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Abstract
Mixture-of-Experts (MoE) has demonstrated
promising potential in scaling LLMs. However,
it is hindered by two critical challenges: (1)
substantial GPU memory consumption to load
all experts; (2) low activated parameters cannot
be equivalently translated into inference accel-
eration effects. In this work, we propose EAC-
MoE, an Expert-Selection Aware Compressor
for MoE-LLMs, which deeply aligns with the
characteristics of MoE from the perspectives of
quantization and pruning, and introduces two
modules to address these two challenges re-
spectively: (1) The expert selection bias caused
by low-bit quantization is a major factor con-
tributing to the performance degradation in
MoE-LLMs. Based on this, we propose Quan-
tization with Expert-Selection Calibration
(QESC), which mitigates the expert selection
bias by calibrating the routers within the MoE;
(2) There are always certain experts that are
not crucial for the corresponding tasks, yet
causing inference latency. Therefore, we pro-
pose Pruning based on Expert-Selection Fre-
quency (PESF), which significantly improves
inference speed by pruning less frequently used
experts for current task. Extensive experiments
demonstrate that our approach significantly re-
duces memory usage and improves inference
speed with minimal performance degradation.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in various natural
language processing tasks. (Zhou et al., 2024). A
recent significant breakthrough in this field is the in-
troduction of the Mixture-of-Experts (MoE) archi-
tectures (Shazeer et al., 2017; Anonymous, 2024).
By utilizing a sparse architecture that activates a
subset of experts via a dynamic routing mechanism
tailored to each input, MoE enables efficient com-
putation and scalable network capacity, matching
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Figure 1: Comprehensive performance of EAC-MoE in
reducing memory usage, maintaining model accuracy,
and improving inference speed for Mixtral-8x7B. The
average accuracy is measured across zero-shot tasks.

or exceeding the performance of dense LLMs with
several times more activated parameters.

Although MoE reduces the number of activated
parameters through an expert selection mechanism,
it does not decrease the total number of model pa-
rameters. During inference, all expert weights must
be stored in GPU memory, resulting in substantial
memory pressure. As shown in Figure 1 top, while
Mixtral-8x7B (Jiang et al., 2024) has a similar acti-
vated parameter count to LLaMA2-13B (Touvron
et al., 2023), its total parameter count is about four
times larger, occupying 94GB of GPU memory.

On the other hand, the reduction in activated pa-
rameters does not directly result in an equivalent
speedup during inference. Although only a sub-
set of experts is selected for each token, in typical
long-sequence or batch inference scenarios, differ-
ent tokens choose different experts. As illustrated
in Figure 1 bottom, MoE still requires comput-
ing the output of each expert (E1-E8) separately
and performing a weighted summation to obtain
the final result, experts like E8 are selected less
frequently but still cause non-negligible latency.

These challenges hinder the practical deploy-
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ment of MoE models in resource-constrained, low-
latency applications. For dense LLMs, quantiza-
tion and pruning are commonly employed to ad-
dress these issues. However, directly applying com-
monly used quantization methods (such as RTN
and GPTQ (Frantar et al., 2022)) and pruning meth-
ods designed for dense LLMs to MoE models, with-
out considering the characteristics of MoE models,
results in significant performance degradation or
brings negligible inference speedup. In this work,
we design a method that combines quantization
and sparse inference, leveraging the expert selec-
tion characteristics of MoE models.

In MoE models, the experts are trained to spe-
cialize for different types of tasks, and the router
can select the most suitable experts for each to-
ken, which is the key for its success (Jordan and
Jacobs, 1994). However, low-bit quantization of
MoE model can bias expert selection probability
and cause the router to choose the wrong experts,
which we refer to as the expert-shift problem. To
address this issue in MoE quantization, we pro-
pose Quantizaion with Expert-Selection Calibra-
tion (QESC): a layer-by-layer router calibration
method to mitigate the bias caused by quantization,
thereby reducing the shift in expert selection. This
approach effectively preserves the performance of
the quantized model.

In contrast, the focus of dynamic pruning lies
in skipping experts that are relatively unimportant
for the current input during inference. Specifically,
certain experts are less frequently selected during
inference and have minimal impact on overall per-
formance. Notably, these relatively unimportant
experts vary across different types of tasks. Based
on this observation, we propose Pruning based on
Expert-Selection Frequency (PESF): a dynamic ex-
pert pruning method that prunes less frequently
selected experts during inference, significantly im-
proving the inference speed of MoE models with
minimal performance loss.

Combining QESC and PESF, we propose EAC-
MoE, exploring the compression of MoE models
from both aspects of pre-inference and during-
inference. Experiments on four MoE models
demonstrate that our method significantly reduces
memory usage and improves inference speed.
When compressing Mixtral-8x7B, as shown in Fig-
ure 1 top, we reduce the memory requirements by
4.92×, enabling deployment on a RTX 3090 GPU.
Meanwhile, our method achieve 1.68× inference
speedups with an average accuracy loss of less than

1% under simultaneous quantization and pruning,
making it practical for real-world applications.

2 Related Work

Quantization for LLMs and MoE-LLMs. Post-
Training Quantization (PTQ) is an efficient tech-
nique that reduces computational and storage re-
quirements by converting pre-trained models from
high-precision to lower-precision formats without
requiring extensive retraining. Methods like GPTQ
(Frantar et al., 2022) and BiLLM (Huang et al.,
2024b) focus on addressing weight-only quantiza-
tion, while approaches such as SmoothQuant (Xiao
et al., 2023a) and OmniQuant (Shao et al., 2023)
aim to tackle the challenges of both weight and
activation quantization. In this work, we focus
primarily on weight-only quantization because the
MoE deployment challenges stem mainly from the
memory pressure caused by weight parameters. For
MoE-LLMs, previous studies have largely focused
on mixed-precision quantization strategies based
on expert selection frequency (Li et al., 2024a;
Huang et al., 2024a). Although these methods
have shown certain effectiveness, they may face
challenges in generalization and risk overfitting.
Pruning of LLMs and MoE-LLMs. Post-training
pruning is another key technique to compress
LLMs by reducing model size by selectively re-
moving less important parameters while preserving
performance (Han et al., 2016; Zhu and Gupta,
2018; Ashkboos et al., 2024a). For MoE-LLMs,
prior efforts have focused mainly on two directions:
pruning experts with lower selection frequency be-
fore inference (Lu et al., 2024; Kim et al., 2021),
and pruning less significant weights for each token
among the selected experts (Lu et al., 2024; Huang
et al., 2024a). However, while these approaches
have made notable progress, there remain opportu-
nities for further improvement. The first direction,
for example, can lead to performance degradation
in certain types of tasks. The second direction, on
the other hand, achieves a relatively low pruning
rate, resulting in limited inference speedup.

3 Preliminaries and Motivation

3.1 LLM Quantizaiton
In this work, quantization techniques are em-
ployed to compress the weights. Specifically,
floating-point weights distributed in [Wmin,Wmax]
are mapped to the integer range [0, 1, · · · , 2B − 1],
where B represents the target bit-width. The quan-
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Figure 2: The figure illustrates the pairwise cosine similarity of expert selection frequencies for Phi3.5-moe (left)
and Deepseek-moe-16b-base (right) across 19 datasets, which are categorized into four groups distinguished by
different colors. Points with cosine similarity greater than 0.8 are highlighted to emphasize high similarity regions.

tization reconstruction problem for the weights
W ∈ Rnin×nout can be formulated as:

argmin
Wq

∥WX −WqX∥22, (1)

where Wq denotes the quantized weight, and X is
the input to the layer derived from a small subset of
calibration data. GPTQ (Frantar et al., 2022) is cur-
rently a mainstream weight quantization method,
which can efficiently reduce group-wise quantiza-
tion error by employing Hessian-based estimation
(H = 2XX⊤) and error compensation techniques.
It is utilized in subsequent sections of this paper.

3.2 Mixture-of-Experts
Decoder-only MoE models (Gale et al., 2023) are
based on a transformer architecture (Vaswani et al.,
2017), but the FeedForward Network (FFN) sub-
layers of traditional dense models are replaced with
MoE layers, each containing N experts. For each
input token x, the router computes routing logits
r = {r0, · · · , rN−1} and expert selection scores
s = Softmax(r). The top-K experts are selected
based on s, and their outputs Eej (x) are combined
as a weighted sum, with normalized weights:

z =
K−1∑

j=0

sej∑K−1
i=0 sei

· Eej (x). (2)

Here, Eej (x) represents the output of the j-th se-
lected expert for the input token x. Based on
this structure and mechanism, models such as
Mixtral-8x7B (Jiang et al., 2024), GPT-4 (OpenAI
et al., 2024) and DeepSeek-V3 (DeepSeek-AI et al.,
2024) have achieved superior generative abilities.

3.3 Expert-Selection (ES) Analysis
Previous quantization studies for MoE-LLMs have
primarily focused on the observation that, during

inference, MoE models exhibit significant differ-
ences in the selection frequency of different experts
(Li et al., 2024a). Consequently, expert selection
frequency has been widely adopted as a metric to
evaluate the importance of different experts within
an MoE layer. However, prior works have over-
looked an important pattern: MoE models often
demonstrate entirely different expert preferences
across different types of tasks.

