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Abstract

Large Vision-Language Models (LVLMs) have
demonstrated impressive capabilities in multi-
modal understanding, but they frequently suffer
from hallucination - generating content incon-
sistent with visual inputs. In this work, we
explore a novel perspective on hallucination
mitigation by examining the intermediate ac-
tivations of LVLMs during generation. Our
investigation reveals that hallucinated content
manifests as distinct, identifiable patterns in
the model’s hidden state space. Motivated by
this finding, we propose Activation Steering
Decoding (ASD), a training-free approach that
mitigates hallucination through targeted inter-
vention in the model’s intermediate activations.
ASD operates by first identifying directional
patterns of hallucination in the activation space
using a small calibration set, then employing
a contrast decoding mechanism that computes
the difference between positive and negative
steering predictions. This approach effectively
suppresses hallucination patterns while preserv-
ing the model’s general capabilities. Extensive
experiments demonstrate that our method sig-
nificantly reduces hallucination across multiple
benchmarks while maintaining performance on
general visual understanding tasks. Notably,
our approach requires no model re-training or
architectural modifications, making it readily
applicable to existing deployed models.

1 Introduction

Large Vision Language Models (LVLMs), while
demonstrating impressive capabilities, struggle
with a fundamental issue known as hallucination
where generated textual descriptions fail to align
accurately with visual semantics (Liu et al., 2024a;
Zhai et al., 2023; Zhao et al., 2023). These failures
not only degrade the performance of LVLMs in
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practical scenarios but also undermine their credi-
bility in high-stakes applications like medical imag-
ing, autonomous driving, and legal systems (Wang,
2024; Magesh et al., 2024).

While existing approaches mitigate hallucination
through enhanced data quality (Liu et al., 2023a; Yu
et al., 2024a) and carefully designed training objec-
tives (Chen et al., 2023; Jiang et al., 2024; Yue et al.,
2024), such post-training solutions may present
challenges for real-world deployments where mod-
els need to adapt rapidly to scenarios with minimal
computational overhead and maximum flexibility.

Recent attempts have made significant progress
in exploring training-free solutions as crucial al-
ternatives. These approaches can be broadly cat-
egorized into module-level methods (Zhao et al.,
2024; Deng et al., 2024; Yu et al., 2025; An et al.,
2024) that leverage richer visual modules, and logit-
level methods (Leng et al., 2024; Zhu et al., 2024)
that reduce the model’s reliance on language priors
or statistical biases. Both approaches share a fun-
damental principle: strengthening visual evidence
through either enhanced visual signals or additional
visual cues during the inference process.

While these approaches provide valuable in-
sights, they focus on specific assumptions (e.g.,
attention loss in image regions). In contrast, this
work aims to address this in a more fundamental
way. We propose an approach by directly steering
the model with a hallucination-aware distributional
indicator to generate hallucination-free descrip-
tions. We first analyze hallucination behavior in
LVLMs by examining intermediate activation, i.e.
hidden state1, distributions. Our empirical investi-
gation reveals that hallucinated content manifests
as distinct, identifiable patterns in the model’s inter-
mediate activation. Building on this insight and to
achieve effective steering, we propose Activation

1In this paper, we do not differentiate between the terms
“hidden state” and “intermediate activation”, treating them as
interchangeable concepts.
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Steering Decoding (ASD), a training-free approach
that directly intervenes in the model’s intermediate
activations to mitigate hallucination.

Our method operates by first identifying the di-
rectional patterns of hallucination in the interme-
diate activation space using a small calibration
set, then employing a contrast decoding mecha-
nism that computes the difference between positive
and negative steering predictions. Extensive ex-
periments demonstrate that our method achieves
substantial reductions in hallucination rates (over
10.0% improvement on CHAIR and over 10% F1
score improvement on POPE) while maintaining or
even enhancing performance on general visual un-
derstanding tasks. Notably, our method requires no
re-training or architectural modifications, making
it readily applicable to deployed models.

The main contributions of this paper include: 1)
a systematic empirical study that reveals the dis-
tinct patterns of hallucination in LVLMs interme-
diate activation space, providing insights into the
internal mechanisms of LVLMs; 2) ASD: a novel,
training-free method for hallucination reduction
through targeted intervention in intermediate ac-
tivations; 3) comprehensive empirical evaluation
demonstrating significant reduction in hallucina-
tion across diverse scenarios while maintaining
model performance on standard tasks.

