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Abstract

Existing Medical Large Vision-Language Mod-
els (Med-LVLMs), encapsulating extensive
medical knowledge, demonstrate excellent ca-
pabilities in understanding medical images.
However, there remain challenges in visual lo-
calization in medical images, which is crucial
for abnormality detection and interpretation. To
address these issues, we propose a novel UMed-
LVLM designed to unveil medical abnormali-
ties. Specifically, we collect a Medical Abnor-
malities Unveiling (MAU) dataset and propose
a two-stage training method for UMed-LVLM
training. To collect MAU dataset, we propose a
prompt method utilizing the GPT-4V to gener-
ate diagnoses based on identified abnormal ar-
eas in medical images. Moreover, the two-stage
training method includes Abnormal-Aware In-
struction Tuning and Abnormal-Aware Reward-
ing, comprising Relevance Reward, Abnormal
Localization Reward and Vision Relevance Re-
ward. Experimental results demonstrate that
our UMed-LVLM significantly outperforms ex-
isting Med-LVLMs in identifying and under-
standing medical abnormalities, achieving a
58% improvement over the baseline. In addi-
tion, this work shows that enhancing the abnor-
mality detection capabilities of Med-LVLMs
significantly improves their understanding of
medical images and generalization capability.

1 Introduction

Large Vision-Language Models (LVLMs) demon-
strate remarkable capability in various vision-
language tasks (OpenAI, 2023a; Liu et al., 2023b;
Li et al., 2023a). Medical image analysis poses a
significant challenge for LVLMs due to their in-
tricate patterns and structures, thereby demanding
an in-depth grasp of nuanced variations to ensure
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Method Medical Multi-modal Region- Detector &
Diagnosis Medical Image Awareness Segmenter-Free

RegionGPT ✗ ✗ ✓ ✗
XrayGPT ✓ ✗ ✗ ✓
Med-Flamingo ✓ ✓ ✗ ✓
MedVInt ✓ ✓ ✗ ✓
Our UMed-LVLM ✓ ✓ ✓ ✓

Table 1: Comparison of different Med-LVLMs: RegionGPT
(Guo et al., 2024), XrayGPT (Thawakar et al., 2023), Med-
Flamingo (Moor et al., 2023), MedVInt (Zhang et al., 2023a)
and Ours. “Medical Diagnosis” denotes the model’s appli-
cability for medical diagnosis; “Multi-modal Medical Image”
indicates training on multi-modal medical images; “Region-
Awareness” reflects the model’s capability for region recog-
nition; “Detector & Segmenter-Free” specifies independence
from external detectors or segmenters.

precise diagnoses (Wu et al., 2023). To enhance
LVLMs for medical images, some works (Qin et al.,
2023) encapsulate a substantial medical corpus into
these models, i.e., Medical Large Vision-Language
Models (Med-LVLMs). These Med-LVLMs ex-
hibit proficiency in understanding medical images
and human queries.

Despite their successes, existing Med-LVLMs
exhibit limitations in visual localization capabil-
ity within medical images, as shown in Table 1.
Advanced models like GPT-4V (OpenAI, 2023a),
one of the leading LVLMs, exhibit notable short-
comings in accurately interpreting and visual lo-
calization in medical images (i.e., abnormality lo-
calization) (Wu et al., 2023). The capability for
visual localization is critical for two primary rea-
sons: Firstly, bias in visual localization can lead
to unreliable responses in diagnosis, undermining
the credibility and interpretability of Med-LVLMs.
Secondly, some LVLMs (Yin et al., 2023; Guo
et al., 2024; Ranasinghe et al., 2024) improve the
visual understanding in LVLM by enhancing its
visual localization capability. In these works, vi-
sual localization in natural scenes can benefit from
general detectors. However, abnormality localiza-
tion in medical images lacks a large amount of data
to train specialized detectors, especially for some
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rare diseases. This limitation emphasizes the neces-
sity for enhancing the inherent visual localization
capabilities of medical LVLMs without specific de-
tectors to improve their understanding of medical
images and the reliability of responses.

To address these challenges, we propose UMed-
LVLM, designed with Unveiling Medical abnor-
malities for LVLM. To encapsulate the abnormal-
ity unveiling capability into UMed-LVLM, we
first collect a dataset comprising medical images
with abnormality regions. Then, we design a
prompt method to generate a diagnosis dataset, i.e.,
Medical Abnormalities Unveiling (MAU), through
the GPT-4V model (OpenAI, 2023b). The MAU
dataset encompasses 5,817 medical images, user
queries, and diagnosis responses with abnormal
areas. This dataset is used to train UMed-LVLM
via a two-stage training method, i.e., Abnormal-
Aware Instruction Tuning and Abnormal-Aware
Rewarding, enabling it to understand medical ab-
normalities. UMed-LVLM is continually trained
on MedVInt (Zhang et al., 2023a). To prevent
knowledge catastrophic forgetting of large lan-
guage models during continual training on large-
scale datasets (Luo et al., 2023), we train the model
on limited-scale datasets, following that employed
in previous studies (Zhou et al., 2023; Yu et al.,
2024). Abnormal-Aware Rewarding, comprising
Relevance Reward, Abnormal Localization Reward
and Vision Relevance Reward, aims to improve the
model’s capability to capture abnormal areas.

In the experiments, we evaluate UMed-LVLM
and other methods on MAU dataset, and UMed-
LVLM outperforms other competitors in under-
standing medical images and identifying abnormal-
ities. Moreover, an in-depth analysis revealed that
while Med-LVLMs are not yet adept at abnormality
detection in medical images, enhancing their ab-
normality detection capabilities can improve their
understanding of medical images. Furthermore,
our findings suggest that large models possess out-
of-distribution (OOD) generalization capabilities,
indicating the potential for more robust disease
recognition through iterative improvements in large
models, even if they are only exposed to diverse
medical images of limited disease types (Zhang
et al., 2021). In addition, we analyze the cross-
modal capabilities and generalization potential of
Med-LVLMs, and results show that augmenting
models in varied modalities enhances their perfor-
mance in modality with limited dataset availability.

The main contributions of this work are below:

• We propose a novel UMed-LVLM for medi-
cal diagnosis with unveiling abnormality by
enhancing its visual localization capability.

• We introduce Abnormal-Aware Instruction
Tuning and Abnormal-Aware Rewarding strat-
egy to train the Med-LVLM, aiming to en-
hance the model’s focus on abnormal areas
when generating responses.

• We design a prompt method to create the
MAU dataset for UMed-LVLM training. The
dataset comprises medical images and diag-
noses with abnormality annotations.

• Experimental results show that UMed-LVLM
outperforms existing Med-LVLMs in identify-
ing and understanding medical abnormalities.
We conduct an in-depth analysis of model
training and generalization capabilities, under-
scoring the potential of incorporating medical
abnormalities to enhance Med-LVLM.

