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Abstract

Commonsense question answering (QA) are
widely used to evaluate the commonsense abil-
ities of large language models. However, an-
swering commonsense questions correctly re-
quires not only knowledge but also reason-
ing—even for seemingly simple questions. We
demonstrate that such hidden reasoning at-
tributes in commonsense questions can lead
evaluation accuracy differences of up to 24.8%
across different difficulty levels in the same
benchmark. Current benchmarks overlook
these hidden reasoning attributes, making it
difficult to assess a model’s specific levels of
commonsense knowledge and reasoning abil-
ity. To address this issue, we introduce Re-
ComSBench, a novel framework that reveals
hidden reasoning attributes behind common-
sense questions by leveraging the knowledge
generated during the reasoning process. Ad-
ditionally, ReComSBench proposes three new
metrics for decoupled evaluation: Knowledge
Balanced Accuracy, Marginal Sampling Gain,
and Knowledge Coverage Ratio. Experiments
show that ReComSBench provides insights into
model performance that traditional benchmarks
cannot offer. The difficulty stratification based
on revealed hidden reasoning attributes per-
forms as effectively as the model-probability-
based approach but is more generalizable and
better suited for improving a model’s common-
sense reasoning abilities. By uncovering and
analyzing the hidden reasoning attributes in
commonsense data, ReComSBench offers a new
approach to enhancing existing commonsense
benchmarks.

1 Introduction

Large language models (LLMs) can not only store
and retrieve commonsense knowledge effectively
(Bosselut et al., 2019; Davison et al., 2019; Zhao
et al., 2023b), but also exhibit the ability to make
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Quesion  Where do all animals live?
Options  (A). the moon; (B). fairgrounds; (C). surface of earth; 

Reasoning

Reasoning process
1. Hypothesis:           , assume        .
2. Check                              . 
3. If                                , reject   .
4. If no contradictions, accept        .

Known knowledge
Animals need air, water 
and sustenance; The moon 
does not have air or water; 
The fairgrounds ...

Novel knowledge
The moon cannot support 
animals; The Surface of 
Earth satisfies universal 
habitat conditions; ...

Question and Options

 (D). meadow; (E). zoos.

Variables
                              : set of places 
from options.
       : x is an animal.
          : animal x can live in place p.
       : p is a universal habitat.

Figure 1: A QA case from CommonsenseQA, showing
knowledge transformation during reasoning. Correct
answers to simple commonsense questions still require
reasoning.

inferences based on their stored knowledge in com-
monsense reasoning tasks (Bhagavatula et al., 2020;
Zhao et al., 2023a). Commonsense research en-
compasses both knowledge acquisition and reason-
ing capabilities (Brachman and Levesque, 2022),
yet existing benchmarks often treat them in isola-
tion. Although current benchmarks often evalu-
ate these aspects separately, these two aspects are
in fact intertwined. Simple commonsense reason-
ing tasks are frequently categorized as knowledge-
based alone (Davis, 2024). Because they are so
simple to be considered as commonsense. This
lack of distinction makes it difficult to assess the in-
dividual strengths and weaknesses of LLMs in com-
monsense knowledge versus reasoning. One ma-
jor reason is that crowdsourcing workers naturally
ignore the hidden reasoning attributes of common-
sense data due to the ambiguity and naturalness of
commonsense. This leads to task-irrelevant noise
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in datasets and causes unexpected overlaps between
tasks (Do et al., 2024). Even when the model an-
swers questions without explicit reasoning, it inter-
nally performs hidden reasoning processes before
generating responses, which are not directly re-
flected in the model’s output (Ye et al., 2024). As a
result, existing benchmarks only provide a macro-
evaluation of the commonsense performance of
LLMs and cannot effectively differentiate between
commonsense knowledge and reasoning abilities.
This not only undermines the clarity and effective-
ness of commonsense assessment but also limits
opportunities for targeted improvements through
feedback.

This causes current benchmarks to often over-
look two key points. First, even the simplest
commonsense questions may involve reasoning at-
tributes that require inference to answer correctly.
Second, different questions vary in their reason-
ing attributes and difficulty levels. For example,
as shown in Figure 1, a sample from the Com-
monsenseQA dataset demonstrates one symbolic
reasoning process required to answer correctly. To
answer "Where do all animals live?", one must
identify exceptions among location options. But
CommonsenseQA is a benchmark focused on com-
monsense knowledge questions.

To address these challenges, we introduce Re-
ComSBench, a framework designed to enhance tra-
ditional benchmarks by making hidden reasoning
attributes explicit. By defining reasoning as the
process of generating new knowledge from known
knowledge (as shown in Figure 1), ReComSBench
quantifies reasoning difficulty based on the amount
of knowledge required to answer questions cor-
rectly. Furthermore, it decouples the evaluation
of models’ commonsense knowledge and reason-
ing abilities through three novel metrics: Knowl-
edge Balanced Accuracy for assessing common-
sense knowledge, and Marginal Sampling Gain and
Knowledge Coverage Ratio for evaluating overall
domain reasoning and single inference quality.

