
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 13057–13079
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Exploring Compositional Generalization of Multimodal LLMs
for Medical Imaging

Zhenyang Cai†, Junying Chen†, Rongsheng Wang†, Weihong Wang,
Yonglin Deng, Dingjie Song, Yize Chen, Zixu Zhang, Benyou Wang∗

The Chinese University of Hong Kong, Shenzhen
wangbenyou@cuhk.edu.cn

Abstract

Medical imaging provides essential visual in-
sights for diagnosis, and multimodal large lan-
guage models (MLLMs) are increasingly uti-
lized for its analysis due to their strong gen-
eralization capabilities; however, the underly-
ing factors driving this generalization remain
unclear. Current research suggests that multi-
task training outperforms single-task as differ-
ent tasks can benefit each other, but they of-
ten overlook the internal relationships within
these tasks. To analyze this phenomenon, we
attempted to employ compositional generaliza-
tion (CG), which refers to the models’ ability
to understand novel combinations by recombin-
ing learned elements, as a guiding framework.
Since medical images can be precisely defined
by Modality, Anatomical area, and Task, nat-
urally providing an environment for exploring
CG, we assembled 106 medical datasets to cre-
ate Med-MAT for comprehensive experiments.
The experiments confirmed that MLLMs can
use CG to understand unseen medical images
and identified CG as one of the main drivers
of the generalization observed in multi-task
training. Additionally, further studies demon-
strated that CG effectively supports datasets
with limited data and confirmed that MLLMs
can achieve CG across classification and detec-
tion tasks, underscoring its broader generaliza-
tion potential. Med-MAT is available at https://
github.com/FreedomIntelligence/Med-MAT.

1 Introduction

Medical imaging provides essential visual insights
into the structures of the human body, making it a
critical tool for medical diagnosis. Recently, multi-
modal large language models (MLLMs) (Liu et al.,
2023; Li et al., 2024; Chen et al., 2024b) have
been employed to analyze these images due to their
strong interpretability and generalization capabil-
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White Cat Black Dog Black Cat

MRI Brain CT Lung CT Brain

Subset 01
M: CT  A: Lung  T: Level

Caption: 1, 2, 3 ,4, 5

Question: This is a Lung CT image. 
What’s the risk status?
        A: Level 1        B: Level 2
        C: Level 3        D: Level 4
Answer: B

Instructions of Subset 01:
1. What is the risk level?
2. How high is the risk?
3. What’s the risk status?
4. ……

Figure 1: Examples of Compositional Generalization:
The model is required to understand unseen images by
recombining the fundamental elements it has learned.

ities. In this paper, we focus on the latter: gener-
alization of MLLMs in medical imaging. Current
research (Mo and Liang, 2024; Ren et al., 2024)
has demonstrated that models trained on multiple
tasks outperform those trained on a single task as
they can leverage potential knowledge from other
tasks. Yet, the underlying factors that contribute to
this generalization remain insufficiently explored.

To this end, we take the perspective of composi-
tion generalization (CG) (Li et al., 2019; Xu et al.,
2022; Tang et al., 2024) to investigate the gener-
alization phenomenon of mutual improvement in
MLLMs’ understanding of medical images. Specif-
ically, CG is the model’s ability to learn fundamen-
tal elements and recombine them in novel ways to
understand unseen combinations (e.g., learning Cat
from White Cat and Black from Black Dog, then
generalizing to Black Cat, as shown in Figure 1).

In this paper, we categorize each image to three
elements: Modality , Anatomical area , and
medical Task , presenting numerous natural op-
portunities for CG. We defined these three elements
as the MAT-Triplet and collected 106 medical
datasets, subsequently merging those that share the
same MAT-Triplet to create the Med-MAT dataset.

13057

https://github.com/FreedomIntelligence/Med-MAT
https://github.com/FreedomIntelligence/Med-MAT


M: CT  A: Lung  T: Cancer
Caption: <Normal>

Question: This is a Lung CT image, 
select the possible condition below.
        A: Normal
        B: Cancer

Answer: A

106 Medical Datasets

Set 1: MRI - Brain - Cancer

Set 2: CT - Lung - Cancer

Set 3: CT - Lung - Cancer

MRI - Brain - Cancer

QA Pairs
Construction

Subset 1

CT - Lung - CancerSubset 2

Med-MAT

11 Modalities 14 Areas 13 Tasks

Fractured?

Figure 2: The process of integrating a vast amount of labeled medical image data to create Med-MAT.

Ultimately, Med-MAT comprises 53 subsets, en-
compassing 11 modalities, 14 anatomical regions,
and 13 medical tasks, providing a foundation for
investigating CG and other generalization methods.

To verify the existence of CG, we designated
specific datasets as Target data and selected all Re-
lated data from Med-MAT that shared the same
MAT-Triplet with the Target data. Using these data
combinations, we accessed the generalization per-
formance of MLLMs and observed that they could
leverage CG to understand unseen medical images.
To further validate this finding, we repeated the ex-
periments on different MLLMs and obtained con-
sistent results, confirming the universality of CG.

Building on these insights, we expanded the
number of combinations and observed the changes
in model generalization performance after deliber-
ately disrupting CG, ultimately revealing that CG is
a key factor driving the generalization of MLLMs.
Furthermore, we explored the potential applica-
tions of CG and its performance across classifica-
tion and detection tasks, finding that CG enhances
MLLMs’ ability to handle medical scenarios with
limited training data and improves their capacity
for spatial awareness.

Here are the key contributions of our work: 1)
A VQA dataset, Med-MAT, has been constructed,
providing a platform to explore the generalization
of MLLMs on medical images. 2) Through this
dataset, we observed that MLLMs in different ar-
chitectures can utilize compositional generalization
to understand unseen images and demonstrated that
this is one of the main forms of generalization for
medical MLLMs. 3) Finally, the real-world ap-
plicability of CG, along with its presence across
detection and classification tasks, has been further
explored, highlighting its potential to enhance data-
efficient training and its broad applicability.

2 A Pilot Study on Generalization

2.1 Data Collection (Med-MAT)
Most existing datasets for MLLMs (Zhang et al.,
2023c; Li et al., 2024; Chen et al., 2024b), primarily
VQA datasets, provide broad coverage but lack
attribute annotations for individual samples, which
are not suitable for CG exploration. To address
this gap, we curated a large collection of image-
text pairs to develop Med-MAT, ensuring that each
sample is explicitly defined by MAT-Triplet.

Data Construction Med-MAT contains a total
of 106 image-label pair medical datasets, sourced
from various medical public challenges or high-
quality annotated datasets. All datasets are cate-
gorized according to their MAT-Triplet, with data
having identical elements grouped into a single
subset (Figure 2). Labels are manually clustered
to ensure that annotations with the same meaning
are not repeatedly used. In total, Med-MAT covers
11 medical modalities , 14 anatomical areas ,
and 13 medical tasks , hoping that it can spread
across various medical tasks like a mat. (Data lists
are shown in Appendix B)

Data Distribution All subsets are divided into
training and test sets following their original distri-
butions or using a 9:1 ratio. To ensure a fair compar-
ison, each training set is limited to 3,000 samples 1,
with label balance maintained as much as possi-
ble. Any subset that cannot meet this requirement
is treated as an OOD (out-of-distribution) dataset.
For the test sets, we strictly balance the number of
samples per label to ensure that the accuracy metric
reliably reflects model performance.

QA Pairs Construction To enable MLLMs to
directly train and test on Med-MAT, all image-label

1Most datasets contain around 3,000 samples.
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Subset No. 02 03 07 08 09 11 13 14 15 16 18 19 21 22 23 25 26 28 30 31 32 33 35 36 37

Baseline 21 47 40 25 26 27 28 24 22 24 25 23 49 26 25 24 49 30 49 21 49 20 25 23 19
Single-task Training 24 49 50 68 65 76 83 53 61 32 29 26 57 53 28 24 57 64 89 60 97 54 29 51 49
Multi-task Training 96 89 80 80 79 97 92 88 76 57 88 74 87 86 93 52 98 72 94 61 100 72 75 60 50

Table 1: Accuracy(%) of different models on In-Distribution datasets (each dataset contains over 3,000 samples,
with 3,000 selected for training). Within each segment, bold highlights the best scores, and underline indicates the
second-best. Baseline represents the results without any training, Single-task Training refers to the results after
training on a single dataset, and Multi-task Training represents the results after training on all datasets.

Subset No. 01 04 05 06 10 12 17 20 24 27 29 34

Baseline 32 25 33 33 48 27 33 13 34 37 31 20
Multi-task Training 39 26 70 31 58 38 61 40 35 41 55 50

Table 2: Accuracy(%) of different models on Out-Of-Distribution Dataset (each dataset contains fewer than 3,000
samples and is used only for testing). Bold highlights the best scores. Multi-task Training represents the results
after training on all datasets.

paired data were converted into a visual question-
answering (VQA) format (Figure 3). Specifically,
each subset was manually assigned 6 instructions
to guide the MLLM in answering the subset task.
For convenience, all samples were converted into
single-choice questions with up to four options,
and the remaining distractor options were ran-
domly drawn from other labels within the sub-
set. To mitigate potential evaluation biases aris-
ing from varying option counts, the ImageWikiQA
dataset (Zhang et al., 2024b), a non-medical dataset
consisting of single-answer, four-option questions,
was incorporated during the training.