2 Related Work

Recent advancements in LVLMs have significantly
improved visual comprehension and contextual lan-
guage understanding (Alayrac et al., 2022; Chen
et al., 2023; Zhou et al., 2024a). Notable mod-
els like CLIP (Radford et al., 2021) and BLIP-2
(Li et al., 2023b) have achieved impressive results
in vision-language tasks by leveraging pre-trained
image-text pairs. The introduction of GPT-4 (Ope-
nAI, 2023a) has further propelled this field, with
models like LLaVA (Liu et al., 2023b) and its
improved version (Liu et al., 2023a) demonstrat-
ing exceptional capabilities in multimodal tasks.
In the medical domain, models such as LLaVA-
Med (Li et al., 2023a), Visual Med-Alpaca (Shu
et al., 2023), OphGLM (Gao et al., 2023), and
XrayGPT (Thawakar et al., 2023) have specialized
in interpreting medical images and providing com-
prehensive assistance. Observations in (Wu et al.,
2023) indicated that although GPT-4V performs
well in differentiating medical image modalities
and anatomy, it still has difficulties in disease diag-
nosis and generating comprehensive reports. Ad-
ditionally, Reinforcement Learning (RL) has been
applied to LLMs to enhance their performance and
flexibility (Sutton and Barto, 1998; Mnih et al.,
2015; Schulman et al., 2015; Mnih et al., 2016;
Schulman et al., 2017). The full version can be
found in Appendix A.
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Stage 2: Fine-tune the policy UMed-LVLM against the 
Abnormal-Aware Rewarding using RL

Stage 1: Abnormal-Aware Instruction Tuning

Med-LVLM output:

Vision    
Encoder

What details can you gather about the
anomaly's location in the medical image
and its potential implications?

UMed-LVLM
Anomaly detection in the medical image
reveals an abnormal area located in the
upper lobes of the lungs … [bbox_start] 
0.6, 0.6, 0.28, 0.3 [bbox_end] …

Medical Image

Prompt:

What can you deduce from the provided medical
image and describe the anomaly's location?

PPO

Upon examination of the chest radiograph, …
coordinates: [bbox_start] 0.603, 0.712, 0.174, 
0.248 [bbox_end]. …, white blood cell count,
and oxygenation status, along with …

ALR: + 0.3

Rel: + 0.3 VRR: + 0.5 ALR: + 0.3Update policy 
with rewards

Sampled Prompt: 

Rel: + 0.3 VRR: + 0.5

Medical Image

Figure 1: The two-stage training for our UMed-LVLM.
“Rel”, “ALR” and “VRR” denote “Relevance Reward”, “Ab-
normal Localization Reward” and “Vision Relevance Reward”,
respectively, as detailed in Sec. 3.2.

3 Methodology

UMed-LVLM is trained via a two-stage training
method, i.e., Abnormal-Aware Instruction Tuning
and Abnormal-Aware Rewarding. UMed-LVLM
is continually trained on MedVInt (Zhang et al.,
2023a). Abnormal-Aware Rewarding comprises
LLM relevance rewarding, Abnormal Localization
Rewarding, and Vision Relevance Rewarding.

3.1 Abnormal-Aware Instruction Tuning
We introduce an abnormal-aware instruction tun-
ing approach to improve the model’s ability to un-
derstand medical abnormal regions and generate
corresponding diagnoses, building upon previous
work in instruction tuning (Wei et al., 2022; Liu
et al., 2023b). Given a medical image x and a user
query q, model generates a response a token-by-
token. The response includes the diagnosis and a
description of the abnormal region, i.e.,

p(a|x, q; θ) =
T∏

t=1

p(at|a<t, x, q; θ), (1)

where θ represents the model parameters, and T is
the length of the response.

During training, we provide the model with med-
ical images, user queries, and responses including
diagnoses and descriptions of abnormal regions.
Model are optimized by cross-entropy loss, i.e.,

Lit = −
T∑

i=1

log pi. (2)

where pi is the probability of the i-th token in re-
sponse a. This approach improves the model’s
understanding of abnormal regions in medical im-
ages and its ability to provide diagnosis outputs
with identified abnormal regions. However, it does
not directly guide the model to focus on abnormal
regions in medical images.

3.2 Abnormal-Aware Rewarding
To address the challenge of effectively identifying
and describing abnormalities within medical im-
ages, we propose an Abnormal-Aware Rewarding
(AAR) strategy for UMed-LVLM training. This
reinforcement learning (RL) training strategy com-
prises three rewarding strategies, i.e., Relevance
Rewarding, Abnormal Localization Rewarding and
Vision Relevance Rewarding, designed to optimize
the Med-LVLMs based on abnormalities. In con-
trast to Ouyang et al. (2022) optimize LLMs follow-
ing user instructions by the Proximal Policy Opti-
mization (PPO (Schulman et al., 2017)), AAR opti-
mizes the Med-LVLMs by a more directed learning
towards the accurate medical diagnosis with abnor-
mality recognition.

Relevance Rewarding. The relevance reward-
ing framework is fundamentally structured around
three pivotal components: the policy network, the
value network and the LLM reward model. Both
networks play a crucial role in guiding the training
process, with the policy network (π) generating ac-
tions (responses) based on the given state st, which
encapsulates the medical image x and user query
q. The policy network’s output is mathematically
expressed as:

π(at|st; θ) =
T∏

t=1

π(at|st, a<t; θ), (3)

where θ denotes the parameters of policy network.
Simultaneously, the value network (V ) is tasked

with estimating the expected return from state st,
offering a benchmark for calculating advantage
function vital for optimizing the policy network:

V (st;ϕ) = E [rt | st, π] , (4)
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where ϕ represents the parameters of the value net-
work, and rt denotes the immediate reward associ-
ated with the current state st.

The LLM relevance rewarding framework incor-
porates rewards from the policy network, the value
network, and the LLM relevance reward model.
The total reward, rπ,V,LLMt , measures the improve-
ment of the chosen action over the baseline pro-
vided by the value network and includes the rele-
vance reward from the LLM model:

rπ,V,LLMt = A(st, at; θ, ϕ) + rLLMt , (5)

where A(st, at; θ, ϕ) = Q(st, at; θ) − V (st;ϕ) is
the advantage function, and rLLMt represents the
relevance reward provided by the LLM model. The
Q-function Q(st, at; θ) is updated using the Bell-
man equation:

∆Q(st, at) =

α

[
rt + γmax

a′
Q(st+1, a

′)−Q(st, at)

]
, (6)

Q(st, at)← Q(st, at) + ∆Q(st, at), (7)

where α is the learning rate, rt is the im-
mediate reward, γ is the discount factor, and
maxa′ Q(st+1, a

′) is the maximum expected future
reward for the next state st+1.

Abnormal Localization Reward. The Abnor-
mal Localization Reward (ALR), denoted as
rloct , quantifies the accuracy of predicted bound-
ing boxes by calculating the Intersection over
Union (IoU) between the predicted bounding box
(Pred-BBox) and the ground truth bounding box
(GT-BBox). Specifically, rloct is defined as:

rloct =
Overlap(Pred-BBox,GT-BBox)
Union(Pred-BBox,GT-BBox)

. (8)

This reward directly encourages the model to ac-
curately localize the regions of abnormality within
the medical image. A higher IoU score indicates a
greater overlap between the predicted and ground
truth bounding boxes, signifying a more precise
localization of the abnormal area.