We refine and experiment with four benchmarks:
CommonsenseQA (Talmor et al., 2019), Open-
BookQA (Mihaylov et al., 2018), ARC (Clark
et al., 2018), and QASC (Khot et al., 2020). Ex-
periments confirm that hidden reasoning attributes
significantly impact model evaluations on existing
benchmarks. Data with varying reasoning difficul-
ties within the same benchmark consistently shows
lower accuracy for models on high-difficulty data,
with up to an 24.8% difference across datasets.

This highlights the challenge of distinguishing
whether model limitations stem from insufficient
knowledge or weak reasoning abilities. The three
new metrics provide fine-grained insights into mod-
els’ knowledge and reasoning capabilities, with
results aligning with expectations as model ver-
sions evolve, demonstrating their reference value.
Using hidden reasoning attributes—measured by
the amount of knowledge required during infer-
ence—as a basis for data difficulty outperforms
the model-probability-based approach. This un-
derscores the practicality of leveraging reasoning
attributes for benchmark optimization.

The main contributions of this work are:

• We reveal and validate the importance of hid-
den reasoning attributes in commonsense data,
experimentally demonstrating their impact on
model evaluation.

• We propose ReComSBench, a framework that
improves existing benchmarks by making hid-
den reasoning attributes explicit. It introduces
three novel metrics for decoupled evaluations
of commonsense knowledge and reasoning
capabilities.

• Through experiments with ReComSBench, we
confirm its effectiveness in enhancing evalua-
tion and training, showing that organizing data
based on hidden reasoning attributes improves
models’ commonsense abilities.

2 Related works

2.1 Challenges of commonsense benchmarks
There are now over 100 commonsense benchmarks
to test AI’s knowledge and reasoning abilities
(Davis, 2024). While human-annotated datasets
are generally high-quality, researchers have found
many flaws, such as grammatical errors, incorrect
answers, and noisy data. Do et al. (2024) points out
that these benchmarks often focus on referenced
knowledge rather than true commonsense, harm-
ing the accurate measurement of commonsense
reasoning. Srivastava et al. (2023) argues that cur-
rent benchmarks emphasize memory and factual
knowledge, calling for "breakthrough" tasks to pre-
pare for future models. Sakaguchi et al. (2021)
highlights spurious biases in datasets, leading to
overestimation of machines’ true commonsense ca-
pabilities. Veselovsky et al. (2023) shows crowd
workers using LLMs to generate annotations, low-
ering dataset quality. Fixing these flaws helps us
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better understand and improve models’ true capabil-
ities. While complex problems get more attention,
simple ones often involve deep reasoning processes.
Even if LLMs lacks specific knowledge, it might
infer correct answers through reasoning. Thus, we
need to decouple knowledge and reasoning in com-
monsense data to evaluate models more accurately.

2.2 Hidden biases in commonsense data

The latent biases in commonsense data have sig-
nificant impacts on model performance and evalua-
tion. Existing studies reveal various types of biases.
Bauer et al. (2023) identifies cultural biases using
causal social commonsense knowledge. Liao and
Naghizadeh (2023) investigates fairness algorithms
through social and data biases. Biester (2025) high-
lights gender biases in LLMs within the context
of Olympic sports. Lee and Kim (2024) reduces
bias and performance gaps in commonsense knowl-
edge by replacing demographic-specific words with
generic terms (e.g., "Chinese -> Asian -> Peo-
ple"). Davis (2024) points out issues in common-
sense benchmarks, such as incorrect questions, un-
natural language, and expert-knowledge require-
ments. While research often focuses on linguis-
tic or cultural biases in reasoning datasets, under-
lying reasoning attributes and differences in non-
reasoning commonsense datasets remain an over-
looked source of bias. Therefore, it is necessary
to clarify the reasoning attributes in commonsense
questions and evaluate their impact on the training
and assessment of commonsense benchmarks.