[Raw Classification Sample]

Label: 1, 2, 3 ,4, 5
M: CT  A: Lung  T: Level

Question: This is a Lung CT image. 
What’s the risk status?
        A: Level 1        B: Level 2
        C: Level 3        D: Level 4
Answer: B

[Human-written Prompt Templates] 

1. What is the risk level?
2. What is the risk status?
3. ……

Randomly Select

[QA Sample in Med-MAT]
  
Question: This is a Lung CT 
image. What’s the risk status?
        A: Level 1        B: Level 2
        C: Level 3        D: Level 4
Answer: B

QA-format 
Construction

Prompt 
Selection

Figure 3: An example of formatting a raw classification
sample into a Question-answering sample in Med-MAT.

2.2 Observation
Experiment Setup We chose LLaVA-v1.5-7B-
Vicuna (Liu et al., 2023) as the base model due

to its transparent pretraining process and minimal
use of medical data, reducing the risk of knowledge
leakage. Leveraging MLLM’s flexibility, we en-
abled task switching and generalization by adjust-
ing prompts, streamlining generalization studies.
Each experiment ran for 5 epochs on 8 A800 GPUs
with a batch size of 32 and a learning rate of 5e-6.

Analysis To access the generalization of
MLLMs, we trained the baseline on all ID datasets
to simulate Multi-task Training and separately
trained on individual ID datasets to establish the
Single-task Training as the control group. We then
evaluated the models on all datasets. The results
in Table 1 and 2 confirm that Multi-task Training
outperformed Single-task Training on specific
tasks and improved OOD prediction, suggesting
certain data combinations enhance classification
and identifying valuable combinations for medical
tasks warrants further research. This observation
leads to a research question (RQ):

What drives the generalization observed
in MLLMs during Multi-task Training?

To address it, we aim to explore the generaliza-
tion mechanism of MLLMs from the perspective
of compositional generalization (CG).

3 Proof of Concept on CG

This section will prove the existence of CG in
MLLMs, offering preliminary insights to address
the RQ and providing support for further analysis.

3.1 Experiment Setup
To explore the existence of CG from a finer per-
spective, this section focuses on CG with only two
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Related Combination Target Subset Baseline Baseline+ Trained CG Helps

Lung COVID Brain Cancer Lung Cancer 25 25 27 ✓
Lung Cancer Brain State Lung State 47 46 50 ✓
Brain Cancer Lung State Brain State 33 50 57 ✓
Bones Level Lung State Bones State 49 53 51 ✗
Bones Level Brain State Bones State 49 53 72 ✓
Bones Level Breast Diseases Bones Diseases 37 33 39 ✓
Bones Level Lung Diseases Bones Diseases 37 33 43 ✓
Bones Level Chest Diseases Bones Diseases 37 31 43 ✓
Bones State Breast Diseases Bones Diseases 37 37 43 ✓
Bones State Lung Diseases Bones Diseases 37 37 43 ✓
Bones State Chest Diseases Bones Diseases 37 37 41 ✓
Lung COVID Breast Diseases Lung Diseases 49 48 51 ✓
Lung COVID Bones Diseases Lung Diseases 49 48 52 ✓
Lung COVID Chest Diseases Lung Diseases 49 48 51 ✓

CT Cancer X-ray COVID CT COVID 47 46 72 ✓
X-ray Diseases CT COVID X-ray COVID 30 21 49 ✓
X-ray Diseases CT State X-ray State 30 21 46 ✓
CT State X-ray Cancer CT Cancer 33 28 28 ✗

X-ray Bones CT Brain X-ray Brain 49 49 91 ✓
X-ray Lung CT Brain X-ray Brain 49 50 81 ✓
X-ray Bones CT Brain X-ray Brain 25 51 74 ✓
X-ray Lung CT Brain X-ray Brain 49 52 52 ✗
CT Lung X-ray Brain CT Brain 33 50 60 ✓
CT Brain X-ray Lung CT Lung 25 25 36 ✓
CT Brain X-ray Lung CT Lung 47 50 81 ✓
CT Brain X-ray Lung CT Lung 47 50 71 ✓
X-ray Bones CT Lung X-ray Lung 30 32 28 ✗
X-ray Brain CT Lung X-ray Lung 30 32 35 ✓
X-ray Bones CT Lung X-ray Lung 30 32 41 ✓
X-ray Brain CT Lung X-ray Lung 30 32 42 ✓

Der - Skin Cancer FP - Fundus Diseases Der - Skin Diseases 25 29 33 ✓
Der - Skin Cancer OCT - Retine Diseases Der - Skin Diseases 25 29 33 ✓
Der - Skin Diseases DP - Mouth Cancer Der - Skin Cancer 40 33 63 ✓
Der - Skin Diseases Mic - Cell Cancer Der - Skin Cancer 40 33 63 ✓
DP - Mouth State Der - Skin Cancer DP - Mouth Cancer 48 50 52 ✓
DP - Mouth State Mic - Cell Cancer DP - Mouth Cancer 48 50 55 ✓
FP - Fundus Diseases Mic - Cell Level FP - Fundus Level 33 36 42 ✓
Mic - Cell Recognition FP - Fundus Level Mic - Cell Level 23 33 32 ✗
Mic - Cell Recognition Der - Skin Cancer Mic - Cell Cancer 49 50 50 ✗
Mic - Cell Recognition DP - Mouth Cancer Mic - Cell Cancer 49 51 62 ✓
Mic - Cell Level Der - Skin Cancer Mic - Cell Cancer 49 51 52 ✓
Mic - Cell Level DP - Mouth Cancer Mic - Cell Cancer 49 51 58 ✓
Mic - Cell Cancer FP - Fundus Level Mic - Cell Level 23 24 27 ✓

Table 3: Generalization results on classification datasets: Related Combination is the training set, Target Subset is
the goal. Baseline, Baseline+, and Trained represent the model’s accuracy(%) without training, trained on randomly
sampled unrelated data, and trained on related data, respectively. ✓ in CG Helps indicates successful generalization,
while ✗ denotes failure. The 4 segmented areas represent different Direction Types: fixed modality , fixed area ,
fixed task , and modality-area paired combinations . Although some combinations share the same name, they
differ because they fix different elements.

MAT-Triplet elements varying while the third re-
mains constant. Additionally, we identified specific
Modality-Area pairs , such as dermoscopy paired
consistently with skin, which were treated as a spe-
cial category. These 4 different fixed formats were
classified into distinct Direction Types.

We adhered to the training setup described in
Section 2.2 and evaluated the model’s performance
on the Target data. Baseline refers to the model
without any training, while Trained refers to the
model trained solely on Related data. To ensure
that our conclusions are not influenced by the
amount of training data, we randomly sampled an
equal number of data from the Unrelated subsets,
and this configuration is referred to as Baseline+.

3.2 Results

Results are shown in Table 3 and it can be observed
that almost all CG combinations are able to general-
ize to downstream tasks, highlighting that MLLMs
can leverage CG to generalize Target data across
all Direction Types. Besides that, since this experi-
ment focused solely on two-element tuples, we fur-
ther investigated three-element tuples in Appendix
A.4, where we also observed similarly strong gen-
eralizations when obtaining MAT-Triplet elements
from three different datasets.

Take-away 1: MLLMs can leverage CG to un-
derstand unseen medical images.

In the Baseline+ setting, we removed all datasets
sharing any MAT-Triplet element with the Target
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Related Combination Target Subset Qwen Llama

Bones State Breast Diseases Bones Diseases +4 +7
Lung COVID Bones Diseases Lung Diseases +11 +11
X-ray Diseases CT COVID X-ray COVID +5 +5
X-ray Diseases CT State X-ray State +8 +8
CT Brain X-ray Lung CT Lung +1 −2
CT Brain X-ray Lung CT Lung +7 +8
FP - Fundus Diseases Mic - Cell Level FP - Fundus Level −3 +6
Mic - Cell Recognition FP - Fundus Level Mic - Cell Level +7 +22

Table 4: Result of Qwen2-VL and Llama-3.2-Vision on selected classification datasets in Med-MAT. Qwen and
Llama represent the accuracy(%) gains they achieved on the respective backbones through CG.

data. Consequently, Baseline+ models perform
at near-random levels on the test set, indicating
they failed to acquire target-relevant knowledge.
This suggests that only datasets related through the
MAT-Triplet can help the model learn and general-
ize to new target tasks.

Take-away 2: Generalization arises in medical
datasets in which at least partial MAT elements
pre-exist during training.

3.3 Extending CG to other Backbones

LLaVA was selected as the baseline because its
training data and processes are publicly available,
ensuring minimal exposure to medical images and
preventing bias in the integration of medical im-
age knowledge into the MLLM. To ensure that the
results are not affected by the training data or the vi-
sual encoder of LLaVA, we randomly sampled two
combinations from each Direction Type to inves-
tigate CG on Qwen2-VL-7B (Wang et al., 2024a)
and Llama3.2-11B-Vision (Meta AI, 2024).