Vision Relevance Reward. The Vision Rele-
vance Reward (VRR), rattt , is computed by aggre-
gating attention weights between abnormal cate-
gory tokens and image patches identified as ab-
normal regions. Specifically, within a transformer
framework, the VRR quantifies the model’s focus
on crucial visual areas by analyzing the attention

scores allocated to tokens corresponding to abnor-
mal categories and their association with image
patches indicative of abnormalities. This mecha-
nism enhances diagnostic accuracy by reinforcing
the model’s concentration on critical visual infor-
mation. The VRR is calculated as:

rattt =
∑

i∈N

∑

j∈N̄

exp

(
Qi·K⊤

j√
dk

)

∑
k∈N̄ exp

(
Qi·K⊤

k√
dk

) , (9)

where N denotes the set of tokens associated with
identified textual abnormalities, and N̄ represents
the set of image patches characterized as abnor-
mal regions. Qi and Kj are the query vector for
token i and the key vector for image patch j, respec-
tively; dk is the dimensionality of the key vectors.
This approach leverages the transformer’s atten-
tion mechanism to quantify the model’s focus on
critical areas. By emphasizing the importance of
abnormality-related tokens and their corresponding
attention weights over abnormal image patches, the
model is incentivized to attend to visual informa-
tion indicative of medical abnormalities, ultimately
improving diagnostic performance.

Reward Normalization and Aggregation. To
achieve equilibrium between the ALR (rloct ) and
the VRR (rattt ), we individually normalize these
rewards for responses generated by the same query.
This normalization ensures that each reward type
contributes equally to the final reward calculation.
The combined reward for each response is com-
puted as follows:

rt = rπ,V,LLMt +
rloct

max(rloct )
+

rattt

max(rattt )
, (10)

where max(rloct ) and max(rattt ) are the maximum
values of the abnormal-aware localization and at-
tention reward, respectively, for all responses to a
particular query.

Optimization Process. As an improved version
of the PPO, our policy network is refined by maxi-
mizing an objective function that incorporates the
combined reward rt into the PPO. Specifically, we
aim to maximize an objective function that com-
bines the clipped surrogate objective with an en-
tropy bonus to encourage exploration:

LCLIP+ENT(θ) =Ê
[
LCLIP(θ) + c1rt − c2LV F (ϕ)

+ c3S[π(·|st)]
]
, (11)
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1. Data Collection 3. GPT-4V Response

4. Reflection

2. Prompt Design

Task Description: Generate a response based on the provided medical image, abnormal type,
and the bounding box (bbox) of the lesion area. Additionally, mark the lesion area in the report
using [bbox_start] and [bbox_end] as indicators for the bbox's starting and ending points.

- Abnormal Type/Area: {class}.
- Area: [bbox_start] {bbox} [bbox_end]. The top-left corner of this image is (x, y) = (0, 0),
while the bottom-right corner of this image is (x, y) = (1, 1). The bounding box should be in the
format of [x1, y1, x2, y2]. x1 represents the x-coordinate of the top-left corner of the bounding
box; y1 represents the y-coordinate of the top-left corner of the bounding box; x2 represents the
wide of the bounding box; y2 represents the height of the bounding box; Ensure to use
[bbox_start] and [bbox_end] formats for indicating the starting and ending points of the bbox.

Output: Generate a medical response, including the abnormal type and marking of the lesion
area. Ensure to use [bbox_start] and [bbox_end] to denote the starting and ending positions of
the lesion area in the report. Let’s think step by step.

The lesion is located in the upper lobes of the lungs, which is a
common site for tuberculosis.
The abnormal area identified in this radiograph is detailed as follows:
- The bounding box marking the lesion begins at [bbox_start] 0.6, 0.6,
0.28, 0.3 [bbox_end], which is the x and y coordinate of the top-left
corner of the bounding box within the normalized coordinate space of
the image.
- The width of the bounding box is 0.28, and the height is 0.3,
spanning a significant portion of the upper lobe of the lung.
Please note that while a radiograph can suggest the presence of
tuberculosis, confirmation typically requires microbiological testing of
sputum samples. In the clinical context, a patient with a radiograph
like this would likely be referred for further diagnostic testing and
evaluation by a healthcare provider. Treatment would be initiated
based on a combination of clinical findings, radiographic imaging, and
laboratory results.

Reorganize existing answers to better fit the specific
question posed. Start by addressing anomaly detection,
then proceed to determine the bounding box region, and
finally identify the type of symptoms. Ensure the
bounding box format remains as "[bbox_start] {bbox}
[bbox_end]." Responses should be concise, logically
coherent, and presented in a question-answer format.

5. Diagnosis Construction

Q: What details can you gather about the anomaly's location in the medical image and its potential implications?
A: Anomaly detection in the medical image reveals an abnormal area located in the upper lobes of the lungs. The
specific details of the anomaly's location are as follows:
- The bounding box marking the lesion is defined by the coordinates [bbox_start] 0.6, 0.6, 0.28, 0.3 [bbox_end]. This
indicates the x and y coordinate of the top-left corner, width, and height of the bounding box, respectively, within the
normalized coordinate space of the image. The lesion spans a significant portion of the upper lobe of the lung.
The presence of a lesion in the upper lobes is often associated with specific conditions, such as tuberculosis. However,
it's important to note that while a radiograph can suggest the presence of such conditions, definitive diagnosis
typically requires additional steps, including microbiological testing of sputum samples. Patients presenting with this
type of radiographic finding would likely undergo further diagnostic evaluations and be considered for treatment
based on a comprehensive assessment of clinical findings, radiographic imaging, and laboratory results.

6. Human 
expert review

Figure 2: Pipeline overview for constructing the medical abnormalities unveiling (MAU) dataset. The process involves data
collection, prompt design, GPT-4V response generation, reflection for outputs, diagnosis construction, and human expert review.

where LCLIP(θ) is the clipped part of the PPO ob-
jective, rt is the combined normalized reward as
defined previously, LV F (ϕ) is the value function
loss, S[π(·|st)] denotes the entropy of the policy
for state st, and c1, c2, c3 are coefficients balancing
the contribution of each term.

4 MAU Dataset

To enhance the abnormality unveiling capabilities
of the Med-LVLM, we construct the MAU dataset
for UMed-LVLM training. Firstly, we collect
medical image datasets with abnormal annotations.
Then, we design a Prompt Method to construct the
MAU dataset, a medical diagnosis dataset with ab-
normal annotations, by GPT-4V (OpenAI, 2023b).

Collecting Medical Image Datasets with Abnor-
mal Areas. We collect a medical image dataset
annotated with abnormal areas for training the
Med-LVLM. This dataset encompasses five dis-
tinct sub-datasets, namely DeepLesion (Yan et al.,
2017), KidneyStone (TEZ, 2023), NIH (Wang et al.,
2017), TBX11K (Liu et al., 2020), and KVASIR
(Pogorelov et al., 2017), each originating from di-
verse sources. DeepLesion includes 32,120 ax-
ial CT slices with eight types of abnormalities.
The KidneyStone dataset contains 1,300 renal CT
scans of various kidney stones in different sizes,
shapes, and locations. The NIH dataset has 112,120
chest X-ray images across 14 pathological cate-
gories. The TBX11K dataset consists of 11,200
chest X-ray images for tuberculosis detection. The
KVASIR dataset provides 8,000 endoscopic im-

ages of the gastrointestinal tract, with eight types
of abnormalities. These sub-datasets span various
medical imaging modalities, including X-rays, CT
scans, and gross pathology. We utilized a portion
of these datasets, and Appendix B summarizes the
specific details of the segments used from each
sub-dataset. Each image is annotated with the type
of abnormality present and includes bounding box
information for identified abnormal areas.