2.3 Evaluation reliability for benchmarks

Multiple-choice question answering (MCQA) is
widely used in existing benchmarks to evaluate the
capabilities of language models (Guo et al., 2023),
but its reliability is increasingly being questioned.
Wang et al. (2025) found that language models
tend to select the least incorrect option rather than
the distinctly correct answer when responding to
MCQA. Additionally, Balepur et al. (2024) demon-
strated that models can solve MCQA tasks even
without the actual question, suggesting the need
for stronger benchmark tests. To better understand
model behavior, Wang et al. (2024) proposed di-
rectly analyzing the freely generated textual out-
puts of models instead of relying solely on the
probability of the first token. In tasks involving rea-
soning, the quality of the reasoning process (Cobbe
et al., 2021; Weng et al., 2023) and the number of
samples (Wang et al., 2023; Lin et al., 2024) are

closely related to the test results. Notably, most
evaluation methods focus on numerical problems
because their intermediate steps are easier to ver-
ify. However, this approach does not apply well
to commonsense questions, which are mostly non-
numerical knowledge-based problems. Therefore,
there is a need for an automated method tailored
to the characteristics of commonsense tasks to im-
prove existing benchmarks and develop new evalu-
ation metrics that comprehensively measure both
knowledge and reasoning abilities.

3 Methodology

Commonsense benchmarks typically evaluate
LLMs using multiple-choice questions to assess
both knowledge and reasoning abilities. However,
commonsense benchmarks are crafted with data
that contains varying degrees of hidden reasoning
attributes. This makes it challenging to determine
whether a model’s shortcomings lie in knowledge
or reasoning. To address this issue, we propose
ReComSBench, a framework that explicating hid-
den reasoning attributes based on the principle
that "knowledge reasoning is the process of using
known knowledge to infer new knowledge"(Chen
et al., 2020), thereby enabling a deeper and more
balanced evaluation of these abilities.

3.1 Reasoning attributes explicating

Given a commonsense question Q with options
A = {A1, A2, . . . , An}, we aim to find the most
representative reasoning path S∗ from the set of
generated paths S = {S1, S2, . . . , Sn}. Each path
Si consists of reasoning steps {si1, si2, . . . , sim}
and produces an answer Âi. The knowledge behind
the reasoning steps is represented by the set of
extracted knowledge triplets K(Si). To ensure both
correctness and conciseness, the optimal reasoning
path S∗ is defined as:

S∗ = arg min
Si∈S

|K(Si)| subject to A(Si) = Agt

(1)
where:

• A(Si) denotes the answer derived from rea-
soning path Si,

• Agt is the ground-truth answer,

• |K(Si)| measures the size of the knowledge
set extracted from Si.
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Quesion  Where do all animals live?
Options  (A). the moon; (B). fairg-
rounds; (C). surface of earth; (D). 
meadow; (E). zoos. Reasoning sample  

Knowledge extraction

B
C
C

[(S1, R1, O1), ...]

[(S1, R1, O1), (S2, R2, O2), ...]

Deduplication

Quesion  & Options

Optimal Reasoning
Prior Knowledge &

Benchmark Data Explicit Benchmark Data

Disorganized Data 

Organized Data

Organize by reasoning attribute

Refining Training Refining Evaluation 

Basic Accuracy

Refining Benchmark

Explicating Reasoning Attributes

Knowledge Balanced Accuracy

Acc. 

Balanced curve 

Basic curve 

Reasoning attributes 

Reasoning Insufficient

Training

Training

Marginal Sampling Gain

Pass@1 Pass@K-1 Pass@K

...
78% Acc. 80% 81% 
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Knowledge Coverage Ratio

60% Converage for sample 

64

68 Knowledge in 

Prior knowledge for  

Prior Knowledge

Figure 2: An overview of ReComSBench, which refines benchmarks with new metrics and hidden reasoning
attributes. It explicates hidden reasoning attributes through optimal reasoning and prior knowledge for QA.

This ensures that the selected reasoning path
satisfies correctness (A(Si) = Agt) while minimiz-
ing the amount of generated knowledge (|K(Si)|),
minimizing the provision of unnecessary knowl-
edge that chat-oriented LLMs tend to provide (Bian
et al., 2024a). As shown in Figure 2, we gener-
ate reasoning paths using Chain-of-Thought (Wei
et al., 2022) and Rejection Sampling. Knowledge
involved in the reasoning process is extracted by
LLM. For detailed prompts templates, please re-
fer to Table 4 in Appendix A. From the path Si,
we extract knowledge K(Si) and deduplicate over-
lapping knowledge with the question’s inherent
knowledge K(Q), yielding novel knowledge:

Knew(Si) = K(Si) \ K(Q) (2)

Importantly, only the Knew derived from the opti-
mal reasoning path S∗ is regarded as Kprior, which
represents the prior knowledge required to answer
the question Q. This distinction ensures that the
extracted knowledge is both minimal and essential
for reasoning.

Then the reasoning difficulty of Q is defined as
d(Q) = |Kprior|. This metric quantifies the com-
plexity of inference required to answer Q, guiding
subsequent evaluation and training. While the ran-
domness inherent in the generation of new knowl-
edge during reasoning does not directly represent
the problem itself, it can still be used on a macro-
scopic level to compare the differences in acquired
knowledge from questions to measure their reason-
ing attributes (Bian et al., 2024b).