To investigate this pattern, we examine
three common categories of NLP tasks: Math,
Code-Generation, and Question-Answering or
Commonsense-Reasoning (QA/CR). Additionally,
we analyze tasks in specific languages (French in
our case) as a separate category. For each dataset,
we record the expert selection frequency during
inference. Furthermore, we calculate the similar-
ity of expert selection frequencies between every
pair of datasets to better understand the diversity in
expert preferences across tasks. For a certain MoE
layer m in a MoE model, the normalized expert
selection frequency for dataset d is defined as:

P (m, d) =
C(m, d)

∑N−1
i=0 C(m, d, i)

(3)

where C(m, d) = [C(m, d, 0), · · · , C(m, d,N −
1)], with C(m, d, i) representing the count of the
i-th expert in layer m is selected for all input to-
kens in the dataset d. Then the normalized expert
selection frequencies P (m, d) of all MoE layers
are flattened into a single vector P (d). Based on
this, the similarity of expert preferences between
two datasets di and dj is computed as:

Sim(di, dj) =
P (di) · P (dj)

∥P (di)∥∥P (dj)∥
(4)

As shown in Figure 2, we calculate the expert pref-
erence similarities of Phi3.5-moe (Abdin et al.,
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2024) and DeepSeek-16b-moe-base models across
19 different datasets. The results indicate that both
models reach similar conclusions: expert selec-
tion frequencies within datasets of the same task
category exhibit high similarity, whereas expert se-
lection frequencies across datasets of different task
categories show relatively low similarity.

This observation suggests that MoE models rely
primarily on different experts to handle different
types of tasks and the importance of the same ex-
pert may vary drastically across different tasks, pro-
viding us with the following two insights:

1. For static quantization, we should focus on
the expert selection process itself—ensuring
that the model can still select the experts im-
portant for each task, as we cannot perma-
nently determine the importance of any expert
before inference using a calibration set.

2. For dynamic pruning, we should dynamically
evaluate the importance of experts based on
the type of the current task and prune experts
that are not important for the current task.

4 Quantization with ES Calibration

The core idea of our method is to mitigate the per-
formance degradation of quantized MoE models
by addressing expert-shift, a critical issue where
quantization errors in the multi-head self-attention
(MHSA) and MoE blocks distort expert selection
probabilities, causing routers to deviate from origi-
nal expert assignment patterns.

4.1 Importance of ES Calibration
We first verify the importance of calibrating expert
selection by observing performance degradation
caused by expert-shift and performance improve-
ment achieved by preserving the expert selection.
We separately record the expert selection and its
corresponding scores (s) for all inputs on the Wiki-
Text2 (Merity et al., 2016) validation set for both
full-precision model and the 3-bit quantized model.
Then, we enforce the quantized model to use the
expert selection scores of the original precision
model for each input (quantized but without expert-
shift) and, conversely, enforce the original preci-
sion model to use the expert selection scores of the
quantized model (not quantized but with expert-
shift). Finally, we calculate the perplexity (PPL) of
the inputs under these four conditions respectively.

As shown in Table 1, expert-shift causes sig-
nificant performance degradation for the original

Table 1: The impact of weight quantization itself and its
induced expert-shift on perplexity (PPL↓) for Mixtral-
8x7B and Deepseek-moe-16b-base models.

Model Quantized Expert-Shift PPL

Mixtral-8x7B

✘ ✘ 3.84
✘ ✔ 4.17
✔ ✘ 4.21
✔ ✔ 4.65

Deepseek-moe
-16b-base

✘ ✘ 6.51
✘ ✔ 6.76
✔ ✘ 6.81
✔ ✔ 7.17
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Figure 3: Framework of our proposed Quantization with
Experts-Selection Calibration.

model. Conversely, preserving the expert selection
of the original model significantly improves the
performance of quantized models, highlighting the
importance of calibrating expert selection.

4.2 Layer-by-layer Calibration Framework

Then we focus on how to mitigate expert-shift prob-
lem. At a hight level, our method performs quanti-
zation and calibration layer-by-layer. Concretely,
as illustrated in Figure 3, using the WikiText2
calibration dataset, we sequentially quantize the
MHSA components, calibrate the routers of the
MoE layers, and quantize all experts layer by layer.
This process allows the router in each layer to
be calibrated in a way that mitigates the expert-
shift caused by the quantization of the adjacent
layer’s MHSA and MoE layer, thereby preventing
the cumulative accumulation of expert selection
shift across layers.
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4.3 TopK-MSE Loss

To calibrate the router, a natural idea is to align the
router’s outputs before and after input quantization,
such as by using the mean squared error (MSE)
loss for optimization. However, this method is not
effective for MoE models with a large number of
experts, such as Deepseek-moe-16b-base—which
selects 6 experts out of 64 (Dai et al., 2024). Com-
paring expert selection before and after 2-bit quan-
tization, as shown in Figure 4, we observe that
among the experts selected in full precision but not
selected after quantization (shifted experts), 95.9%
still rank within the top 16 in the probability dis-
tribution. However, the loss corresponding to the
top 16 experts accounts for only 29.25% of the
total MSE loss. This indicates that if we directly
apply MSE loss to all experts, the loss will be dom-
inated by the majority of experts with very small
selection probabilities, which are not selected in
full precision, thereby introducing noise into the
optimization process.

Based on this insight, we adopt the TopK-MSE
loss, which computes the MSE loss over only the
top-K classes with the highest probabilities, allow-
ing the optimization process to focus on aligning
the experts that are more likely to be selected. The
TopK-MSE loss is calculated as follows:

L =
1

K

∑

i∈top-K(Wx)

((Wx)i − (Wx̂)i)
2 , (5)

W represent the weight matrix of router and x̂ de-
notes the input obtained from the quantized model.

5 Pruning based on ES Frequency

QESC focuses on ensuring the quantized model
can still correctly select the experts important for
the current task. A natural consideration is that
there are also experts that are not important for
the current task. In this section, we introduce a
dynamic expert pruning method during inference,
which significantly improves inference speed while
maintaining almost the same level of accuracy.

Prior work (Lu et al., 2024) has already noted the
sparsity in expert selection for MoE models, where
certain experts are selected with high frequency
for a specific task, while others are rarely selected
(shown in Appendix A.11). Meanwhile, as con-
cluded in Section 3.3, it is crucial to dynamically
evaluate the importance of each expert during in-
ference for different tasks. Therefore, unlike prior
work that performs static expert pruning based on
selection frequency before inference, our approach
dynamically identifies experts that are less impor-
tant for the current task during the inference pro-
cess. This allows us to achieve significant inference
speedup with minimal performance degradation.
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Figure 5: Framework of our proposed Pruning based on
Experts-Selection Frequency.

In our method, the dynamic pruning criterion
is set as follows: assume each layer of the MoE
model has N experts, each token selects K experts,
and the input sequence length is l. The dynamic
pruning threshold is defined as α (0 < α ≤ 1). If
the number of times an expert is selected, denoted
as c, satisfies the condition:

c <

(
l ×K

N

)
× α (6)

then the expert is pruned. In other words, if an
expert is selected less frequently than the average
selected count multiplied by the threshold α (like
expert5 in Figure 5), it is pruned and excluded
from the computation for this sequence.
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Table 2: Comparison of the average perplexity (PPL) scores on WikiText2 validation set and the average accuracy
on 8 zero-shot tasks across four different MoE models. We reproduce results of BSP and PMQ on four models using
the official codebases provided in their repositories (the reproduction details are provided in Appendix A.6) and
evaluated all the results under the same settings. Full results are in the Appendix A.7.

Bits Method
Mixtral-8x7B Phi3.5-moe Deepseek-moe-16b-base Qwen1.5-MoE-A2.7B

PPL ↓ 0-shot8 ↑ PPL ↓ 0-shot8 ↑ PPL ↓ 0-shot8 ↑ PPL ↓ 0-shot8 ↑
16.00 Baseline 3.84 72.64 3.99 69.62 6.51 61.38 7.22 64.72

2.06
GPTQ 5.51 62.56 5.32 64.45 8.27 54.88 9.92 57.76
PMQ 5.41 63.25 5.88 61.35 8.42 54.79 9.89 57.79
QESC 5.09 66.31 5.22 65.03 7.99 57.05 8.30 59.52

2.54

GPTQ 4.74 68.65 4.74 65.81 7.36 56.83 8.41 57.91
BSP 4.98 65.44 4.72 66.15 7.32 58.24 8.11 60.40
PMQ 4.78 67.5 4.73 66.03 7.17 58 8.09 60.47
QESC 4.54 69.61 4.66 66.53 7.08 58.33 7.74 61.47

3.03
GPTQ 4.16 68.92 4.28 68.12 6.82 59.33 7.69 62.21
BSP 4.25 67.22 4.61 67.67 7.05 59.39 7.86 60.88

QESC 4.14 72.21 4.24 68.49 6.71 61.22 7.50 62.89

6 Experiment

In this section, we first evaluate the experimental
performance of our proposed methods QESC and
PESF, respectively. Then we combine quantization
and pruning (QESC+PESF) to assess their perfor-
mance in maintaining model accuracy, memory
usage reduction, and actual inference speedup.