Qwen2-VL undergoes additional training on pro-
prietary data based on ViT and incorporates a strat-
egy to adjust the number of vision tokens according
to resolution. Llama3.2-Vision, on the other hand,
pretrains its own vision encoder from scratch us-
ing proprietary data. Thus, both models serve as
a means to assess whether MLLMs with different
training data and vision encoders can still leverage
CG to understand unseen images, ensuring that CG
is not merely an artifact of LLaVA’s data fitting or
specific to its vision encoder.

Table 4 presents the experimental results, show-
ing that both selected backbones exhibit a certain
degree of generalization across most tasks. This
suggests that despite differences in pre-train data
and vision encoders, different MLLMs can still
leverage CG to understand unseen images.

Take-away 3: CG persists across different
MLLM backbones.

4 Scaling Combination in CG

After confirming that CG is indeed a form of gen-
eralization in MLLMs, we expanded the number of
participating combinations to explore the general-
izability of CG and examine its relationship with
the generalization exhibited by Multi-task Training
to address the RQ.

4.1 Experiment Setup

Two sub-questions have been defined to verify the
applicability of CG in multiple data combinations
and examine its role in Multi-task Training.

• (Q1) While previous experiment on CG in-
dicated that Unrelated combinations provide
no benefit to Target data, can generalization
arise when training incorporates more Unre-
lated combinations, simulating a multi-task
scenario?

• (Q2) Previous studies suggest that Multi-task
Training generally promotes better generaliza-
tion than single-task training. If the CG con-
ditions in Multi-task Training are deliberately
disrupted, will the resulting generalization ef-
fect be affected?

Selection Strategy To ensure a balanced evalua-
tion of Related and Unrelated combinations, Sub-
set 03 and Subset 28 were chosen as Target datasets
because they exhibit the most balanced ratios of
Related to Unrelated subsets (13:11 for Subset 03
and 11:13 for Subset 28), making them ideal for
providing a diverse range of compositions in the
scale-up experiments.

The baseline was trained on all subsets ex-
cluding the Target data to evaluate the claim
that mixing multi-task data enhances gener-
alization ( All Data ). To construct multiple
comparative experiments, models were further
trained on either Related or Unrelated subsets
( All Related / All Unrelated ) to address Q1. For
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Figure 4: Accuracy(%) results on the Target dataset for various models. All Related/Unrelated models are trained on
all the related or unrelated datasets of the Target Data. w/o Modality/Area/Task are trained on All Related datasets
but omit those sharing the same element as the Target Data, to intentionally disrupt CG. All Data uses all available
training sets. (Note: The Target Data is excluded from training to observe generalization.)

Q2, individual MAT-Triplet elements were sys-
tematically removed from the Related subsets
( Related w/o Modality / Area / Task ), disrupting
CG and assessing the ability to maintain generaliza-
tion. To ensure consistency, the total data volume
in all experiments was limited to 15,000 samples,
aligning with the number of ID subsets available
after excluding related tasks from Subset 03.

4.2 Analysis of Scaling Experiment

Figure 4 illustrates the results. It can be observed
that even when we expanded the Unrelated com-
bination volumes and increased task diversity, the
performance of All Unrelated remains close to
the Baseline , indicating that these datasets can
not support MLLMs to understand the Target data.

Take-away 4: Datasets without MAT-Triplet
overlap offer limited benefit for generalization even
in the multi-task training scenario (Q1).

Besides, w/o Modality / Area / Task showed
significant accuracy drops compared to
All Related , despite holding the training

data volume constant. This indicates that if the
CG combinations are forcibly disrupted, MLLMs
will lose a significant amount of generalization
capability for the target data.

Take-away 5: Disrupting CG leads to a signifi-
cant decline in generalization ability. (Q2).

Notably, All Related achieves a performance
level comparable to All Data , where all datasets
are included in training. This suggests that CG
plays a crucial role in enhancing the generaliza-
tion effect of Multi-task Training. Therefore, in
conclusion:

Take-away 6: CG plays an important role in
generalization for MLLMs in medical imaging.

5 Potential Applications of CG

As MLLMs can use CG to generalize unseen med-
ical images, this section attempts to explore its
potential applications in training medical MLLMs.

5.1 Generalization without Target Data
In medical tasks, new and unpredictable conditions,
like COVID-19, can emerge at any time. Exploring
how to use CG to help MLLMs enhance their abil-
ity to identify unknown diseases in the absence of
specific datasets is both important and meaningful.

We selected some Target datasets and trained
the MLLMs using Related and Unrelated data to
observe their generalization to the Target data. The
generalization trend was assessed by progressively
increasing the size of the combination datasets.

Selection Strategy To highlight the generaliza-
tion trends, the combinations with strong general-
ization results were selected from the main exper-
iments. For fairness, we chose the combinations
across four types where Trained results exceed both
Baseline and Baseline+ by at least 10. If multiple
combinations meet the criteria, a random seed of
42 was used to determine the selection.

Analysis The experimental results are shown in
Figure 5, where the red line represents the accuracy
curve for Related combinations, and the purple
line shows the gain from Unrelated combinations.
The Related combinations group significantly out-
performed the Unrelated combinations in terms of
generalization across all tasks, with this ability con-
tinuing to improve as the data size increased. This
suggests that Related combinations, leveraging CG,
enhance the model’s ability to understand unknown
medical tasks.

Take-away 7: CG might enable MLLMs to han-
dle tasks without dedicated training data.
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Figure 5: The accuracy curve reflects the impact of gradually increasing the composition dataset size without using
Target data in training. The green and red lines represent training with Related and Unrelated Data , respectively.
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Figure 6: The accuracy curve shows the impact of increasing the composition dataset volume while incorporating
Target data in training. The green and red lines represent training with Related and Unrelated Data , respectively.

5.2 Generalization with Limited Target Data

This section investigates the benefit of CG for tasks
with limited data, e.g. processing medical images
in rare conditions.

Selection Strategy To assess generalization in
limited data scenarios, we select combinations with
poor generalization from Table 3. Specifically, for
each Direction Type, we randomly choose a CG
combination with weak generalization (i.e., rows
marked with ✗ in the last column of Table 3). For
these combinations, we introduce an additional
2,000 examples from the Target data.

Analysis Figure 6 shows the results. It can be
seen that as we gradually expand the training vol-
ume of Target data, adding the Related combi-
nation for training enabled the model to reach the
peak performance more quickly. This suggests that
leveraging CG to assist low-data medical scenarios
can lead to more data-efficient training, even when
CG does not directly result in significant general-
ization gains in these scenarios.

Take-away 8: Although CG might not provide
direct generalization gains, it helps data efficiency
for MLLM training.

6 CG across Detection and Classification

Previous studies (Ren et al., 2024; Wang et al.,
2025) have shown that jointly training classification
and detection tasks can mutually enhance their per-
formance. Building on this, we investigate whether
MLLMs can leverage classification data (e.g., vi-
sual knowledge) and detection data (e.g., spatial

information) through CG to improve downstream
classification (Q1) or detection tasks (Q2).

6.1 Experiment Settings

Training Setup Each generalization combination
used for training in this experiment includes one
detection dataset and one classification dataset to
examine the generalization relationship between
these two vision tasks. The detailed training param-
eters can be found in Appendix A.6.

Model Selection Next-Chat (Zhang et al., 2023a)
and MiniGPT-v2 (Chen et al., 2023a) are selected
as baselines, representing the two main approaches
MLLMs use for detection tasks. The former treats
bounding boxes as embeddings and decodes them
into coordinates using a visual decoder, while the
latter processes coordinate points as special text
tokens and generates bounding box coordinates
directly as output text.

Data Processing Med-MAT includes both detec-
tion and segmentation datasets. If a segmentation
dataset provides object localization using masks,
we extract the outermost coordinates of the corre-
sponding mask to construct a bounding box, fa-
cilitating generalization experiments for detection.
Subsequently, to streamline the experiments, we
structured the dataset following the official data
formats of Next-Chat and MiniGPT-v2.

6.2 Benefits for Classification (Q1)

In this experiment, all possible CG combinations
were selected and the CG-trained model will be
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Figure 7: The accuracy(%) on Classification: Blue
represents the untrained model, and green represents
the CG-trained model. (details in Appendix A.5)

tested on classification task. The final results in Fig-
ure 7 show that all CG combinations demonstrated
the model’s successful utilization of detection data
for CG to the Target data.

6.3 Benefits for Detection (Q2)

Subset 38 and 39 are selected as the objects in these
datasets are relatively randomly distributed in the
images, making them suitable for evaluating the
model’s detection capability. Subsequently, we se-
lected certain classification datasets to construct
CG for testing and used cIoU to evaluate the detec-
tion performance (follow (Chen et al., 2023a)).