3.2 Refining benchmark in evaluation

In commonsense questions, knowledge attributes
and reasoning attributes are tightly intertwined,
and the underlying differences in reasoning
attributes can vary significantly. To disentangle the
model’s actual performance on the benchmark, we
designed distinct indicators focusing on knowledge
evaluation and reasoning evaluation separately.

Knowledge Balanced Accuracy The Knowl-
edge Balanced Accuracy (KBA) explicitly prompts
the model with the knowledge required for the an-
swer, avoiding the hidden reasoning attributes of
the question and model’s hidden reasoning.

We augment the original question Q with Kprior
to construct Qaug = Q⊕Kprior. The KBA is com-
puted as:

KBA =
1

N

N∑

i=1

I

(
argmax

A∈A
P (A|Q(i)

aug) = A
(i)
gt

)

(3)
where I(·) is the indicator function, N is the
total number of samples, and A

(i)
gt is the ground-

truth answer for the i-th question. This metric
provides necessary knowledge to isolate the
model’s reasoning ability. It allows for a purer
evaluation of the model’s ability to retrieve correct
answers based on question knowledge and prior
knowledge, excluding the reasoning attributes.
Compared to the Accuracy, it can also assess the
impact of reasoning attributes on model perfor-
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mance. We further discuss this point in Section 4.3.

Marginal Sampling Gain By sampling, we can
start from the question, generate diverse interme-
diate reasoning processes, and eventually arrive at
a solution. However, sampling not only increases
computational costs but also does not guarantee
that the correct answer will be obtained. To ad-
dress this issue, we introduce Marginal Sampling
Gain (MSG) as a metric to evaluate the overall sam-
pling performance of the model in the sampling
reasoning space.

MSG(K) = Acc(K)− Acc(K − 1) (4)

Here, Acc(K) represents the accuracy achieved
after K sampling trials per question in the dataset.
When MSG(K) < τ (a predefined threshold), it
indicates that the model has reached its limit of rea-
soning capacity improvement through additional
sampling. This implies that the accuracy gain for
the given benchmark is approximately bounded
by Acc(K) at the marginal gain threshold τ .
Consequently, K serves as a reasonable threshold
for the number of sampling trials, beyond which
further sampling returns in an unacceptable level
of diminishing returns.

Knowledge Coverage Ratio The evaluation of
the quality of single reasoning sampling is also crit-
ical. Numerical validation methods for assessing
reasoning steps are not applicable to most common-
sense problems, as these are mostly non-numerical.
Therefore, the coverage of essential knowledge in
the reasoning steps becomes a natural choice for
evaluation.

For single sampling, the Knowledge Coverage
Ratio (KCR) evaluates single-path reasoning qual-
ity:

KCR(Si) =
|K(Si) ∩ Kprior|

|Kprior|
(5)

Here, the formula calculates the ratio of the inter-
section between the knowledge set K(Si) derived
from the reasoning path Si and the prior knowledge
set Kprior, relative to the size of Kprior. A higher
KCR value indicates that the reasoning paths align
more closely with the critical knowledge required
for the task, ensuring high-quality reasoning.

3.3 Refining benchmark in training
To further improve training effectiveness, we parti-
tion the data into individual difficulty levels based

on reasoning attributes. Inspired by curriculum
learning (Bengio et al., 2009), we design a pro-
gressive training strategy that allows the model
to transition gradually from simpler to more com-
plex commonsense question-answering tasks. This
structured approach outperforms random shuffled
data distribution in handling data with varying rea-
soning difficulties.

Specifically, we define L difficulty levels
D1,D2, . . . ,DL, where:

Dl = {Q | d(Q) = l}. (6)

The training sequence follows:

Dtrain = D1 → D2 → · · · → DL. (7)

During sampling, we use dynamic weighting to
address data imbalance and ensure diversity.

4 Experiments and Analysis

4.1 Datasets and experimental setup

We evaluate our framework on two categories of
commonsense benchmarks, which are knowledge-
oriented and reasoning-oriented. Common-
senseQA (Talmor et al., 2019) and OpenBookQA
(Mihaylov et al., 2018) focus on factual knowl-
edge retrieval. Specifically, CommonsenseQA tests
minimal reasoning over factual knowledge, while
OpenBookQA combines core scientific facts with
crowdsourced multiple-choice questions. In con-
trast, ARC (Clark et al., 2018) and QASC (Khot
et al., 2020) emphasize complex multi-step reason-
ing. ARC contains challenging science questions
requiring multi-step inference, and QASC involves
integrating multiple facts for multi-hop inference.
All datasets exhibit varying levels of hidden rea-
soning attributes, and only the challenge subset of
ARC is used in our evaluation.

