
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 12895–12915
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Accurate KV Cache Quantization with Outlier Tokens Tracing

Yi Su1,2*, Yuechi Zhou1,2*, Quantong Qiu1,2, Juntao Li1,2†

Qingrong Xia3, Ping Li3, Xinyu Duan3, Zhefeng Wang3, Min Zhang1,2

1School of Computer Science and Technology, Soochow University
2Key Laboratory of Data Intelligence and Advanced Computing, Soochow University

3Huawei Cloud
yisunlp@outlook.com; {ljt,minzhang}@suda.edu.cn

Abstract

The impressive capabilities of Large Language
Models (LLMs) come at the cost of substan-
tial computational resources during deploy-
ment. While KV Cache can significantly re-
duce recomputation during inference, it also
introduces additional memory overhead. KV
Cache quantization presents a promising so-
lution, striking a good balance between mem-
ory usage and accuracy. Previous research has
shown that the Keys are distributed by chan-
nel, while the Values are distributed by token.
Consequently, the common practice is to ap-
ply channel-wise quantization to the Keys and
token-wise quantization to the Values. How-
ever, our further investigation reveals that a
small subset of unusual tokens exhibit unique
characteristics that deviate from this pattern,
which can substantially impact quantization ac-
curacy. To address this, we develop a simple yet
effective method to identify these tokens accu-
rately during the decoding process and exclude
them from quantization as outlier tokens, signif-
icantly improving overall accuracy. Extensive
experiments show that our method achieves
significant accuracy improvements under 2-bit
quantization and can deliver a 6.4 times reduc-
tion in memory usage and a 2.3 times increase
in throughput1.

1 Introduction

Large Language Models (LLMs) have significantly
impacted various industries due to their power-
ful capabilities (Achiam et al., 2023; Touvron
et al., 2023a,b; Dubey et al., 2024; Jiang et al.,
2023). However, their auto-regressive nature makes
the generation process slow. Although using KV
Cache can reduce decoding complexity from O(n2)
to O(n) by storing the Keys and the Values com-
puted during inference, it introduces substantial

* Equal Contribution.
† Corresponding author.
1Code is available at https://github.com/yisunlp/OTT.

memory overhead. This overhead scales with se-
quence length, batch size, and hidden dim, often
creating a memory bottleneck and placing consid-
erable pressure on resources during deployment.
As a result, optimizing KV Cache management to
enhance resource utilization and improve model
throughput remains a critical challenge.

KV Cache affects throughput in two primary
ways. First, its memory usage limits the scala-
bility of batch sizes, reducing parallelism during
decoding, and thus lowering throughput. Second,
attention computation is delayed while waiting for
the KV Cache to be transferred from memory to
the computation unit. As the size of the KV Cache
grows, the transmission time increases, decreasing
throughput. Existing approaches mainly address
this issue by optimizing hardware scheduling (Am-
inabadi et al., 2022; Dao et al., 2022; Sheng et al.,
2023; Kwon et al., 2023) and reducing the size of
the KV Cache (Liu et al., 2024b; Hooper et al.,
2024; Kang et al., 2024; Zhang et al., 2023; Xiao
et al., 2024). In this paper, we focus on the latter
approach, KV cache compression.

One method of reducing the size of the KV
Cache is to reduce the number of values that need
to be stored, which is related to the shape of the KV
Cache: [num_layers, batch_size, num_heads,
sequence_length, head_dim]. There are various
compression methods in each dimension, includ-
ing layer-wise KV Cache sharing (Wu and Tu,
2024; Brandon et al., 2024; Zuhri et al., 2024; Mu
et al., 2024), prefix sharing (Juravsky et al., 2024;
Zhu et al., 2024), head-wise KV Cache sharing
(Shazeer, 2019; Ainslie et al., 2023), token eviction
(Xiao et al., 2024; Zhang et al., 2023; Ge et al.,
2024), and low-rank projection (Wang et al., 2024;
Yu et al., 2024; Chang et al., 2024).

Another strategy for reducing the size of KV
Cache is quantization. However, unlike weight
quantization, KV Cache quantization poses unique
challenges due to the uneven distribution of the

12895

Keys and Values (Kang et al., 2024). To enhance
quantization accuracy, various methods have been
proposed, including using low-rank matrices to
approximate the error before and after quantiza-
tion (Kang et al., 2024), smoothing Key distribu-
tions through specific mappings (Ashkboos et al.,
2024; Chang et al., 2024), channel-wise Key and
token-wise Value asymmetric quantization (Liu
et al., 2024b; Hooper et al., 2024), non-uniform
quantization (Hooper et al., 2024; Dettmers et al.,
2022), mixed-precision quantization (Dong et al.,
2024), and Block Floating Point (BFP) quantiza-
tion (Trukhanov and Soloveychik, 2024). Among
these methods, channel-wise Key and token-wise
Value asymmetric quantization has garnered much
attention for its high accuracy and tuning-free na-
ture. This technique operates under the assumption
that some channels of the Keys have huge magni-
tudes and that the distribution of the Keys within
the same channel is relatively uniform.

However, our further exploration reveals that a
few outlier tokens deviate from this assumption.
Their Keys have very small magnitudes in the out-
lier channels with large magnitudes, which greatly
affects the accuracy of quantization. Based on these
observations, we propose KV Cache Quantization
with Outlier Tokens Tracing (OTT), a simple yet
effective method that identifies these tokens and ex-
cludes them from the quantization process, thereby
improving quantization accuracy. With hardware-
friendly implementation, OTT achieves significant
accuracy improvements under 2-bit quantization,
resulting in a 6.4× reduction in memory usage and
a 2.3× increase in throughput.

Overall, our contributions are as follows:

• We investigate the outlier channels of the KV
Cache and identify that some outlier tokens
deviate from the previous assumptions.

• We propose KV Cache Quantization with Out-
lier Tokens Tracing (OTT), a simple yet ef-
fective method to identify and exclude these
tokens during quantization, thus improving
overall quantization accuracy.

• Our method achieves significant accuracy im-
provements under 2-bit quantization, yielding
a 6.4× reduction in memory usage and a 2.3×
increase in throughput.

2 Background

Implementation of KV Cache. Transformer-
based (Vaswani, 2017) LLMs typically utilize KV
cache to prevent the redundant calculation of the
attention scores and accelerate auto-regressive de-
coding. The generation process of LLMs with KV
cache is divided into the prefill phase and the de-
coding phase (Patel et al., 2024). Given a prompt
X = {x0, x1, . . . , xn−1} and tensor X ∈ Rb×n×d

after embedding, where b is the batch size, n is the
length of the prompt, and d represents the hidden
size, we will briefly describe the calculation pro-
cess of the attention block, and we omit the number
of heads in the multi-head attention mechanism.

i) During the prefill phase, the Keys K<n and
Values V<n are computed and cached by transform-
ing X through the Key and Value weight matrices
Wk,Wv ∈ Rd×d of each layer, which can be for-
mulated as:

K<n = XWk, V<n = XWv.

ii) During the decoding phase, only the Keys and
Values of the new token xn need to be calculated,
which are then combined with the cached Keys and
Values to compute the new attention scores and
outputs. For the current input tensor Xn ∈ Rb×1×d,
we update the KV cache as follows:

K = K<n∥Kn, V = V<n∥Vn,

where Kn = XnWk and Vn = XnWv. We
calculate the new attention output ATT as follows:

Qn = XnWq, ATT = σ

(
QnK

⊤
√
dk

)
V, (1)

where Wq is the query weight matrix,
√
dk is the

normalization factor, and σ is the softmax function.

Necessity of compression. While KV cache re-
duces the computational complexity from O(n2)
to O(n), it introduces substantial GPU memory
overhead, particularly with long sequence lengths
and large batch sizes. For example, in the case of
LLaMA-3-8B (Dubey et al., 2024), where the num-
ber of layers nlayers is 32, the number of heads h
is 8, the head dimension d is 512, the input length
l is 8192, and the batch size b is 64, performing
inference with fp16 precision (which uses 2 bytes
per value) requires 4bhdlnlayers bytes to store the
KV cache—equivalent to 256GB of memory. Thus,
effectively compressing the KV cache is crucial to
reducing GPU memory usage.

12896

Uniform Quantization. In this paper, we fo-
cus on compressing the KV cache by reducing the
bit-width needed to represent cached tensors. A
straightforward approach is Uniform Quantization
(Jacob et al., 2018), which maps continuous nu-
merical data to a discrete domain. Specifically, to
quantize a high-precision matrix (e.g., float32) X
to a matrix X ′ with b-bit precision, we first deter-
mine the quantization step size q. Each element
Xi,j ∈ X can be quantized to Q(Xi,j) as follows:

Q(Xi,j) = ⌊(Xi,j −Xmin)/q⌋,
q = (Xmax −Xmin)/(2

b − 1),
(2)

where ⌊·⌋ is the rounding function.

Group Quantization. However, Uniform Quan-
tization does not fully exploit the distribution char-
acteristics of the data, which can lead to signif-
icant quantization errors, especially when there
are outliers. A more advanced technique is Group
Quantization (Yao et al., 2022), which divides
the matrix into multiple groups, expecting the data
within each group to share similar distribution char-
acteristics. Unlike Uniform Quantization, Group
Quantization allows each group to have different
quantization parameters, such as step size. This
flexibility enables the method to better adapt to
the local characteristics of the data, thereby reduc-
ing quantization errors while maintaining a low
bit-width. The channel-wise Key quantization and
token-wise Value quantization proposed by KIVI
(Liu et al., 2024b) is a type of Group Quantization.