Medical Abnormal Unveiling Dataset Construc-
tion. To construct the Medical Abnormal Unveil-
ing (MAU) Dataset, we design a Prompt Method
that utilizes the GPT-4V model to generate diag-
nosis annotations with medical abnormal areas.
The pipeline, as shown in Figure 2, comprises two
stages: diagnosing abnormalities in medical images
and reflecting on the previous diagnosis. Firstly,
we integrate collected medical images, correspond-
ing abnormality categories, and the locations of
abnormal areas into our designed prompt. This
prompt is then passed into GPT-4V to generate di-
agnosis responses based on the given abnormality
categories and areas. To build a diagnosis with step-
by-step thoughts, a reflection prompt is designed
to reorganize these diagnosis responses, starting
from abnormality detection, identifying bounding
box regions, and finally recognizing abnormality
categories. The processed responses, the medical
images, and queries form medical image diagno-
sis samples. Through this Prompt Method, we use
GPT-4V to generate an MAU dataset (examples in
Appendix B). Our plug-and-play prompt method
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easily integrates with other medical datasets and is
disease-agnostic.

Review by Human Experts. To ensure the re-
liability of the MAU dataset, all generated data
have been reviewed and filtered by human expert
reviewers (i.e., three doctoral students specializing
in medicine). During review, only 13 samples were
found to have errors, which were corrected man-
ually by reviewers. As shown in Table 2, using
GPT-4V for direct diagnosis without additional in-
formation yields limited performance. However,
providing the model with the location of the ab-
normal area leads to a significant performance im-
provement. Crucially, in our dataset construction,
we provide GPT-4V with both the abnormal area
and the ground-truth diagnosis. GPT-4V’s role is
not to perform the diagnosis itself, but rather to
generate an explanation (the “diagnosis” text) of
the reasoning process, given the known diagnosis
and the location of the abnormality. This approach
leverages the model’s strong language generation
capabilities while mitigating its limitations in direct
medical image interpretation, resulting in a dataset
of high quality and reliability.

5 Experiments

5.1 Experimental Setups

We evaluate our method on five benchmarks: test
set of our MAU, VQA-RAD (Lau et al., 2018) and
SLAKE (Liu et al., 2021b), PMC-VQA-test (Zhang
et al., 2023a) and MedMNIST (Yang et al., 2021).
Our MAU comprises five sub-datasets: DeepLe-
sion, KidneyStone, NIH, TBX11K, and KVASIR.
We utilized MedVInt (Zhang et al., 2023b) as
the initialization for our model. UMed-LVLM
is trained on the training set of 4,653 examples
and then evaluated on 1,164 examples on MAU.
Crucially, we ensure no case overlap between the
training and test sets, based on the original data
annotations, to prevent data leakage. We employ
Accuracy (ACC) as the evaluation metric. ACC
assesses the correctness of diagnosis results, i.e.,
whether the response text includes the correct cate-
gory of abnormalities, following (Wu et al., 2024)
to evaluate the correctness of outputs from LVLMs.
The implementation details and details of the com-
pared LVLMs methods are in Appendix C and Ap-
pendix D.

Method DL KS KV NIH TBX Avg.

MiniGPT-4 0.02 0.00 0.02 0.00 0.00 0.01
mPLUG-Owl 0.05 0.00 0.01 0.00 0.00 0.01
LLaVA 0.20 0.00 0.04 0.00 0.00 0.05
Qwen-VL 0.13 0.00 0.01 0.00 0.00 0.03

XrayGPT 0.18 0.12 0.02 0.07 0.06 0.09
LLaVA-Med 0.22 0.04 0.12 0.03 0.01 0.08
Med-Flamingo 0.27 0.15 0.15 0.09 0.02 0.14
MedVInt 0.29 0.11 0.27 0.08 0.09 0.17

Trained on MAU Dataset

MedVInt (SFT) 0.42 0.93 0.93 0.28 0.78 0.67
MedVInt (SFT&PPO) 0.44 0.94 0.95 0.30 0.80 0.69
UMed-LVLM 0.53 0.99 0.98 0.37 0.86 0.75

Closed-Source Model

GPT-4V 0.27 0.36 0.53 0.18 0.19 0.31
GPT-4V w/ bbox 0.50 0.95 0.95 0.32 0.81 0.72

Table 2: Comparison on test set.“DL”, “KS” and “KV” de-
note “Deep Lesion”, “Kidney Stone” and “KVASIR”, re-
spectively. The comparison models include LVLMs (i.e.,
MiniGPT-4 (Zhu et al., 2024a), mPLUG-Owl (Ye et al.,
2023), LLaVA (Liu et al., 2023b), Qwen-VL (Bai et al.,
2023), GPT-4V (OpenAI, 2023b)) and Med-LVLMs (i.e.,
XrayGPT (Thawakar et al., 2023), LLaVA-Med (Li et al.,
2023a), Med-Flamingo (Moor et al., 2023), MedVInt (Zhang
et al., 2023a)). MedVInt (SFT) denotes MedVInt trained with
SFT on the MAU dataset, while MedVInt (SFT&PPO) indi-
cates MedVInt trained with SFT and PPO on the MAU dataset.
GPT-4V w/ bbox denotes that GPT-4V was provided with
abnormal region location information.

Method VQA-RAD SLAKE

Open Close Open Close

MEVF-BAN (Nguyen et al., 2019) 49.2 77.2 77.8 79.8
CPRD-BAN (Liu et al., 2021a) 52.5 77.9 79.5 83.4
M3AE (Chen et al., 2022) 67.2 83.5 80.3 87.8
PMC-CLIP (Lin et al., 2023) 67.0 84.0 81.9 88.0
MedVInT (Zhang et al., 2023a) 69.3 84.2 88.2 87.7
UMed-LVLM 74.9 87.6 90.4 89.5

Table 3: Results on VQA-RAD (Lau et al., 2018) and SLAKE
(Liu et al., 2021b).

5.2 Results and Discussion

As shown in Table 2, our method outperforms other
methods on the MAU. By comparing UMed-LVLM
with MedVInt (SFT) and MedVInt (SFT&PPO),
the performance gain can be attributed to the MAU
dataset and our Abnormal-Aware Rewarding ap-
proach. From the results, UMed-LVLM signif-
icantly outperforms GPT-4V. Furthermore, pro-
viding ground-truth abnormal region locations to
GPT-4V (GPT-4V w/ bbox) leads to a signifi-
cant improvement, emphasizing the importance of
abnormal region localization for diagnosis. Ta-
ble 3 and Table 4 present results on VQA-RAD,
SLAKE, and PMC-VQA-test datasets. UMed-
LVLM outperforms other methods, showcasing
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Method Choice Blanking

PMC-CLIP (Lin et al., 2023) 24.7 -
BLIP-2 (Li et al., 2023b) 24.3 21.8
Open-Flamingo (OpenAI, 2023a) 26.4 26.5
LLAVA-Med (Li et al., 2023a) 34.8 29.4
MedVInT (Zhang et al., 2023a) 39.2 35.3
UMed-LVLM 42.6 38.1

Table 4: Comparison of different methods on PMC-VQA-
test (Zhang et al., 2023a) (metric is accuracy).