All experiments employ consistent prompts and
are conducted on Llama3.1-8B (Dubey et al.,
2024), Gemma2-9B (Rivière et al., 2024), Gemma-
7b (Mesnard et al., 2024), and Llama2-7B (Touvron
et al., 2023). We employ LoRA (Hu et al., 2022)
for efficient training. For sampling, both greedy
and random (with temperature 0.7) methods are
used. Hidden reasoning attributes of commonsense
data are generated by Llama3.1-8B and serve as
the sole basis. Knowledge similarity for coverage
calculation is computed using all-MiniLm-L6-v2
(Wang et al., 2020).
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Figure 3: Sliding window accuracy of Llama3.1 and Gemma2 on commonsense benchmarks. The x-axis represents
the knowledge number required to answer questions, calculated from Kprior.

4.2 Impact analysis of hidden reasoning
attributes

We analyze the accuracy changes of different mod-
els across reasoning difficulties d(Q) to examine
the impact of hidden reasoning attributes. The vali-
dation set is sorted by d(Q), from easy to hard. A
sliding window approach is used to calculate LLM
accuracy without reasoning: the window length
is one-third of the dataset size, and the step size
is one-third of the window length. The accuracy
difference between the first window (starting point,
Easy part) and the last window (endpoint, Hard
part) reflects model performance on data with vary-
ing hidden reasoning attributes. The Easy part con-
tains more low-reasoning data, while the Hard part
contains more high-reasoning data.

In Figure 3, the y-axis shows accuracy, and the
x-axis shows knowledge levels corresponding to
d(Q). Both Llama3.1 and Gemma2 exhibit de-
clining accuracy as d(Q) increases across datasets.
This highlights the consistent correlation between
hidden reasoning difficulty and lower accuracy in
LLM benchmarks. Traditional benchmarks often
overlook this, making it hard to analyze reasoning
and knowledge proportions in incorrect responses
based on basic accuracy alone.

Further experiments in Table 1 and Table 3 show
that the accuracy gap between Easy and Hard cases
persists post-training. In CommonsenseQA, for
Llama3.1, the accuracy gap is 24.8% pre-training
and 12.7% post-training, with accuracy dropping
from 84.1% (Easy) to 59.3% (Hard). Significant
differences exist for both knowledge-oriented and
reasoning-oriented benchmarks, emphasizing the
importance of hidden reasoning properties. These
findings confirm that hidden reasoning influences
all aspects of model evaluation and training.

Dataset Model
Accuracy (%)

Difference (%)
Easy Hard

CommonsenseQA

llama3.1 84.1 59.3 24.8
llama3.1† 88.1 75.4 12.7
gemma2 87.3 67.7 19.6
gemma2† 85.1 74.7 10.4

OpenBookQA

llama3.1 88.6 67.5 21.1
llama3.1† 92.8 80.1 12.7
gemma2 92.8 83.1 9.7
gemma2† 96.4 88.6 7.8

ARC

llama3.1 88.9 74.7 14.2
llama3.1† 88.9 84.8 4.1
gemma2 96.0 88.9 7.1
gemma2† 94.9 86.9 8.0

QASC

llama3.1 83.4 68.8 14.6
llama3.1† 87.7 79.9 7.8
gemma2 84.1 70.5 13.6
gemma2† 90.3 78.9 11.4

Table 1: Sliding window accuracy of Llama3.1 and
Gemma2 on different datasets (†indicates trained mod-
els). The sliding window progresses from Easy (first
window) to Hard (last window).

4.3 New metrics in ReComSBench

Metric 1: Knowledge Balanced Accuracy
KBA evaluates models’ commonsense knowledge
capabilities by decoupling the assessment of com-
monsense knowledge from reasoning demands
through explicit knowledge prompting. During
prompting, necessary prior knowledge is explicitly
passed to the model to support factual common-
sense answering, thereby bypassing hidden reason-
ing.

We systematically tested Llama2, Llama3.1,
Gemma, and Gemma2 models. To mitigate vari-
ance from stochastic knowledge selection, all
knowledge generated as standard snippets was in-
corporated into prompts. KBA demonstrates its
ability to evaluate knowledge while mitigating the
influence of hidden reasoning attributes in the data.
As Figure 4 demonstrates, The KBA curve consis-
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Figure 4: KBA curves and basic accuracy curves of Llama and Gemma families on commonsense benchmarks

tently surpasses and is flatter than the basic accu-
racy curve across all datasets, confirming its effec-
tiveness in isolating knowledge assessment from
reasoning demands. The alignment of KBA and
basic accuracy curve trends across model genera-
tions confirms KBA’s equivalent analytical power.
By analyzing the differences between KBA and
basic accuracy curves at easy and hard parts, we
can identify whether knowledge or reasoning has
a greater impact on accuracy. Larger gaps in the
easy part indicate insufficient knowledge, while
larger gaps in the hard part suggest insufficient rea-
soning. On commonsense benchmarks, previous-
generation models had deficiencies in both areas,
while advanced-generation models show more rea-
soning limitations. These all confirm that KBA
has unique diagnostic value and can evaluate the
model from a broader and deeper perspective. For
more numerical details, please refer to Table 5 in
Appendix C.