6.1 Setup

Models and Dataset. We validate our method
on four MoE models: Mixtral-8x7B, Phi3.5-
moe, Deepseek-moe-16b-base and Qwen1.5-MoE-
A2.7B (Yang et al., 2024). We report perplexity
(PPL) on the WikiText2 testset and accuracies of
eight zero-shot tasks tested by EleutherAI LM Har-
ness (Gao et al., 2024), including Winogrande (ai2,
2019), PIQA (Bisk et al., 2020), ARC-Easy, ARC-
Challenge (Clark et al., 2018), BoolQ (Clark et al.,
2019), MathQA (Amini et al., 2019), HellaSwag
(Zellers et al., 2019), MMLU (Hendrycks et al.,
2021b). Additionally, we present the results of our
method on the challenging tasks GSM8K (Cobbe
et al., 2021) and HumanEval (Chen et al., 2021).
Implementation Details. We follow the settings
of prior work (Li et al., 2024a; Huang et al., 2024a),
keeping the MHSA components at 4-bit precision,
while quantizing all experts to 2-bit or 3-bit pre-
cision, and maintaining the router at its original
precision. Overall, we evaluate our method under
three average bit-width settings: 2.06-bit, 2.54-bit,
and 3.03-bit (detailed bit-width setting is discussed
in Appendix A.5). The quantization employs
group-wise (group size 128) asymmetric quanti-
zation and follows the GPTQ procedure. We use
128 sequences of length 2048 from the WikiText2
training set as the calibration set for QESC.

Reduction

Figure 6: The reduction of expert-shift before and after
calibration measured by expert-selection change rate
across layers in Deepseek-moe-16b-base under 2.06-bit
quantization. Change Rate 1-3 respectively represent
three metrics: all expert selections changed, at least one
selection changed and half or more selections changed.

6.2 Experiment on Quantization

Reduction in Expert-Shift. First, we intuitively
validate the effectiveness of our calibration method
by measuring the expert selection change rate be-
fore and after calibration on WikiText2 validation
set. We calculate the expert selection change rates
of the quantized model with or without router cal-
ibration relative to the full-precision model on
Deepseek-moe-16b-base, and show the relative re-
duction in Figure 6. The results demonstrate that
our calibration method significantly reduces the ex-
pert selection change rate in quantized MoE models
across three metrics.
Overall Performance. We further validate the
overall performance of our method. We compare
our quantization method with three other methods:
GPTQ, PMQ (Li et al., 2024a), and BSP (Li et al.,
2024a). GPTQ serves as the baseline for uniform
bit-width quantization, while PMQ (1.57–2.54 bit)
and BSP (2.54–3.03 bit) are current SOTA methods
for mixed-precision quantization of MoE models.
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Table 3: Comparison of the average accuracy on 8 zero-shot tasks and speedup of inference across four different
MoE models. The speedup is calculated based on the total inference time of the model with dynamic pruning
compared to the original model across 8 tasks. We reproduce results of EES and ODP (details are provided in
Appendix A.8) and evaluate all the results under the same settings. Full results can be found in Appendix A.9.

Method
Mixtral-8x7B Phi3.5-moe Deepseek-moe-16b-base Qwen1.5-MoE-A2.7B

0-shot ↑ Speedup ↑ 0-shot ↑ Speedup ↑ 0-shot ↑ Speedup ↑ 0-shot ↑ Speedup ↑
Baseline 72.64 1.00 69.62 1.00 61.38 1.00 64.72 1.00

EES 71.40 1.06 67.96 1.05 61.15 1.08 64.42 1.06
ODP 71.98 1.05 68.92 1.04 61.19 1.08 64.48 1.06

PESF (α = 0.3) 72.19 1.08 69.27 1.12 61.28 1.11 64.64 1.14
PESF (α = 0.7) 58.22 1.13 67.95 1.30 60.41 1.45 63.87 1.47

It is worth noting that QESC is inherently orthog-
onal to other weight quantization approaches for
LLMs that focus on minimizing quantization error.

As shown in Table 2, when only GPTQ is used
to reduce quantization loss, significant performance
degradation is still observed. Both BSP and PMQ,
as mixed-precision quantization methods, demon-
strate performance improvements over GPTQ at
certain quantization bit-widths for some models.
However, in nearly half of the settings, their results
are inferior to those of GPTQ, indicating a certain
degree of lack of generalization. In contrast, the
proposed QESC method significantly outperforms
GPTQ, BSP, and PMQ across all results. For in-
stance, at 2.54-bit, QESC limits the performance
loss to around 3% for all four models. Notably, at
3.03-bit, QESC reduces the loss to within 0.5% for
Mixtral-8x7B and Deepseek-moe-16b-base, mak-
ing it suitable for practical application scenarios.
Challenging Tasks. Apart from PPL and common-
sense tasks, we also evaluate our QESC method
on the challenging tasks GSM8K and HumanEval,
with the results provided in Appendix A.2.
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Figure 7: The variations in the model’s average accuracy,
expert pruning rate, and inference acceleration effect
with respect to changes in the pruning threshold α.

6.3 Experiment on Pruning
Pruning Threshold Analysis. To determine a rel-
atively appropriate pruning threshold, we aim to
trade off among model accuracy, expert pruning

rate, and relative inference latency. As shown in
Figure 7, we conduct experiments on Deepseek-
16b-moe-base, adjusting the pruning threshold (α)
from 0 to 0.9 with an interval of 0.1. For each
threshold, we calculate the average accuracy on
8 zero-shot tasks, the average expert pruning rate
across all layers, and the percentage of relative in-
ference latency compared to the original model.
The results show that pruning thresholds of 0.3 and
0.7 represent two sweet spots. The former achieves
approximately 10% speed improvement with al-
most no loss to the model (average loss within
0.5%), while the latter is more aggressive, achiev-
ing over 1.3× average inference speedup while still
keeping the average loss within around 1.5%.

Overall Performance. We compare our method
with the classical MoE expert pruning method,
known as Efficient Experts Skipping (EES) (Lu
et al., 2024), and a recently proposed MoE prun-
ing method, ODP (Huang et al., 2024a). EES per-
forms pruning from the perspective of individual
tokens, skipping the selected experts with negligi-
ble scores for each input token, while ODP incor-
porates a key token protection mechanism on top
of this. However, both methods can only reduce
the input size for a subset of experts, resulting in
limited inference speedup. In contrast, our PESF
method performs pruning from the perspective of
experts, directly skipping experts that are selected
less frequently for the current sequence. As shown
in Table 3, under the more conservative setting
(α = 0.3), our method significantly outperforms
EES and ODP on all four models in both average
accuracy and relative speedup. Moreover, com-
pared to EES and ODP, our pruning method demon-
strates greater flexibility. Notably, when we adopt
a more aggressive setting with (α = 0.7), except
for Mixtral-8x7B (discussed in Appendix A.12),
our method achieves an inference speedup of 1.30x
or greater on the other three models, while still
maintaining model accuracy comparable to ODP.
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Table 4: The overall performance of our compression
method which combines QESC (3.03 bit) and PESF
(α = 0.3). ”Params” denotes the parameter size, includ-
ing quantizer parameters for the compressed model.

Models Method Params(GB) 0-shot8 ↑ Speedup ↑

Mixtral-8x7B
Baseline 93.41 72.64 1.00
QESC 18.98 72.21 1.54

QESC+PESF 18.98 71.68 1.68

Phi3.5-moe
Baseline 83.75 69.62 1.00
QESC 17.08 68.49 1.55

QESC+PESF 17.08 68.31 1.75

Deepseek-moe
-16b-base

Baseline 32.75 61.38 1.00
QESC 7.19 61.22 1.39

QESC+PESF 7.19 61.09 1.55

Qwen1.5-MoE
-A2.7B

Baseline 28.63 64.72 1.00
QESC 6.69 62.89 1.36

QESC+PESF 6.69 62.73 1.58

6.4 Experiment on Quantization + Pruning

Finally, we apply our QESC and PESF methods
together to comprehensively compress MoE-LLMs.
To achieve a reasonable trade-off between reducing
memory usage, inference speed, and maintaining
model performance, we apply a relatively mild dy-
namic pruning strategy (α = 0.3) on top of 3.03-
bit static quantization. We report the memory us-
age, average accuracy on zero-shot tasks, and infer-
ence speedup measured by the context latency for
a batch of 4 sentences of length 512 in Table 4.
Maintain Accuracy. With the aid of effective ex-
pert selection calibration, our method limits the
average accuracy loss across four models to within
1.25%, effectively maintaining the accuracy of the
compressed MoE models.
Memory Saving and Inference Efficiency. By
leveraging the BitBLAS tool (Wang et al., 2024)
to store quantized weights and efficiently han-
dle mixed-precision BLAS operations on GPUs,
we limit the memory usage of Mixtral-8x7B and
Phi3.5-moe to within 19GB, and that of Deepseek-
moe-16b-base and Qwen1.5-MoE-A2.7B to within
7.2GB. This optimization enables deployment on
a single RTX 3090 GPU while achieving an aver-
age speedup of 1.49× under 3.03-bit quantization.
Furthermore, by integrating efficient dynamic ex-
pert pruning, we attain an average actual inference
speedup of 1.64× across all four models.
Comparion with MC-MoE. To the best of our
knowledge, MC-MoE (Huang et al., 2024a) is cur-
rently the only method that leverages both static
quantization and dynamic pruning for MoE-LLMs,
providing specific implementations for 2.06-bit and
2.56-bit quantization and pruning on Mixtral-8x7B.
Therefore, we compare our method with MC-MoE
at the corresponding quantization bit-widths on the
same model and adopt a more conservative pruning

Table 5: Comprehensive comparison of average accu-
racy on 8 zero-shot tasks and inference speedup of four
models under quantization and pruning.