2 Related Works

Hallucination in LVLMs. Hallucination was ini-
tially studied and defined in the context of language
models, describing outputs that deviate from fac-
tual or contextual information. In LVLMs, hallu-
cination specifically refers to model outputs that
are inconsistent with the input visual information.
To address this challenge, various approaches have
been proposed. Some works enhance visual fea-
tures through diverse visual encoders or visual
tools (Jain et al., 2024; He et al., 2024; Jiao et al.,
2024), and employ specialized modules to control
cross-modal alignment (Zhai et al., 2023). Other
researchers have approached this problem from a
data-centric perspective, introducing contrastive
examples and adversarial samples to increase train-
ing data diversity (Liu et al., 2023a; Yu et al.,
2024a), while also implementing denoising and
regeneration strategies to improve overall data qual-
ity (Wang et al., 2024; Yue et al., 2024). Additional
works have incorporated extra supervision signals
during training to strengthen visual feature repre-

sentations (Chen et al., 2023; Jiang et al., 2024; Yue
et al., 2024), and some have employed reinforce-
ment learning techniques to suppress model hallu-
cination (Zhao et al., 2023; Zhou et al., 2024; Sun
et al., 2023; Yu et al., 2024b). However, these meth-
ods either require substantial additional data or in-
volve expensive training processes. Furthermore,
several training-free methods have been proposed.
These include interventions in the model’s output
process through contrast decoding (Leng et al.,
2024; Zhu et al., 2024), guidance from auxiliary
models (Zhao et al., 2024; Deng et al., 2024; Yu
et al., 2025; An et al., 2024), and post-processing
techniques to eliminate hallucinated content from
the outputs (Yin et al., 2023; Lee et al., 2023; Zhou
et al., 2023).
Activation Steering. Our method analyzes and in-
tervenes in the model’s representation space, which
relates to the recent technique of activation steering
(or representation engineering) in language mod-
els (Subramani et al., 2022; Turner et al., 2023;
Jorgensen et al., 2023; Panickssery et al., 2023; Liu
et al., 2023b; Zou et al., 2023). Activation steer-
ing is a technique used to guide model behavior
by manipulating neuron activations. Most relevant
to our work are several studies (Panickssery et al.,
2023; Turner et al., 2023), where they use seman-
tically opposite prompt pairs (such as the prompts
"Love" and "Hate") to generate steering vectors
that, when added to model activations, can control
model behavior. Different from these approaches,
our approach identifies hallucination-specific pat-
terns through analysis of activations rather than
prompt engineering, and presents a contrast decod-
ing mechanism that enables robust hallucination
mitigation while maintaining generation quality.

3 Preliminary

This section introduces the key notations used
throughout this paper. Consider a LVLM π(·) that
accepts image v and language x inputs to gener-
ate text sequences y = (y1, ..., yn). As the in-
puts pass through the model’s transformer architec-
ture, it generates a series of intermediate activations
Z = z1, ..., zL at each layer l, with zl ∈ Rd. The
model generates each token through sampling from
the following distribution:

yt ∼ π(yt|x, v, y<t),

∝ exp(logitπ(yt|x, v, y<t)),
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Figure 1: Overview of our proposed method. Left: The token-level hallucination feature collection process, where
we extract hidden states from the model and annotate them based on whether they belong to sentences containing
hallucinated objects (not present in the ground truth). The steering vector is computed as the difference between
mean hidden states of hallucinated and non-hallucinated tokens. Right: Illustration of Activation Steering Decoding,
which performs two forward passes with opposite steering directions and contrasts their logits to obtain the final
output distribution, effectively suppressing hallucination patterns while preserving semantic information.

where logitπ(yt|·) represents the unnormalized log
probabilities for token yt.

4 How Do Hidden States Differ during
Hallucination?

We start by analyzing how hallucinations manifest
in the hidden states of LVLMs during generation.
We hypothesize that hallucinated content exhibits
distinct patterns in the model’s hidden state space
compared to factual generations. To investigate this
hypothesis, we propose a framework designed to
systematically extract the model’s hidden represen-
tations paired with labels indicating hallucination
occurrences in Sec. 4.1 and analyze their corre-
sponding hidden state representations via linear
probing in Sec. 4.2.

4.1 A Framework for Representation
Collection

To systematically investigate hallucination patterns
in the given base model πbase, we develop a scalable
framework for collecting paired hidden states and
hallucination labels for it. Our approach focuses
specifically on object hallucination, a well-defined
and measurable form of multimodal hallucination
that occurs when a model generates references to
objects not present in the input image. The follow-
ing details our data collection process:
Image-Description Pair Generation. We uti-
lize the MSCOCO dataset (Lin et al., 2014) as
our primary data source due to its rich annota-
tions for segmentation and diverse visual con-

tent. For each image vi in the dataset, we
query the base mode πbase with prompt x =
"Please describe the image in detail." to generate a
detailed description yi.