Method Pneumonia Breast Derma

AUC↑ ACC↑ AUC↑ ACC↑ AUC↑ ACC↑
ResNet50 96.2 88.4 86.6 84.2 91.2 73.1
DWT-CV 95.7 88.7 89.8 85.7 91.7 74.8
SADAE 98.3 91.8 91.5 87.8 92.7 75.9
PMC-CLIP 99.0 95.4 94.6 91.4 93.4 79.8
MedVInT 98.5 94.9 93.4 90.4 93.7 80.0
UMed-LVLM 99.1 95.8 95.2 92.8 94.2 84.1

Table 5: Performance comparison on MedMNIST (Yang
et al., 2021): Pneumonia (chest X-ray), Breast (ultrasound),
and Derma (dermatoscopy). The comparison models include
ResNet50 (He et al., 2016), DWT-CV (Cheng et al., 2022),
SADAE (Ge et al., 2022), PMC-CLIP, and MedVInT.

its ability to understand and reason about medical
images and related questions. In Table 5, UMed-
LVLM outperforms other methods on MedMNIST
(Pneumonia, Breast, Derma). Remarkably, despite
continual training without Ultrasound and Der-
matoscopy data, UMed-LVLM generalizes well
to these modalities, demonstrating its effectiveness
and generalization. The case study can be found in
Appendix F.

5.3 Ablation Study

To verify the efficacy of components in AAR, we
conduct experiments by progressively removing
each component from UMed-LVLM to observe the
impact on performance. As shown in Table 6, we
compare the performance of UMed-LVLM and its
three variants, i.e., “w/o ALR”, “w/o VRR”, and
“w/o AAR”. The results show a performance de-
cline as components are removed, demonstrating
that each component plays a critical role in enhanc-
ing diagnosis accuracy for medical images. The
VRR, by aligning abnormal identification and at-
tention regions, ensures that the model does not
overlook subtle but critical abnormalities in the
images. The performance degradation observed
when either component is removed substantiates
the hypothesis that a dual-reward system, which
addresses abnormality recognition and localization,
is beneficial in diagnosis.

Method DL KS KV NIH TBX Avg.

UMed-LVLM 0.53 0.99 0.98 0.37 0.86 0.75

w/o VRR 0.49 0.97 0.95 0.30 0.82 0.71
w/o ALR 0.48 0.96 0.96 0.35 0.83 0.72
w/o AAR 0.42 0.93 0.93 0.28 0.78 0.67

Table 6: Ablation study verifies the effectiveness of compo-
nents in the Abnormal-Aware Rewarding (AAR), including
two components: Abnormal Localization Reward (ALR) and
Abnormal-Vision Relevance Reward (VRR). “w/o AAR” de-
notes UMed-LVLM only trained on Abnormal-Aware Instruc-
tion Tuning.
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Figure 3: Performance of UMed-LVLM with different IoUs.
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Figure 4: Performance of Abnormal-Aware Instruction Tun-
ing across different epochs (Left) and data scales(Right).

5.4 Analysis

Impact of Abnormal Localization. To verify
the impact of localization ability during the reason-
ing process on Med-LVLM, we injected bounding
boxes (bbox) corresponding to different IoU scores
during model inference for observation. The ex-
perimental results, as shown in Figure 3, indicate
that enhancing localization ability can influence
the diagnostic results. As anomaly localization
becomes more accurate, the model’s diagnostic per-
formance improves. However, when IoU exceeds
0.6, the improvement in the model’s diagnostic
performance begins to plateau. This suggests that
Med-LVLM does not require extremely high local-
ization accuracy to leverage the reasoning gains
from localization; a certain level of localization
ability is sufficient to enhance diagnostic reasoning.
The red dot in the figure represents the performance
achieved by our UMed-LVLM. From the trend, it
is evident that the localization ability of our method
effectively enhances model’s diagnostic capability.
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Method Abdomen Lung Pelvis

UMed-LVLM 0.35 0.39 0.27
MedVInt (SFT) 0.16 0.15 0.16
MedVInt (SFT&PPO) 0.15 0.12 0.15
MedVInt 0.05 0.04 0.07

Table 7: Model generalization to categories excluded from
training set. MedVInt (SFT) and MedVInt (SFT&PPO) can
be found in Table 2.

Impact of Instruction Tuning Epoch. As shown
in Figure 4(Left), we investigate the effects of em-
ploying Instruction Tuning over different epochs
on the performance of our model. The performance
exhibits an upward trajectory until epoch 4, achiev-
ing a peak of approximately 0.75, which suggests
that the model becomes progressively more adept at
executing tasks as per the user queries and medical
image inputs.

Impact of Training Set Scale for Instruction
Tuning. As shown in Figure 4(Right), the per-
formance of our model exhibits a positive corre-
lation with the scale of the training data. We can
observe a substantial increment as the data scale
progresses from 20% to 100%. This trend illus-
trates that the model benefits from a larger volume
of data, refining its ability to understand abnormali-
ties and execute instructions more effectively. This
improvement underscores the model’s evolving pro-
ficiency in identifying the exact spatial extents of
abnormalities, which is crucial for subsequent di-
agnosis tasks. The incremental nature of this trend
indicates that the model’s spatial comprehension
capabilities can be significantly honed with more
extensive training data. These results collectively
highlight the critical role that data scale plays in
the efficacy of instruction tuning for Med-LVLM.

Generalization Capability for Untrained Cate-
gory. This setting aims to evaluate the general-
ization capability of the UMed-LVLM on medical
categories not present in the training data. Specif-
ically, we removed data in three categories (i.e.,
“Abdomen”, “Lung”, and “Pelvis” on “DeepLe-
sion”) on the training set. Then we evaluated the
trained model on these categories to observe its
ability to handle untrained categories. The results,
shown in Table 7, present the performance in each
category. The performance demonstrates that our
method exhibits a degree of generalization capa-
bility on untrained categories of medical images.
Although the performance on untrained categories

Method TBX11K Deep Lesion

UMed-LVLM 0.57 0.42
MedVInt (SFT) 0.29 0.28
MedVInt (SFT&PPO) 0.30 0.22
MedVInt 0.10 0.08

Table 8: Performance of UMed-LVLM w/o training on
TBX11K and DeepLesion datasets, respectively. Performance
is evaluated on the excluded datasets.

is somewhat reduced compared to training on these
categories, these findings indicate that the model
can generalize knowledge learned during training
to new categories not present in the training data.
In contrast, MedVInt shows a slight ability to gen-
eralize to these untrained categories with scores
close to zero across all categories. It demonstrates
the effectiveness of abnormal-aware learning.