3 Method

In this section, we propose KV Cache Quantization
with Outlier Tokens Tracing (OTT). We start with
a preliminary exploration of the Keys and Values
before introducing our method.

3.1 Exploration of the Keys and Values.
We conduct a series of preliminary experiments
to gain a deeper understanding of the Keys and
Values. For illustration, we take a sentence gen-
erated by LLaMA-2-7b-chat-hf 2 as an example.
Table 5 in the Appendix presents the prompt and
the generated context.

Distribution of the Keys and Values. Fig-
ure 1a and Figure 1b display the magnitude of the
Keys and Values from layer 10, head 17. Notably,
some channels exhibit exceptionally large Keys,

2https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

and within these channels, the distribution of the
Keys appears relatively uniform. In contrast, the
Values have no distinct characteristics. These obser-
vations are consistent with KIVI (Liu et al., 2024b).

Distribution in outlier channels. We further in-
vestigate the distribution of these outlier channels.
Figure 1d shows the Keys in an outlier channel
from layer 10, head 17 (we plot the first 100 tokens).
While the Keys generally exhibit a uniform distri-
bution, a few tokens are notable exceptions. This
pattern becomes clearer after sorting, as shown in
Figure 1e, where some Keys have very small values
while others are significantly larger. These excep-
tions can substantially increase Xmax −Xmin in
Equation 2 during quantization, ultimately dimin-
ishing quantization accuracy. Statistical analysis of
these outliers can be found in Appendix F.

Identifying Outlier Tokens. Intuitively, tokens
with very small magnitude of the Keys in outlier
channels are also likely to have smaller magnitude
overall. To test this hypothesis, we plot the Keys
from an outlier channel and the magnitude of the
Keys across all channels (we plot the first 300 to-
kens). As shown in Figure 4 in the Appendix, the
results confirm our assumption, suggesting that we
can efficiently and accurately identify these outlier
tokens with the magnitude of the Keys.

Removing Outlier Tokens. From our analysis,
outlier tokens significantly impact the accuracy of
quantization. By excluding these outlier tokens
during quantization and retaining them with full
precision, we can greatly reduce the loss of the at-
tention output. To investigate this further, we retain
different numbers of tokens based on different se-
lection criteria and compare the L1 loss of attention
outputs before and after quantization. The results
(Figure 1c) reveal that retaining tokens with the
largest keys yields the worst performance, while
retaining those with the smallest Keys achieves the
best results, aligning with our previous findings.

3.2 OTT: KV Cache Quantization with
Outlier Tokens Tracing

From the above observations, we find that some
outlier tokens can seriously affect the accuracy of
quantization. So, we attempt to dynamically iden-
tify these tokens during the quantization process,
exclude them during quantization, and retain their
full-precision representations. Our method consists
of two components: quantization and decoding.

Quantization We define a fixed-size outlier
pool with a capacity of outlier_num to store the

12897

https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

0 200 400 600Token 0 50100
Column

05
1015

(a)

0 200 400 600Token 0 50100

Column

0.00.51.01.52.0

(b)

0 10 20 30 40 50N
3.253.503.754.004.254.504.755.00

L1 L
oss (

×100
)

largestrandomsmallest

(c)

0 20 40 60 80 100Index
2.5
0.0
2.5
5.0
7.5

10.0
12.5
15.0

(d)

0 20 40 60 80 100Sorted index
2.5
0.0
2.5
5.0
7.5

10.0
12.5
15.0

(e)

Figure 1: Observations from preliminary experiments: (a) The Keys are distributed by channel and have some
outlier channels. (b) The distribution of the Values does not exhibit any notable characteristics. (d) In certain outlier
channels, a few tokens with low magnitude of Keys disrupt the originally uniform distribution within these channels.
(e) Visualization of the sorted Keys in an outlier channel shows a rapid increase from a low value to very high
values. (c) The L1 loss of attention output before and after quantization by retaining full-precision tokens based on
different criteria. The best result is retaining full-precision tokens with the smallest magnitude of the Keys.

Keys and Values of the outlier tokens. Follow-
ing KIVI (Liu et al., 2024b), we use channel-wise
Key quantization and token-wise Value quantiza-
tion. We quantize KV Cache every G (group size,
a hyper-parameter in our method) steps. So, at
each quantization step, there are G tokens to quant.
Based on the rule from Section 3.1, we compute
the magnitude of the Keys of each token as the
criteria, and all the tokens (tokens to quant and
tokens in the outlier pool) compete for a position
in the outlier pool according to the criteria. Once
selected as an outlier token, the Keys and Values
of the token are replaced with the mean values of
all tokens to eliminate their impact on quantization.
When the outlier pool is full and replacements are
needed, the tokens that are originally in the outlier
pool but are defeated by the newly added tokens
should return to their original positions. But for the
sake of simplicity, we retain an additional pool to
store these tokens, and when this pool is full, we
stop identifying outlier tokens.

Decoding We maintain three types of KV Cache:
the quantized KV Cache, the full-precision KV
Cache, and the KV Cache stored in the outlier pool.

The full-precision KV Cache includes group to-
kens (when the group is not full, these tokens are
not quantized and are kept in full precision) and
recent tokens (a full-precision sliding window for
the nearest tokens). First, the Query is multiplied
by all three types of Keys, and we concatenate the
results to produce the attention scores. Next, we
multiply these scores by their corresponding Val-
ues from each type and sum them to generate the
final attention output. To enhance decoding effi-
ciency, we utilize a CUDA fused kernel to multiply
full-precision and quantized matrices. We provide
a simple mathematical formulation in Appendix E.

4 Experiments

4.1 Settings
Baselines and Models. KIVI (Liu et al., 2024b) is
currently one of the strongest tuning-free baseline
with high compression efficiency and accuracy. We
use the same setting as KIVI, so we compare OTT
with KIVI and vanilla FP16 in our main experi-
ments. Due to differences in settings (e.g., com-
pression frequency, compression factor, and the
number of full-precision tokens), we do not include

12898

Query K_Ourlier

K_Quant*N

K_Full

Matmul
Att score

Concat
V_Ourlier

V_Quant*N

V_Full

Matmul
Att output

Add

(Fused matmul) (Fused matmul)

K_Full
channel-wise

K_Quant
quantization

V_FullV_Quant
token-wise

quantization

V_OurlierK_Ourlier

full-precision tensor

low-precision tensor

hidden states

Figure 2: Overview of OTT. Top: Decoding stage. Multiply the Query by each type of the Keys and concatenate the
results to obtain the attention scores. Multiply the attention scores by each type of the Values and sum the results to
get the attention output. Bottom: Quantization stage. Process the outlier tokens before quantization.

other KV Cache compression methods in the main
experiment. However, additional comparisons with
these methods are provided in Appendix B. We use
greedy decoding in our experiments. We select two
famous model families: LLaMA (Touvron et al.,
2023b; Dubey et al., 2024) and Mistral (Jiang et al.,
2023). Specifically, we select LLaMA-2-7B-chat-
hf, LLaMA-2-13B-chat-hf, LLaMA-3-8B-Instruct,
and Mistral-7B-Instruct-v0.2. We also add experi-
ments on LLaMA-2-70B-chat-hf in Appendix B.

Tasks. We evaluate our methods and the base-
lines on two benchmarks according to the length of
input texts. For normal context length evaluation,
we use arithmetic reasoning task Gsm8k (Cobbe
et al., 2021), mainstream language and symbolic
reasoning task BBH (Suzgun et al., 2023), and
code completion task HumanEval (Chen et al.,
2021). For long context length evaluation, we
choose four types of tasks in LongBench (Bai
et al., 2024a) including Document QA, Summa-
rization, Few-shot Learning and Code completion.
We provide more results of different benchmarks
and baselines in Appendix G.

Details. We implement both KIVI and OTT un-
der 2-bit quantization. For KIVI, the group size (G)
and residual length (R, size of the sliding window
storing the nearest tokens) are set to 128. For OTT,
we use G = 128, R = 32, and set outlier_num to 3.
Notably, we set outlier_num to 0 for the first and
second layers because we find that shallow layers
have no outlier tokens (Ablation in Section 4.4).
Regarding the additional pool used to store tokens
evicted from the outlier pool, we find that a very
small size is sufficient to retain all the eliminated

tokens. Therefore, we set its size to 32. There are
some differences in the processing of group and
residual tokens between OTT and KIVI. KIVI com-
presses the Keys every G steps, while compressing
the Values at each step. We choose to compress
both the Keys and Values every G steps for more
consistent processing of KV Cache. GSM8K and
BBH are tested under LM Eval (Gao et al., 2024).
Humaneval follows the settings from InstructEval3.
The experiments are conducted on NVIDIA A100
40G GPUs unless otherwise specified.

4.2 Results

4.2.1 Normal context length evaluation

Table 1 presents the results of the normal context
length evaluation across different models and meth-
ods. For Gsm8k and BBH, we report accuracy in
the setting of few-shot, few-shot CoT, and zero-
shot CoT. For HumanEval, we report pass@1 and
pass@10 in the zero-shot setting. The results il-
lustrate that our method significantly outperforms
KIVI across all settings. Notably, on BBH (3-CoT,
LLaMA-3-8B-Instruct), OTT achieves a 12.93%
improvement over KIVI. Compared to FP16, OTT
incurs minor accuracy loss in most settings. The
largest accuracy drop occurs on BBH (3-CoT,
Mistral-7B-Instruct), likely due to the high com-
plexity of the task and the long generation length
required. Overall, OTT can achieve significant per-
formance improvements over KIVI.