Since both baselines lack localization capabil-
ities for medical tasks, we incorporated a fixed
amount of Target data into our experiments, ad-
justing the evaluation scenario to assess support in
low-data settings. The results in Table 5 show that
all selected CG combinations help MLLMs achieve
better performance in detection tasks.

Related Combination Target Subset Next-Chat MiniGPT-v2

D - Skin C - Intestine D - Intestine +3.8 +4.1
D - Intestine C - Skin D - Skin +8.4 +7.6

Table 5: Next-Chat and MiniGPT-v2 respectively repre-
sent the cIoU gain brought by CG. C indicates classifi-
cation task, D indicates detection task.

Take-away 9: MLLMs can perform CG across
classification and detection tasks.

7 Related Work

Medical MLLMs Recently, adapting MLLMs to
medical tasks has gained prominence due to their
success in capturing complex visual features. Cur-
rent MLLMs typically pair a visual encoder with a
text-only LLM, aligning image data with language
understanding. Such as Med-Flamingo (Moor et al.,

2023) and Med-PaLM (Tu et al., 2024), fine-tuned
general multimodal models and achieved notable
results. Med-Flamingo enhanced OpenFlamingo-
9B (Chen et al., 2024a) with medical data, while
Med-PaLM adapted PaLM-E (Driess et al., 2023)
using 1 million data points. Similarly, LLaVA-
Med (Li et al., 2024), Med-Gemini (Saab et al.,
2024), and HuatuoGPT-Vision (Chen et al., 2024b)
utilized specialized datasets and instruction tuning
to refine medical VQA tasks.

Generalization on Medical Imaging General-
ization in medical imaging (Matta et al., 2024) has
been extensively studied. Early methods utilized
data manipulation techniques, such as data aug-
mentation (Li et al., 2022; Zhang et al., 2022), to
enhance model generalization on unseen medical
data by adapting to varying distributions. Later
approaches focused on representation learning (Le-
Khac et al., 2020), preserving essential image infor-
mation to enable models to handle more complex
scenarios. Additionally, some studies (Ren et al.,
2024) explore multiple aspects of medical image
processing, examining how classification and seg-
mentation tasks can mutually benefit each other.

Detection with MLLMs Recent studies employ
various strategies to equip MLLMs with the capa-
bility to handle detection tasks, such as encoding re-
gions as features to allow models to accept regions
as input (Zhang et al., 2023b), representing object
bounding box coordinates with text tokens (Wang
et al., 2024c; Peng et al., 2023; Chen et al., 2023b),
and employing unique identifiers for task instruc-
tions to improve learning efficiency. Additionally,
some approaches introduce special tokens to repre-
sent images and use their hidden states to decode
position information (Zhang et al., 2023a, 2024a).

8 Conclusion

To investigate whether MLLMs can leverage CG to
generalize to unseen medical data, we constructed
the Med-MAT dataset as a research platform for
generalization experiments. The results confirmed
the presence of CG and identified it as a key fac-
tor of MLLMs’ generalization observed in multi-
task learning. Further experiments showed that
CG helps MLLMs handle limited data conditions,
providing support for low-data medical tasks. Ad-
ditionally, our findings showed that MLLMs can
apply CG across detection and classification tasks,
underscoring its broad generalization potential.
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Limitations

The experiment confirms that MLLMs leverage CG
for unseen medical images and data-efficient train-
ing. However, as shown in Section 4, disrupting
CG reduces generalization but retains some effec-
tiveness, indicating CG is just one aspect of MLLM
generalization in medical imaging.

Potential Risks

Our research focuses on the compositional general-
ization of MLLMs on medical images, using data
sourced from medical challenges and open-source
datasets. However, further experiments are needed
to mitigate potential risks when deploying this con-
cept in real-world medical settings.
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A More Experiments

A.1 Benefits for Segmentation

Segmentation-enabled LLMs, such as Next-GPT,
first use the LLM to identify potential regions of
the target object and then apply a SAM to decode
the object mask, thereby completing the segmen-
tation task. In this context, segmentation can be
seen as an extension of detection, potentially requir-
ing more images to achieve improved performance.
We conducted additional experiments to explore
whether MLLMs can still utilize CG to understand
new images across both segmentation and classifi-
cation tasks.

Related Combination Target Subset Next-Chat

D - Skin C - Intestine S - Intestine +7.46
D - Intestine C - Skin S - Skin +5.42

Table 6: Next-Chat represents the cIoU gain brought by
CG. C indicates classification task, S indicates Segmen-
tation task.

The results in Table 6 demonstrate that, in the
context of segmentation tasks, MLLMs are still
able to leverage CG to understand new tasks, which
is consistent with our original conclusions.

A.2 More Complex Medical Elements

While MAT-Triplet Categorization is useful, prede-
fined categories may limit the exploration of more
complex medical attributes, so we also considered
integrating more flexible categorization to explore
additional medical attributes.

Additional Element 1: Population Groups We
selected VinDr-PCXR and MedMAT Subset 31 for
the experiment, as they contain X-ray images of
children and adult groups, respectively. The results
are shown in Table 7.

Additional Element 2: Finer Disease "Finer
disease" means more detailed categorization. For
instance, we treat COVID and common pneumonia
as distinct diseases for generalization. We split the
Normal data in the training set into two parts and
combined each with COVID and Pneumonia data
to create new datasets. The results are shown in
Table 8.

Related Combination Target Subset LLaVA

X-ray Young Unrelated Data X-ray Adults +6.04
X-ray Young CT Children (CG) X-ray Adults +18.12

Table 7: Results of using Population Groups as a CG
element.

Related Combination Target Subset LLaVA

X-ray Pneumonia Unrelated Data X-ray COVID +11.33
X-ray Pneumonia CT COVID (CG) X-ray COVID +12.67

Table 8: Results of using Finer Disease as a CG element.

A.3 Statistical Tests of the Generalization
Results

To ensure consistency and repeatability of the ex-
periment, we performed statistical tests in this sec-
tion. LLaVA is selected as the baseline, and we
used the same data combinations from Section 3.3.
Each experiment was repeated 3 times, and we re-
ported the mean and standard deviation (SD) of the
results.

From the results in Table 9, we can observe that
the outcomes across runs show low variance, indi-
cating overall stability, and they continue to support
our original experimental conclusions.

A.4 CG with All MAT-Triplet Elements from
Different Sources

In previous controlled experiments (Section 3),
one element of the MAT-Triplet was kept constant
while CG was explored in the remaining two ele-
ments. To ensure that all the 3 MAT-Triplet el-
ements of the target data originated from three
distinct datasets, additional experiments were con-
ducted to further validate the effectiveness of CG.
For these experiments, all possible combinations
meeting the criteria in Med-MAT were selected
(Selection Strategy). The results presented in Ta-
ble 10 demonstrate that most combinations can
effectively generalize to the Target data.

Analysis of the results The results in Table 7 and
8 indicate that the two new attributes show data
leakage due to subtle visual differences in corre-
sponding images (e.g., COVID-19 and pneumonia
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Related Combination Target Subset Baseline 1st 2nd 3rd Mean and SD

Bones State Breast Diseases Bones Diseases 37.31 43.28 44.78 43.28 43.78± 0.87
Lung COVID Bones Diseases Lung Diseases 49.00 52.00 52.00 52.00 52.00± 0.00
X-ray Diseases CT COVID X-ray COVID 30.00 47.33 49.33 49.33 48.66± 1.15
X-ray Diseases CT State X-ray State 30.00 46.00 45.33 44.67 45.33± 0.67
CT Brain X-ray Lung CT Lung 25.00 31.50 32.00 32.00 31.83± 0.29
CT Brain X-ray Lung CT Lung 47.00 71.00 71.00 70.00 70.67± 0.58
FP - Fundus Diseases Mic - Cell Level FP - Fundus Level 33.33 42.42 45.45 45.45 44.44± 1.75
Mic - Cell Recognition FP - Fundus Level Mic - Cell Level 23.00 32.00 32.00 31.50 31.83± 0.29

Table 9: Statistical tests of CG experiments. The 1st, 2nd, and 3rd show the generalization results of the experiment
in different runs. "Mean" and "SD" represent the average accuracy (%) and standard deviation.

Related Combination Target Subset Baseline Trained CG Helps

CT Brain Cancer CT Brain Cancer 28 26 ✗
CT Brain Cancer CT Brain Cancer 28 25 ✗
CT Brain State CT Brain State 33 64 ✓
CT Brain State CT Brain State 33 70 ✓
X-ray Lung Diseases X-ray Lung Diseases 30 45 ✓
X-ray Lung Diseases X-ray Lung Diseases 30 38 ✓
X-ray Lung Diseases X-ray Lung Diseases 30 44 ✓
X-ray Breast Diseases X-ray Breast Diseases 31 32 ✓
X-ray Breast Diseases X-ray Breast Diseases 31 52 ✓

Table 10: Results from 3 datasets providing different
elements of MAT-Triplet. ✓ in CG Helps indicates
successful generalization, while ✗ denotes failure.

have similar features). Importantly, the MLLM
trained with CG combinations still shows improve-
ments on downstream tasks, confirming that our
approach remains valid for new attributes.