The generated description yi reflects the model’s
intrinsic perception of the input image vi, which
may contain hallucinated content that deviates from
the actual visual information.
Activation Collection and Annotation. O =
{o1, o2, ..., o80} represent the set of 80 predefined
object categories in the MSCOCO dataset. For each
object category o, we collect a set of synonyms C(o)
to ensure comprehensive object extraction. Each
image vi is associated with its ground truth object
set G(vi) ⊆ O based on MSCOCO annotations.
For each generated description yi, we employ the
Natural Language Toolkit library to segment it into
individual sentences {si,1, si,2, . . . , si,j}, where
each si,j is a subsequence of tokens representing a
single sentence:

si,j = (yi,j1 , yi,j2 , . . . , yi,jp ), with
⋃

j

si,j = yi.

We then identify all mentioned objects O(si,j) in
the sentence si,j by:

O(si,j) = {o ∈ O | substr(o, si,j), or

∃c ∈ C(o), substr(c, si,j)
},

substr(x, y) ⇐⇒ x is a substring of y.

We define the hallucination label L(yi,jp ) for a to-
ken yi,jp ∈ si,j based on whether the sentence si,j
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Figure 2: Test accuracy and F1 scores for hallucination
versus non-hallucination classification across different
layers of LLaVA-1.5-7B with varying training sample
sizes (0.2k, 2k, and 20k).

includes any non-existent objects. Mathematically:

L(yi,jp ) =

{
1 if O(si,j) \G(Ii) ̸= ∅,

0 otherwise.

Let Z(y) indicates the hidden state of all layer
for token y. The final dataset of paired activa-
tions and hallucination labels is constructed as:⋃

i

(
Z(yi,jp ), L(yi,jp )

)
.

4.2 Linear Probing of Hidden States
To investigate the patterns of hidden states when
occurring hallucination, we perform linear prob-
ing of LLaVA1.5-7B across its entire architecture.
Specifically, we randomly sample 500 images from
the MSCOCO training set and employ the method-
ology described in Sec. 4.1 to extract hidden state
representations across all 32 transformer layers.
This initial collection yields an imbalanced dataset
comprising 42,160 non-hallucinated samples and
12,113 hallucinated samples. We then construct a
balanced dataset by randomly sampling 11,000 in-
stances from each class, resulting in a final dataset
of 22,000 samples. We reserve 2,000 samples as
a held-out test set and use the remaining 20,000
for training. We conduct a series of linear prob-
ing experiments with varying amounts of training
data, independently training linear classifiers for
each of the 32 layers’ hidden states to track how
hallucination-related information is encoded across
the model’s layers.

Fig. 2 presents the accuracy and F1 scores across
model layers under varying training set sizes. Our
analysis reveals several significant findings. First,
the amount of training data exhibits a substantial
impact on the classifier’s discriminative capability,

with approximately 20k samples being necessary to
establish reliable patterns. This suggests that hallu-
cination signatures, while consistent, require suffi-
cient data to be accurately characterized. Moreover,
we observe that hidden states in the middle and
latter layers demonstrate superior representational
power for hallucination detection, indicating a pro-
gressive accumulation of hallucination-relevant fea-
tures across the model’s hierarchy. Most notably,
the probing performance reveals that hallucination-
related information is remarkably well-preserved
and linearly separable in the hidden state space,
achieving probing accuracy of 82.49% in the mid-
dle layers with just 20k training tokens. This pro-
nounced linear separability provides compelling
evidence that hallucinated content manifests as dis-
tinct, consistent patterns in the model’s hidden state
space, which in turn suggests that targeted inter-
vention at the hidden state level could effectively
mitigate hallucination behavior.

5 Activation Steering Decoding

Motivated by our empirical findings that halluci-
nation patterns are distinctly encoded and linearly
separable in the model’s hidden states, we propose
Activation Steering Decoding, a novel decoding
strategy that directly intervenes in the model’s hid-
den activations to mitigate hallucination.
Steering Vector Modeling. Given the paired data⋃

i{
(
Z(yi,jp ), L(yi,jp )

)
} collected from Sec. 4.1,

we calculate a steering vector that captures the di-
rection from hallucination to non-hallucination in
the hidden state space. For each layer l, we com-
pute the difference between mean activations of
non-hallucinated and hallucinated tokens:

vl =
1

P

∑

L(y)=1

zl(y)−
1

N

∑

L(y)=0

zl(y), (1)

where P and N are the numbers of factual and
hallucinated tokens respectively.
Steering Vector Injection. The most straightfor-
ward approach to leveraging the extracted steering
vectors is directly intervening in the hidden states:

zsteered
l = zl + λvl, (2)

where λ regulates the steering strength. While this
approach effectively reduces hallucination as λ in-
creases , it risks distorting the semantic information
encoded in the hidden states (see ablation studies
in Sec. 6.5.3).
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Method
MSCOCO A-OKVQA GQA