Generalization Capability of Abnormality Un-
veiling. To assess the robustness and flexibility
of UMed-LVLM and MedVInt, we respectively
removed the TBX11K and DeepLesion datasets
from the training data to verify the models’ gen-
eralization capabilities. We evaluated the models
on the excluded datasets to determine their ability
to generalize across different medical datasets. As
shown in Table 8, UMed-LVLM demonstrated sig-
nificantly better generalization than other methods.
The performance disparity shows our model’s ef-
fectiveness in adapting to varied medical scenarios.

Generalization Capability for Cross-Modality.
To verify the generalization capabilities of UMed-
LVLM, we train it on single-modality medical im-
ages and evaluate it across different modalities. As
shown in Table 9, our approach demonstrates better
performance in cross-modal generalization com-
pared to other methods. The performance of our
model is attributed to our abnormal-aware train-
ing method that enhances the model’s capability to
adapt to various medical images. The Abnormal-
Aware Instruction Tuning and AAR boost the
model’s capability to localize abnormalities and im-
prove diagnostic accuracy in medical images. This
is particularly important in scenarios where the
modalities differ substantially (e.g., CT vs. Gross
Pathology).

6 Conclusion

This study introduces UMed-LVLM, a novel Med-
LVLM designed to enhance medical diagnosis by
the visual localization of abnormalities in medi-
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Method C ->GX G ->CX X ->CG

UMed-LVLM 0.27 0.31 0.22
MedVInt (SFT) 0.12 0.08 0.13
MedVInt (SFT&PPO) 0.09 0.08 0.11
MedVInt 0.05 0.04 0.07

Table 9: Cross-modal generalization capability models
trained on single modality medical images. “C”, “G”, and
“X” represent CT, Gross Pathology, and X-ray, respectively.

cal images. Through a specialized training pro-
cess involving the collection of a Medical Abnor-
malities Unveiling dataset and the implementa-
tion of Abnormal-Aware Instruction Tuning and
Abnormal-Aware Rewarding. Results show UMed-
LVLM surpasses existing Med-LVLMs in accu-
rately detecting and interpreting medical anomalies.
The AAR incorporates innovative reward mecha-
nisms that sharpen the model’s focus on abnormal
areas, thereby improving diagnostic reliability and
interpretability. Furthermore, the in-depth analy-
sis demonstrates the generalization capability of
UMed-LVLM.

Limitations

Our study’s limitation is the limited computational
resources. Recent advancements have led to the
development of increasingly large LVLMs, which
require substantial computational power to train
and deploy effectively. As a result of these compu-
tational limitations, we were unable to apply our
methodologies to the largest and most complex
open-source models currently available. This lim-
its our ability to expand and validate our approach
on larger-scale LVLMs.
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A Related Work

A.1 Large Vision-Language Models

Recently, there have been remarkable advance-
ments within the domain of LVLMs (Alayrac et al.,
2022; Chen et al., 2023; Zhou et al., 2024b,c).
These models effectively bridge the gap between vi-
sual comprehension and contextual language under-
standing, presenting a robust solution for reconcil-
ing disparities between visual and textual data, and
thereby, enhancing their capacity to address various
vision-language tasks. By pre-training on image-
text pairs, CLIP (Radford et al., 2021) achieved
zero-shot transfer to diverse computer vision tasks
without requiring task-specific training. In con-
trast, BLIP-2 (Li et al., 2023b) employed frozen
pre-trained image encoders and LLMs to bridge
the modality gap, achieving effective representa-
tion and generative learning. The introduction of
GPT-4 (OpenAI, 2023a) ushered in a new era of
LVLMs (Zhu et al., 2024a; Ye et al., 2023; Bai
et al., 2023). LLaVA (Liu et al., 2023b) leveraged
a language-only GPT-4 to generate high-quality
multimodal instruction data effectively. Notably,
LLaVA demonstrated exceptional chat capabilities,
even when provided with novel images and instruc-
tions. The improved version LLaVA (Liu et al.,
2023a) elevated its performance by incorporat-
ing academic-task-oriented VQA datasets (Marino
et al., 2019; Mishra et al., 2019; Sidorov et al.,
2020; Schwenk et al., 2022) and simple response
formatting prompts, thus establishing stronger base-
lines. It is worth mentioning that the inclusion
of region-level VQA datasets (Kazemzadeh et al.,
2014; Krishna et al., 2017) could significantly en-
hance the model’s ability to localize fine-grained
visual details precisely.

A.2 Medical Large Vision-Language Models

With the rapid development of LVLMs, their ap-
plications in the medical domain have also in-
creased significantly. LLaVA-Med (Li et al., 2023a)
extended the capabilities of LLaVA (Liu et al.,
2023b) to the medical domain with excellent mul-
timodal dialogue capabilities. Unlike Visual Med-
Alpaca (Shu et al., 2023), which connected image
captioning models with an LLM and employed
a classifier for model assignment, LLaVA-Med
is an end-to-end model specifically designed for
the medical field. In specific medical domains,
LVLMs also play a significant role. In ophthal-
mology, OphGLM (Gao et al., 2023) combined

visual and language capabilities to provide com-
prehensive ophthalmic assistance. To solve open-
ended questions about chest radiographs, XrayGPT
(Thawakar et al., 2023) effectively aligned the med-
ical visual encoder (Wang et al., 2022) with a fine-
tuned large language model (Chiang et al., 2023)
by employing a straightforward linear transforma-
tion. The scarcity of non-English language mod-
els prompted the introduction of Qilin-Med-VL
(Liu et al., 2023c) as the Chinese large vision-
language model that combines a pre-trained Vi-
sion Transformer (Dosovitskiy et al., 2021) with
a foundational Large Language Model. Observa-
tions in (Wu et al., 2023) indicated that although
GPT-4V performs well in differentiating medical
image modalities and anatomy, it still has difficul-
ties in disease diagnosis and generating compre-
hensive reports. More specifically, GPT-4V demon-
strates inadequate performance in accurately iden-
tifying the structures or abnormalities in medical
images. In addition, several studies have focused
on aligning models with clinical preferences, as
highlighted by Cui et al. (2024) who emphasize
the importance of clinician preference alignment
in VLM fine-tuning. MMedPO (Zhu et al., 2024b)
proposes a clinical-aware multimodal preference
optimization method to improve the model’s under-
standing of clinical data. Addressing the critical
issue of factual accuracy, Xia et al. (2024b) in-
troduce a reliable multimodal retrieval-augmented
generation (RAG) approach. To facilitate the de-
velopment of medical VLMs, Xie et al. (2024)
present MedTrinity-25M, a large-scale multimodal
dataset with multi-granular annotations. Further-
more, CARES (Xia et al., 2024a) offers a compre-
hensive benchmark for evaluating the trustworthi-
ness of medical VLMs. In contrast to these works,
our approach focuses on leveraging abnormal re-
gions to guide model optimization.