Reason to choose the existing three attributes
(MAT-Triplet: Modality, Area, Task) We have
considered additional categories such as age, gen-
der, and finer disease classification, but we ulti-
mately chose to focus on the MAT-Triplet cate-
gories for the following reasons.

• The boundaries between MAT-Triplet
(Modality, Area, Task) are clear. Different
modalities and areas correspond to distinct
imaging methods and body areas, leading to
significant differences between images; dif-
ferent tasks also require the MLLM to extract
specific information, demanding varied under-
standing of the images.

• All datasets can be annotated using MAT-
Triplet (Modality, Area, Task) easily. Other
medical labels, such as gender and age, are
only available in a small portion of datasets
and are not suitable for large-scale annotation.

• Similar categorization strategies have been
adopted in previous studies.

A.5 Details of Section 3.3: Exploring CG on
different MLLM Backbones

To ensure the experiment results are not influenced
by the model choice, we also tested several other

models on some subsets of Med-MAT and observed
similar results.

Selection Strategy: For testing, some general-
ized combinations were selected from classification
tasks 3. Using a random seed of 42, we shuffled
each Direction Type’s combinations and selected
the first two compositions as test data.

Experimental Setup: We conducted experi-
ments to evaluate the compatibility of CG across
different backbone architectures. We selected two
MLLMs with representative architectures, namely
Qwen2-VL-7B-Instruct (Wang et al., 2024b) and
Llama-3.2-11B-Vision-Instruct (Meta AI, 2024),
to assess the performance of CG on these mod-
els. Each experiment involved full-parameter fine-
tuning of all models over 5 epochs, utilizing 8 A800
(80GB) GPUs. The training was performed with a
batch size of 32 and a learning rate set to 2e-6, en-
suring that all parameters were updated to optimize
the model performance.

A.6 Details of Section 6: Exploring CG across
Detection and Classification

Experimental Setup: We conducted generaliza-
tion experiments for detection and classification.
Specifically, we performed generalization vali-
dation on Next-Chat (Zhang et al., 2023a) and
MiniGPT-v2 (Chen et al., 2023a). Next-Chat mod-
els the bounding box as an embedding and utilizes a
decoder for decoding, while MiniGPT-v2 treats the
bounding box as a text token, which are common
approaches used by existing MLLM implementa-
tions for detection. By conducting CG validation
using distinct bounding box modeling methods, we
further demonstrate the broad applicability of the
CG approach. Each experiment was conducted on
8 A800 (80GB) GPUs.

The two backbones were trained separately in
this experiment. For Next-Chat, we directly trained
the model in its second training stage and fine-
tuned it for 2 epochs with a learning rate of 2e-5,
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Related Combination Target Subset Baseline Trained CG Helps

Bones State Breast Diseases Bones Diseases 61 65 ✓
Lung COVID Bones Diseases Lung Diseases 80 91 ✓
X-ray Diseases CT COVID X-ray COVID 35 40 ✓
X-ray Diseases CT State X-ray State 35 43 ✓
CT Brain X-ray Lung CT Lung 32 33 ✓
CT Brain X-ray Lung CT Lung 65 72 ✓
FP - Fundus Diseases Mic - Cell Level FP - Fundus Level 48 45 ✗
Mic - Cell Recognition FP - Fundus Level Mic - Cell Level 34 41 ✓

Table 11: Result of Qwen2-VL on selected classification datasets in Med-MAT. ✓ in CG Helps indicates successful
generalization, while ✗ denotes failure.

Related Combination Target Subset Baseline Trained CG Helps

Bones State Breast Diseases Bones Diseases 52 59 ✓
Lung COVID Bones Diseases Lung Diseases 64 75 ✓
X-ray Diseases CT COVID X-ray COVID 33 38 ✓
X-ray Diseases CT State X-ray State 33 41 ✓
CT Brain X-ray Lung CT Lung 31 29 ✗
CT Brain X-ray Lung CT Lung 49 57 ✓
FP - Fundus Diseases Mic - Cell Level FP - Fundus Level 55 61 ✓
Mic - Cell Recognition FP - Fundus Level Mic - Cell Level 10 32 ✓

Table 12: Result of Llama-3.2-Vision on selected classification datasets in Med-MAT. ✓ in CG Helps indicates
successful generalization, while ✗ denotes failure.

Related Combination Target Subset Baseline Trained CG Helps

Lung Lung Det Bones Diseases Lung Diseases 49 52 ✓
Lung Lung Det Breast Diseases Lung Diseases 49 54 ✓
Bones Spinal Error Det Breast Diseases Bones Diseases 20 30 ✓
Bones Spinal Error Det Lung Diseases Bones Diseases 20 33 ✓

End Level MRI Diseases Det End Diseases 24 27 ✓
X-ray Lung Det CT COVID X-ray COVID 23 26 ✓

Der - Skin Cancer Det FP - Fundus Diseases Der - Skin Diseases 24 29 ✓
Mic - Cell Cancer Det CT - Kidney Diseases Mic - Cell Diseases 24 26 ✓

Table 13: Result of NEXT-Chat on CG by using detection and classification tasks to generalize classification Target
dataset. Generalization results on classification datasets: Related Combination is the training set, Target Subset is the
goal. Baseline and Trained represent the model’s accuracy without training and trained on related data, respectively.
✓ in CG Helps indicates successful generalization, while ✗ denotes failure.

Related Combination Target Subset Baseline Trained CG Helps

Lung Lung Det Bones Diseases Lung Diseases 41 47 ✓
Lung Lung Det Breast Diseases Lung Diseases 41 49 ✓
Bones Spinal Error Det Breast Diseases Bones Diseases 31 35 ✓
Bones Spinal Error Det Lung Diseases Bones Diseases 31 37 ✓

End Level MRI Diseases Det End Diseases 24 26 ✓
X-ray Lung Det CT COVID X-ray COVID 22 23 ✓

Der - Skin Cancer Det FP - Fundus Diseases Der - Skin Diseases 27 30 ✓
Mic - Cell Cancer Det CT - Kidney Diseases Mic - Cell Diseases 20 24 ✓

Table 14: Result of MiniGPT-v2 on CG by using detection and classification tasks to generalize classification
Target dataset. Generalization results on classification datasets: Related Combination is the training set, Target
Subset is the goal. Baseline and Trained represent the model’s accuracy without training and trained on related data,
respectively. ✓ in CG Helps indicates successful generalization, while ✗ denotes failure.

keeping all other training parameters at their default
settings. Similarly, for MiniGPT-v2, we trained the
backbone model from the second stage, starting
with a learning rate of 2e-5 and gradually reducing
it to 2e-6 over 3 epochs.

A.7 CG with Medical Multimodal LLM

In previous experiments, general MLLMs are se-
lected to prevent the MLLM’s inherent medical
knowledge from affecting CG results. Our exper-
iments focus on how MLLMs leverage CG to in-
terpret unseen medical images. If the model has
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Related Combination Target Subset HuatuoGPT

Bones State Breast Diseases Bones Diseases +6.12
Lung COVID Bones Diseases Lung Diseases +15.00
X-ray Diseases CT COVID X-ray COVID +38.00
X-ray Diseases CT State X-ray State +40.67
CT Brain X-ray Lung CT Lung +1.5
CT Brain X-ray Lung CT Lung +18.00
FP - Fundus Diseases Mic - Cell Level FP - Fundus Level +12.12
Mic - Cell Recognition FP - Fundus Level Mic - Cell Level +10.50

Table 15: Result of HuatuoGPT-Vision on selected classification datasets in Med-MAT. HuatuoGPT represent the
accuracy(%) gains the model achieved through CG.

learned some fundamental elements of the Target
data, it would compromise the fairness of the ex-
periments.

To demonstrate that our results still work on
medical LLMs, we employed the same data com-
binations from Section 3.3 to investigate CG on
medical MLLMs (we selected HuatuoGPT-Vision
as the baseline).

The results in Table 15 demonstrate that the
medical-expert MLLM can still leverage CG
to enhance their performance on novel tasks,
further supporting the validity and consistency of
our findings.

B The Dataset: Med-MAT

This section provides an overview of Med-MAT.
First, a detailed explanation of MAT-Triplet will
be presented in B.1. Next, the methods for con-
structing the QA formatting will be discussed in
B.2. Finally, the data composition details and open-
source specification will be provided in B.3.

B.1 Details of MAT-Triplet

MAT-Triplet stands for Medical Modality,
Anatomical Area, and Medical Task. We define
all samples in Med-MAT using these three compo-
nents and integrate datasets with identical triplets
into subsets.

Medical Modality refers to different types of
techniques or methods used in medical imaging
or data acquisition. Each modality is designed to
present the human body’s structures or pathological
features in unique ways, providing auxiliary sup-
port for clinical diagnosis and treatment. Most
modalities exhibit significant visual differences,
making them easily distinguishable. Med-MAT en-
compasses 11 modalities, including common ones
such as Computed Tomography (CT), Magnetic
Resonance Imaging (MRI), X-ray, Fundus Photog-
raphy (FP), Endoscopy (End), Optical Coherence

Tomography (OCT), and Ultrasound (US), as well
as rare and specialized modalities like Colonoscopy
(Co), Dermoscopy (Der), Digital Pathology (DP),
and Microscopy (Mic).