%Accuracy %F1 Score %Accuracy %F1 Score %Accuracy %F1 Score

Greedy Decoding

LLaVA1.5-7B 85.13 ↑0.00 86.03 ↑0.00 78.99 ↑0.00 82.61 ↑0.00 76.60 ↑0.00 80.98 ↑0.00
+ VCD 85.16 ↑0.03 86.04 ↑0.01 78.92 ↓0.07 82.58 ↓0.03 76.49 ↓0.11 80.94 ↓0.04
+ VDD-None 86.87 ↑1.74 87.26 ↑1.23 82.02 ↑3.01 84.57 ↑1.96 79.99 ↑3.39 83.04 ↑2.06

+ ASD (Ours) 88.01 ↑2.88 87.87 ↑1.84 85.10 ↑6.11 85.65 ↑3.04 83.49 ↑6.89 83.98 ↑3.00

Qwen-VL-Chat 86.44 ↑0.00 86.12 ↑0.00 85.92 ↑0.00 85.80 ↑0.00 75.23 ↑0.00 67.70 ↑0.00
+ VCD 86.42 ↓0.02 86.31 ↑0.19 85.64 ↓0.28 85.70 ↓0.10 77.06 ↑1.83 71.19 ↑3.49
+ VDD-None 86.72 ↑0.28 86.45 ↑0.33 85.58 ↓0.34 85.58 ↓0.22 75.88 ↑0.65 68.94 ↑1.24

+ ASD (Ours) 88.09 ↑1.65 87.96 ↑1.84 87.29 ↑1.37 87.29 ↑1.49 83.77 ↑8.54 82.21 ↑14.51

Direct Sampling

LLaVA1.5-7B 81.49 ↑0.00 82.93 ↑0.00 75.97 ↑0.00 80.04 ↑0.00 73.71 ↑0.00 78.48 ↑0.00
+ VCD 85.41 ↑3.92 86.27 ↑3.34 78.87 ↑2.90 82.55 ↑2.51 76.53 ↑2.82 80.97 ↑2.49
+ VDD-None 85.77 ↑4.28 86.28 ↑3.35 81.02 ↑5.05 83.73 ↑3.69 79.41 ↑5.70 82.45 ↑3.97

+ ASD (Ours) 87.19 ↑5.70 87.15 ↑4.22 84.63 ↑8.66 85.34 ↑5.30 83.19 ↑9.48 83.89 ↑5.41

Qwen-VL-Chat 84.16 ↑0.00 83.59 ↑0.00 83.01 ↑0.00 82.79 ↑0.00 74.54 ↑0.00 67.12 ↑0.00
+ VCD 86.47 ↑2.31 86.24 ↑2.65 85.52 ↑2.51 85.60 ↑2.81 77.42 ↑2.88 71.83 ↑4.71
+ VDD-None 86.10 ↑1.94 85.78 ↑2.19 84.96 ↑1.95 84.99 ↑2.20 75.71 ↑1.17 68.68 ↑1.56

+ ASD (Ours) 87.03 ↑2.87 86.86 ↑3.27 85.69 ↑2.68 85.52 ↑2.73 82.84 ↑8.30 80.77 ↑13.65

Table 1: Performance evaluation of our method against baselines and related approaches on POPE benchmark
under two decoding strategies: Greedy Decoding and Direct Sampling. The base models (LLaVA1.5-7B and
Qwen-VL-Chat) are compared with VCD and VDD-None (existing methods) as well as our proposed approach.
Results are reported in terms of Accuracy (%) and F1 Score (%). The proposed method achieves consistent and
notable improvements over all baselines and related methods, with the best results highlighted in bold.

Activation Steering Decoding. To achieve more
stable hallucination reduction while preserving gen-
eration quality, we propose Activation Steering De-
coding. Let π+ and π− denote the model under
positive (i.e., λ > 0) and negative (i.e., λ < 0)
steering using Eq. (2) respectively, applying the
same steering vector in opposite directions. The
final logits for next token prediction are obtained
through following:

logitASD = (1 + α) · logitπ+ − α · logitπ− , (3)

where α is the contrastive weight coefficient. This
contrast mechanism is effective because the differ-
ence operation amplifies our steering’s impact on
output logits, while allowing us to use a relatively
small steering intensity to better preserve semantic
integrity in the hidden states. This property makes
our approach more robust and less likely to disturb
the model’s normal generation process compared
to direct steering.

6 Experiments

In this section, we evaluate our proposed Activation
Steering Decoding method on various multimodal

benchmarks. Our experiments aim to assess both
hallucination reduction and general visual compre-
hension capabilities.