3https://github.com/declare-lab/instruct-eval

12899

https://github.com/declare-lab/instruct-eval

Dataset
LLaMA-2-7B-chat-hf LLaMA-2-13B-chat-hf LLaMA-3-8B-Instruct Mistral-7B-Instruct

Fp16 KIVI Ours Fp16 KIVI Ours Fp16 KIVI Ours Fp16 KIVI Ours

Gsm8k (8) 21.99 16.30 21.38 36.54 28.51 36.09 74.91 63.15 72.55 42.91 37.38 41.17

+ CoT 21.30 17.51 18.20 37.00 31.77 36.92 76.72 66.79 75.06 42.99 37.45 41.39

+ 0-CoT 24.11 21.61 22.59 32.60 29.19 31.31 40.64 37.54 42.68 40.18 33.81 37.98

BBH (3) 33.34 32.48 33.36 37.61 36.20 37.43 45.77 44.19 45.60 42.10 40.29 42.02

+ CoT 40.21 34.00 35.17 47.38 41.02 44.37 68.18 47.38 60.31 51.33 36.42 41.93

+ 0-CoT 35.00 33.30 34.25 35.86 33.57 34.80 51.37 44.19 48.89 41.74 37.83 40.19

HE (p@1) 12.19 9.75 11.58 7.92 7.31 7.92 40.24 28.05 40.85 40 .24 32.92 35.36

HE (p@10) 17.07 12.19 14.63 13.41 11.58 15.24 69.51 56.09 67.68 54.87 50.00 54.26

Average 25.65 22.14 23.90 31.04 28.14 30.51 58.42 48.16 56.70 44.55 38.26 41.79

Table 1: Results on GSM8K, BBH, and HumanEval (HE). Bold: the best results. We report accuracy for Gsm8k,
BBH and Pass@k for HumanEval. Pass@k (p@k) refers to running each test question k times and calculating the
average pass rate of the generated code. OTT outperforms KIVI across all tasks, achieving the best results.

4.2.2 Long context length tasks evaluation
The main results of long context length evaluation
are in table 2. Our method outperforms KIVI in
most settings, with only a tiny performance gap
compared to the FP16 baseline. While KIVI main-
tains good accuracy on most tasks, it occasionally
experiences significant performance drops (e.g.,
LLaMA-3-8B-Instruct, LCC: 56.58% → 44.42%).
However, OTT does not encounter this situation,
which suggests that our method achieves higher
quantization accuracy than KIVI.

4.3 Efficiency comparison

Additionally, to validate the memory reduction and
throughput improvements achieved by OTT, we
conduct three experiments: a throughput test, a
memory test, and a longest sentence test. The
throughput test measures the number of tokens gen-
erated per second as the batch size varies while
keeping the input and output lengths fixed. The
memory test tracks memory usage as the batch size
changes, also with fixed input and output lengths.
The longest sentence test assesses the memory re-
quired for inference as the output length increases
infinitely (until out-of-memory), with a fixed batch
size of 1 and an input length of 1. We use the
LLaMA-2-7B-chat-hf model for our experiments,
and set the input length to 64 and the output length
to 384 for both the throughput and memory tests.
Figure 3 illustrates the results.

Figure 3a shows that when the batch size is small,
OTT performs slightly slower than the FP16 base-
line. However, as the batch size increases, OTT

demonstrates a significant speed advantage. Our
method is consistently faster than KIVI at any batch
size because it does not require compressing the
Values at each step. Although processing outlier
tokens introduces some additional computational
overhead, the outlier pool is very small, and the
compression frequency is low. As a result, the over-
head is negligible in the overall decoding process.

From Figure 3b, it is evident that quantization
significantly reduces memory usage compared to
the FP16 baseline. OTT requires slightly more
memory than KIVI, this is because OTT tends to
retain more full-precision tokens. However, as the
sequence length increases, this impact diminishes.
Figure 3c provides a clearer view of the compres-
sion ratio (represented by the slope of each line) for
the KV Cache. When the sequence length becomes
sufficiently large, the effects of full-precision to-
kens are negligible. Notably, the compression ratio
of KIVI and OTT reaches approximately 6.4x. We
provide more time analysis in Appendix C and G

4.4 Ablation studies

Group size and residual length. Group size and
residual length are critical hyperparameters in OTT.
Theoretically, a larger group size allows more val-
ues to be quantized at each step, which can reduce
quantization accuracy due to the increased range of
Xmax −Xmin. On the other hand, a larger group
size decreases memory usage by requiring fewer
quantization coefficients to be retained. Conversely,
increasing the residual length requires more mem-
ory since a larger full-precision KV Cache must

12900

Model Qasper GovReport MultiNews TREC TriviaQA SamSum LCC RepoBench-P Avg

LLaMA-2-7B-chat-hf
Fp16 20.04 25.08 23.02 59.67 85.39 39.28 59.59 48.04 45.01

KIVI 20.43 19.97 19.82 59.67 85.16 37.70 58.73 47.24 43.59

Ours 19.95 21.56 20.81 59.67 85.00 39.10 59.44 48.51 44.26

LLaMA-2-13B-chat-hf
Fp16 17.42 25.65 23.35 64.00 86.52 40.49 49.80 47.13 44.30

KIVI 20.10 20.65 21.10 63.67 86.39 39.51 49.10 43.95 43.06

Ours 18.81 22.29 21.69 64.00 86.81 40.35 51.14 47.71 44.10

LLaMA-3-8B-Instruct
Fp16 37.54 31.04 25.58 69.67 89.85 40.50 56.58 51.01 50.22

KIVI 34.88 28.43 24.78 69.33 89.57 40.09 44.42 45.54 47.13

Ours 36.75 30.74 24.94 69.67 89.74 40.39 52.37 48.82 49.18

Mistral-7B-Instruct-v0.2
Fp16 24.35 33.05 25.77 67.00 86.84 40.95 57.24 49.84 48.13

KIVI 24.20 30.98 25.10 66.33 85.40 41.05 55.70 48.18 47.12

Ours 23.78 31.37 25.35 66.33 86.18 41.25 55.89 48.32 47.31

Table 2: Main results on LongBench. We report accuracy for TREC, Rouge-L for GovReport and SamSum, edit
similarity (Levenshtein distance (Svyatkovskiy et al., 2020)) for LCC and RepoBenchP, and F1 score for the other
tasks. Bold: the best results for each setting. OTT demonstrates superior performance on average.

50 100 150 200 250
Batch Size

500
750

1000
1250
1500
1750
2000
2250

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

FP16
KIVI
Ours

(a) System throughput

0 50 100 150 200 250
Batch Size

0

10

20

30

40

50

60

70

M
em

or
y

(G
B)

FP16
KIVI
Ours

(b) Memory Usage by batch size

0 25 50 75 100 125 150 175
Sequence Length (K)

10

15

20

25

30

35

40

M
em

or
y

(G
B)

r=0.990 r=0.153
r=0.154

FP16
KIVI
Ours

(c) Memory Usage by length

Figure 3: Experiments on throughput and memory: (a) Comparison of throughput (tokens/s) for different methods
across different batch sizes on NVIDIA A800 80G. (b) Peak memory usage (including model weights and other
components) at different batch sizes on NVIDIA A800 80G. (c) Peak memory usage (including model weights and
other components) at different sequence lengths when batch size = 1 on NVIDIA A100 40G. The results shows that
OTT achieves a peak memory reduction of up to 6.4× and a throughput increase of 2.3×.

be retained, but it also improves accuracy. Thus,
selecting an appropriate group size and residual
length is critical to balancing memory usage and
accuracy. We explore the impact of group size and
residual length with group sizes of {32, 64, 128}
and residual lengths of {0, 8, 16, 32, 64, 128}. Ta-
ble 3 reports the results for LLaMA-3-8B-Instruct
on Gsm8k 8-shot and 8-shot CoT under different
configurations. When the group size is fixed, we
observe a clear upward trend in accuracy as the
residual length increases. However, when the resid-
ual length is fixed, the effect of group size shows
no clear pattern, likely because the token distribu-
tion is relatively uniform, meaning that increasing
group size has a limited impact. Since increasing
the group size can improve the compression ratio (if
not consider the group tokens), we tend to choose
a larger group size. For our main experiments, we
choose a group size of 128 and a residual length of
32 to balance performance and compression ratio.

The number of outlier tokens. We explore the
effect of varying outlier_num from 0 to 6, keep-
ing all other settings unchanged. Table 4 presents
the results for LLaMA-3-8B-Instruct on Gsm8k
(8-shot and 8-shot CoT). The results show that
retaining even a single outlier token can signifi-
cantly improve performance, but further increases
in outlier_num yield diminishing returns, eventu-
ally plateauing performance. However, the increase
in outlier_num may result in more memory over-
head, leading to a decrease in compression ratio.
Considering that a small outlier_num is already
sufficient to significantly improve the accuracy, we
set outlier_num = 3 for our main experiments.

Outlier tokens in shallow layers. We observe
that there are no outlier tokens in the shallow layers
(see Figure 5 and Figure 6 in Appendix, the Keys
in the shallow layers does not exhibit the charac-
teristics discussed in Section 3.1), suggesting that
outlier_num should be set to 0 in these layers.