Anatomical Area refers to specific anatomi-
cal structures or regions within the human body
or other organisms, defined by distinct anatomi-
cal characteristics to describe various body parts,
their functions, and relative positions. Med-MAT
encompasses 14 anatomical areas, including the
cervix, kidney, lung, brain, intestine, bladder, fun-
dus, retina, breast, bones, and chest. To further fa-
cilitate data description, additional categories such
as skin, mouth, and cell are included as specialized
anatomical areas.

Medical Task refers to the specific detection
task that needs to be performed on the dataset. Med-
MAT includes 13 distinct tasks, with classification
tasks encompassing Quality Identification (image
quality analysis), COVID Diagnosis, Cancer Diag-
nosis (determining the presence of a specific dis-
ease), State (such as identifying brain hemorrhage),
Level Identification (assessing disease severity),
and Multiple Classification (classifying multiple
diseases or cell types). Given the limited options
of COVID Diagnosis and Cancer Diagnosis, these
tasks can be interpreted as identifying whether a
patient is in a diseased state. To enhance general-
ization and provide more diverse examples, these
tasks are grouped under the broader category of
State. In addition, we have 16 datasets defining
segmentation or classification tasks with different
objectives.

B.2 QA construction method

A large amount of image-label datasets was col-
lected to build the Med-MAT dataset. To en-
sure compatibility with MLLM training inputs and
outputs, all data is transformed into a question-
answering format. Questions are formulated based

13074



on modality, anatomical area, and medical task,
with 6 question prompts applied to each subset.

The labels within each data subset will be clus-
tered to prevent redundant definitions of the same
condition. Then, all training set and test set will be
converted into multiple-choice questions following
the template in Table 8. Each question will have up
to four options, with distractor options randomly
selected from the corresponding subset.

B.3 Data composition and Open-source
Specification

Med-MAT is composed of multiple datasets. After
being transformed into different QA formats, the
new data is organized into several subsets to sup-
port generalization experiments in medical imaging.
Table 17 shows all of our subset datasets, which
are separated based on different combinations in
MAT-Triplet. The specific MAT-Triplets are listed,
along with the labels corresponding to the image-
label datasets for each subset. Correspondingly, all
the image-label datasets are also displayed in Table
18, which includes their names, descriptions of the
tasks performed, download links, and the level of
accessibility.

All question-answering text datasets in Med-
MAT will be publicly available. To accommo-
date varying access permissions, we will release
datasets based on their respective licenses: openly
accessible datasets will be directly available, while
restricted datasets can be accessed by applying
through the links provided in this paper. We hope
this dataset will support and advance future gener-
alization experiments on medical imaging.

B.4 Data Sources and Distribution

All Med-MAT data are sourced from public medi-
cal image challenges or widely used, high-impact
datasets previously applied in deep learning train-
ing, ensuring reliable annotations. Before inclusion
in Med-MAT, all datasets underwent label averag-
ing where possible; test sets, in particular, were
strictly balanced to ensure accuracy reliably reflects
model performance. Each Med-MAT training sub-
set contains 3,000 samples, while test sets maxi-
mize size under label balance constraints.

C Bad cases analysis and solutions

C.1 Bad case analysis

Some Trained models show minimal gains or even
performance declines in Table 3, with classification

accuracy lower than either the Baseline or Base-
line+. After a thorough examination, we found
that these Target datasets require more fine-grained
medical condition classification. Beyond disease
presence, they need detailed assessments, such as
severity grading (e.g., bone age estimation, cancer
staging) or distinguishing similar conditions (e.g.,
differentiating COVID-19 from pneumonia).

• The Related combinations lack suitable fun-
damental elements: For CG, the training data
must include the Target task’s core elements.
Here, we use other "level classification/grad-
ing" tasks for generalization, but their criteria
differ significantly, misaligning with the Tar-
get task’s needs.

• Without defined grading standards, MLLMs
lacking relevant knowledge can’t perform fine-
grained tasks: Tasks like bone age assessment
and cancer staging vary by criteria, and with-
out this knowledge, MLLMs can’t accurately
classify them.

C.2 Possible solutions
Few-shot prompting As we illustrated before,
most of the bad cases involve fine-grained tasks
needing specialized knowledge. So, in order to
minimize the effect of a lack of relevant knowledge,
we also conducted few-shot experiments to add
some target images in the prompts. Subset X-ray,
Lung, Normal-COVID-Pneumonia was chosen for
its simple structure, with LLaVA as the baseline.
We randomly sampled n images per label for n-shot
inference and repeated each experiment 3 times.

Model 0-shot 2-shot 3-shot 4-shot

LLaVA 30.00 28.83 ± 0.85 29.33± 1.25 29.83± 1.31
LLaVA + CG 28.00 28.67± 0.94 37.00 ± 0.82 36.67 ± 0.47

Table 16: Results of Few-shot prompting.

The results in Table 16 demonstrate that training
with CG combinations can improve the few-shot
performance of MLLMs on downstream tasks, even
when direct CG generalization is not effective.

Adding some Target data in training As de-
scribed in Section 5.2, we selected cases where
CG alone couldn’t achieve satisfactory results and
augmented their training sets with target data. The
results in this section indicate that while CG may
not directly enhance generalization, it accelerates
the model’s adaptation to downstream tasks.
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Multiple-choice Questions Template

<question>
A. <option_1>
B. <option_2>
C. <option_3>
D. <option_4>
Answer with the option’s letter from the given choices directly.

Figure 8: The Template of multiple-choice questions.

Q: This is an OCT image. 
Please identify any condition 
present.

A. Drusen B. Choroidal 
neovascularization

Q: This is an image of cells taken 
under a microscope. Please identify 
all the cells present (separate multiple 
cell types with a comma).

A. Eosinophil, 
lymphocyte

Q: Please examine this 
microscopic image and 
determine the cancer grade of 
the prostate.

A. Gg3 B. No cancer 

Q: Please assess this fundus image 
and list all conditions present, using 
commas to separate them. If no 
conditions are detected, return 
'Normal'.

A. Mild nonproliferative 
retinopathy

B. Central serous 
retinopathy 

Q: Review this image from the 
endoscopy and specify any 
intestinal diseases detected.

A. Polyps B. Normal cecum

Q: This is an image taken during 
an endoscopy. Please assess 
the cleanliness level of the 
intestine, rating it from 0 to 3.

A. 3 B. 1 

B.Neutrophil, 
eosinophil 

C. Lymphocyte, 

lymphocyte  D. Neutrophil C. Gg4 D. Gg5

C. Chorioretinal atrophy，
epiretinal membrane 

D. Media haze, 
optic disc pallor 

C. Dyed lifted 
polyps

D.Dyed resection 
margins C. 2 D. 0 

C. Normal D. Age-related 
macular degeneration 

Q: Assess this brain CT image 
and reply 'Hemorrhage' if 
visible, or 'Normal' if no 
hemorrhage is present.

A. Hemorrhage B. Normal 

Q: Please examine this 
dermoscopic image and 
identify the condition present.

A. Benign skin lesion 

Q: Please examine this bladder 
image taken during endoscopy 
and determine the type of 
cancer present.

A. No tumor lesion B. Low-grade carcinoma 

Q: You are viewing a mammogram. 
Kindly assess the conditions shown in 
the image, separating multiple 
conditions with commas. If no 
condition is present, return 'Normal'.

A. Normal B. Asymmetry 

Q: This is a spine X-ray image. 
Kindly assess the type of spinal 
pathology.

A. Surgical implant B. Foraminal stenosis 

Q: Shown here is an X-ray of a 
bone. Please determine the 
appropriate age category.

A. 7 B. 6 

Q: This image contains human 
protein cells. Please list their 
types, separating each one with 
a comma.

A. Centrosome,
cytosol 

B. Centrosome, 
nucleoplasm 

Q: Review this chest X-ray image 
and specify the type of 
pneumonia if found, or return 
'Normal' if no condition is present.

A. Secondary ptb B. Covid

Q: Please examine this X-ray 
image of a bone and rate the 
severity of arthritis from 0 to 4.

A. Level 1 B. Level 2 

B. Nevus 

C. Malignant dermal  D. Genodermatoses C. High-grade carcinoma D. Non-suspicious tissue 

C. Nipple retraction D. Mass C. Other lesions D. Osteophytes C. 9 D. 11 

C. Intermediate 
filaments D. Cytosol C. Left ptb D. Right upper ptb C. Level 3 D. Level 0 

Figure 9: Illustration of diverse samples with varying numbers of candidate options in the Med-MAT dataset.
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Subset No. Modality Anatomical Area Task Datasets No.