6.1 Benchmarks

We conduct experiments on two categories of
benchmarks:
Visual Hallucination. POPE evaluates object hal-
lucination through yes/no questions about object
presence. It contains 27,000 question-answer pairs
sourced equally from MS-COCO, A-OKVQA, and
GQA datasets (9,000 each). The questions are cate-
gorized into three types Random, Popular, and Ad-
versarial. CHAIR measures object hallucination in
image captioning tasks. It provides fine-grained an-
notations on MS-COCO captions, marking specific
object mentions as either hallucinated or faithful.
It provides two key metrics CHAIRs, the percent-
age of generated captions containing at least one
hallucinated object, and CHAIRi, the percentage
of hallucinated object instances among all object
mentions in the generated captions. Following pre-
vious papers, we randomly selected 500 samples
from MS-COCO validation set for our experiments.
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Model CHAIRS ↓ CHAIRI ↓ Recall ↑
LLaVA-1.5 51.0 ↑0.0 14.7 ↑0.0 82.8 ↑0.0
+ VCD 47.8 ↓3.2 14.1 ↓0.6 82.7 ↓0.1
+ VDD-None 50.2 ↓0.8 14.3 ↓0.4 83.2 ↑0.4

+ ASD (Ours) 40.0 ↓11.0 11.3 ↓3.4 82.0 ↓0.8

Table 2: Comparison of different hallucination miti-
gation methods on CHAIR benchmark. CHAIRS and
CHAIRI measure sentence-level and instance-level hal-
lucination rates respectively (lower is better), while Re-
call measures the model’s ability to describe actually
present objects (higher is better). Our method achieves
substantial reductions in hallucination rates with only
minimal impact on recall performance.

General Visual Understanding. MME is a com-
prehensive benchmark designed to assess LVLMs
through yes/no questions. It comprises 14 sub-
sets: 10 perception-based tasks (including color,
count, position, scene, action, etc.) and 4 reasoning-
based tasks (including commonsense, numerical,
mathematical reasoning). MMBench is a com-
prehensive multiple-choice benchmark containing
approximately 3,000 questions across 20 ability di-
mensions covering perception and reasoning tasks.
We use the DEV split containing 1,164 English
questions for evaluation. MMMU is a challenging
multiple-choice benchmark containing 11.5K ques-
tions spanning 30 academic subjects at the college
level. The benchmark is particularly challenging,
with even GPT-4V achieving less than 60% accu-
racy. TextVQA validation set consists of 5,000
questions that can only be correctly answered by
reading and reasoning about text present in images.
LLaVA-Bench consists of 60 carefully designed
open-ended questions across 24 images, evaluating
models’ visual reasoning and understanding capa-
bilities. The responses are evaluated using GPT-4-
1106-preview as an automatic evaluator, providing
standardized scoring metrics. MM-Vet contains
217 challenging open-ended tasks that require mod-
els to simultaneously demonstrate multiple capa-
bilities including detailed perception, cross-modal
reasoning, and world knowledge. We use the offi-
cial online evaluator, powered by GPT-4-0613, to
ensure fair comparison with existing approaches.

6.2 Implementation Details
We conduct experiments on two base model:
LLaVA1.5-7B (Liu et al., 2024b) and Qwen-VL-
Chat (Bai et al., 2023). For each model, we
randomly sample 1,000 images from MSCOCO
training set for steering vector extraction of
Eq. (1). We conduct grid search over λ ∈

Figure 3: Analysis of hallucination rates (CHAIRS and
CHAIRI ) with respect to generated token length, with
LLaVA1.5-7b as the base model.

{0, 0.1, 0.2, 0.3, 0.4, 0.5} for both π+ and π−. For
comparison, we implement VCD (Leng et al.,
2024) with optimized hyperparameters, and VDD-
None (Zhang et al., 2024) using their recommended
parameters.

6.3 Hallucination Reduction Performance

Tab. 1 presents a comprehensive evaluation of our
method against existing approaches on the POPE
benchmark. We evaluate performance under two
decoding strategies: Greedy Decoding and Direct
Sampling (which generates responses by directly
sampling from the raw logit probability distribu-
tion without normalization) across three subset
(MSCOCO, A-OKVQA, and GQA), using both ac-
curacy and F1 score as metrics. Our method demon-
strates consistent and substantial improvements
across all experimental settings. Under Greedy
Decoding, when applied to LLaVA1.5-7B, our ap-
proach achieves absolute gains of 2.88%, 6.11%,
and 6.89% in accuracy on MSCOCO, A-OKVQA,
and GQA respectively. The improvements were
even more pronounced when applied to Qwen-VL-
Chat, particularly on the GQA dataset where we
observed a remarkable 8.54% increase in accuracy
and 14.51% improvement in F1 score. Notably, our
method not only surpasses the baseline models but
also outperforms existing hallucination mitigation
approaches (VCD and VDD-None) by a signifi-
cant margin. The effectiveness of our method is
further validated under Direct Sampling, where it
maintains robust performance improvements. For
instance, with LLaVA1.5-7B, our method achieves
accuracy gains of 5.70%, 8.66%, and 9.48% on
the three subset respectively. Unlike other methods
showing more significant improvements under di-
rect sampling, our approach demonstrates robust
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Regular: The image features a woman lying 
on a couch, holding a black cat in her arms. 
The cat is resting comfortably on her chest, 
and the woman appears to be enjoying the 
moment. The couch is situated in a living 
room, and there is a chair nearby.
In the background, there is a TV mounted on 
the wall, and a remote control can be seen 
placed on the couch. Additionally, there is a 
bowl placed on the couch, possibly 
containing snacks for the woman and her cat.

