = 0.0

Game over logic
if done:

Reward based on boss health
reduction

boss_health_reduction = 1-
prev_state["boss_percentage"
]

if boss_health_reduction >= 0.5:
reward += 150 # Major

reduction bonus
elif boss_health_reduction >=

0.2:

reward += 75 # Medium
reduction bonus

elif boss_health_reduction >=
0.1:
reward += 30 # Minor

reduction bonus
else:

reward -= 5 # Penalty for
insignificant reduction

return reward

Boss health change reward
boss_health_change = prev_state["

boss_percentage"] - next_state["
boss_percentage"]

if boss_health_change > 0.02:
reward += 100 *

boss_health_change
else:

reward -= 2

Player health change reward
player_health_change = next_state["

blood_percentage"] - prev_state[
"blood_percentage"]
reward += 10 *

player_health_change

Dodge -specific reward
action = action_state_changes[

action_idx]
if action["action_name"] == "Dodge":

if player_health_change == 0:
reward += 2

else:
reward -= 0.5

Combo rewards/penalties
def calculate_combo_reward(

action_history):
combo_reward = 0
Reward for 4 consecutive light

attacks
if action_history [-4:] == [4, 4,

4, 4]:
combo_reward += 5

Penalty for excessive dodging
if action_history.count (6) > 15:

combo_reward -= 5
Penalty for excessive potion

use
if action_history.count (7) > 3:

combo_reward -= 5
return combo_reward

reward += calculate_combo_reward(
action_history)

return reward

C Detial of Ablation Study

C.1 RL-based GSM

Both Rule-based and RL-based GSM underwent
three iterations of optimization and the experiment
for each GSM was repeated 20 times. Rule-based

13145

Figure 4: Case analysis for GSM’s Optimization.

GSM still managed to reduce the boss’s health to
34.6% and achieve a success rate of 10%. In con-
trast, Cradle completely failed to achieve any vic-
tories (zero success rate) and could barely inflict
meaningful damage to the boss (remaining health
at 90.2% and 95.8% respectively). These results
indicate that rule-based GSM also significantly en-
hance the Agent’s combat capabilities.

C.2 Optimization Iterations of GSM

Each GSM version was tested 10 times. The ex-
perimental results are shown in table3. Starting
from the unoptimized version (0 iterations), each
optimization step generally improved performance
until reaching optimal levels. These results indicate
that while one to two optimization iterations are
sufficient for simpler tasks like normal mob battles,
more complex challenges like boss battles benefit
from additional optimization cycles, highlighting
the importance of iterative refinement in GSM’s
performance.

C.3 Unfixed GSM

We incorporated an additional step in the high-level
VLM agent, enabling it to independently concep-
tualize and develop GSMs. However, we observed
that the GSMs spontaneously created by the VLM
exhibited significant repetition, often designing du-
plicate GSMs for each encountered mob. This re-
dundancy severely undermines the reusability of
the GSMs, leading to the production of numer-
ous low-quality, unoptimized GSMs. Table 4 has
shown this phenomenon.

Num of GSM Avg Opt
Unfixed GSM 12 0.17
fixed GSM 2 3(Max)

Table 4: Avg Opt means average optimization iterations
of GSM. We set the max optimization iterations to 3.

C.4 Case-by-case Analysis for GSM’s
Optimization

The figure 4 demonstrates how the VLM optimizes
the shooting GSM. The shooting GSM is designed
based on the target detection capabilities of Ground-
ing Dino, and thus the labels input by Grounding
Dino directly impact performance. Initially, the
VLM could only generate broad labels such as
"people" and "hand." However, after observing the
images detected during the execution process, the
VLM enriched the list of labels, leading to perfor-
mance optimization.

The following code example shows a reward op-
timization case. VLM found through analysis of
training data that the proportion of dodge usage
is too high, which is due to the excessive reward
value for dodge behavior. This will cause the player
to frequently dodge without attacking, so VLM
has lowered the reward for dodging behavior and
lowered the threshold for frequent dodging punish-
ment.