01 Co Cervix Cervical Picture Quality Evaluation 1
02 CT Kidney Kidney Diseases Classification 2
03 CT Lung COVID-19 Classification 3,4,6
04 CT Lung Lung Cancer Classification 5
05 CT Brain Brain Hemorrhage Classification 7
06 CT Brain Brain Cancer Classification 8
07 Der Skin Melanoma Type Classification 10
08 Der Skin Skin Diseases Classification 9, 11-15, 71, 72, 74
09 DP Mouth Teeth Condition Classification 16
10 DP Mouth Oral Cancer Classification 17
11 End Intestine Intestine Cleanliness Level 18
12 End Bladder Cancer Degree Classification 19
13 End Intestine Intestine Diseases Classification 20
14 FP Fundus Eye Diseases Classification 21-23, 26-28, 31, 32, 75
15 FP Fundus Multiple-labels Eye Diseases Classification 24, 25, 68
16 FP Fundus Blindness Level 29
17 FP Fundus Retinal Images Quality Evaluation 30
18 Mic Cell Cell Type Classification 33, 36-38, 39-41, 44, 65, 70
19 Mic Cell Prostate Cancer Degree Classification 34
20 Mic Cell Multiple-labels Blood Cell Classification 35
21 Mic Cell Cancer Classification 42, 67
22 MRI Brain Head Diseases Classification 44, 45
23 OCT Retina Retina Diseases Classification 46, 47
24 US Breast Breast Cancer Classification 48
25 X-ray Bones Degree Classification of Knee 49, 53
26 X-ray Bones Fractured Classification 50, 51
27 X-ray Bones Vertebrae Diseases Classification 52
28 X-ray Lung COVID-19 and Pneumonia Classification 54-57, 60, 62, 81
29 X-ray Breast Breast Diseases Classification 58, 78
30 X-ray Lung Tuberculosis Classification 59, 79
31 X-ray Chest Multiple-labels Chest Classification 61, 73, 76, 77, 80, 85, 87
32 X-ray Brain Tumor Classification 63
33 Mic Cell Multi-labels Diseases 84
34 FP Fundus Level Identification 66
35 X-ray Bones Level Identification 69
36 X-ray Bones Spinal lesion Classification 86
37 X-ray Breast Multi-labels Diseases 82

38 Der Skin Lesion Det/Seg 88-91
39 End Intestine PolyP Det/Seg 92-93
40 End Intestine Surgical Procedures Det/Seg 94
41 End Intestine Multi-labels Det/Seg 95
42 Mic Cell Cancer Cell Det/Seg 96
43 US Chest Cancer Det/Seg 97
44 US Thyroid Thyroid Nodule Region Det/Seg 98
45 MRI Intestine Multi-labels Det/Seg 103
46 MRI Liver Liver Det/Seg 104, 105
47 X-ray Lung Lung Det/Seg 99
48 X-ray Lung Pneumothorax Det/Seg 106
49 X-ray Bones Spinal Anomaly Det 100
50 X-ray Chest Multi-labels Det 101, 102
51 FP Fundus Vessel Seg 107
52 FP Fundus Optic Disc and Cup Seg 108
53 FP Fundus Optic Disc Seg 109

Table 17: The details of subset. In particular, Co stands for Colposcopy, CT represents Computed Tomography, DP
refers to Digital Photography, FP is for Fundus Photography, MRI denotes Magnetic Resonance Imaging, OCT
signifies Optical Coherence Tomography, Der refers to Dermoscopy, End stands for Endoscopy, Mic indicates
Microscopy Images, and US represents Ultrasound. The blue section represents the classification dataset and the
green section represents the detection
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No. Name Description Citation

1 Intel & MobileODT Cervical Screening Cervix Type in Screening (BenO et al., 2017)
2 CT Kindney Dataset Normal or Cyst or Tumor (Islam et al., 2022a)
3 SARS-COV-2 Ct-Scan COVID19, Classification Dataset (Soares et al., 2020)
4 COVID CT COVID-CT COVID19, Classification Dataset (Zhao et al., 2020)
5 Chest CT-Scan Cancer Classification (SunneYi, 2021)
6 COVID-19-CT SCAN IMAGES COVID19, Classification (wjXiaochuangw, 2019)
7 Head CT Head Hemorrhage (Kitamura, 2018)
8 CT of Brain Head Cancer (Data, 2023)
9 MED-NODE Melanoma or Naevus (Giotis et al., 2015)
10 ISIC 2020 Melanoma, Benign or Malignant (Rotemberg et al., 2021)
11 PAD-UFES-20 Skin Multi Classification (Pacheco et al., 2020)
12 Web-scraped Skin Image Skin Desease Multi Classification (Islam et al., 2022b)
13 ISBI 2016 Skin Lesion Classification (Gutman et al., 2016)
14 ISIC 2019 Skin Desease Multi Classification (Combalia et al., 2019)
15 Skin Cancer ISIC Skin Cancer Multi Classification (Katanskiy, 2019)
16 Dental Condition Dataset Teeth condition classification (Sajid, 2024)
17 Oral Cancer Dataset Oral cancer Classification (RASHID, 2024)
18 The Nerthus Dataset Cleanliness level (Pogorelov et al., 2017a)
19 Endoscopic Bladder Tissue Canser Degree Classification (Lazo et al., 2023)
20 Kvasir Multi Disease Classification (Pogorelov et al., 2017b)
21 ACRIMA Glaucoma (Ovreiu et al., 2021)
22 Augemnted ocular diseases AOD Multi Classification of eye diseases (Батыбеклы, 2021)
23 JSIEC Multi Classification of eye diseases (Cen et al., 2021)
24 Multi-Label Retinal Diseases Multi Classification of eye diseases (Rodríguez et al., 2022)
25 RFMiD 2.0 Multi Classification of eye diseases (Panchal et al., 2023)
26 ToxoFundus(Data Processed Paper) Ocular toxoplasmosis (Cardozo et al., 2023)
27 ToxoFundus(Data Raw 6class All) Ocular toxoplasmosis (Cardozo et al., 2023)
28 Adam dataset Age-related Macular Degeneration (Liang, 2021)
29 APTOS 2019 Blindness Blindness Level Identification (Karthik et al., 2019)
30 DRIMDB Quality Testing of Retinal Images (Prentasic et al., 2013)
31 Glaucoma Detection Glaucoma Classification (Zhang and Das, 2022)
32 AIROGS Glaucoma Classification (de Vente et al., 2023)
33 ICPR-HEp-2 Multi Classification (Qi et al., 2016)
34 SICAPv2 Cancer Degree Classification (Silva-Rodríguez et al., 2020)
35 Blood Cell Images Blood Cell Classificaion (Mooney, 2017)
36 BreakHis Cell type and beginormag (Bukun, 2019)
37 Chaoyang Multi Classification of pathologists (Zhu et al., 2021a)
38 HuSHeM Sperm Head Morphology Classificaion (Shaker, 2018)
39 Bone Marrow Cell Classification Bone Marrow Cell Classification (Matek et al., 2021)
40 NCT-CRC-HE-100K Multi Classification (Kather et al., 2018)
41 Malignant Lymphoma Classification Multi Classification (Orlov et al., 2010a)
42 Histopathologic Cancer Detection Cancer Classification (Cukierski, 2018)
43 LC25000 Multi Classification of Lung and Colon (Zhu, 2022)
44 Brain Tumor 17 Classes Multi Classification (Feltrin, 2022)
45 Tumor Classification Pituitary or Glioma or Meningioma or Notumor (Nickparvar, 2021a)
46 Malignant Lymphoma Classification Multi Classification of eye diseases (Orlov et al., 2010b)
47 Retinal OCT-C8 Multi Classification of eye diseases (Subramanian et al., 2022)
48 BUSI Breast Cancer (Al-Dhabyani et al., 2020)
49 Digital Knee X-Ray Images Degree Classification of Knee (Gornale and Patravali, 2020)
50 Bone Fracture Multi-Region X-ray Data Fractured Classification (Nickparvar, 2021b)
51 Fracture detection Fractured Classification (Batra, 2024)
52 The vertebrae X-ray image Vertebrae (Fraiwan et al., 2022)
53 Knee Osteoarthritis Dataset Knee Osteoarthritis with severity grading (Chen, 2018)
54 Shenzhen Chest X-Ray Set COVID19, Classification Dataset (Jaeger et al., 2014)
55 Chest X-ray PD COVID and Pneumonia (Asraf and Islam, 2021)
56 COVID-19 CHEST X-RAY DATABASE COVID and Pneumonia (Chowdhury et al., 2020)
57 COVIDGR COVID19, Classification (Tabik et al., 2020)
58 MIAS Multi Classification of Breast (Mader, 2017)
59 Tuberculosis Chest X-Ray Database Tuberculosis (Rahman et al., 2020)
60 Pediatric Pneumonia Chest X-Ray Pneumonia Classification (Kermany, 2018)