ASD: The image features a woman wearing glasses, lying on a couch and hugging her black 
cat. She is holding the cat tightly in her arms, showcasing a strong bond between them. The 
woman appears to be enjoying her time with her beloved feline companion.
The couch they are on is brown and comfortable, providing a cozy environment for their 
embrace. The scene captures the affection and love shared between the woman and her cat as 
they cuddle together.

Regular: The image captures a lively scene 
in a grassy field where two zebras are 
fighting each other. In addition to the zebras, 
there are several other animals present in the 
scene. Two giraffes can be seen in the 
background, one closer to the left side and 
the other further to the right. There are also 
two birds, one located near the center of the 
image and the other towards the right side. 
The presence of these animals adds to the 
diversity and liveliness of the scene.

ASD: The image captures a lively scene in a grassy field where two zebras are fighting each 
other. They are both standing on their hind legs, with one zebra appearing to be the aggressor 
and the other defending itself. The zebras are surrounded by a dusty field, …
In the background, there are several other zebras, some of which are standing and others 
walking around. The presence of multiple zebras in the field suggests that this could be a 
social gathering or a natural habitat for these animals.

Figure 4: Illustration of ASD correcting hallucinations. Hallucinated objects (red) are removed while ASD adds
accurate visual details (green).

effectiveness under both greedy decoding and di-
rect sampling strategies, validating its stability and
reliability across different inference settings. The
superior performance can be attributed to our con-
trast decoding mechanism, which effectively iso-
lates and suppresses hallucination patterns while
preserving the model’s ability to generate accurate
and contextually appropriate responses. This is
evidenced by the consistent improvements across
both metrics and all datasets, suggesting that our
method successfully addresses hallucination with-
out compromising general visual understanding
capabilities.

The result on the CHAIR benchmark is reported
in Tab. 2. Our method demonstrates substan-
tial improvements in reducing hallucination rates
compared to the baseline LLaVA1.5-7B model
and other mitigation approaches. Specifically, we
achieve a significant 10.0% reduction in sentence-
level hallucination (CHAIRS) compared to the
baseline, substantially outperforming both VCD
(-3.2%) and VDD-None (-0.8%). The CHAIRI

metric exhibited a similar trend. Notably, while
VDD-None achieves the best recall performance
with a 0.4% improvement over the baseline, our
method still maintains competitive recall (-0.8%)
while achieving significantly better hallucination
reduction, demonstrating a favorable trade-off be-
tween reliability and comprehensiveness. This min-
imal trade-off in recall suggests that our approach
effectively reduces hallucination while largely pre-
serving the model’s ability to describe actually
present objects in the images.

Fig. 3 illustrates the relationship between gener-
ated token length and hallucination rates across dif-
ferent methods, where the base model is LLaVA1.5-
7B. Our analysis reveals that hallucination rates
increase progressively with the length of gener-
ated content across all methods. A particularly

concerning observation is the presence of a sharp
increase in hallucination rates around the 80-token
mark across all methods, suggesting that extended
generation lengths pose heightened risks for hal-
lucination. Notably, our approach demonstrates
particularly strong advantages beyond this thresh-
old, maintaining substantially lower hallucination
rates with a notably smaller slope in both CHAIRS

and CHAIRI metrics compared to baseline and
existing methods.

Visualization example. To provide concrete il-
lustrations of how ASD mitigates hallucinations
in practice, we present qualitative comparisons in
Fig. 4. In the left example, the baseline halluci-
nates multiple objects (chair, TV, remote control,
bowl, snacks) that are absent from the image, while
ASD removes these errors and accurately describes
the woman with her cat, adding new details like
"wearing glasses" and "brown couch." Similarly,
in the right example, ASD corrects the baseline’s
hallucinations of "giraffes" and "birds," properly
describing only the zebras while introducing addi-
tional accurate details about the "dusty field" envi-
ronment. These results illustrate how ASD not only
suppresses hallucination patterns but also enhances
descriptive richness with factually accurate details.