Bits Method
Mixtral-8x7B

PPL ↓ 0-shot8 ↑ Speedup ↑
16.00 Baseline 3.84 72.64 1.00

2.06
MC-MoE 5.51 62.56 1.80

EAC-MoE (ours) 5.14 65.90 1.82

2.56
MC-MoE 4.74 68.65 1.71

EAC-MoE (ours) 4.58 68.60 1.74

strategy in PESF (α = 0.3). As shown in Ta-
ble 5, our method outperforms MC-MOE in terms
of PPL, average accuracy on zero-shot tasks, and
actual inference speedup under both quantization
settings.
More Results of EAC-MoE. Additionally, we
perform more detailed experiments by combining
other quantization bit-widths and more aggressive
pruning strategies across all four models. Detailed
results can be found in Appendix A.10.

6.5 Ablation Study of Loss Type
We compare the average accuracy on 0-shot tasks
after calibration using TopK-MSE and MSE loss
on three MoE models with a larger number of ex-
perts (the search for the optimal k-values in shown
in Appendix A.4). As shown in Table 6, the cali-
brated models optimized with TopK-MSE demon-
strate significantly better performance, proving the
effectiveness of our optimization method.

Table 6: The impact of different loss types on the av-
erage accuracy of the calibrated model on 0-shot tasks
(under 2.06-bit quantization).

Models Loss Type PPL ↓ 0-shot8 ↑
Phi3.5-moe

MSE 5.33 64.52
TopK-MSE 5.22 65.03

Deepseek-moe
-16b-base

MSE 8.16 55.91
TopK-MSE 7.99 57.05

Qwen1.5-MoE
-A2.7B

MSE 9.02 58.44
TopK-MSE 8.30 59.52

7 Conclusion

In this work, we aim to address the challenges faced
by MoE-LLMs and the limitations of existing com-
pression methods. Focusing on expert selection,
a key characteristic of MoE-LLMs, we propose
a compression method specifically designed for
MoE-LLMs that combines static quantization and
dynamic pruning to enhance their deployment effi-
ciency. Our methods significantly reduce memory
usage and improve inference speed while maintain-
ing high model performance.
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8 Expert Pruning for MoE-LLMs

Recently we have observed that expert pruning for
MoE-LLMs has emerged as a prominent area of
research. Based on this, we aim to offer a relatively
comprehensive overview of related studies for the
reference of other researchers.

First, we narrow the scope to post-training ex-
pert pruning, which can generally be divided into
two main categories: static expert pruning and dy-
namic expert pruning. Below, we present the latest
advancements under each category:
(1) static expert pruning: To the best of our knowl-
edge, (Lu et al., 2024) was the first to propose using
a calibration set to determine the usage frequency
of each expert in MoE and to evaluate expert im-
portance based on their usage frequency. Experts
with lower usage frequency are pruned prior to in-
ference. Building on this, (Xie et al., 2024) applied
knowledge distillation after pre-inference expert
pruning to restore the performance of the pruned
MoE model. Similar to (Lu et al., 2024) but not
identical, (Muzio et al., 2024) leveraged the cumu-
lative scores from the router’s softmax output to
assess expert importance for pre-inference pruning.
Meanwhile, (Liu et al., 2024) introduced an expert
merging approach, where less frequently used ex-
perts are merged with others to maintain the overall
performance of the pruned MoE.
(2) dynamic expert pruning: Research on post-
training dynamic expert pruning is relatively lim-
ited. (Lu et al., 2024) also proposed a dynamic
pruning method based on the weight differences
between experts selected for each token. Specifi-
cally, when the weight of the top-1 selected expert
exceeds that of the top-2 expert by a certain thresh-
old, only the top-1 expert is used. (Huang et al.,
2024a) further introduced a critical token protec-
tion mechanism in dynamic pruning.

Limitations

Our method can significantly reduce memory con-
sumption and improve inference speed while main-
taining the performance of MoE models. However,
there are still certain limitations to our approach:
(1) The proposed dynamic pruning method (PESF)
calculates expert selection frequencies based on the
current input sequence and determines the experts
to prune accordingly. This method is only applica-
ble during the prefill stage of model inference but
is not suitable for the generate stage, where only
a single token is input at a time. In the future, we

aim to explore an MoE model pruning method that
considers both inference phases, enabling inference
acceleration benefits for the whole inference phase.
(2) We validated the effectiveness of our method
on two MoE models with approximately 50B pa-
rameters and two MoE models with approximately
15B parameters. However, due to limited com-
putational resources, we have not yet tested our
method on larger-scale MoE models. For example,
a recent significant breakthrough in the MoE field
is the open release of DeepSeek-V3 (DeepSeek-
AI et al., 2024), which have a total of 671B pa-
rameters and 37B active parameters. Deepseek-
V3 demonstrates comprehensive performance that
even match or surpass some leading closed-source
models(OpenAI et al., 2024). However, its enor-
mous parameter count poses significant challenges
for practical deployment. In the future, we will
continue to explore quantization and pruning tech-
niques for larger-scale MoE models, aiming to con-
tribute to the advancement of MoE.
(3) The quantization method we propose, QESC,
is theoretically orthogonal to other existing ap-
proaches that primarily focus on reducing quan-
tization error itself, such as (Frantar et al., 2022;
Wang et al., 2018; Ashkboos et al., 2024b; Wang
et al., 2020; Shao et al., 2023). However, in our ex-
periments, apart from GPTQ, we have not yet eval-
uated the performance of our QESC method when
combined with these techniques. In future work,
we hope to further investigate the overall effective-
ness of integrating our quantization method with
these established approaches. Additionally, similar
to (Huang et al., 2024c; Xiao et al., 2023b), we
also aspire to validate our method across a broader
range of benchmarks.

Ethics Statement

In this work, we analyze the expert selection
preferences of Mixture-of-Experts (MoE) mod-
els not only across three common types of NLP
tasks—QA/CR, Math, and Code—but also includ-
ing datasets in specific languages, with French be-
ing the selected language for the latter category.

We explicitly emphasize that the use of French
in this study does not imply any bias, preference,
or discriminatory intent towards or against any spe-
cific language, culture, or group of people. The
selection is made solely to illustrate that MoE mod-
els exhibit different expert selection preferences
across datasets in different languages.
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A Appendix

A.1 Time Consumption Analysis
QESC. The quantization process of QESC primar-
ily consists of two parts: GPTQ and the calibrating
router, and can be executed on a single A100 40G
GPU. We record the time spent on the GPTQ pro-
cess and the calibration of routers separately, and
calculate their respective proportions of the total
time. As shown in Table 7, GPTQ accounts for the
vast majority of the total quantization time, while
the calibration of routers takes an average of only
1.94% of the overall process. This demonstrates
that our method introduces only a minimal addi-
tional time overhead to the quantization process,
making it well-suited for practical applications.
PESF. Our PESF method introduces only a single-
step online computation, as shown in Equation (6),
resulting in virtually no additional delay.

Table 7: Time consumption analysis for GPTQ and
router calibration in our QESC method.

Models Step of QESC Time(h) Proportion(%)

Mixtral-8x7B
GPTQ 1.30 98.48

Calibrating Router 0.02 1.52

Phi3.5-moe
GPTQ 1.39 97.89

Calibrating Router 0.03 2.11
Deepseek-moe

-16b-base
GPTQ 1.75 97.22

Calibrating Router 0.05 2.78
Qwen1.5-MoE

-A2.7B
GPTQ 1.48 98.67

Calibrating Router 0.02 1.33

A.2 Performance on Challenging Tasks
In addition to validating the performance of
our QESC method in maintaining model perfor-
mance through Perplexity (PPL) and accuracies
on common-sense intelligence tasks, we further
evaluate our approach on more challenging mathe-
matical task GSM8K (Cobbe et al., 2021) and code
generation task HumanEval (Chen et al., 2021).
We compare our method with three other meth-
ods—GPTQ, BSP, and PMQ. These two evalua-
tions are conducted within the Bigcode-Evaluation-
Harness (Ben Allal et al., 2022) testing framework.

As shown in Table 8, under three different av-
erage quantization bit widths, our QESC method
significantly outperforms the other three meth-
ods in preserving the performance of the post-
quantization model on two challenging tasks. No-
tably, despite prior studies (Li et al., 2024b) in-
dicating that post-quantization models are often
highly sensitive to complex mathematical and cod-
ing tasks, we manage to limit the performance
degradation of Mixtral-8x7B on GSM8K to within

Table 8: Comparison of the performance on challenging
tasks GSM8K and HumanEval on Mixtral-8x7B. In the
HumanEval evaluation, the hyperparameters are set as
follows: temperature = 0.2, and nsamples = 10.