12901

G R Gsm8k(8) Gsm8k(8-CoT) G R Gsm8k(8) Gsm8k(8-CoT) G R Gsm8k(8) Gsm8k(8-CoT)

32 0 70.05 73.16 64 0 68.92 72.63 128 0 70.96 73.54

32 8 71.95 74.22 64 8 70.05 73.01 128 8 72.51 74.15

32 16 72.78 74.83 64 16 70.89 73.84 128 16 72.93 74.37

32 32 72.78 74.53 64 32 72.40 75.06 128 32 72.55 75.06

32 64 74.00 76.88 64 64 73.69 76.42 128 64 73.24 75.36

32 128 73.77 77.33 64 128 74.68 76.42 128 128 73.24 76.65

Table 3: Results of different G and R. The settings in the main experiment are indicated with underlines.

outlier_num Gsm8k(8) Gsm8k(8-CoT)
0 62.09 68.31
1 71.80 75.74
2 71.57 75.06
3 72.55 75.06
4 72.25 75.97
5 72.18 75.74
6 72.18 75.89

Layers Gsm8k(8) Gsm8k(8-CoT)
None 72.48 75.59

0 72.78 75.44
0,1 72.55 75.06

0 ∼ 2 71.49 74.68
0 ∼ 3 71.80 73.64
0 ∼ 4 70.96 74.53
0 ∼ 5 69.60 74.00

Table 4: Ablation study of outlier_num. The settings in the main experiment are indicated with underlines. Left:
results on Gsm8k with different outlier_num. Right: results on Gsm8k with outlier_num = 0 in shallow layers.

To explore this further, we set outlier_num to
0 in consecutive shallow layers and evaluate the
performance on Gsm8k (8-shot and 8-shot CoT)
using LLaMA-3-8B-Instruct. For example, “0 ∼ 2”
means that outlier_num is set to 0 for the first
three layers of the model. Table 4 shows that
the impact is minimal in the shallowest layers
but becomes more significant as we move deeper
into the model. Based on these results, we set
outlier_num = 0 for the first two layers in all
models for our main experiments.

5 Related work

Efficient Inference of LLMs. Large Language
Models often have enormous parameters, leading
to significant computational costs on inference. To
address this, some researchers have employed pa-
rameter pruning techniques to eliminate redundant
or less important parameters, thereby compressing
LLMs (Ma et al., 2023; Xia et al., 2024; Frantar
and Alistarh, 2023). Other studies have focused
on quantizing model weights, reducing their size
and the number of arithmetic operations required
for inference. For example, GPTQ (Frantar et al.,
2022) uses second-order information to quantize
models to 3 or 4-bit precision while maintaining
accuracy. AWQ (Lin et al., 2024) preserves critical
weights based on the activation distribution, quan-
tizing the remaining weights to lower bit precision.
These methods can be combined with KV Cache
compression to achieve a better performance.

KV Cache Compression. KV Cache compres-
sion can significantly reduce the size of KV Cache
with minimal accuracy loss. Liu et al. (2024b)
find that some outlier channels in the Keys have
very large magnitudes, resulting in a significant
loss. Hooper et al. (2024) find that quantizing the
Key cache before applying rotary positional em-
beddings reduces the negative impact of quantiza-
tion. Xiao et al. (2024) propose StreamingLLM,
which retains the initial and final tokens of the in-
put. Similarly, Sun et al. (2024) find a "massive
activations" pattern in LLMs, where a few activa-
tions have much higher values than others. These
values stay stable across inputs and act as critical
bias terms in the model. Zhang et al. (2023) find
that only a minority of tokens influence the output.

6 Conclusion

In this paper, we start from the assumptions of
KIVI and further explore the distribution of the
Keys in the outlier channels. We observe that a
few outlier tokens deviate from the assumptions of
KIVI. Quantizing these tokens has detrimental ef-
fects, as it increases the quantization errors of other
tokens. Building on these observations, we pro-
pose KV Cache Quantization with Outlier Tokens
Tracing (OTT), which leverages the magnitude of
the Keys to dynamically trace these tokens during
decoding, excluding them from the quantization
process while retaining their full-precision repre-
sentations. Extensive experiments show that our

12902

method achieves significant improvements in accu-
racy, along with substantial reductions in memory
usage and increases in throughput.

Limitations

Although OTT has achieved excellent results, there
are still some limitations:

• Due to the presence of the group and near-
est tokens, we cannot ensure that all tokens
are quantized at every moment. When the se-
quence length is very short and the batch size
is very large, the compression ratio of OTT is
reduced. In extreme cases, when the sequence
length is shorter than the group size, OTT does
not perform any compression.

• OTT occasionally still incurs a little loss
on specific datasets under 2-bit quantization.
This may be related to the difficulty of the
datasets and the required generation length.
When the generation length is very long, OTT
may face an unacceptable risk of loss due to
error accumulation.

Acknowledgements

We want to thank all the anonymous reviewers
for their valuable comments. This work was sup-
ported by the National Science Foundation of
China (NSFC No.62206194), the Natural Science
Foundation of Jiangsu Province, China (Grant No.
BK20220488), the Young Elite Scientists Spon-
sorship Program by CAST (2023QNRC001), and
the Priority Academic Program Development of
Jiangsu Higher Education Institutions.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury
Zemlyanskiy, Federico Lebron, and Sumit Sanghai.
2023. Gqa: Training generalized multi-query trans-
former models from multi-head checkpoints. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4895–
4901.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Am-
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff

Rasley, et al. 2022. Deepspeed-inference: enabling
efficient inference of transformer models at unprece-
dented scale. In SC22: International Conference for
High Performance Computing, Networking, Storage
and Analysis, pages 1–15. IEEE.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximil-
ian L Croci, Bo Li, Martin Jaggi, Dan Alistarh,
Torsten Hoefler, and James Hensman. 2024. Quarot:
Outlier-free 4-bit inference in rotated llms. arXiv
preprint arXiv:2404.00456.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2024a. Longbench: A bilingual, mul-
titask benchmark for long context understanding. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2024, Bangkok, Thailand, Au-
gust 11-16, 2024, pages 3119–3137. Association for
Computational Linguistics.

Yushi Bai, Shangqing Tu, Jiajie Zhang, Hao Peng,
Xiaozhi Wang, Xin Lv, Shulin Cao, Jiazheng Xu,
Lei Hou, Yuxiao Dong, et al. 2024b. Longbench
v2: Towards deeper understanding and reasoning
on realistic long-context multitasks. arXiv preprint
arXiv:2412.15204.

William Brandon, Mayank Mishra, Aniruddha
Nrusimha, Rameswar Panda, and Jonathan Ragan
Kelly. 2024. Reducing transformer key-value cache
size with cross-layer attention. arXiv preprint
arXiv:2405.12981.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-
Yan Chen, Yu-Fang Hu, Pei-Shuo Wang, Ning-Chi
Huang, Luis Ceze, and Kai-Chiang Wu. 2024. Palu:
Compressing kv-cache with low-rank projection.
arXiv preprint arXiv:2407.21118.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Advances in Neural Information Processing Systems,
35:16344–16359.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Gpt3. int8 (): 8-bit matrix mul-
tiplication for transformers at scale. Advances in
Neural Information Processing Systems, 35:30318–
30332.

12903

https://aclanthology.org/2024.acl-long.172
https://aclanthology.org/2024.acl-long.172

Shichen Dong, Wen Cheng, Jiayu Qin, and Wei Wang.
2024. Qaq: Quality adaptive quantization for llm kv
cache. arXiv preprint arXiv:2403.04643.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot. In International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pages 10323–10337. PMLR.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. GPTQ: accurate post-training
quantization for generative pre-trained transformers.
CoRR, abs/2210.17323.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2024. A framework for few-shot language model
evaluation.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang,
Jiawei Han, and Jianfeng Gao. 2024. Model tells
you what to discard: Adaptive kv cache compression
for llms. In The Twelfth International Conference on
Learning Representations.

Yefei He, Luoming Zhang, Weijia Wu, Jing Liu, Hong
Zhou, and Bohan Zhuang. 2024. Zipcache: Accurate
and efficient kv cache quantization with salient token
identification. arXiv preprint arXiv:2405.14256.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh,
Michael W. Mahoney, Yakun Sophia Shao, Kurt
Keutzer, and Amir Gholami. 2024. Kvquant: To-
wards 10 million context length LLM inference with
KV cache quantization. CoRR, abs/2401.18079.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan-
tanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang,
and Boris Ginsburg. 2024. Ruler: What’s the real
context size of your long-context language models?
arXiv preprint arXiv:2404.06654.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong
Zhu, Matthew Tang, Andrew G. Howard, Hartwig
Adam, and Dmitry Kalenichenko. 2018. Quanti-
zation and training of neural networks for efficient
integer-arithmetic-only inference. In 2018 IEEE Con-
ference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22,
2018, pages 2704–2713. Computer Vision Founda-
tion / IEEE Computer Society.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

Jordan Juravsky, Bradley Brown, Ryan Ehrlich,
Daniel Y Fu, Christopher Ré, and Azalia Mirho-
seini. 2024. Hydragen: High-throughput llm
inference with shared prefixes. arXiv preprint
arXiv:2402.05099.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa
Jeong, Zaoxing Liu, Tushar Krishna, and Tuo Zhao.
2024. GEAR: an efficient KV cache compression
recipe for near-lossless generative inference of LLM.
CoRR, abs/2403.05527.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611–626.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. 2024. Snapkv:
Llm knows what you are looking for before genera-
tion. arXiv preprint arXiv:2404.14469.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. 2024.
AWQ: activation-aware weight quantization for on-
device LLM compression and acceleration. In Pro-
ceedings of the Seventh Annual Conference on Ma-
chine Learning and Systems, MLSys 2024, Santa
Clara, CA, USA, May 13-16, 2024. mlsys.org.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024a. Lost in the middle: How language
models use long contexts. Transactions of the Asso-
ciation for Computational Linguistics, 12:157–173.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and
Xia Hu. 2024b. KIVI: A tuning-free asymmetric 2bit
quantization for KV cache. In Forty-first Interna-
tional Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16,
2023.