6.4 General Performance Maintenance

Tab. 3 presents the results on six general visual un-
derstanding benchmarks. Our method shows com-
parable or improved performance across most tasks
for both models. For LLaVA1.5-7B, we observe
notable improvements on MME (+16.51), MMMU
(+3.34), and MMVet (+2.70) while maintaining per-
formance on other benchmarks with minimal vari-
ation. Similarly, for Qwen-VL-Chat, our method
achieves the best performance on MMMU (+3.00),
MMVet (+0.50), and LLaVABench (+1.80), with
negligible degradation on other benchmarks. This
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Method MME MMBench MMMU TextVQA MMVet LLaVABench Overall

LLaVA1.5-7B 1810.70 ↑0.00 65.46 ↑0.00 35.44 ↑0.00 45.76 ↑0.00 31.10 ↑0.00 58.90 ↑0.00 ↑0.00
+ VCD 1800.41 ↓10.29 64.69 ↓0.77 36.00 ↑0.56 44.26 ↓1.50 30.90 ↓0.20 57.20 ↓1.70 ↓4.18
+ VDD-None 1763.80 ↓46.90 63.75 ↓1.71 36.78 ↑1.34 42.19 ↓3.57 32.30 ↑1.20 62.10 ↑3.20 ↓2.13

+ ASD (Ours) 1827.21 ↑16.51 65.38 ↓0.08 38.78 ↑3.34 46.40 ↑0.64 33.80 ↑2.70 61.60 ↑2.70 ↑10.21

Qwen-VL-Chat 1839.55 ↑0.00 61.34 ↑0.00 33.56 ↑0.00 60.79 ↑0.00 46.10 ↑0.00 66.40 ↑0.00 ↑0.00
+ VCD 1847.85 ↑8.30 60.40 ↓0.94 35.67 ↑2.11 59.31 ↓1.48 45.20 ↓0.90 67.50 ↑1.10 ↑0.34
+ VDD-None 1861.01 ↑21.46 62.97 ↑1.63 33.67 ↑0.11 59.91 ↓0.88 41.40 ↓4.70 65.20 ↓1.20 ↓3.87

+ ASD (Ours) 1825.20 ↓14.35 61.08 ↓0.26 36.56 ↑3.00 60.42 ↓0.37 46.60 ↑0.50 68.20 ↑1.80 ↑3.89

Table 3: Performance comparison on general visual understanding benchmarks. Bold numbers indicate the best
scores for each benchmark. When calculating overall improvements, percentage changes are used for MME scores
and absolute changes for other benchmarks due to scale differences. Results show that our method maintains or
improves performance across diverse tasks compared to baseline models and other approaches.

Figure 5: Impact of steering intensities on ASD,
measured as percentage point improvements over
LLaVA1.5-7B baseline (85.13%) on POPE-COCO ac-
curacy. The optimal performance (+2.88%) is achieved
with λ = 0.2 for π+ and λ = 0.4 for π−.

dual achievement - substantial hallucination reduc-
tion while preserving and sometimes improving
general capabilities - validates the effectiveness of
our contrast decoding mechanism in mitigating hal-
lucination patterns without compromising essential
visual understanding features.

6.5 Ablation Study

6.5.1 Impact of Steering Strength
Fig. 5 illustrates the effect of steering intensities
λ of ASD method. Most parameter combina-
tions yield positive improvements over the base-
line, demonstrating the robustness of our method.
However, we observe that positive steering (π+)
requires more careful tuning - performance begins
to degrade when λ > 0.3, with accuracy dropping
by 2.71% at λ = 0.5. In contrast, negative steer-
ing (π−) shows greater tolerance to larger values,
maintaining improvements even at λ = 0.5. The

Count POPE CHAIRS ↓ MME TextVQA

LLaVA1.5-7B 85.13 51.00 1810.70 45.76

100 87.72 40.40 1813.01 46.22
500 87.79 38.80 1821.98 46.24
1,000 88.01 40.00 1827.21 46.40

Table 4: Impact of calibration data size (number of
images used for steering vector computation) on model
performance across different benchmarks. POPE refers
to POPE-COCO subset.

optimal configuration is achieved with moderate
positive steering (λ = 0.2 for π+) and stronger neg-
ative steering (λ = 0.4 for π−), achieving 88.01%
accuracy (a 2.88% improvement over the baseline),
which represents a state-of-the-art performance on
this benchmark.

6.5.2 Impact of Calibration Data Size
Tab. 4 examines the sensitivity of our method to
the amount of calibration data used for computing
steering vectors. Notably, our approach demon-
strates strong performance even with mini calibra-
tion data - using just only 100 images already yields
substantial improvements across all selected bench-
marks. These results suggest that our method can
effectively capture hallucination patterns with a
very small calibration set, making it highly practi-
cal for real-world applications.