Models Method GSM8K HumanEval (pass@10)
16.00 Full Precision 58.30 59.15

2.06
GPTQ 33.97 21.13
PMQ 20.17 11.91

QESC 37.15 26.83

2.54

GPTQ 38.97 27.24
BSP 40.00 31.62
PMQ 36.94 29.77

QESC 43.14 33.54

3.03
GPTQ 52.29 40.83
BSP 53.72 42.07

QESC 55.34 46.34

3% under 3.03-bit quantization, highlighting the
effectiveness of our expert-selection calibration
method.

A.3 Overfitting Analysis of Mixed-Precision
Quantization Methods for MoE Models

In Section 3.3, we observe that the importance of
the same expert may vary drastically across differ-
ent tasks. Based on this insight, we deduce that
using any calibration set to determine the impor-
tance of an expert before inference may be biased
and lack generalization. Here, we further substan-
tiate this point through comparative experiments.
Specifically, we first utilize QA/CR datasets, Math
datasets, Code datasets, datasets in French version,
and the C4 dataset (Raffel et al., 2020) as cali-
bration sets, obtaining five distinct expert selec-
tion frequencies from these calibration sets. Sub-
sequently, we automatically allocate the quanti-
zation bit-width for each expert based on the ex-
pert selection frequencies, following the algorithm
mentioned in the state-of-the-art mixed-precision
quantization method for MoE, PMQ (Huang et al.,
2024a) (details is shown in Appendix A.6). We
then quantize the model to an average bit-width
of 2.06 bits using the five quantization bit-width
settings derived (the calibration set used in the pa-
per is the C4 dataset). Finally, we evaluate the
performance of these five quantized models on
four datasets: Hellswag (QA/CR), MathQA (Math),
Lambada_fr (French), and Conala (Code), each rep-
resenting a different task category. Additionally,
we compare the performance of our QESC method
at the same average quantization bit-width.

As shown in Table 9, the mixed-precision quan-
tization method based on expert usage frequency
exhibits significant overfitting on both models. As
highlighted by the red-marked values in the table,
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Table 9: A comparison of the performance of quantized Mixtral-8x7B and Deepseek-moe-16b-base, based on
the mixed-precision quantization method PMQ, using five different calibration sets under an average quantization
bit-width of 2.06 bits, across four types of task datasets.

Models Bits Method Calibration Dataset
Hellaswag
(QA/CR)

MathQA
(Math)

Lambada_fr
(French)

Conala
(Code)

Mixtral-8x7B

16.00 Baseline None 84.03 41.64 65.96 73.86

2.06
Mixed-

Precision

QA/CR 75.49 31.06 49.17 7.25
Math 69.25 32.26 47.06 7.64

French 65.55 24.39 51.87 3.80
Code 67.67 31.66 44.50 37.42
C4 74.95 31.79 49.12 16.22

2.06 QESC None 77.27 36.08 60.37 66.68

Deepseek-moe
-16b-base

16.00 Baseline None 77.43 31.66 58.08 58.76

2.06
Mixed-

Precision

QA/CR 72.09 24.25 45.76 7.57
Math 62.15 30.52 41.74 8.69

French 65.49 23.15 48.86 1.80
Code 54.87 29.61 35.88 26.34
C4 68.70 26.26 42.13 16.22

2.06 QESC None 68.85 28.91 52.38 42.36

using a specific task dataset as the calibration set
results in a post-quantization model that achieves
relatively optimal performance on that specific task
but shows severe performance degradation on other
tasks. This overfitting phenomenon is most pro-
nounced in Code-related tasks. When calibration is
performed using datasets from other task types, the
quantized models experience a drastic performance
collapse on Code tasks. Only the models calibrated
with Code-specific task datasets manage to achieve
relatively good results on the Conala dataset.

When the C4 dataset is used as the calibra-
tion set, due to its inherently balanced nature, the
quantized models achieve relatively average perfor-
mance across all four task types. However, even
in this case, there is still severe performance degra-
dation on Code-related tasks. In contrast, our pro-
posed QESC method focuses on the calibration
of expert-selection. It significantly outperforms
mixed-precision method across all four datasets,
demonstrating superior generalization capabilities.

A.4 Search of Optimal Value of K in
TopK-MSE Loss

In this subsection, we explore the optimal k-
value settings for TopK-MSE in three MoE mod-
els with relatively larger numbers of total ex-
perts: Phi3.5-moe, Deepseek-moe-16b-base, and
Qwen1.5-moe-A2.7B, under three average quan-
tization bit widths—2.06 bits, 2.56 bits, and 3.03
bits. For Phi3.5-moe (selecting 2 experts out of 16),

we set the k-values to 4, 6, 8, 10, 12, and 16 (equiv-
alent to MSE loss). For Deepseek-moe-16b-base
(selecting 6 experts out of 64) and Qwen1.5-moe-
A2.7B (selecting 4 experts out of 64), the k-values
are set to 8, 12, 16, 20, 24, 32, 48, and 64 (equiva-
lent to MSE loss). For each k-value, we quantize
the MoE models to the three average bit widths
while keeping other configurations constant and
compare their performance on the MMLU dataset
(Hendrycks et al., 2021b), which serves as a com-
prehensive benchmark to effectively evaluate the
models’ capabilities across diverse tasks.

As shown in Figure 8, when the k-value is too
small and approaches the number of experts se-
lected per token in the model, significant perfor-
mance degradation occurs. Referring to Figure 4,
this may be attributed to a certain degree of over-
fitting. For Phi3.5-moe, the optimization results
with k-values of 8–10 under all three average quan-
tization bit widths are noticeably better than those
with a k-value of 16. For Deepseek-moe-16b-base
and Qwen1.5-moe-A2.7B, the optimal results are
observed at k-values of 16–24 under 2.06-bit and
2.56-bit quantization. This aligns with our obser-
vations in Figure 4, where our optimization ef-
fectively covers over 95% of the incorrectly unse-
lected experts while avoiding the noise introduced
by experts with low selection probabilities. Under
the 3.03-bit quantization, however, the optimiza-
tion results show minimal variation with changes
in k-value, as the higher quantization bit width in-
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Figure 8: The accuracy of Phi3.5-moe (left), Deepseek-moe-16b-base (middle), and Qwen1.5-MoE-A2.7B (right) on
the MMLU dataset varies under different TopK-MSE optimization under 2.06bit, 2.56bit and 3.03bit quantization.

2 3 4 5 6 7 8
MHSA Bit Width (bits)

0.00

0.05

0.10

0.15

0.20

0.25

Av
er

ag
e 

Ch
an

ge
 R

at
e

Effect of MHSA Bit Width on Experts-Selection Change Rates
Change Rate1
Change Rate2

2 3 4 5 6 7 8
MHSA Bit Width (bits)

3.8

4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4

PP
L

Effect of MHSA Bit Width on Perplexity
PPL

Figure 9: The changes in Experts-Selection rates and WikiText2 perplexity (PPL) with varying MHSA quantization
bit-widths on Mixtral-8x7B. "Change Rate 1" corresponds to cases where both selected experts are changed, while
"Change Rate 2" corresponds to cases where one or more expert selections are altered.

herently results in a lower rate of expert selection
changes.

Based on the above observations, as shown in
Table 10, we set the k-values to 8, 20, and 20 for
expert selection calibration for the three models,
respectively. All quantization-related experimental
results in this work are based on this configuration.

Table 10: K Values for expert-selection in MoE models
using TopK-MSE calibration

Model Total Experts Experts per Token K

Phi3.5-moe 16 2 8
Deepseek-moe-16b-base 64 6 20
Qwen1.5-MoE-A2.7B 64 4 20

Table 11: Proportion of non-embedding parameters in
MoE models

Model MHSA (%) Experts (%) Router (%)

Mixtral-8x7B 2.894% 97.104% 0.002%
Phi3.5-moe 3.226% 96.774% 0.005%
Deepseek-moe-16b-base 2.852% 97.122% 0.022%
Qwen1.5-MoE-A2.7B 2.945% 97.039% 0.022%

A.5 Quantization Bit-Width Settings

In MoE-LLMs, the vast majority of non-embedding
parameters come from the experts within the MoE
layers, while the router in the MoE layer and
MHSA account for only about 3% of the total pa-
rameters. For the four MoE models used in the ex-
periments of this paper—Mixtral-8x7B, Deepseek-
moe-16b-base, Phi3.5-moe, and Qwen1.5-MoE-
A2.7B—we first conduct a detailed analysis of
the parameter proportions in each component, as
shown in Table 11. Considering that the router
accounts for less than 0.03% of the total parame-
ters, yet plays a crucial role in expert selection, this
work retains the router at its original precision.