12904

https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://doi.org/10.48550/ARXIV.2210.17323
https://doi.org/10.48550/ARXIV.2210.17323
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.48550/ARXIV.2401.18079
https://doi.org/10.48550/ARXIV.2401.18079
https://doi.org/10.48550/ARXIV.2401.18079
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2403.05527
https://doi.org/10.48550/ARXIV.2403.05527
https://proceedings.mlsys.org/paper_files/paper/2024/hash/42a452cbafa9dd64e9ba4aa95cc1ef21-Abstract-Conference.html
https://proceedings.mlsys.org/paper_files/paper/2024/hash/42a452cbafa9dd64e9ba4aa95cc1ef21-Abstract-Conference.html
https://openreview.net/forum?id=L057s2Rq8O
https://openreview.net/forum?id=L057s2Rq8O
http://papers.nips.cc/paper_files/paper/2023/hash/44956951349095f74492a5471128a7e0-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/44956951349095f74492a5471128a7e0-Abstract-Conference.html

Yongyu Mu, Yuzhang Wu, Yuchun Fan, Chenglong
Wang, Hengyu Li, Qiaozhi He, Murun Yang, Tong
Xiao, and Jingbo Zhu. 2024. Cross-layer attention
sharing for large language models. arXiv preprint
arXiv:2408.01890.

Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka
Shah, Íñigo Goiri, Saeed Maleki, and Ricardo Bian-
chini. 2024. Splitwise: Efficient generative llm in-
ference using phase splitting. In 2024 ACM/IEEE
51st Annual International Symposium on Computer
Architecture (ISCA), pages 118–132. IEEE.

Noam Shazeer. 2019. Fast transformer decoding:
One write-head is all you need. arXiv preprint
arXiv:1911.02150.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuo-
han Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. 2023.
Flexgen: High-throughput generative inference of
large language models with a single gpu. In Inter-
national Conference on Machine Learning, pages
31094–31116. PMLR.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang
Liu. 2024. Massive activations in large language
models. arXiv preprint arXiv:2402.17762.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi,
Denny Zhou, and Jason Wei. 2023. Challenging
big-bench tasks and whether chain-of-thought can
solve them. In Findings of the Association for Com-
putational Linguistics: ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 13003–13051. Association for
Computational Linguistics.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu,
and Neel Sundaresan. 2020. Intellicode compose:
Code generation using transformer. In Proceedings
of the 28th ACM joint meeting on European software
engineering conference and symposium on the foun-
dations of software engineering, pages 1433–1443.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Nikita Trukhanov and Ilya Soloveychik. 2024. Accu-
rate block quantization in llms with outliers. arXiv
preprint arXiv:2403.20137.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Y Wang, D Ma, and D Cai. 2024. With greater
text comes greater necessity: Inference-time train-
ing helps long text generation. arXiv preprint
arXiv:2401.11504.

Haoyi Wu and Kewei Tu. 2024. Layer-condensed kv
cache for efficient inference of large language models.
arXiv preprint arXiv:2405.10637.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi
Chen. 2024. Sheared llama: Accelerating language
model pre-training via structured pruning. In The
Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11,
2024. OpenReview.net.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming lan-
guage models with attention sinks. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.
Zeroquant: Efficient and affordable post-training
quantization for large-scale transformers. In Ad-
vances in Neural Information Processing Systems
35: Annual Conference on Neural Information Pro-
cessing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022.

Howard Yen, Tianyu Gao, Minmin Hou, Ke Ding,
Daniel Fleischer, Peter Izsak, Moshe Wasserblat, and
Danqi Chen. 2024. Helmet: How to evaluate long-
context language models effectively and thoroughly.
arXiv preprint arXiv:2410.02694.

Hao Yu, Zelan Yang, Shen Li, Yong Li, and Jianxin Wu.
2024. Effectively compress kv heads for llm. arXiv
preprint arXiv:2406.07056.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark W. Barrett,
Zhangyang Wang, and Beidi Chen. 2023. H2O:
heavy-hitter oracle for efficient generative inference
of large language models. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Lei Zhu, Xinjiang Wang, Wayne Zhang, and Ryn-
son WH Lau. 2024. Relayattention for efficient large
language model serving with long system prompts.
arXiv preprint arXiv:2402.14808.

Zayd Muhammad Kawakibi Zuhri, Muhammad Farid
Adilazuarda, Ayu Purwarianti, and Alham Fikri Aji.
2024. Mlkv: Multi-layer key-value heads for mem-
ory efficient transformer decoding. arXiv preprint
arXiv:2406.09297.

12905

https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
http://papers.nips.cc/paper_files/paper/2022/hash/adf7fa39d65e2983d724ff7da57f00ac-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/adf7fa39d65e2983d724ff7da57f00ac-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html

A Additional Figures and Tables

Input:
[INST]Which methods did Socrates employ to challenge the prevailing thoughts of his

time?
[/INST]

Output:
[INST]Which methods did Socrates employ to challenge the prevailing thoughts of his

time?
[/INST] Socrates employed several methods to challenge the prevailing thoughts of his

time, including:
1. Questioning: Socrates used questioning as a primary method to challenge the beliefs

of others. He would ask probing questions to expose the contradictions and inconsistencies
in their arguments, and to lead them to a deeper understanding of their own beliefs.

2. Dialogue: Socrates believed in the power of dialogue to promote critical thinking
and understanding. He would engage in conversations with others, using his questions and
their responses to challenge their beliefs and to encourage them to think more deeply about
their ideas.

3. Irony: Socrates often used irony to challenge the beliefs of others. By using irony,
he could expose the flaws in their arguments and lead them to see things from a different
perspective.

4. Paradox: Socrates often used paradoxical statements to challenge the prevailing
beliefs of his time. By presenting seemingly contradictory statements, he could encourage
his interlocutors to think more critically about their beliefs and to question their assumptions.

5. Maieutics: Socrates believed in the power of midwifery, or maieutics, to bring forth
new ideas and insights. He would use his questions and dialogue to help others discover new
truths and to challenge their existing beliefs.

6. Analogy: Socrates often used analogies to help others understand complex ideas and
to challenge their beliefs. By using comparisons and contrasts, he could help his interlocutors
to see things from a different perspective and to develop a deeper understanding of the issues
at hand.

7. Refutation: Socrates was skilled at refuting the arguments of others by exposing their
flaws and inconsistencies. He would use his questions and dialogue to challenge the beliefs
of others and to lead them to a deeper understanding of the issues at hand.

8. Affirmation: Socrates also used affirmation to challenge the prevailing thoughts of
his time. By affirming the beliefs of others and building on them, he could encourage them
to think more deeply about their ideas and to develop a more nuanced understanding of the
issues at hand.

9. Silence: Socrates believed that sometimes the best way to challenge the prevailing
thoughts of his time was through silence. By remaining silent in the face of foolish or false
arguments, he could encourage others to think more critically about their beliefs and to
question their assumptions.

Overall, Socrates employed a wide range of methods to challenge the prevailing thoughts
of his time, including questioning, dialogue, irony, paradox, maieutics, analogy, refutation,
affirmation, and silence. Through these methods, he was able to encourage critical thinking
and to promote a deeper understanding of the issues at hand.

Table 5: Example generated by LLaMA-2-7B-chat-hf.

12906

2.5
0.0
2.5
5.0
7.5

10.0
12.5
15.0

0 50 100 150 200 250 300Index0.0
0.2
0.4
0.6
0.8
1.0

Figure 4: The Keys in an outlier channel (up) and the magnitude of the Keys overall (down).

Layer 0 key cache

0 200 400 600Token 0 50100

Column

01
23

Layer 0 value cache

0 200 400 600Token 0 50100

Column

0.0
0.2
0.4

Layer 10 key cache

0 200 400 600Token 0 50100
Column

05
1015

Layer 10 value cache

0 200 400 600Token 0 50100

Column

0.00.51.01.52.0

Layer 20 key cache

0 200 400 600Token 0 50100

Column

05
1015

Layer 20 value cache

0 200 400 600Token 0 50100

Column

0.00.51.01.52.0

Layer 31 key cache

0 200 400 600Token 0 50100

Column

0
5
10

Layer 31 value cache

0 200 400 600Token 0 50100
Column

0
1
2

Figure 5: Magnitude of the keys and Values for Llama-2-7B-chat-hf in head 17.

2.5
2.0
1.5
1.0
0.5
0.0
0.5
1.0

0 50 100 150 200 250 300Index
2.5
2.0
1.5
1.0
0.5
0.0
0.5
1.0

Figure 6: The Keys in an outlier channel (up) and the sorted Keys in an outlier channel (down).

12907

B Additional Experiment Results

B.1 Experiments on LLaMA-2-70b-chat-hf

To validate the performance on larger models, we
conduct additional experiments on LLaMA-2-70b-
chat-hf. The experimental setup is completely con-
sistent with the main experiment. The result in
Table 6 shows that OTT can still achieve higher ac-
curacy advantages on larger models based on KIVI.