Table 18: The details of the medical datasets are provided
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https://www.kaggle.com/competitions/intel-mobileodt-cervical-cancer-screening/data
https://www.kaggle.com/datasets/nazmul0087/ct-kidney-dataset-normal-cyst-tumor-and-stone
https://www.kaggle.com/datasets/plameneduardo/sarscov2-ctscan-dataset
https://tianchi.aliyun.com/dataset/106604
https://tianchi.aliyun.com/dataset/93929
https://tianchi.aliyun.com/dataset/93666
https://www.kaggle.com/datasets/felipekitamura/head-ct-hemorrhage?select=labels.csv
https://www.kaggle.com/datasets/trainingdatapro/computed-tomography-ct-of-the-brain
https://www.cs.rug.nl/~imaging/databases/melanoma_naevi/
https://challenge2020.isic-archive.com/
https://data.mendeley.com/datasets/zr7vgbcyr2/1
https://www.kaggle.com/datasets/arafathussain/monkeypox-skin-image-dataset-2022, https://www.heywhale.com/mw/dataset/62eb75d6fef0903951b1f199
https://www.kaggle.com/datasets/angelachristabel/isbi-2016?select=Training_GroundTruth.csv
https://www.kaggle.com/datasets/andrewmvd/isic-2019
https://www.kaggle.com/datasets/nodoubttome/skin-cancer9-classesisic
https://www.kaggle.com/datasets/salmansajid05/oral-diseases/data
https://www.kaggle.com/datasets/zaidpy/oral-cancer-dataset
https://datasets.simula.no/nerthus/
https://commons.datacite.org/doi.org/10.5281/zenodo.7741475
https://www.kaggle.com/datasets/meetnagadia/kvasir-dataset
https://figshare.com/s/c2d31f850af14c5b5232
https://www.kaggle.com/datasets/nurmukhammed7/augemnted-ocular-diseases
https://www.kaggle.com/datasets/linchundan/fundusimage1000
https://data.mendeley.com/datasets/pc4mb3h8hz/1
https://github.com/openmedlab/Awesome-Medical-Dataset/blob/main/resources/RFMiD.md
https://www.kaggle.com/datasets/nafin59/ocular-toxoplasmosis-fundus-images-dataset
https://www.kaggle.com/datasets/nafin59/ocular-toxoplasmosis-fundus-images-dataset
https://www.kaggle.com/datasets/xiaoliang2121/adamdataset
https://www.kaggle.com/competitions/aptos2019-blindness-detection
https://www.kaggle.com/datasets/subhajournal/drimdb-diabetic-retinopathy-images-database
https://www.kaggle.com/datasets/sshikamaru/glaucoma-detection
https://zenodo.org/records/5793241
https://github.com/KaikaiZhao/HEp-2_cell_classification
https://data.mendeley.com/datasets/9xxm58dvs3/1
https://www.kaggle.com/datasets/paultimothymooney/blood-cells
https://www.kaggle.com/datasets/ambarish/breakhis
https://bupt-ai-cz.github.io/HSA-NRL/
https://data.mendeley.com/datasets/tt3yj2pf38/3
https://www.kaggle.com/datasets/andrewmvd/bone-marrow-cell-classification
https://zenodo.org/records/1214456
https://www.kaggle.com/datasets/andrewmvd/malignant-lymphoma-classification
https://www.kaggle.com/c/histopathologic-cancer-detection/data
https://www.kaggle.com/datasets/xilezhu/lc25000
https://www.kaggle.com/datasets/fernando2rad/brain-tumor-mri-images-17-classes
https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset
https://www.kaggle.com/datasets/andrewmvd/malignant-lymphoma-classification
https://www.kaggle.com/datasets/obulisainaren/retinal-oct-c8
https://www.kaggle.com/datasets/sabahesaraki/breast-ultrasound-images-dataset
https://data.mendeley.com/datasets/t9ndx37v5h/1
https://www.kaggle.com/datasets/preetviradiya/brian-tumor-dataset
https://www.kaggle.com/datasets/devbatrax/fracture-detection-using-x-ray-images
https://www.kaggle.com/datasets/yasserhessein/the-vertebrae-xray-images
https://www.kaggle.com/datasets/shashwatwork/knee-osteoarthritis-dataset-with-severity
https://lhncbc.nlm.nih.gov/LHC-downloads/downloads.html#tuberculosis-image-data-sets
https://data.mendeley.com/datasets/jctsfj2sfn/1
https://www.heywhale.com/mw/dataset/6027caee891f960015c863d7/content
https://github.com/ari-dasci/covidgr
https://www.kaggle.com/datasets/kmader/mias-mammography
https://www.kaggle.com/datasets/tawsifurrahman/tuberculosis-tb-chest-xray-dataset
https://www.kaggle.com/datasets/andrewmvd/pediatric-pneumonia-chest-xray


No. Name Description Citation

61 Random Sample of NIH Chest X-Ray Dataset Multi Classificaiton of Chest (Wang et al., 2017)
62 CoronaHack-Chest X-Ray Pnemonia Classifcition with Virus type (Praveen, 2019)
63 Brain Tumor Dataset Tumor Classification (Viradiya, 2020)
64 Fitzpatrick 17k (Nine Labels) Multi Classification (Groh et al., 2021)
65 BioMediTech Multi Classification (Nanni et al., 2016)
66 Diabetic retinopathy Diabetic Retinopathy Level (Benítez et al., 2021)
67 Leukemia Cancer Classification (Codella et al., 2019)
68 ODIR-5K Multiple Labels Classification (University, 2019)
69 Arthrosis Bone Age Classification (Zha, 2021)
70 HSA-NRL Multi Classification of pathologists (Zhu et al., 2021b)
71 ISIC 2018 (Task 3) Multi Classification (Codella et al., 2019)
72 ISIC 2017 (Task 3) Multi Classification (Codella et al., 2018)
73 ChestX-Det Multi Classification (Lian et al., 2021)
74 Monkeypox Skin Lesion Dataset Only Monkeypox (Ali et al., 2022)
75 Cataract Dataset Multi Classification (JR2NGB, 2019)
76 ChestX-rays IndianaUniversity Multi-label Classification (Raddar, 2019)
77 CheXpert v1.0 small Multi-label Classification (Arevalo, 2020)
78 CBIS-DDSM Multi Classification (Lee et al., 2017)
79 NLM-TB Tuberculosis (Karaca, 2022)
80 ChestXray-NIHCC Multi-label Classification (Summers and Ronald, 2020)
81 COVIDx CXR-4 COVID19, Classification (Wang et al., 2020)
82 VinDr-Mammo Multi-label Classification (Nguyen et al., 2023)
83 PBC dataset normal DIB Multi Classification (Acevedo et al., 2020)
84 Human Protein Atlas Multi-label Classification (Le et al., 2022)
85 RSNA Pneumonia Detection Challenge 2018 Multi-label Classification (Anouk Stein et al., 2018)
86 VinDr-SpineXR Multi Classification of Bones Diseases (Pham et al., 2021)
87 VinDr-PCXR Multi-label Classification (Pham et al., 2022)
88 PH2 Melanoma Segmentation (Mendonca et al., 2015)
89 ISBI 2016 (Task3B) Melanoma Segmentation (Gutman et al., 2016)
90 ISIC 2016 (Task 1) Melanoma Segmentation (Gutman et al., 2016)
91 ISIC 2017 Melanoma Segmentation (Codella et al., 2018)
92 CVC-ClinicDB Polyp Segmentation (Bernal et al., 2015)
93 Kvasir-SEG Polyp segmentation (Jha et al., 2020)
94 m2caiseg Surgical Instrument Segmentation (Maqbool et al., 2020)
95 EDD 2020 Multiple Diseases Segmentation in Intestine (Ali et al., 2020)
96 SICAPv2 Cancer Cells Segmentation (Silva-Rodríguez et al., 2020)
97 BUSI Cancer Segmentation (Hesaraki, 2022)
98 TN3K Thyroid Nodule Segmentation (Gong et al., 2022)
99 NLM-TB Lung Segmentation (With left or right) (Gong et al., 2021)
100 VinDr-SpineXR Spinal X-ray Anaomaly Detection (Pham et al., 2021)
101 VinDr-PCXR Multiple Diseases Segmentation in Chest (Pham et al., 2022)
102 ChestX-Det Multiple Diseases Segmentation in Chest (Lian et al., 2021)
103 UW-Madison Gl Tract Image Segmentation Surgical Instrument Segmentation (Lee et al., 2024)
104 Duke Liver Dataset MRI v1 Liver Segmentation (Macdonald et al., 2020)
105 Duke Liver Dataset MRI v2 Liver Segmentation (Macdonald et al., 2020)
106 SIIM-ACR Pneumothorax Segmentation Pneumothorax Segmentation (Zawacki et al., 2019)
107 FIVES Fundus Vascular Segmentation (Jin et al., 2022)
108 RIM-ONE DL Optic Disc and Cup Segmentation (Batista et al., 2020)
109 PALM19 Optic Disc Segmentation (Fu et al., 2019)

Table 19: Continued from Table 18.
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https://www.kaggle.com/datasets/nih-chest-xrays/sample
https://www.kaggle.com/datasets/praveengovi/coronahack-chest-xraydataset
https://www.kaggle.com/datasets/preetviradiya/brian-tumor-dataset
https://github.com/mattgroh/fitzpatrick17k
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