Dataset Model
MSG(K) (%)

Sum
K=2 K=3 K=4 K=5

CommonsenseQA

llama2 13.4 6.5 4.7 3.0 27.6
llama3.1 9.4 4.0 2.4 1.9 17.7
gemma 5.4 3.1 1.9 0.9 11.3
gemma2 5.8 3.0 1.1 1.1 11.0

OpenBookQA

llama2 11.2 8.0 4.2 2.4 25.8
llama3.1 8.6 3.4 2.8 0.6 15.4
gemma 6.4 3.8 2.2 3.4 15.8
gemma2 7.8 2.6 1.4 0.8 12.6

ARC

llama2 12.0 9.3 5.1 6.0 32.4
llama3.1 7.7 2.4 1.3 0.7 12.1
gemma 6.7 1.6 1.7 2.0 12.0
gemma2 6.4 3.0 1.0 1.0 11.4

QASC

llama2 12.6 6.7 4.1 4.3 27.7
llama3.1 14.7 4.5 2.3 1.0 22.5
gemma 6.2 3.4 1.7 1.6 12.9
gemma2 9.9 4.9 1.6 1.4 17.8

Table 2: MSG and sum for different models on com-
monsense benchmarks

Metric 2: Marginal Sampling Gain An ideal

high-performance model maintains low MSG val-
ues at high accuracy levels, demonstrating confi-
dence. Conversely, the combination of low accu-
racy with high MSG indicates suboptimal model
performance. We sample K times of inference on
models in the commonsense benchmark, where the
first sampling is greedy sampling, and calculate the
model accuracy under pass@K and MSG(K). As
show in Table 2, our analysis of Llama and Gemma
model families reveals progressively diminishing
MSG values across iterations. Specifically, when
K = 5, the improvement in accuracy is close to 1%.
Notably, advanced models in each series demon-
strate lower MSG values indicating enhanced confi-
dence (e.g., MSG(3): Llama3.1 at 2.3% vs. Llama2
at 9.3% in ARC). The difference in MSG metric is
consistent with the performance differences of dif-
ferent generations of models. This is because MSG
metric effectively evaluate the model’s sampling
level in the reasoning sampling space.

Metric 3: Knowledge Coverage Ratio KCR
can effectively evaluate the quality of sampled com-
monsense reasoning. In our experiments, we cal-
culated the knowledge coverage of all inferences
made by the Llama3.1 model on the commonsense
benchmarks with a sampling size of 5. The similar-
ity threshold for determining whether knowledge
is similar was set to 0.75. The quantitative relation-
ship of similar knowledge between different rea-
soning processes, namely the coverage, is used as
an indicator to evaluate the reasoning process. And
based on the correctness of answer, we grouped the
data into correct and incorrect groups and plotted
the boxplots shown in Figure 5. In the boxplots, the
median knowledge coverage of the correct group
is consistently higher than that of the incorrect
group across all four datasets. Additionally, the
U-statistic test indicates a substantial advantage for
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Method
CommonsenseQA (%) OpenBookQA (%) ARC (%) QASC (%)

Acc. KBA ∆ ∆∗ Acc. KBA ∆ ∆∗ Acc. KBA ∆ ∆∗ Acc. KBA ∆ ∆∗

Base 73.2 83.8 24.8 6.9 79.4 87.2 21.1 10.8 81.3 92.0 14.1 0.0 78.0 88.2 14.6 6.2
RandSample 82.4 87.1 14.6 8.9 86.4 92.8 9.6 6.0 81.9 90.6 7.1 2.0 84.4 89.0 8.4 6.8
Score-CL 81.4 87.1 15.1 7.9 86.4 93.2 12.7 5.4 85.6 90.7 5.1 4.0 86.3 90.2 9.7 2.6
Reason-CL 82.7 88.2 13.4 7.9 86.8 92.8 7.2 5.4 85.3 92.3 1.0 5.1 86.6 88.0 7.5 4.5

Table 3: Performance comparison of different training strategies (Score-CL: score-based curriculum learning using
model’s negative log-likelihood scores; Reason-CL: reasoning-based curriculum learning) across four datasets.
Metrics include: Accuracy (Acc.), Knowledge Balanced Accuracy (KBA), Easy/Hard accuracy difference (∆), and
its knowledge balanced version (∆∗).