Unlike the experts in the MoE layer, the MHSA
component affects all tokens in the input sequence.
Previous studies (Li et al., 2024a) have compared
the impact of increasing the quantization bit-width
of MHSA and the MoE layer on overall model
performance, concluding that MHSA is more bit-
efficient. In this work, we investigate the effect
of MHSA quantization bit-width on overall model
performance from the perspective of expert selec-
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tion change rate. Using Mixtral-8x7B, we conduct
the following experiments: keeping the rest of the
model at its original precision, the MHSA compo-
nent is quantized to bit-widths ranging from 2-bit
to 8-bit. We then calculate the average expert selec-
tion change rate relative to the original model and
the perplexity (PPL) of the quantized model on the
WikiText2 (Merity et al., 2016).

As shown in Figure 9, within the 2-4 bit range,
both the expert selection change rate and PPL are
highly sensitive to the quantization bit-width. As
the bit-width increases, the expert selection change
rate and PPL decrease significantly. This demon-
strates that maintaining MHSA at a relatively high
quantization bit-width is indeed important for en-
suring the quantized model can still select the cor-
rect experts and maintain overall model perfor-
mance. Considering that in the 4-8 bit range, both
metrics change more gradually with increasing bit-
width, and from a hardware perspective, current
systems are unable to achieve efficient acceleration
for bit-widths like 5-bit or 6-bit, we choose to set
the MHSA quantization bit-width to 4-bit. This
choice strikes a balance between maintaining the
performance of the quantized model and minimiz-
ing overall memory usage.

By comprehensively analyzing the above dis-
cussion, we quantize the MHSA section to 4-bit,
retaine the router at its original precision, and quan-
tize the experts to 2-bit, 2.5-bit, and 3-bit. Under
the 2.5-bit setting, we align with previous research
(Li et al., 2024a), which finds that the earlier layers
in MoE benefit from higher quantization bit-widths.
Therefore, we simply quantize the experts in the
first half of the layers to 3-bit and those in the sec-
ond half to 2-bit. Based on this configuration, we
calculate the average bit-width of the experts for
the four models under the 2-bit, 2.5-bit, and 3-bit
conditions, as shown in Table 12. Since the pa-
rameter proportions of different components vary
slightly across the four models, the final average

Table 12: The average quantization bit-width of the four
models when the experts’ quantization bit-width is set
to 2-bit, 2.5-bit, and 3-bit.

Model 2-bit 2.5-bit 3-bit

Mixtral-8x7B 2.058 2.544 3.029
Phi3.5-moe 2.065 2.549 3.033
Deepseek-moe-16b-base 2.060 2.546 3.031
Qwen1.5-MoE-A2.7B 2.062 2.547 3.032

bit-width also exhibits minor differences. However,
as these differences are negligible, for simplicity,
we represent the average quantization bit-widths of
the four models in this paper as 2.06-bit, 2.54-bit,
and 3.03-bit for the three respective settings.

A.6 Reproduction Details of Quantization
BSP (Li et al., 2024a) and PMQ (Huang et al.,
2024a) are two methods built upon GPTQ that fo-
cus on mixed-precision quantization. BSP reports
its results on Mixtral-8x7B and Deepseek-moe-16b-
base in its paper, while PMQ only reports results
on Mixtral-8x7B. To ensure a fair comparison, we
refer to both the papers and official repositories of
these methods, and apply their respective quanti-
zation bit-width allocation strategies to the models
used in this study. We then perform GPTQ quanti-
zation and evaluate the final results using the same
framework as this paper.

Specifically, for BSP, we first use the same cali-
bration datasets mentioned in its paper (WikiText2
dataset) to obtain the expert usage frequencies for
Phi3.5-moe and Qwen1.5-MoE-A2.7B. In Phi3.5-
moe, each MoE layer selects 2 experts out of 16.
Following BSP’s settings for Mixtral-8x7B, at the
3.03-bit bit-width configuration, we allocate 4-bit
to the top-8 most frequently used experts and 2-bit
to the remaining 8 experts. At the 2.54-bit con-
figuration, we allocate 3-bit to the top-8 experts
and 2-bit to the remaining 8 experts. For Qwen1.5-
MoE-A2.7B, each MoE layer selects 4 experts out
of 60, with an additional 4 shared experts. Follow-
ing BSP’s settings for Deepseek-moe-16b-base, all
shared experts are allocated 8-bit. At the 3.03-bit
configuration, we allocate 4-bit to the top-20 most
frequently used experts and 2-bit to the remaining
40 experts. At the 2.54-bit configuration, we al-
locate 4-bit to the top-6 experts and 2-bit to the
remaining 54 experts.

For PMQ, we also use the same calibration
datasets mentioned in its paper (C4 dataset (Raffel
et al., 2020)) to obtain expert usage frequencies
for all four models. For Mixtral-8x7B and Phi3.5-
moe, we directly apply the Integer Programming
(IP) optimization algorithm used in PMQ’s paper to
derive the corresponding mixed-precision bit-width
configurations. For Deepseek-moe-16b-base and
Qwen1.5-MoE-A2.7B, as PMQ’s paper did not dis-
cuss MoE models with shared experts, we use the
same IP optimization algorithm to determine the
mixed-precision bit-width configurations for non-
shared experts under the average bit-width settings
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Table 13: Comprehensive comparison of average accuracy of Mixtral-8x7B on 8 zero-shot tasks under quantization.

Bits Method PIQA ARC-E ARC-C BOOLQ HS WG MATHQA MMLU Avg
16.00 Full Precision 83.57 83.67 59.3 85.35 84.03 76.24 41.64 67.29 72.64

2.06
GPTQ 76.16 75.47 47.91 77.40 71.57 71.98 31.84 48.14 62.56
PMQ 79.16 73.06 48.38 80.58 74.95 71.27 31.79 46.80 63.25

EAC-MoE 79.16 76.30 51.02 76.79 77.27 74.82 36.08 59.01 66.31

2.54

GPTQ 80.56 79.04 56.06 85.84 78.20 73.01 37.62 58.89 68.65
BSP 80.96 77.86 53.24 72.53 77.95 73.56 35.34 52.04 65.44
PMQ 80.52 77.10 51.28 82.54 79.03 73.95 39.18 56.37 67.50

EAC-MoE 81.45 80.77 55.03 84.85 79.44 75.3 37.86 61.37 69.51

3.03
GPTQ 80.63 79.21 55.55 84.59 79.63 74.43 37.49 59.82 68.92
BSP 81.56 79.71 54.59 75.75 80.06 74.74 36.68 54.69 67.22

EAC-MoE 82.97 83.25 58.87 85.47 82.77 76.40 41.81 66.10 72.21

Table 14: Comprehensive comparison of average accuracy of Phi3.5-moe on 8 zero-shot tasks under quantization.

Bits Method PIQA ARC-E ARC-C BOOLQ HS WG MATHQA MMLU Avg
16.00 Full Precision 77.69 65.70 53.58 88.35 79.87 76.80 38.32 76.62 69.62

2.06
GPTQ 75.57 57.87 48.46 86.88 73.01 71.72 32.80 69.29 64.45
PMQ 75.68 50.59 41.55 86.18 78.45 73.86 22.31 62.14 61.35

EAC-MoE 76.17 59.47 49.06 86.80 73.34 71.35 34.64 69.43 65.03

2.54

GPTQ 77.37 61.49 48.98 86.67 75.32 72.61 32.86 71.19 65.81
BSP 76.99 61.41 50.71 87.22 76.09 73.51 32.23 71.05 66.15
PMQ 77.04 57.32 48.21 87.68 77.42 74.27 33.67 72.66 66.03

EAC-MoE 77.09 61.78 51.19 86.57 75.56 73.32 35.08 71.67 66.53

3.03
GPTQ 78.10 63.17 51.96 87.70 78.81 74.59 35.64 75.01 68.12
BSP 77.20 64.60 51.71 87.49 78.73 76.01 33.23 72.40 67.67

EAC-MoE 78.24 62.21 52.56 87.83 78.59 76.16 36.85 75.49 68.49

of 2.06-bit and 2.54-bit. For shared experts, we
allocate 2-bit at the 2.06-bit configuration and 3-bit
at the 2.54-bit configuration to ensure fairness in
comparative experiments with PMQ.

A.7 Completed Results of Quantization

In Tables 13 to 16, we present the full results of
Table 2, including detailed accuracies on eight zero-
shot tasks, and compare our approach with GPTQ
(Frantar et al., 2022), BSP (Li et al., 2024a) and
PMQ (Huang et al., 2024a).

A.8 Reproduction Details of Pruning

EES (Lu et al., 2024) and ODP (Huang et al.,
2024a) are two popular dynamic pruning meth-
ods for MoE models, both focusing on ignoring
the least-contributing experts for each input token.
ODP extends EES by incorporating a significance-
aware token protection mechanism.

For EES, we use the same calibration dataset as
in its paper to compute the ratio between the weight
of the least-contributing expert and the weight of
the most-contributing expert for each token. The
median of all these ratios is selected as the prun-
ing threshold. During inference, if the ratio of

the least-contributing expert’s weight to the most-
contributing expert’s weight for a given token is
less than this threshold, the weight of the least-
contributing expert is set to zero.

For ODP, we follow the same procedure as EES
to determine the pruning threshold. On top of this,
we incorporate the Significance-Aware Token Pro-
tection mechanism mentioned in the paper. This
mechanism dynamically identifies critical tokens
and prevents the pruning of the least-contributing
experts for these critical tokens, even if they meet
the original pruning condition.