A.3 Reinforcement Learning for Large
Language Models

Reinforcement Learning (RL) can be defined as
a training paradigm that could learn from interac-
tions with environments (Sutton and Barto, 1998).
Following the inception of RL, a multitude of ap-
proaches have been proposed, some of the more
widely used are Q-learning (Mnih et al., 2015),
Trust Region Policy Optimization (TRPO) (Schul-
man et al., 2015), Asynchronous Advantage Ac-
torcritic (A3C) (Mnih et al., 2016) and Proximal
Policy Optimization (PPO) (Schulman et al., 2017).
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Dataset Type Class Train Test Total

DeepLesion CT 9 1,584 396 1,980
KidneyStone CT 1 843 211 1,054

NIH X-ray 14 787 197 984
TBX11K X-ray 1 639 160 799
KVASIR Pathology 1 800 200 1,000

Total 3 26 4,653 1,164 5,817

Table 10: Specific details of the segments used from datasets.

Different from the distribution modeling objective
of supervised and unsupervised learning, RL is
more flexible in terms of reward functions, which
facilitates the application of RL methods to gen-
erative AI models (Cao et al., 2023). In the do-
main of LLMs, RL can be a vital technique for
their development to unlock significant potential.
As a successful application of RL combined with
LLM, WebGPT (Nakano et al., 2021) optimized
the reward function through RL and rejection sam-
pling with the aim of improving its behavior. An-
other illustrative example of employing RL to LLM
is InstructGPT(Ouyang et al., 2022), which used
methodology of both reinforcement learning with
human feedback (RLHF (Stiennon et al., 2020;
Christiano et al., 2017)) and PPO to proficiently
fine-tune GPT-3 (Brown et al., 2020), thereby em-
powering it to follow a diverse range of written
instructions. It is worth noting that, in addition
to the realm of general LLMs, there are already
some examples of medical LLMs that make use of
RL. Some brilliant works about medical LLMs like
ClinicalGPT (Wang et al., 2023) and Zhongjing
(Yang et al., 2024) also utilized RL to reduce the
bias of LLM and improve performance. While
RL has been extensively harnessed in LLMs and
medical LLMs, its potential for enhancing capacity
of identifying and describing abnormalities within
medical images remains to be explored.

B MAU Dataset

The details of dataset are shown in Table 10.
This dataset encompasses five distinct sub-datasets,
namely DeepLesion (Yan et al., 2017), Kidney-
Stone (TEZ, 2023), NIH (Wang et al., 2017),
TBX11K (Liu et al., 2020), and KVASIR
(Pogorelov et al., 2017), each originating from di-
verse sources. DeepLesion consists of 32,120 axial
CT slices featuring eight different types of abnor-
malities such as lesions in the lungs, abdomen, me-
diastinum, liver, pelvis, soft tissue, kidneys, and

bones. The KidneyStone dataset contains 1,300
renal CT scans depicting various kidney stones,
covering a range of sizes, shapes, and locations
within the urinary system. The NIH dataset in-
cludes 112,120 chest X-ray images, covering 14
different pathological categories including, but not
limited to, pneumonia, tuberculosis, lung cancer,
pulmonary edema, and pulmonary fibrosis. The
TBX11K dataset comprises 11,200 chest X-ray im-
ages focused on the classification and detection of
tuberculosis (TB), categorizing images into healthy,
sick but non-TB, active TB, latent TB, and inde-
terminate TB. The KVASIR dataset contains 8,000
endoscopic images of the gastrointestinal (GI) tract,
focusing on GI diseases with eight different types
of abnormalities, such as polyps, tumors, or other
abnormal tissues. As shown in Figure 7, we present
some examples from the MAU dataset.

C Implementation Details

In the experiments, we employ MedVInT (Zhang
et al., 2023b) to initialize our model. During the
instruction tuning phase, we employed an Adam
optimizer (Kingma and Ba, 2015) with a learning
rate of 1× 10−5, weight decay of 0.01 and a batch
size of 128. We train the model on four epochs,
utilizing a linear decay strategy for the learning rate.
For the AAR method, we set γ = 0.99, c1 = 0.5,
c2 = 0.5, and c3 = 0.01. We used an Adam
optimizer with a learning rate of 1 × 10−6 and
a batch size of 16, training the model for one epoch.
To enhance the diversity of sampling responses, we
set the number of sampling candidates to eight and
decoded the model with a temperature of 0.9 and a
probability threshold (p) of 0.9. Our training was
conducted on an NVIDIA H800 GPU.

D Large Vision-Language Models

In this study, we evaluate a variety of large
vision-language models (LVLMs) and medical
LVLMs (Med-LVLMs), including general-purpose
models such as MiniGPT-4 (Zhu et al., 2024a),
mPLUG-Owl (Ye et al., 2023), LLaVA (Liu
et al., 2023b), Qwen-VL (Bai et al., 2023), and
specialized models like Med-LVLMs, including
XrayGPT (Thawakar et al., 2023), LLaVA-Med (Li
et al., 2023a), Med-Flamingo (Moor et al., 2023),
and MedVInt (Zhang et al., 2023a). While
MiniGPT-4, mPLUG-Owl, LLaVA, and Qwen-VL
are designed for general visual tasks, LLaVA-Med,
XrayGPT, Med-Flamingo, and MedVInt are specif-
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UMed-LVLM GPT-4V

Based on the provided information, the lesion identified
within the bounding box coordinates [bbox_start] 0.364,
0.218, 0.184, 0.144 [bbox_end] is located in the upper
lobe of the lung. The chest radiograph reveals signs
consistent with pulmonary tuberculosis.

The analysis of the chest X-ray has identified a large area which has been highlighted with a
bounding box. However, the bounding box covers the entire image, which indicates that the
thresholding method used may not have been appropriate for identifying specific abnormalities in
this X-ray. It's important to note that accurately localizing abnormalities in medical images typically
requires expert medical knowledge and often advanced image processing techniques beyond simple
thresholding. For a definitive analysis, a radiologist or a trained medical professional would need to
review the image. With the method used, I was unable to localize a specific abnormality.

IoU 0.46 0

The lesion is enclosed within a bounding box with
coordinates [bbox_start] 0.52, 0.374, 0.388, 0.464
[bbox_end]. The image depicts a polyp within the
gastrointestinal tract, indicating an abnormal growth. This
polyp requires further evaluation by a medical
professional to assess its characteristics and determine the
appropriate course of treatment.

The image appears to be a clinical photograph from an endoscopy. There is a prominent growth in
the image with the following coordinates: [0.2, 0.3, 0.6, 0.3], which seems to be the focal point of
concern. However, as an AI, I’m not able to provide medical advice or diagnoses.
For a definitive assessment, the image should be examined by a medical professional who can
provide an accurate diagnosis and advice. If this is a personal medical image, please consult with
your healthcare provider. If this image is for educational or research purposes, you may want to
have it reviewed by a medical expert in the field of gastroenterology. ​

IoU 0.44 0.20

Figure 5: The comparison of diagnosis results between UMed-LVLM and GPT-4V on randomly sampled samples.

Q2: What are the typical symptoms of pulmonary tuberculosis?

A2: Pulmonary tuberculosis typically presents with a persistent cough (lasting over three weeks, possibly
producing thick, cloudy, or bloody sputum), chest pain (worsening with deep breathing or coughing),
unexplained weight loss, fatigue, low-grade fever (often with chills), night sweats, loss of appetite, and
swollen lymph nodes (especially in the neck).