CommonsenseQA OpenBookQA ARC QASC

K
C

R

Correct Incorrect

100%

80%

60%

40%
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Figure 5: Boxplot of Knowledge Coverage Ratio differ-
ences between correct and incorrect reasoning groups
on commonsense benchmarks

the correct group, with p < 0.05. These results
demonstrate the effectiveness of knowledge cov-
erage as a metric for evaluating reasoning quality
and highlight the importance of knowledge genera-
tion during the reasoning process. We further com-
pare KCR with BERTScore (roberta-large) (Zhang
et al., 2020). Specifically, on each dataset, we evalu-
ate 100 randomly selected correct/incorrect answer
pairs that have similar reasoning (sampled from
the same model) but yield different final answers.
While KCR achieves an accuracy of 54.6%, out-
performing BERTScore’s 50.0%, it also provides
additional interpretability: incorrect answers are
often linked to a lack of critical knowledge. In con-
trast, BERTScore, which measures surface-level
similarity, struggles to distinguish correct from in-
correct answers in such cases.

4.4 Stratified data for training

To evaluate the effectiveness of difficulty stratifica-
tion based on reasoning attributes, we conducted
experiments using the Llama3.1 model as the base
model. We compared four training strategies: (1)
base model performance, (2) random sampling, (3)
curriculum learning based on data score difficulty,
and (4) curriculum learning based on data reason-
ing difficulty. Here, data reasoning difficulty was
defined by the number of knowledge elements in

hidden reasoning attributes (proposed in this study),
while data score difficulty was calculated using the
negative log-likelihood scores of correct answers
from Llama3.1, following the approach of Maha-
rana and Bansal (2022).

As shown in Table 3, training with difficulty
stratification based on reasoning attributes achieves
performance improvements comparable to those of
model-probability-based stratification. By leverag-
ing the hidden reasoning attributes in the data, the
model performs stronger on datasets (e.g., Com-
monsenseQA, OpenBookQA) that require hidden
reasoning perception. Notably, across all datasets,
the model trained with hidden reasoning attributes
exhibits the smallest difference δ between Easy
and Hard accuracies, indicating its enhanced focus
on high-reasoning-difficulty samples. This demon-
strates the method’s generality and effectiveness
in improving reasoning capabilities. Thus, these
results indicate that integrating hidden reasoning
attributes into data organization strategies may en-
hance model performance and reasoning capabili-
ties.

4.5 Cross validation of ReComSBench

To evaluate the effectiveness and generalization
capability of the ReComSBench framework, we
generated prior knowledge Kprior using both the
Llama3.1 and Gemma2 models for the same bench-
marks. For commonsense questions, the differ-
ences in the knowledge generated by the two mod-
els fall into three main categories: (1) substan-
tial differences in high-level concepts or reasoning
paths, resulting in different answers; (2) similar
high-level reasoning but minor variations in details,
with the final answer remaining the same; and (3)
nearly identical vocabulary, reasoning, and answers
like Table 7 shows.

As shown in Figure 6, the Acc. and KBA trends
across benchmarks based on Kprior from different
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Figure 6: Different models generate prior knowledge
using ReComSBench and their performance on Com-
monsenseQA. The area difference between the Acc and
KBA curves represents the pure commonsense reason-
ing ability of the model after decoupling hidden knowl-
edge attributes.

models are consistent. Llama3.1 shows improved
KBA performance across all levels of question
difficulty, indicating its ability to utilize provided
prior knowledge for more accurate reasoning. In
contrast, Gemma2 improves on questions requir-
ing more prior knowledge and lags behind overall,
suggesting weaker commonsense reasoning when
leveraging knowledge.

The consistent performance trends suggest that
the base model has limited influence on the frame-
work, and the stable trend reflects good general-
ization. This approach enables a balanced eval-
uation of reasoning ability by controlling knowl-
edge dependency in questions. We also observe
that model-generated prior knowledge tends to be
richer than human annotations, with Llama3.1 gen-
erating more detailed knowledge than Gemma2,
including more sub-concepts, examples, and con-
text. This leads to worse performance for Gemma2
when using Llama3.1-generated prior knowledge,
as it struggles to select relevant information from
potentially redundant knowledge to support reason-
ing.