A.9 Completed Results of Pruning

In Table 17, we present the full results of Table 3.
We compare our approach with several other meth-
ods, including EES (Lu et al., 2024) and ODP
(Huang et al., 2024a).

A.10 Completed Results of QESC+PESF

In this subsection, leveraging the three quantization
bit-width settings from QESC and the two pruning
threshold strategies from PESF, we provide a de-
tailed evaluation of different combinations on four
models. The results include the average zero-shot
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Table 15: Comprehensive comparison of average accuracy of Deepseek-moe-16b-base on 8 zero-shot tasks under
quantization.

Bits Method PIQA ARC-E ARC-C BOOLQ HS WG MATHQA MMLU Avg
16.00 Full Precision 80.52 73.19 47.53 72.57 77.43 69.93 31.66 38.18 61.38

2.06
GPTQ 76.77 65.78 40.02 67.34 69.41 65.43 27.50 26.76 54.88
PMQ 77.64 64.73 39.85 67.75 68.7 66.22 26.26 27.16 54.79

EAC-MoE 77.48 70.24 42.66 70.20 68.85 67.01 28.91 31.04 57.05

2.54

GPTQ 78.29 68.48 41.72 69.88 70.97 67.48 28.17 29.65 56.83
BSP 78.89 70.24 42.32 74.34 72.96 68.59 27.87 30.68 58.24
PMQ 78.78 69.70 41.89 74.29 71.27 67.96 29.25 32.89 58.00

EAC-MoE 78.51 69.11 42.32 74.59 73.97 69.14 28.98 33.02 58.71

3.03
GPTQ 78.89 72.22 44.37 72.42 75.15 67.01 29.88 34.72 59.33
BSP 79.68 72.39 44.37 73.98 74.61 68.90 28.14 33.10 59.40

EAC-MoE 80.03 73.15 45.90 75.29 75.68 70.48 31.42 37.83 61.22

Table 16: Comprehensive comparison of average accuracy of Qwen1.5-MoE-A2.7B on 8 zero-shot tasks under
quantization.

Bits Method PIQA ARC-E ARC-C BOOLQ HS WG MATHQA MMLU Avg
16.00 Full Precision 80.79 69.44 44.37 79.57 77.17 69.77 35.57 61.08 64.72

2.06
GPTQ 75.79 65.53 40.02 72.14 67.06 64.48 30.02 47.07 57.76
PMQ 76.14 65.69 40.11 69.88 68.71 64.52 29.01 48.23 57.79

EAC-MoE 78.40 65.28 40.78 70.37 71.50 65.98 29.28 54.56 59.52

2.54

GPTQ 77.48 63.17 39.16 68.69 70.42 64.17 29.28 50.88 57.91
BSP 79.54 65.03 39.59 68.99 73.77 68.51 31.89 55.91 60.40
PMQ 78.16 65.75 41.21 71.34 72.34 68.01 31.66 55.31 60.47

EAC-MoE 78.73 66.50 43.17 73.09 73.53 68.19 32.43 56.12 61.47

3.03
GPTQ 79.27 66.16 41.55 77.89 75.49 67.8 31.66 57.87 62.21
BSP 79.68 65.11 42.32 70.73 75.36 66.38 30.79 56.65 60.88

EAC-MoE 80.47 67.30 41.89 77.99 75.79 69.22 31.46 58.97 62.89

Table 17: Comprehensive comparison of average accuracy of four models on 8 Zero-Shot tasks under pruning.

Model Method PIQA ARC-E ARC-C BOOLQ HS WG MATHQA MMLU Avg

Mixtral-8x7B

bf16 83.57 83.67 59.30 85.35 84.03 76.24 41.64 67.29 72.64
EES 82.70 81.40 58.45 87.74 83.00 75.24 41.14 64.50 71.40
ODP 82.87 83.21 59.01 84.98 83.69 75.97 40.93 65.17 71.98

PESF (α = 0.3) 83.19 83.29 59.90 85.08 83.40 76.40 40.90 65.36 72.19
PESF (α = 0.7) 68.23 65.15 45.99 78.10 69.39 64.80 29.25 44.86 58.22

Phi3.5-moe

bf16 77.69 65.70 53.58 88.35 79.87 76.80 38.32 76.62 69.62
EES 76.50 63.85 51.37 86.94 78.60 75.14 36.25 75.02 67.96
ODP 77.23 64.94 53.55 88.10 79.21 74.93 38.27 75.11 68.92

PESF (α = 0.3) 77.04 65.53 54.01 88.20 79.82 75.30 37.99 76.30 69.27
PESF (α = 0.7) 75.52 64.94 51.54 86.91 79.51 73.16 37.76 74.24 67.95

Deepseek-moe-16b-base

bf16 80.52 73.19 47.53 72.57 77.43 69.93 31.66 38.18 61.38
EES 79.98 72.85 48.21 72.51 77.33 70.11 29.88 38.33 61.15
ODP 80.01 72.94 47.41 73.39 77.25 70.14 30.23 38.14 61.19

PESF (α = 0.3) 80.52 73.02 46.93 72.72 77.13 70.32 31.52 38.07 61.28
PESF (α = 0.7) 78.45 73.15 45.90 75.29 75.68 68.51 31.49 34.83 60.41

Qwen1.5-MoE-A2.7B

bf16 80.79 69.44 44.37 79.57 77.17 69.77 35.57 61.08 64.72
EES 80.52 69.11 44.01 79.45 76.87 69.32 35.11 60.97 64.42
ODP 80.61 69.24 44.12 79.51 77.01 69.32 35.05 60.95 64.48

PESF (α = 0.3) 80.74 69.28 44.28 79.36 77.24 69.77 35.68 60.80 64.64
PESF (α = 0.7) 80.25 69.11 43.94 77.06 76.44 70.09 35.38 58.72 63.87

accuracy and inference speedup ratio, along with
specific accuracy on each dataset.

Detailed results. Here, we provide detailed results
of our method under three quantization bit-widths

and two pruning thresholds, as shown in Table 18.
Furthermore, as shown in Tables 19 to 22, we
report the specific results for various configurations
of the four models on each dataset. "EAC-MoE"
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Table 18: Comparison of the average accuracy on 8 zero-shot tasks and speedup of inference across four MoE
models under quantization (QESC) and pruning (PESF). "EAC-MoE" represents the use of conservative PESF
pruning strategy (α = 0.3) based on QESC, "EAC-MoE∗" represents the use of PESF (α = 0.7) based on QESC.

Bits Method
Mixtral-8x7B Phi3.5-moe Deepseek-moe-16b-base Qwen1.5-MoE-A2.7B

0-shot8 ↑ Speedup ↑ 0-shot8 ↑ Speedup ↑ 0-shot8 ↑ Speedup ↑ 0-shot8 ↑ Speedup ↑
16.00 Baseline 72.64 1.00 69.62 1.00 61.38 1.00 64.72 1.00

2.06
EAC-MoE 65.90 1.82 65.26 1.84 56.75 1.59 61.18 1.64
EAC-MoE∗ 49.09 1.93 62.16 2.03 54.81 2.01 60.02 2.08

2.54
EAC-MoE 68.60 1.74 65.98 1.80 58.17 1.56 61.41 1.60
EAC-MoE∗ 53.01 1.81 63.80 2.02 56.83 1.98 60.57 2.03

3.03
EAC-MoE 71.68 1.68 68.31 1.75 61.09 1.55 62.73 1.58
EAC-MoE∗ 57.55 1.76 66.66 1.98 58.82 1.96 61.77 2.01

Table 19: Detailed results of average accuracy of Mixtral-8x7B on 8 Zero-Shot tasks under quantization and pruning.

Bits Method PIQA ARC-E ARC-C BOOLQ HS WG MATHQA MMLU Avg
16.00 Full Precision 83.57 83.67 59.3 85.35 84.03 76.24 41.64 67.29 72.64

2.06
EAC-MoE 79.76 77.78 50.85 77.28 75.80 73.24 35.88 56.60 65.90
EAC-MoE∗ 61.04 54.42 38.23 69.54 48.15 61.09 24.69 35.58 49.09

2.54
EAC-MoE 81.28 80.13 54.44 83.85 78.66 74.27 37.39 58.78 68.60
EAC-MoE∗ 65.29 58.63 39.25 75.05 58.27 61.56 27.10 38.92 53.01

3.03
EAC-MoE 83.03 82.91 58.28 85.35 82.17 76.87 41.47 63.35 71.68
EAC-MoE∗ 69.98 64.01 42.04 81.92 67.24 63.22 29.98 42.01 57.55

Table 20: Detailed results of average accuracy of Phi3.5-moe on 8 Zero-Shot tasks under quantization and pruning.