70b-chat-hf Gsm8k(8) Gsm8k(8-cot) Gsm8k(0-cot) BBH(3) HE(p@1) Avg

FP16 56.03 55.04 48.98 47.09 16.46 44.72

KIVI 51.63 50.49 46.40 46.08 14.02 41.72

Ours 52.92 52.54 49.05 46.48 15.85 43.37

Table 6: Experiments on LLaMA-2-70b-chat-hf

B.2 Comparison with token eviction methods

We add some comparisons with the token eviction
methods. The previous token eviction methods are
mostly evaluated on LongBench, so we also con-
duct experiments on LongBench using LLaMA-
2-7b-chat-hf. The input length of LongBench is
relatively long, while the output length is relatively
short, which may be more conducive to the perfor-
mance of the token eviction methods. The base-
lines include StreamingLLM (Xiao et al., 2024),
H2O (Zhang et al., 2023), and SnapKV (Li et al.,
2024). In order to maintain the simplicity and con-
sistency of the settings for comparison, we only
perform token eviction in the prefill stage, and re-
tain all KV caches in the decode stage. In addi-
tion, we make some adjustments to H2O based on
SnapKV’s strategy, selecting only the queries in the
sliding window for attention score selection (which
was later verified to be superior to H2O’s strategy).
In order to maintain the overall compression ratio
consistent with OTT, we choose to evict 84% of the
tokens in the prefill stage, which have the closest
compression ratio to OTT. For H2O, the number
of recent tokens and heavy hitters is the same. For
StreamingLLM, we do not adjust its position id
during decoding phase. So, the process of token
eviction is as follows:

• In the prefill stage, use queries in the sliding
window to calculate the attention score with
other tokens, and perform token eviction ac-
cording to the strategies of StreamingLLM,
H2O, and SnapKV respectively.

• During the decode phase, attention calculation
is performed directly without token eviction.

The results are shown in Table 7 Among these meth-
ods, SnapKV achieves the best results. But even
under more favorable settings, the result is still
slightly lower than OTT.

B.3 Comparison with ZipCache
We compare OTT with ZipCache (He et al., 2024),
and in order to maintain consistent compression
rates, we set 20% of the tokens to 4-bit quantization
and 80% to 2-bit quantization. The other hyper-
parameters in ZipCache are the same. We conduct
our experiments on GSM8K, BBH and HumanEval
with LLaMA-2-7b-chat-hf. The results in Table 8
show that ZipCache is weaker than KIVI and OTT.

C Additional Time Analysis

We provide a more detailed analysis of the time
cost. The computational overhead comes from two
aspects. In the compression stage, we calculate the
magnitude of each token’s key, perform compari-
son, select the index, and quantify it. The cost of
the outlier operation is relatively high compared
to quantization, but the compression is only per-
formed every G steps, so this time cost can be
almost negligible compared to the whole decoding
process. In the attention calculation stage, we need
to calculate the qkv in the outlier pool and cover the
attention score according to the outlier token index,
which has a certain cost. We plot the detailed time
consumption in the attention block in Figure 7, and
the outlier operation accounts for about 18%. Con-
sidering the pre-processing, post-processing and
FFN calculation in the entire forward step, the time
proportion of outlier operations is very small.

18%

13%

14%

55%

outlier qkv_linear quant_matmul other

Figure 7: The time proportion in the attention block.

12908

LLaMA-2-7b-chat Qasper GovReport MultiNews TREC TriviaQA SamSum LCC Repobench-P Avg

FP16 20.04 25.08 23.02 59.67 85.39 39.28 59.59 48.04 45.01

KIVI 20.43 19.97 19.82 59.67 85.16 37.7 58.73 47.24 43.59

SnapKV 18.96 18.73 19.64 59 84.84 38.22 60.5 50.08 43.75

H2O 17.51 18.85 19.88 50 84.22 38.09 58.23 49.66 42.05

Streaming 15.31 19.39 18.99 51 83.11 36.8 57.57 47.33 41.19

Ours 19.95 21.56 20.81 59.67 85 39.1 59.44 48.51 44.26

Table 7: Experiments on three additional eviction-based methods on LLaMA-2-7b-chat-hf.

LLaMA-2-7b-chat Gsm8k(8) 8-cot 0-cot BBH(3) 3-cot 0-cot HE(p@1) p@10 Avg

FP16 21.99 21.3 24.11 33.34 40.21 35.00 12.19 17.07 45.01

KIVI 16.3 17.51 21.61 32.48 34 33.30 9.75 12.19 43.59

Ours 19.86 19.33 22.52 33.33 34.43 33.74 11.58 14.63 43.75
ZipCache 15.92 17.74 20.02 32.85 33.9 32.35 9.45 15.24 42.05

Table 8: Experiments on ZipCache.

D Proof of Low-Magnitude Keys
Disrupting Attention Weights

We formalize the claim that low-magnitude keys in
outlier channels disrupt attention weights through
two steps:

D.1 Quantization Error
• Definitions:

– Let Kc ∈ Rn be an outlier channel con-
taining n Key values where ∃ a subset
S ⊂ {1, . . . , n} with |S| = m ≪ n
such that:

Kc,i ∈ [µ− σ, µ+ σ],∀i /∈ S

(uniform distribution)
Kc,j ∈ [ϵ, δ], ∀j ∈ S

where 0 < ϵ ≪ µ− σ

• Quantization Parameters:

– Full range: Xmax = max(Kc), Xmin =
min(Kc)

– Quantization step: q = Xmax−Xmin
2b−1

• Key Observation: The presence of low-
magnitude outliers forces:

Xmin ≤ ϵ ≪ µ− σ and Xmax ≥ µ+ σ

=⇒ q =
(µ+ σ)− ϵ

2b − 1
≫ 2σ

2b − 1

• Result: Low-magnitude outliers inflate quan-
tization step size, leading to larger approxima-
tion errors for all tokens in the channel.

D.2 Error Propagation to Attention Weights
• Attention Score Calculation: For query vec-

tor Q ∈ Rd and quantized Key matrix K ′:

Ai =
QK ′

i√
d

and A
quant
i = Ai+

Q(K ′
i −Ki)√
d︸ ︷︷ ︸

∆Ai

• Error Analysis:

– For outlier channel c:

E[|K ′
c,i −Kc,i|] ∝ q

∆Ai ∼
d∑

c=1

Qc(K
′
c,i −Kc,i)

• Key Observation: In outlier channels where
|Qc| is typically large (by definition of being
“outlier channels”), the quantization error gets
amplified by:

∆Ai ∝ Qc(K
′
c,i −Kc,i) ≈ Qc · q

• Result: The error in quantization steps propa-
gates to attention weights.

E Mathematical Formulation of OTT

Outlier Token Identification For a token ti with
Key vector Ki, its outlier score Si is computed as
the magnitude of its Keys, typically measured via
the L1-norm:

Si = ∥Ki∥
Tokens with smaller Si are identified as outliers
since their Keys deviate significantly from the uni-
form distribution in outlier channels.

12909

Competition Mechanism At each quantization
step (every G tokens), tokens in the current group
T = {t1, t2, . . . , tG} compete with the existing
outlier pool O (capacity N) for inclusion. The
process involves:

1. Score Calculation: Compute Si for all tokens
in T and O.

2. Token Ranking: Combine T and O, then sort
all tokens by Si in ascending order:

Sorted List = argsort(Si), ∀ti ∈ T ∪ O

3. Outlier Pool Update: Select the top-N to-
kens with the smallest Si to form the new
outlier pool:

Onew = {tj | j ∈ top-N indices of Sorted List}

4. Replacement Handling: Tokens evicted
from O (if |T ∪ O| > N) are stored in an
auxiliary pool or discarded. The retained out-
lier tokens are excluded from quantization and
stored in full precision.

Mathematical Formulation Let O(t) denote the
outlier pool at step t, and T (t) the current token
group. The update rule is:

O(t+1) = argmin
top-N tokens by Si

(
O(t) ∪ T (t)

)

Outlier tokens are excluded from quantization,
while non-outliers are quantized using channel-
wise (Keys) and token-wise (Values) methods as in
KIVI.

F Statistical Analysis of Preliminary
Results

We conduct additional analysis experiments on
LongBench using LLaMA-2-7b-chat-hf. We
record the keys of Layer 10, Head 16 of the first
1024 tokens during the generation process and ana-
lyze the distribution of the outlier channel (i.e., the
channel with the largest magnitude) among these
keys. Specifically, for each example, we identify
the outlier channel of the key in Layer 10, Head
16, then divide the entire range of channel values
into ten equal parts and record which range each to-
ken’s value fall into. Finally, we average the results
across the entire dataset. The results are shown in
Table 9, which confirms our previous hypothesis.

G Additional Benchmarks and Baselines

To validate the effectiveness of OTT, we also add
other baselines and benchmarks. Among them,
the benchmarks include Needle-in-a-Haystack and
Ruler, while the baselines include ZipCache and
Gear.

RULER (Hsieh et al., 2024): This benchmark
evaluates models’ ability to handle complex rea-
soning tasks. It involves tasks that require under-
standing and linking various pieces of information,
making it essential for assessing skills in multi-step
reasoning and logical analysis.

Needle-in-a-Haystack (Liu et al., 2024a): This
benchmark focuses on testing if models can find
important details in long texts. It checks how well
models can spot useful information in a lot of text,
which is key for tasks like finding facts or answer-
ing questions by pulling out parts of the text.