Code before optimization
......
Dodge -specific reward
action = action_state_changes[

action_idx]
if action["action_name"] == "Dodge":

13146

if player_health_change == 0:
reward += 2

else:
reward -= 0.5

......
Combo rewards/penalties
def calculate_combo_reward(

action_history):
......
Penalty for excessive dodging
if action_history.count (6) > 15:

combo_reward -= 5
......
return combo_reward

reward += calculate_combo_reward(
action_history)

return reward

Code after optimization
......
Dodge -specific reward
action = action_state_changes[

action_idx]
if action["action_name"] == "Dodge":

if player_health_change == 0:
reward += 0.5

else:
reward -= 0.1

......
Combo rewards/penalties
def calculate_combo_reward(

action_history):
......
Penalty for excessive dodging
if action_history.count (6) > 10:

combo_reward -= 5
......
return combo_reward

reward += calculate_combo_reward(
action_history)

return reward

We also found that VLM does not always opti-
mize the reward logic. There is also a low probabil-
ity of misunderstanding, such as making a mistake
in the calculation logic of boss health during the
optimization process, as shown in the following
example:

......
Boss health change reward
boss_health_reduction = 1-prev_state

["boss_percentage"]
if boss_health_change > 0.02:

reward +=
......

D Prompts We Used

Game Environment Analysis
env_sys_prompt='''

You are a specialized game environment
analyzer with expertise in
processing and interpreting video
game screenshots.

Your core capabilities include:
1. Precise scene classification between

UI and gameplay environments
2. Detailed visual element extraction

and spatial relationship analysis
3. Gameplay situation assessment

Your analysis must be accurate , concise ,
and focus on actionable information
that would be relevant for game AI

decision -making.'''

def generate_prompt(game_info):
prompt = f"""

You are a game AI assistant responsible
for analyzing in-game screenshots.
Your task is to identify the type of
the current screenshot and

summarize the key information within
it.

There are two types of screenshots:
1. **UI Screen **: Refers to screenshots

displaying menus or user interfaces.
2. ** Gameplay Screen **: Refers to actual

gameplay screenshots , showing
characters , enemies , items , and
other scene elements.

You need to follow these steps:
1. Determine the screenshot type: Is it

a "UI Screen" or a "Gameplay Screen
"?

2. If it's a **UI Screen**,
- extract and summarize the text

from the UI, such as options ,
buttons , etc.

3. If it's a ** Gameplay Screen **
- First assess the Camera View

state: Check if view is too high
(excessive sky/trees visible);

too low (excessive ground
visible); left/right (incomplete
road visibility) and road

features are clearly visible
- extract the key information based

on the following elements: {
game_info.get('Frame_attention ')
}

- For enemy detection , use EXACTLY
one of these formats:
* If enemies present: "Enemy

detected: [number] enemies
at [position]"

* If no enemies: "No enemy
detected"

- summarize the environment or Point
out potential dangers or

opportunities

Output a your result in the following
format:

screen type is: "<UI Screen or
Gameplay Screen >",

observation is: "<Summary of the
content >"

13147

Example output for Gameplay Screen:
screen type is: "Gameplay Screen",
observation is: "

1. camera view state is: (1) View
angle slightly too high - excess
sky visible; (2) Road

visibility partially blocked on
right side

2. Path details is: Main path
heading north through forest

3. Enemy detected: 2 enemies at
front

4. environment summarize is: Forest
path blocked by two enemies with
dense vegetation on both sides"

"
"""

return prompt

Historical Task Summary
history_summary_sys_prompt = '''
You are an expert game historian. Your

role is to synthesize gameplay
history into a concise , informative
narrative paragraph that captures
key events , strategies , and insights
relevant for future decision -making

.
'''
def history_summary_prompt(history_logs)

:
base_prompt = f"""

Based on the following game history logs
, generate a single coherent
paragraph (approximately 150 words)
that:

- Summarizes the key events
chronologically

- Highlights critical decisions and
their outcomes

- Identifies important patterns or
strategies

- Notes any significant environmental
changes

- Includes relevant insights for future
tasks

Game History Logs:
{history_logs}

Your summary should be clear , concise ,
and focused on information that will
be most valuable for future task

reasoning.
"""

return base_prompt

Previous Task Reflection
task_sys_prompt='''
'You are an expert game analyst

specializing in task reflection and
evaluation. Your role is to:

1. Analyze all gameplay screenshots and
state changes to understand what
happened during task execution

2. Evaluate task completion status with
concrete evidence

3. Identify and analyze issues at task
design , action planning , and
execution levels

4. Provide specific recommendations when
needed

Always provide detailed , objective
analysis following the exact format
requested in the prompt.'''

def generate_task_level_prompt(
pass_task_info , pass_env_info ,
current_env_info , pass_action_code):
base_prompt = f""" Analyze the

previous task execution using
the following information:

1. Task Information:
{pass_task_info}

2. Environment States:
- Before task execution: {

pass_env_info}
- After task execution: {

current_env_info}

3. Action Design:
- Planned action list and Execution

code:
{pass_action_code}

Please conduct your analysis in
these sequential steps and
provide a detailed response in
the following format:

1. VISUAL ANALYSIS
Provide a clear description of:
- What happened during the task

execution based on all the
gameplay screenshots

- Key UI changes (if in UI screens),
character movements ,

interactions observed , and
Notable changes in environment
states

{" - Changes between initial and
final maps (The last two
pictures)" if has_map else ""}

2. TASK COMPLETION EVALUATION
State clearly:
- Whether the task was successfully

completed
- Specific evidence from screenshots

or state changes supporting
your conclusion

3. ISSUE ANALYSIS (if any problems
occurred)

Analyze at three levels:
a) Task Design Level

- Any issues with task design
given the game state

- Problems with task objectives
or prerequisites

b) Action Planning Level
- Issues with the planned action

sequence

13148

- Problems with action strategy
or logic

c) Action Execution Level
- Problems with specific control

inputs
- ** Issues with duration of

actions **

4. NEXT STEP RECOMMENDATION
If task failed:
- Specific suggestions to complete

the task in the ** CURRENT **
state

If task succeeded:
- Simply state that the task was

completed successfully and no
modifications are needed

Please provide your analysis in the
following format:

VISUAL ANALYSIS:
<Describe the sequence of events

observed in gameplay screenshots ,
including UI changes (if in UI
screens), character actions , and any
significant state changes >

{" <Describe any relevant changes
observed between initial and final
maps >" if has_map else ""}

TASK COMPLETION EVALUATION:
Status: <SUCCESS/FAILURE >
Evidence: <List specific observations

from screenshots or state changes
that support your status
determination >

ISSUE ANALYSIS:
Task Design Level:
<Evaluate if there are any issues with

how the task was designed and
specified. If no issues , explicitly
state that >

Action Planning Level:
<Analyze if the planned sequence of

actions was appropriate and complete
. Identify any logical gaps or
problems >

Action Execution Level:
<Assess if there were any issues with

the specific implementation of
actions , such as timing or input
problems >

NEXT STEP RECOMMENDATION:
<If task failed: Provide specific

suggestions for task completion
given the current state >

<If task succeeded: Simply state that
the task was completed successfully
and no modifications are needed >

"""

return base_prompt

Action Design Reflection

action_sys_prompt='''
You are an expert game action analyst

specializing in analyzing and
improving game control
implementations. Your role is to:

1. Analyze gameplay screenshots to
understand the execution effects of
each action

2. Evaluate action code design and
implementation quality

3. Provide reusable insights for similar
actions in the future

4. Suggest specific improvements for
action code design

Always provide detailed , objective
analysis following the exact format
requested in the prompt.

'''

def generate_action_level_prompt(
pass_task_info , pass_action_code):
base_prompt = f""" Analyze the

previous action execution using
the following information:

1. Screenshot Sequence Rules:
- For WASD movement actions lasting

over 2 seconds:
* Screenshots are captured every

2 seconds during the
movement

- For all other key/mouse actions:
* Only two screenshots are

captured: one before and one
after the action

This helps track continuous
movements and precise action
effects.