Bits Method PIQA ARC-E ARC-C BOOLQ HS WG MATHQA MMLU Avg
16.00 Full Precision 77.69 65.70 53.58 88.35 79.87 76.80 38.32 76.62 69.62

2.06
EAC-MoE 74.16 61.28 48.55 86.64 75.41 73.56 33.10 69.35 65.26
EAC-MoE∗ 72.80 59.01 49.40 83.27 72.74 69.30 32.09 58.68 62.16

2.54
EAC-MoE 75.73 60.61 48.72 86.64 76.84 72.69 35.44 71.18 65.98
EAC-MoE∗ 73.01 58.59 48.38 84.37 74.10 68.67 34.44 68.82 63.80

3.03
EAC-MoE 76.93 62.38 52.39 88.13 78.38 76.01 36.65 75.57 68.31
EAC-MoE∗ 74.65 61.28 50.68 86.24 77.77 72.77 36.75 73.17 66.66

represents the use of conservative PESF pruning
strategy (α = 0.3) based on QESC, while "EAC-
MoE∗" represents the use of a more aggressive
PESF pruning strategy (α = 0.7) based on QESC.

A.11 Task-Preference and Sparsity in
Experts-Selection

In Section 3.3, we calculate the expert selection
frequency and pairwise cosine similarity of MoE
models across different datasets for four types of
reasoning tasks, providing a macroscopic view of
the task preferences in expert selection. In this
section, we delve deeper into the microscopic de-
tails, specifically discussing the expert selection
preferences of the Phi3.5-moe and Deepseek-moe-
16b-base models across 8 datasets spanning 4 task
types. This analysis also aligns with previous work
(Li et al., 2024a), further demonstrating their spar-
sity. As shown in Figure 10, the four rows, from
top to bottom, correspond to four different task

types ((QA/CR), Math, Code, Specific Language).
For each row, the left and right plots respectively
show the expert selection frequencies of Phi3.5-
moe on two different datasets of the same task type.
From this, a clear pattern can be observed, indi-
cating that the MoE model exhibits remarkably
similar expert selection preferences across datasets
within the same task category. For example, in the
first row, as illustrated in the left and right subfig-
ures, certain experts such as Expert13 in Layer2,
Expert9 in Layer8, and Expert12 in Layer11 are
frequently selected for the openbookqa and arc-
challenge datasets, with average selection frequen-
cies exceeding 30% (note that each layer has 16
experts, and a completely balanced selection would
result in a frequency of 6.25% per expert). Con-
versely, some experts, such as Expert1 in Layer5,
Expert7 in Layer14, and Expert8 in Layer27, are
rarely selected, with frequencies below 1%.

Similarly, in the second row, for the Math
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Table 21: Detailed results of average accuracy of Deepseek-moe-16b-base on 8 Zero-Shot tasks under quantization
and pruning.

Bits Method PIQA ARC-E ARC-C BOOLQ HS WG MATHQA MMLU Avg
16.00 Full Precision 80.52 73.19 47.53 72.57 77.43 69.93 31.66 38.18 61.37

2.06
EAC-MoE 77.04 69.11 41.30 72.55 69.85 67.48 28.61 28.07 56.75
EAC-MoE∗ 75.19 67.93 39.93 70.45 66.55 63.85 27.77 26.81 54.81

2.54
EAC-MoE 78.29 69.15 42.32 74.50 66.55 63.85 27.77 26.81 54.81
EAC-MoE∗ 76.17 71.74 41.13 71.74 68.31 66.85 28.11 30.57 56.83

3.03
EAC-MoE 79.54 73.15 46.16 75.02 75.55 70.24 31.59 37.45 61.09
EAC-MoE∗ 77.20 71.55 45.05 72.51 72.86 66.46 31.56 33.33 58.82

Table 22: Detailed results of average accuracy of Qwen1.5-MoE-A2.7B on 8 Zero-Shot tasks under quantization
and pruning.

Bits Method PIQA ARC-E ARC-C BOOLQ HS WG MATHQA MMLU Avg
16.00 Full Precision 80.79 69.44 44.37 79.57 77.17 69.77 35.57 61.08 64.72

2.06
EAC-MoE 79.16 65.07 42.83 75.01 72.44 68.19 32.63 54.12 61.18
EAC-MoE∗ 77.91 64.52 42.15 74.86 70.94 67.09 32.26 50.46 60.02

2.54
EAC-MoE 78.78 66.75 43.17 72.57 73.53 68.19 32.29 56.01 61.41
EAC-MoE∗ 77.53 65.24 40.44 74.89 72.49 68.27 32.16 53.52 60.57

3.03
EAC-MoE 80.41 66.92 42.15 76.88 75.81 69.22 31.72 58.72 62.73
EAC-MoE∗ 79.16 66.71 41.30 75.35 74.97 68.75 31.99 55.96 61.77

task across two datasets, experts such as Expert7
in Layer5, Expert9 in Layer8, and Expert11 in
Layer15 are selected with an average frequency
exceeding 40%, while others, such as Expert0 in
Layer0 and Expert8 in Layer2, are seldom chosen.
These results provide detailed evidence that Phi3.5-
moe demonstrates a high degree of similarity in
expert selection frequencies within task categories
while also exhibiting significant sparsity. From
another perspective, Phi3.5-moe demonstrates en-
tirely distinct expert selection preferences across
different reasoning tasks. For instance, Expert13 in
Layer2 is frequently selected for (QA/CR) tasks but
is neither prominent nor frequently chosen in the
other three tasks. Similarly, Expert7 in Layer14 is
heavily utilized in Code tasks but is rarely selected
in the other three task categories.

A similar pattern is observed in Deepseek-moe-
16b-base, which has 64 experts per layer, as shown
in Figure 11. While displaying clear intra-category
similarities and inter-category differences in expert
selection, the larger number of experts results in an
even greater degree of sparsity in expert selection
for Deepseek-moe-16b-base.

A.12 Pruning on Mixtral-8x7B

In Section 6.3, when employing a more aggres-
sive pruning strategy, unlike the other three models
which maintain relatively stable average accuracy
under significant inference speedup, Mixtral-8x7B

exhibits notable performance degradation. This
section delves into this phenomenon and analyzes
its underlying causes.

Similar to Figure 12, we plot the changes in
Mixtral-8x7B’s average accuracy, expert pruning
rate, and inference speedup as the pruning thresh-
old varied. As shown in the figure, unlike Phi3.5-
moe and Deepseek-moe-16b-base, where a signifi-
cant drop in accuracy only occurs when the pruning
threshold exceeded 0.7 and the expert pruning rate
approached 40%, Mixtral-8x7B begins to show a
noticeable decline in accuracy once the pruning
threshold surpassed 0.3.

We further analyze the expert selection fre-
quency of Mixtral-8x7B across two different
datasets. As illustrated in Figure 13, compared to
Phi3.5-moe and Deepseek-moe-16b-base, Mixtral-
8x7B exhibits weaker sparsity in expert selection.
Apart from a few experts, such as Expert6 in
Layer3 (top) and Expert2 in Layer25 (bottom),
whose average selection frequencies exceed the
mean (0.125), the selection frequencies of the
remaining experts are relatively balanced. This
phenomenon has also been noted in (Jiang et al.,
2024; Li et al., 2024a). Consequently, Mixtral-
8x7B is more sensitive to dynamic expert prun-
ing compared to the other three models, mak-
ing it less suitable for the aggressive pruning set-
tings (α = 0.7) proposed in our PESF method.
Nevertheless, our approach achieved commend-
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Figure 10: The frequency of expert selection across 8 datasets spanning 4 task types for Phi3.5-moe.

able inference speedup and accuracy retention on
Mixtral-8x7B under conservative pruning settings
(α = 0.3) . In the future, we aim to explore meth-
ods to achieve higher pruning rates and speedup
while maintaining accuracy on Mixtral-8x7B.

A.13 Datasets used in Expert-Selection
Analysis

In Section 3.3, we record Expert-Selection fre-
quency on 15 datasets of three common cate-
gories of NLP tasks——Math, Code-Generation,
Question-Answering or Commonsense-Reasoning
(QA/CR) and 4 datasets in French language.
GSM8K (Cobbe et al., 2021), MathQA (Amini

et al., 2019), Minerva_Math (Lewkowycz et al.,
2022) and Hendrycks_Math (Hendrycks et al.,
2021c) are in Math task; Winogrande (ai2, 2019),
PIQA (Bisk et al., 2020), ARC-Challenge (Clark
et al., 2018), BoolQ (Clark et al., 2019), MathQA
(Amini et al., 2019), HellaSwag (Zellers et al.,
2019), and Social_iqa (Sap et al., 2019) are in
QA/CR task; Humaneval (Chen et al., 2021), Mbpp
(Austin et al., 2021), Apps (Hendrycks et al.,
2021a) and Conala (Yin et al., 2018) are in code
task; Lambada_fr (Paperno et al., 2016), Xnli_fr
(Conneau et al., 2018), Paws_fr (Zhang et al., 2019)
and Arc_fr (Clark et al., 2018) are datasets in
French language.
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Figure 11: The frequency of expert selection across 8 datasets spanning 4 task types for Deepseek-moe-16b-base
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Figure 12: The variations in the model’s average ac-
curacy, expert pruning rate, and inference acceleration
effect with respect to changes in the pruning threshold
for Mixtral-8x7B.
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Figure 13: The frequency of expert selection on open-
bookqa and humaneval for Mixtral-8x7B.
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