GEAR (Kang et al., 2024) compensates for
compression-induced errors by combining low-
rank and sparse matrices, achieving near-lossless
results in 2-bit quantization integrated with KIVI
(Liu et al., 2024b).

ZipCache (He et al., 2024) achieves accurate
KV cache compression by introducing a channel-
separable tokenwise quantization scheme, an im-
proved salient token identification metric based
on normalized attention scores, and an efficient
approximation method for fast attention implemen-
tations.

We adjust the hyper-parameters of various meth-
ods to thoroughly observe their performance. For
KIVI and OTT, we vary the group size G and the
residual length R. For ZipCache, we vary the k
unimportant ratio k and v unimportant ratio v. The
unimportant tokens are stored in 2-bit and the im-
portant ones are stored in 4-bit. For Gear, we set
the low rank r to 2, group size G to 128, streaming
gap to 100, outlier ratio to 0.01. Note that Gear will
use much more memory and is much slower than
KIVI and OTT because it add additional low-rank
and outlier operations based on KIVI.

G.1 Results on Needle-in-a-Haystack

Figure 9 and 10 shows the results of different meth-
ods and models on Needle-in-a-Haystack. The
results on LLaMA-3-8B-Instruct shows that all
methods can perform well under this setting. The
results on LLaMA-2-7B-chat-hf show that Gear
performs the best across all methods, while it sacri-
fices memory and throughput. OTT performs better

12910

than KIVI (increasing the accuracy from 93.1% to
99.2%). ZipCache performs the worst.

G.2 Results on Ruler

We validate the effectiveness of various methods
on Ruler. The results are shown in Table 10. Sim-
ilar to previous findings, Gear still achieves the
best accuracy among all methods, thanks to its
higher computational cost and memory usage. OTT
achieves better accuracy than KIVI when G = 32
and G = 128, demonstrating the effectiveness of
our method. ZipCache also achieve the worst re-
sults, with significant losses on both models.

G.3 Full Results on LongBench

We test the performance of each method on Long-
Bench under more settings and complete all the
results for LongBench. The results are shown in
Table 11. OTT achieves almost no loss on Long-
Bench, performing nearly as well as Gear, and
clearly outperforming ZipCache and KIVI.

G.4 Results on Helmet

We test the performance of each method on Helmet
(Yen et al., 2024) benchmark using LLaMA-3-8B-
Instruct. We set the max length to 8192. The results
are shown in Table 12. The results show that our
method performs better than the baselines under
fair comparison.

G.5 Results on LongBench-v2

We test the performance of each method on
LongBench-v2 (Bai et al., 2024b) using LLaMA-3-
8B-Instruct. We set the max length to 8192. The
results are shown in Table 13. The results show
that our method performs better than the baselines
under fair comparison.

G.6 Results on Longer Models

We test the performance of each method on
Ruler with Llama-3-8B-ProLong-512k-Instruct
and longer context lengths (64k, 128k), the results
are shown in Table 14. We can conclude from
the tables that our method can perform well on
extreme-long scenarios.

G.7 Throughput and Memory Analysis

To fully demonstrate the memory compression and
throughput of different methods, we conduct addi-
tional experiments on memory usage and through-
put. We use LLaMA-2-7B-chat-hf with an input
length of 64, output length of 384, and batch size

of 128 to carry out our experiments on an NVIDIA
A100 40GB GPU. We record the throughput and
memory peak for each method. The results are
shown in Figure 8. We omit Gear because its code-
base only supports fake compression, making it
impossible to measure its actual memory usage
and throughput. Although Gear supports some true
compression, it does not handle outliers in its true
compression, which is inconsistent with the set-
tings used in our experiments above. From the fig-
ure, we can conclude that OTT has slightly higher
throughput than KIVI, likely because its handling
of residual tokens is simpler than that of KIVI. Ad-
ditionally, both OTT and KIVI show significantly
higher throughput than ZipCache. In terms of mem-
ory usage, OTT consumes slightly more memory
than KIVI, primarily because it needs to store more
tokens. This difference may become more pro-
nounced as the batch size increases. On the other
hand, ZipCache uses the least GPU memory, indi-
cating that it has a higher compression ratio.

12911

Dataset 0%-10% 10%-20% 20%-30% 30%-40% 40%-50% 50%-60% 60%-70% 70%-80% 80%-90% 90%-100%
qasper 0.20 0.35 0.18 0.02 0.62 8.53 29.88 37.29 19.44 3.49
triviaqa 0.20 0.36 0.16 0.01 0.31 6.42 27.36 38.78 22.23 4.17
trec 0.21 0.30 0.07 0.01 0.13 1.90 20.80 46.38 24.42 5.79
samsum 0.20 0.41 0.18 0.01 0.18 4.33 25.58 38.52 25.36 5.24
lcc 0.20 0.31 0.18 0.05 0.63 7.03 25.32 36.57 24.85 4.85
repobench-p 0.20 0.34 0.14 0.04 0.58 7.00 27.65 38.84 21.22 3.99
multi_news 0.20 0.37 0.18 0.01 0.45 7.56 28.99 36.67 20.78 4.79
multifieldqa_en 0.20 0.37 0.21 0.02 0.71 8.17 28.25 37.12 20.93 4.01
hotpotqa 0.20 0.38 0.16 0.01 0.39 7.62 30.12 40.05 18.62 2.45
2wikimqa 0.20 0.38 0.17 0.02 0.33 6.68 28.88 40.49 20.06 2.81
gov_report 0.20 0.35 0.29 0.02 0.48 6.71 27.46 39.02 21.63 3.84
passage_count 0.20 0.36 0.16 0.01 0.44 6.62 28.51 38.87 20.91 3.92
passage_retrieval_en 0.20 0.38 0.17 0.01 0.60 7.17 28.39 38.01 21.11 3.97

Table 9: Statistical analysis of outlier distribution.

Method

Single NIAH Multi-key NIAH

MQ-NIAH

MV-NIAH
CWE

FWE VT Avg.

S-NIAH-1

S-NIAH-2

S-NIAH-3

MK-NIAH-1

MK-NIAH-2

MK-NIAH-3

LLaMA-2-7B-chat-hf

FP16 100.00 92.80 90.00 84.00 67.40 52.80 76.85 80.45 83.72 80.67 92.12 81.89
GEAR 47.40 42.20 42.40 43.60 36.00 19.60 41.05 43.10 53.86 75.13 49.60 44.90
ZipCache(k=0.7,v=0.8) 39.60 27.80 10.40 23.60 5.00 0.00 24.50 18.95 52.02 68.73 44.48 28.64
ZipCache(k=0.6,v=0.6) 42.60 33.40 17.40 31.40 6.40 0.00 30.95 28.15 52.98 70.40 44.04 32.52
ZipCache(k=0.5,v=0.5) 43.00 35.80 21.60 36.20 9.20 0.20 34.40 31.70 54.68 71.33 44.36 34.77
KIVI(G=128,R=128) 47.00 39.40 26.80 41.40 13.20 0.20 37.05 38.40 52.76 71.27 45.84 37.57
KIVI(G=32,R=128) 46.20 42.20 36.60 41.40 25.20 3.80 41.55 42.20 58.94 73.27 47.40 41.71
Ours(G=128,R=32) 46.80 39.60 28.60 41.40 18.40 0.20 38.75 39.75 52.04 72.27 46.60 38.58
Ours(G=32,R=128) 46.40 42.00 38.40 43.00 27.20 5.40 41.35 41.95 55.16 74.13 48.76 42.16

LLaMA-3-8B-Instruct

FP16 100.00 98.20 97.00 99.20 91.60 95.80 99.75 97.45 97.82 82.27 98.28 96.12
GEAR 100.00 98.20 97.00 99.20 91.80 87.80 99.70 96.80 97.82 81.53 98.24 95.28
ZipCache(k=0.7,v=0.8) 99.80 97.00 77.80 91.60 69.20 12.40 94.45 94.40 96.82 81.73 95.64 82.80
ZipCache(k=0.6,v=0.6) 99.60 97.80 82.00 93.80 73.00 19.80 97.45 96.05 96.88 82.47 96.16 85.00
ZipCache(k=0.5,v=0.5) 99.80 97.40 83.40 96.80 78.20 31.20 98.65 97.55 96.98 82.53 96.60 87.19
KIVI(G=128,R=128) 96.00 97.80 88.60 96.00 75.20 11.00 95.30 94.90 86.96 80.27 88.64 82.79
KIVI(G=32,R=128) 100.00 97.40 95.40 97.80 87.60 62.40 98.80 98.60 95.26 82.20 96.20 91.97
Ours(G=128,R=32) 99.80 97.20 92.20 96.20 79.40 27.60 96.80 95.45 95.38 80.47 94.76 86.84
Ours(G=32,R=128) 100.00 97.60 96.20 97.80 86.00 69.60 98.90 97.85 97.18 82.20 95.80 92.64

Table 10: Performance comparison of different methods on RULER for LLaMA-2-7B-chat-hf and LLaMA-3-8B-
Instruct. Bold text represents the best performance.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
MF-en