2. Task Context:
{pass_task_info}

3. Action plan and code list:
{pass_action_code}

Please conduct your analysis in
these sequential steps and
provide a detailed response in
the following format:

1. ACTION EXECUTION ANALYSIS
For each action in the sequence ,

analyze:
- Initial state and final state from

screenshots
- Whether the action achieved its

intended effect
- Timing and smoothness of execution
- Any unexpected behaviors or side

effects

2. ACTION CODE EVALUATION
For each action implementation ,

evaluate:
- Appropriateness of key/mouse

mapping choices
- Timing duration settings

13149

- Action sequence coordination
- Code efficiency and reliability

3. SUCCESS/FAILURE ANALYSIS
For each action , determine:
- Whether it succeeded or failed
- Root causes of any failures:

a) Input mapping issues
b) Timing problems
c) Sequence coordination issues
d) Environmental factors

4. REUSABILITY ANALYSIS
Analyze each action 's potential for

reuse:
- Common scenarios where this action

pattern could apply
- Required prerequisites and

conditions
- Potential adaptations needed for

different contexts
- Limitations and constraints

5. IMPROVEMENT RECOMMENDATIONS
Provide specific suggestions for:
- Better key/mouse mapping choices
- Optimal timing parameters
- Enhanced sequence coordination
- More robust implementation

patterns

Note that:
1. output will be directly evaluated

using Python eval(), so it must be a
valid Python list of dicts

2. No additional text or explanation
should be added between or after
these sections
After completing your analysis ,

output a list of dictionaries in
the following format:

```python
[

{{
"action_name_description ":

"<original action
description from
action_name_description
>",

"action_code ": "<
corresponding action
code tuple from
action_code >",

"reflection ": {{
"execution_analysis ": "<summary

of execution analysis >",
"code_evaluation ": {{

"status ": "<SUCCESS/PARTIAL
SUCCESS/FAILURE >",

"quality_analysis ": "<
implementation quality
summary >"
}},

"success_failure_analysis ": "<
detailed analysis of what
worked/didn't work >",

"reusability ": {{
"applicable_scenarios ": "<

list of potential reuse

cases >",
"prerequisites ": "<required

conditions >",
"limitations ": "<known

constraints >"
}},

"improvements ": "<specific
suggestions for
implementation improvements
>"
}}

}},
# ... repeat for each action

]
```

Ensure your response ends with this
structured list for easy parsing
. Format it exactly as shown
above.

"""
return base_prompt

Task Planning
task_planner_sys='''You are an

intelligent game AI assistant
specializing in strategic task
planning and execution.

Key Responsibilities:
1. Analyze game situations

comprehensively considering:
- Current state and environment
- Historical context and past

experiences
- Game objectives and constraints

2. For ALL tasks (not just movement),
provide:
- Clear , specific , and actionable

objectives
- Precise success criteria
- Required resources or conditions
- Risk assessment and mitigation

strategies

3. For movement -related tasks , MUST
provide precise location
descriptions using:
- Relative position to character (

using character height as scale)
- Directional instructions (up/down/

left/right or compass directions)
- Safe path recommendations

considering terrain

4. Special Considerations:
- Prioritize agent safety and

objective completion
- Balance exploration with risk

management
- Adapt strategy based on previous

task outcomes
- Consider resource management and

efficiency

Your task is to make informed decisions
that progress game objectives while
maintaining agent safety and
efficiency.

13150

'''

def construct_task_prompt(current_frame ,
pass_task_history_summary ,

pass_task_reflection , env_info ,
game_info , step):

base_prompt = f"""
Analyze the current situation and plan

the most appropriate next task
considering:

1. Game Objectives:
{game_info.get('Global_task ')}
2. Additional Task Context: {game_info.

get('additional_task_info4_task_plan
')}

Your design task should be broken down
into the following specific
Available Controls:

{game_info.get('control_info ')}

Required Analysis Steps:
1. Evaluate current environment and

state
2. Consider historical context and

lessons learned
3. Assess risks and opportunities
4. Determine priority actions """

current_state = f"""
Current Environment Status:
{env_info}"""

if step == 1:
analysis_prompt = f"""{

base_prompt}
{current_state}

This is the initial step. Focus on
understanding the current situation
and establishing a safe starting
point."""

else:
history_context = f"""

Historical Context:
Task History Summary: {

pass_task_history_summary}

Previous Task Reflection: {
pass_task_reflection}"""

analysis_prompt = f"""{
base_prompt}

{current_state}
{history_context}

Consider:
1. Previous task outcomes and lessons

learned
2. Current environmental constraints
3. Progress toward game objectives
4. Safety and risk management """

output_format = """
Based on your analysis , provide your

response in the following format:

reasoning process:
1. Current State Analysis: "<analyze

current environment and
immediate situation >"

2. Historical Context: "<analyze
relevant history and reflections
>"

3. Strategic Evaluation: "<evaluate
opportunities , risks , and
priorities >"

task details:
goal: "<specific , actionable

objective >"

location details:
- screen_position: "<describe

target position. Example: '3
meters to the right '>"

key_requirements: "<essential
conditions or resources needed >"

success_criteria: "<main condition
that must be met >"

Note:
- The direction of camera adjustment **

MUST** be consistent , and there
should be no angle that switches
left and then right , or up and then
down

- For movement -related tasks , always
specify both screen -relative
positions (using character height as
scale). For non -movement tasks ,

mark position fields as 'N/A' if not
relevant."""

return analysis_prompt +
output_format

Action Planning
action_prompt = f""" Based on the task

you just planned , break it down into
specific executable actions.

Please list the specific actions needed
to complete this task.

Available Controls:
{game_info.get('control_info ')}

Note that:
1. output will be directly evaluated

using Python eval(), so it must be a
valid Python list

2. No additional text or explanation
should be added between or after
these sections

3. Ignore actions such as' wait 'and'
observe ' that cannot be associated
with available controls

4. Action list is *no longer than 5!!*.

Output Format MUST be exactly as follows
:

[" Action1: <action name > - <detailed
description including precise
measurements and requirements >","
Action2: <action name > - <detailed
description including precise

13151

measurements and requirements >",
...]

"""

Action Construction
action_sys_prompt = '''
You are an expert game AI action planner

specializing in converting high -
level tasks into precise , executable
action sequences.

Key Responsibilities:
1. Convert task descriptions into

specific control sequences
2. Ensure accurate timing and duration

for each action
3. Maintain action safety and efficiency
4. Generate properly formatted action

code that can be directly executed

Important Guidelines:
1. All outputs must be in valid Python

dictionary list format
2. Each action must include both

description and corresponding
control code

3. Control codes must use only valid
game controls

4. All durations must be reasonable and
safe

'''

def generate_action_prompt(game_info ,
reason_task ,action_plan):
prompt = f"""

You are an expert game AI action planner
specializing in converting high -

level action into precise ,
executable action sequences.

Your current task:
{reason_task}

The action plan for task:
{action_plan}

Available Controls:
{game_info.get('control_info ')}

Additional Action Information:
{game_info.get('additional_action_info ')

}

Requirements:
1. Convert each action into specific

control sequences
2. Provide both action description and

control code
3. Ensure precise timing for each

control input
4. Consider safety in all actions

Output Format MUST be exactly as follows
:

[
{{

"action_name_description ": "<
original action description
>",

"action_code ": [("<key >", <
duration >), ...]

}},
...

]

Example Output:
[

{{
"action_name_description ": "Move

Forward - Move 3 meters
forward",

"action_code ": [("W", 3.0)]
}},
{{

"action_name_description ": "Jump
and Interact - Jump over

obstacle and press button",
"action_code ": [(" SPACE", 0.1),

("E", 0.1)]
}}

]

Note:
1. Output will be evaluated using Python

ast.literal_eval ()
2. Use only valid control keys: {list(

game_info.get('Mapping_info ', {}).
keys())}

3. All durations must be positive
numbers

4. Maintain exact format with no
additional text

"""
return prompt

13152