6.5.3 Direct Vector Steering
We investigate the effectiveness of vector steering
without contrast decoding to understand its impact
in isolation. Fig. 6 shows the accuracy improve-
ments over the LLaVA1.5-7B baseline on POPE
benchmark. The y-axis represents the relative ac-
curacy change in percentage points compared to
the baseline performance. First, we observe that
the optimal steering intensity varies significantly
across datasets, with COCO achieving peak perfor-
mance at λ = 0.3, while AOKVQA and GQA show
improvements at lower intensities. This variation
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Figure 6: Impact of steering intensity on Direct Vec-
tor Steering, measured as relative improvement over
LLaVA1.5-7B baseline.

suggests that the effectiveness of steering vectors is
sensitive to the specific characteristics of each task.
Second, we observe a consistent pattern where per-
formance deteriorates at higher steering intensities.
This degradation becomes particularly pronounced
at λ = 0.5, where AOKVQA and GQA show ac-
curacy drops of approximately 3% and 3.5% re-
spectively. This decline can be attributed to exces-
sive distortion of the hidden state semantics, indi-
cating that overly aggressive steering can disrupt
the model’s learned representations. While COCO
shows substantial improvements of up to 1.8%, the
gains on AOKVQA and GQA are notably smaller.
This performance gap is expected, as the calcula-
tion of steering vectors relies on COCO-defined
object categories. This suggests that direct vec-
tor steering may have limitations in generalizing
across different visual understanding tasks.

6.6 Computational Efficiency Analysis

While ASD requires performing addition and sub-
traction operations on hidden states at each layer
during inference with two branches, the compu-
tational overhead is relatively modest for several
practical reasons.

First, the addition and subtraction operations
on hidden states are extremely lightweight com-
pared to the model’s transformer operations (self-
attention and feed-forward computations).

Second, although our method involves two
branches for positive and negative steering, we
leverage batch processing to run them in parallel
during inference. Specifically, we concatenate the
inputs for both positive and negative steering along
the batch dimension, allowing them to be processed
simultaneously. This parallel processing approach
significantly mitigates the potential overhead com-
pared to sequential execution.

To quantify the exact overhead, we conduct

Method 20 Tokens (ms) 50 Tokens (ms) 100 Tokens (ms)

LLaVA-1.5-7B 516.9 ±8.1 1153.1 ±7.4 2211.7 ±6.9
+ ASD (Ours) 612.8 ±7.2 1300.2 ±7.2 2467.8 ±8.1

Overhead (%) 18.6% 12.8% 11.6%

Table 5: Inference time (in milliseconds) comparison be-
tween the baseline and the ASD method across different
output lengths. The ASD method introduces moderate
additional latency, which becomes relatively smaller as
the number of generated tokens increases.

timing experiments on LLaVA-1.5-7B using an
NVIDIA L20 GPU. As shown in Tab. 5, with
parallel processing strategy, our method introduces
approximately 10-20% additional computational
overhead. This characteristic is particularly bene-
ficial for real-world applications on edge devices,
where the query is typically limited to 1, and GPUs
often have spare capacity to handle a batch size
of 2. This makes our method an efficient solution
that offers significant accuracy improvements with
minimal computational cost.

7 Conclusion

We present a systematic investigation of halluci-
nation in LVLMs through the lens of intermedi-
ate activations, revealing that hallucinated content
manifests as distinct patterns in the model’s hid-
den state space. Building on this insight, we pro-
pose Activation Steering Decoding, a training-free
approach that effectively mitigates hallucination
through targeted intervention in model activations.
Our extensive experiments demonstrate that our
approach significantly reduces hallucination rates
while maintaining model performance across gen-
eral visual understanding tasks.

Limitations

While our proposed Activation Steering Decoding
demonstrates promising results in mitigating hallu-
cination, several limitations warrant discussion.

First, our current approach primarily addresses
object-level hallucination, as the steering vectors
are extracted using only COCO object annotations.
This focus on object categories limits the method’s
ability to address other types of hallucinations,
such as attribute errors (e.g., incorrect colors or
sizes), relational inaccuracies (e.g., wrong spatial
relationships), or hallucinations involving abstract
concepts and actions. Future work should explore
leveraging richer annotations beyond object labels
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to develop more comprehensive hallucination miti-
gation strategies.

Second, our approach involves hyperparameters
(λ for steering intensity and α for contrast coeffi-
cient), which may vary across different models and
tasks for optimal performance. Developing adap-
tive approaches that can automatically determine
optimal steering parameters based on the input or
model confidence remains an interesting direction
for future research.
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