Q3: How is pulmonary tuberculosis diagnosed?

A3: Pulmonary tuberculosis diagnosis involves a combination of reviewing the patient's medical history
and performing a physical exam, a chest X-ray to visualize the lungs, sputum tests (microscopic
examination and culture) to detect TB bacteria, and a tuberculin skin test (TST) or blood test to determine
TB infection.

Q4: Is pulmonary tuberculosis contagious?

A4: Yes, pulmonary tuberculosis is contagious. It spreads through the air when an individual with active
TB coughs, sneezes, or speaks, releasing bacteria-containing droplets. Prolonged exposure in poorly
ventilated spaces increases transmission risk.

Q1: What disease can be finding on this medical image?

A1: Based on the provided information, the chest radiograph shows evidence consistent
with pulmonary tuberculosis, specifically within the bounding box [bbox_start] 0.578,
0.19, 0.22, 0.257 [bbox_end]. The lesion area is located in the upper lobe of the lung.

Figure 6: Multi-turn conversation from UMed-LVLM.

ically optimized for the medical domain. These
models generally follow a two-stage training pro-
cess. In the first stage, they align features us-
ing large-scale vision-language datasets, while the
second stage fine-tunes the model on instruction-
following datasets. In our experiments, we ex-
tended this approach by further training our model
on the MAU dataset using Instruction Tuning and
ARRL methods, building on the MedVInt frame-
work. For comparison, we also evaluated GPT-
4V (OpenAI, 2023b), used in inference mode with-
out additional training due to its closed source.

(c1, c2) (0.3, 0.7) (0.4, 0.6) (0.5, 0.5) (0.6, 0.4) (0.7, 0.3)

MAU (Avg.) 0.69 0.72 0.75 0.71 0.70

Table 11: Hyperparameter search for Equ. 11.

E Hyperparameter Choices for Equ. 11

For hyperparameter in Equ. 11, our reference was
the source code of PPO1. Furthermore, we con-
ducted hyperparameter search experiments to fine-
tune these parameters for our specific environment

1https://spinningup.openai.com/en/latest/algorithms/ppo.html
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Q: What can you deduce from the provided medical image and describe the anomaly's location?

A: The bounding box of the lesion, marked to delineate the enlarged cardiac silhouette, is defined as follows:
[bbox_start] 0.214, 0.381, 0.525, 0.406 [bbox_end]. This area highlights the region within the chest cavity where
the heart appears enlarged. Cardiomegaly can have several potential implications, including symptoms such as
shortness of breath, fatigue, and swelling of the legs. It may be indicative of underlying conditions such as
hypertension, heart valve disease, or cardiomyopathy, necessitating further diagnostic evaluation and appropriate
management.

Q: Based on the given information, can you discuss the presence of an anomaly in the medical image and where it
is situated?

A: As indicated by the coordinates [bbox_start] 0.493, 0.402, 0.449, 0.553 [bbox_end], the polyp is located within
the intestinal lumen. This places the lesion approximately at the center-right of the image. Polyps in the colon can
be asymptomatic but may cause symptoms like rectal bleeding, changes in bowel habits, and abdominal pain. The
primary concern is that some polyps can develop into colorectal cancer if left untreated. A biopsy is recommended
to determine if the polyp is benign or malignant, and regular follow-up colonoscopies may be necessary to monitor
for the development of additional polyps.

Q: What can you discern from the provided information about the anomaly within this medical image?

A: Upon reviewing the abdominal CT scan, an abnormal area was identified within the abdomen. The specific
region of interest is marked by the following bounding box coordinates:
- **Lesion Area:** [bbox_start] 0.469, 0.422, 0.033, 0.052 [bbox_end]
This indicates that the lesion starts at approximately 46.9% from the left edge and 42.2% from the top edge of the
image. The lesion spans 3.3% of the image width and 5.2% of the image height.
The presence of a lesion in the abdominal region, as identified in the CT scan, may indicate a variety of conditions
ranging from benign cysts to malignant tumors. Further evaluation by a specialist is necessary to determine the
exact nature of the anomaly and to assess any related symptoms or health implications. A biopsy or additional
imaging may be required for a definitive diagnosis.

Q: Based on the given details, can you discuss the presence of an abnormality in the medical image and provide
insights into where it is located?

A: The pleural thickening is located within the region marked as [bbox_start] 0.623, 0.418, 0.127, 0.151
[bbox_end]. This bounding box indicates the specific area within the right hemithorax where the anomaly is
present. Pleural thickening can be indicative of chronic inflammation, fibrosis, or pleural disease. The presence of
this thickening suggests the possibility of underlying conditions such as chronic infection, exposure to asbestos, or
pleural malignancy. Further evaluation with a CT scan is recommended for better characterization and to rule out
other potential underlying pathologies like pleural effusion or malignancy.

Q: Can you deduce any information about the anomaly's location and features within the medical image?

A: The anomaly detected in the CT scan is located in the abdominal region. The specific area of the lesion is
identified within the coordinates:
- [bbox_start] 0.41, 0.409, 0.109, 0.125 [bbox_end]
- This bounding box indicates the top-left corner at (0.41, 0.409) and spans a width of 0.109 and a height of 0.125
in the normalized coordinate system of the image.
- The abnormality's location in the abdomen could potentially relate to various symptoms such as abdominal pain,
bloating, or changes in bowel habits. Further evaluation is necessary to determine the exact nature and implications
of this anomaly.

Q: What can you infer from the medical image provided and what needs to indicate the anomaly's location?

A: The bounding box coordinates for the polyp's location are [bbox_start] 0.201, 0.105, 0.486, 0.665 [bbox_end].
Polyps are abnormal growths of tissue projecting from a mucous membrane, which can sometimes lead to further
complications if not addressed.
The presence of a polyp could potentially indicate a risk of it being malignant, which might necessitate a biopsy to
determine its nature (benign or malignant). Follow-up endoscopic examinations and consultations with a
gastroenterologist are recommended to monitor and possibly remove the polyp to prevent any further
complications.

Figure 7: Examples in MAU datasets.

and task. The results of these experiments, includ-
ing the specific parameter ranges explored and the

final selected values, are detailed in Table 11.
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F Case Study

As shown in Figure 5, we randomly sample exam-
ples to compare our method (i.e., UMed-LVLM)
and GPT-4V. For instance, in the first medical im-
age, a chest X-ray, the UMed-LVLM identified
a suspicious lesion in the upper lobe of the lung.
Despite the IoU score being moderate, the system
was able to localize the abnormality, which cor-
responds to clinical findings consistent with pul-
monary tuberculosis. In contrast, GPT-4V failed to
localize the abnormality, as it deemed the method it
used not suitable for pinpointing specific abnormal-
ities. Similarly, in the gastrointestinal tract image,
our UMed-LVLM delineated a polyp with an IoU
score of 0.44, suggesting the presence of abnormal
growth, whereas GPT-4V with IoU of 0.20. These
show our model’s proficiency in localizing medical
abnormalities. We also showcase examples of our
UMed-LVLM’s capability for multi-turn dialogues
in Figure 6. It demonstrates its potential for interac-
tive medical consultations and diagnostic support.
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