Qasper

HotpotQA

2WikiMQA

GovReport

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

18409 3619 9151 4887 8734 2113 5177 8209 6258 11141 9289 1235 4206

LLaMA-2-7B-chat-hf

FP16 20.04 85.39 59.67 39.28 59.59 48.04 23.02 34.34 35.19 31.94 25.08 6.33 15.33 37.17
GEAR 19.36 85.58 59.67 38.34 58.03 46.44 20.32 34.94 34.24 32.06 21.41 6.33 14.67 36.26
ZipCache(k=0.7,v=0.8) 19.20 84.03 59.33 38.14 53.26 45.81 18.48 28.05 33.23 30.12 17.31 6.48 12.67 34.32
ZipCache(k=0.6,v=0.6) 19.28 84.31 59.00 39.41 56.54 46.28 19.47 29.98 33.83 31.13 18.58 7.44 14.67 35.38
ZipCache(k=0.5,v=0.5) 19.54 85.02 59.33 39.50 55.75 45.41 20.40 29.80 33.94 31.09 19.80 6.33 14.67 35.43
KIVI(G=128,R=128) 20.43 85.16 59.67 37.70 58.73 47.24 19.82 31.03 34.65 30.38 19.97 6.33 11.67 35.60
KIVI(G=32,R=128) 19.92 84.92 59.67 38.08 58.04 47.05 22.03 31.75 34.77 31.89 22.64 7.00 14.00 36.29
Ours(G=128,R=32) 19.95 85.00 59.67 39.10 59.44 48.51 20.81 34.12 34.98 31.87 21.56 6.33 11.00 36.33
Ours(G=32,R=128) 21.34 84.94 59.67 39.04 59.48 47.64 22.09 32.38 34.64 32.43 24.43 7.33 14.33 36.90

LLaMA-3-8B-Instruct

FP16 37.54 89.85 69.67 40.50 56.58 51.01 25.58 40.56 49.81 34.93 31.04 12.94 83.67 47.98
GEAR 37.55 89.85 69.67 40.02 56.42 50.47 25.52 40.11 49.80 34.93 30.93 12.61 83.33 47.79
ZipCache(k=0.7,v=0.8) 36.91 89.98 69.33 40.71 42.30 44.84 23.98 41.88 49.01 33.87 28.13 14.35 82.00 45.95
ZipCache(k=0.6,v=0.6) 36.61 90.14 69.33 40.58 45.82 44.96 24.70 39.32 50.05 33.46 29.31 13.60 84.33 46.32
ZipCache(k=0.5,v=0.5) 35.86 89.86 69.00 39.97 46.41 44.64 25.36 40.36 49.75 33.69 30.12 12.53 83.33 46.22
KIVI(G=128,R=128) 34.88 89.57 69.33 40.09 44.42 45.54 24.78 39.19 49.65 34.19 28.43 11.51 82.00 45.66
KIVI(G=32,R=128) 37.27 89.88 70.00 40.46 47.29 45.20 25.34 41.29 49.87 35.05 30.38 12.67 83.67 46.80
Ours(G=128,R=32) 36.75 89.74 69.67 40.39 52.37 48.82 24.94 41.57 50.37 35.32 30.74 11.44 83.33 47.34
Ours(G=32,R=128) 36.71 90.36 70.00 40.67 52.65 47.76 25.34 39.60 50.36 35.13 31.16 12.33 84.33 47.42

Table 11: Performance comparison of OTT with GEAR, ZipCache, KIVI and FP16 on LongBench for LLaMA-3-
8B-Instruct and LLaMA-2-7B-chat-hf. OTT generally achieves improvements over previous KV cache compression
methods across various LLMs. Bold text represents the best performance.

12912

Method

ruler_recall substring_exact_match NDCG@10 str_em citation_rec qampari_rec_top5 citation_prec

Avg.

niah_mk_2

niah_mk_3

niah_mv
json_kv

hotpotqa

rerank_psg

alce_asqa

alce_qampari

alce_asqa

alce_qampari

alce_asqa

alce_qampari

full 100.00 100.00 99.75 98.00 61.00 55.27 41.37 8.47 6.03 17.80 12.88 9.46 50.84

Gear 100.00 92.00 99.75 92.00 60.67 54.01 42.07 7.20 6.19 18.00 10.85 8.22 49.25

KIVI(G=32,R=128) 99.00 85.00 99.50 77.00 59.67 41.52 41.00 5.83 7.79 14.80 7.72 7.81 45.55

ZipCache(k=0.5,v=0.5) 98.00 51.00 99.25 45.00 59.00 44.88 35.47 5.49 7.28 6.80 7.44 4.95 38.71

Ours(G=32,R=128) 99.00 87.00 99.75 80.00 61.00 42.92 44.50 9.52 6.51 17.40 12.01 8.33 47.33

Table 12: Performance comparison of OTT with GEAR, ZipCache, KIVI and FP16 on HELMET for LLaMA-3-
8B-Instruct. OTT generally achieves improvements over previous KV cache compression methods across various
LLMs. Bold text represents the best performance.

Method Easy Hard Short Medium Long Overall

FP16 27.6 27.0 25.6 25.6 33.3 27.2

GEAR 27.6 27.0 25.6 25.6 33.3 27.2
KIVI (G=32, R=128) 26.6 22.2 23.9 21.9 27.8 23.9

ZipCache (k=0.5, v=0.5) 26.6 25.4 26.1 23.3 30.6 25.8

Ours (G=32, R=128) 25.5 26.7 26.7 22.8 32.4 26.2

Table 13: Performance comparison of OTT with GEAR, ZipCache, KIVI and FP16 on LongBench_v2 for LLaMA-
3-8B-Instruct. OTT generally achieves improvements over previous KV cache compression methods across various
LLMs. Bold text represents the best performance.

Method

Single NIAH Multi-key NIAH

MQ-NIAH

MV-NIAH
CWE

FWE VT Avg.

S-NIAH-1

S-NIAH-2

S-NIAH-3

MK-NIAH-1

MK-NIAH-2

MK-NIAH-3

max_length=64k

FP16 100 99.4 100 99 99.8 99.4 98.85 95.8 8.42 76 97.96 88.60
GEAR 100 99.4 100 99 99.6 90.2 94.4 96 8.62 76.53 97.96 87.43
KIVI(G=32,R=128) 99.8 99.2 97.8 95.6 97.2 78.4 94.5 93 8.26 78.73 92.24 84.98
Ours(G=32,R=128) 99.8 99.2 99.2 96 97.6 82 97.5 94.5 9.28 78.53 93.92 86.14

max_length=128k

FP16 100 94 100 93 100 100 98.75 96.25 0.3 82.67 96.6 87.42
GEAR 100 94 98 93 100 87 98.5 96.25 0.3 81.67 96.6 85.94
KIVI(G=32,R=128) 100 92 99 91 95 69 93 87.5 0.4 80.33 89.4 81.51
Ours(G=32,R=128) 100 94 99 92 95 73 96.25 90.25 0.4 82.67 88.8 82.85

Table 14: Performance comparison of Llama-3-8B-ProLong-512k-Instruct with longer context lengths (64k, 128k).

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Methods

T
h

ro
u

g
h

p
u

t
(t

o
k

e
n

s/
s)

ZipCache(k=0.7,v=0.8) ZipCache(k=0.6,v=0.6) ZipCache(k=0.5,v=0.5)

KIVI(G=32, R=128) KIVI(G=128, R=128) OTT(G=32, R=128)

OTT(G=128, R=128)

0

5

10

15

20

25

30

35

40

Methods

M
e
m

o
r
y
 (

G
B

)

ZipCache(k=0.7,v=0.8) ZipCache(k=0.6,v=0.6) ZipCache(k=0.5,v=0.5)

KIVI(G=32, R=128) KIVI(G=128, R=128) OTT(G=32, R=128)

OTT(G=128, R=128)

Figure 8: Throughput (left) and memory usage (right) of different methods under LLaMA-2-7B-chat-hf, input
length=64, output length=384, batch size=128 in NVIDIA A100 40G.

12913

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

FP16 Acc 99.2

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

ZipCache(k=0.7, v=0.8) Acc 93.0

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

GEAR Acc 99.2

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

KIVI(G=128, R=128) Acc 93.1

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

OTT(G=128, R=32) Acc 99.2

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Figure 9: Results of Needle-in-a-Haystack on LLaMA-2-7B-chat-hf with 4k context size. The vertical axis of the
table represents the depth percentage, and the horizontal axis represents the token length.

12914

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

36
00

38
00

40
00

42
00

44
00

46
00

48
00

50
00

52
00

54
00

56
00

58
00

60
00

62
00

64
00

66
00

68
00

70
00

72
00

74
00

76
00

78
00

80
00

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

FP16 Acc 100.0

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

36
00

38
00

40
00

42
00

44
00

46
00

48
00

50
00

52
00

54
00

56
00

58
00

60
00

62
00

64
00

66
00

68
00

70
00

72
00

74
00

76
00

78
00

80
00

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

ZipCache(k=0.7, v=0.8) Acc 100.0

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

36
00

38
00

40
00

42
00

44
00

46
00

48
00

50
00

52
00

54
00

56
00

58
00

60
00

62
00

64
00

66
00

68
00

70
00

72
00

74
00

76
00

78
00

80
00

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

GEAR Acc 100.0

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

36
00

38
00

40
00

42
00

44
00

46
00

48
00

50
00

52
00

54
00

56
00

58
00

60
00

62
00

64
00

66
00

68
00

70
00

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

KIVI(G=128, R=128) Acc 100.0

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

36
00

38
00

40
00

42
00

44
00

46
00

48
00

50
00

52
00

54
00

56
00

58
00

60
00

62
00

64
00

66
00

68
00

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

OTT(G=128, R=32) Acc 100.0

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Figure 10: Results of Needle-in-a-Haystack on LLaMA-3-8B-Instruct with 8k context size. The vertical axis of the
table represents the depth percentage, and the horizontal axis represents the token length.

12915