5 Conclusion

Simple commonsense data may still require reason-
ing to arrive at the correct answer, which aligns
with the hidden reasoning phenomena observed
in LLMs. This characteristic makes existing com-
monsense benchmarks insufficient for distinguish-
ing whether a model’s poor performance is due to
a lack of commonsense knowledge or inadequate
reasoning ability. In this study, we explored the
hidden reasoning attributes within commonsense

benchmarks.
Our findings confirm that the coupling of knowl-

edge attributes and reasoning attributes signifi-
cantly affects the evaluation and training of models’
commonsense ability. To address this challenge,
we proposed ReComSBench, a framework for refin-
ing existing commonsense benchmarks. ReComS-
Bench transforms the differences in hidden reason-
ing attributes in benchmark data into explicit repre-
sentations of reasoning and knowledge. Based on
the transformation method, we propose three new
metrics: KBA, MSG and KCR. It not only identi-
fies the difference in reasoning difficulty of "sim-
ple" commonsense question answering, but also
decouples and independently and deeply evaluates
the commonsense knowledge and reasoning abil-
ity of models. Through experiments, we validated
the effectiveness of these metrics and demonstrated
the feasibility of leveraging the hidden reasoning
attributes in benchmark data to enhance a model’s
commonsense capabilities.

Limitations

The limitations of the proposed method lie in the
fact that a Large Language Model is used to auto-
matically generate the prior knowledge required for
answering questions. Thus, this approach is still not
entirely model-independent. Compared to meth-
ods that assess question difficulty based on model
probabilities, our approach does not yield signif-
icantly better overall performance. However, it
still demonstrates advantages on reasoning related
datasets. Furthermore, the prior knowledge gener-
ated by the model may not fully represent the actual
background knowledge required to answer a ques-
tion. While the automatically generated knowledge
can contain more detailed information than human
annotations, it remains applicable in many practical
scenarios. The choice of the base model used for
generating prior knowledge also introduces vari-
ability of prior knowledge, which in turn affects
evaluation outcomes. Therefore, we propose two
approaches to model selection: one is to use self-
generated knowledge to decouple the model’s own
capabilities from the evaluation process; the other
is to adjust the generation instructions or select a
model that can generate more concise prior knowl-
edge, thereby minimizing unnecessary details.

However, within the scope of benchmark data,
it can still reflect the overall reasoning proper-
ties and differences of the data. Additionally, the
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Marginal Sampling Gain metric involves random-
ness in sampling, leading to potential result fluctu-
ations, though these still indicate model sampling
performance. For future work, extending ReComS-
Bench to areas such as empathetic dialogue or le-
gal reasoning could test its generalizability and
improve the metrics.
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A Prompt templates

In this appendix, as show on Figure 4, we list the
prompt templates used in this document along with
their corresponding purposes. Large language mod-
els may be sensitive to differences in prompts, so
we use a consistent prompt template.

Prompt Template and Purpose

Template: Please read the multiple-choice question below
carefully and select ONE of the listed options. Provide the
final answer starting with ’The correct answer is OPTION’.
{QA}.
Purpose: To guide the model directly choose the answer.

Template: Please read the multiple-choice question below
carefully and select ONE of the listed options. Let’s think
step by step. Each step should start with ’THOUGHT:’.
After all thoughts, provide the final answer starting with
’The correct answer is OPTION’. {QA}.
Purpose: To guide the model choose the answer inferen-
tially.

Template: "Please read the multiple-choice question below
carefully and select ONE of the listed options. Provide the
final answer starting with ’The correct answer is OPTION’.
Knowledge hints: {HINT}\n{QA}".
Purpose: To guide the model choose the answer under the
knowledge hints.

Template: You are an expert in knowledge extraction.
Please extract knowledge from text in the form of triples
(subject, predicate, object).
Guidelines:
1. Extract only knowledge explicitly stated in the text.
Do not infer or derive information from context, common
sense, or options unless explicitly mentioned.
2. Avoid overgeneralization or assumptions. Stick strictly
to what is directly expressed in the text.
3. If no knowledge is extractable, return an empty list.
Format:
Return the extracted knowledge in JSON format under
the key extracted_knowledge. Use an empty list if no
knowledge is extractable.
Examples:
{FEW_SHOT}
Now, extract knowledge from the following text:
{TEXT}.
Purpose: To guide the model so that it can extract knowl-
edge properly and in a valid style.

Table 4: Prompt templates and their purposes

B Details of experiments

We provide additional details of the experimen-
tal results here. Table 5 shows the numerical data
corresponding to Figure 4. By comparing the differ-
ences (diff), we observe that the accuracy changes
are generally smaller after knowledge balancing.
Moreover, the improvement in KBA overall accu-
racy is more concentrated in the Hard part, where
the Hard part’s accuracy increases more than the
Easy part, making the KBA curve in Figure 4 flatter.

We define the Easy and Hard parts as the first and
last window values, rather than the maximum and
minimum values within the sliding window. These
findings demonstrate that the KBA metric provides
additional insights into model performance beyond
standard accuracy.

Table 6 additionally shows the pass@K
(Acc(K)) required before computing MSG. For the
Knowledge Coverage Ratio, the U statistic is signif-
icant, as shown in Figure 8. The horizontal axis is
the similarity threshold that measures whether the
knowledge is similar. It can be seen that the advan-
tage is significant under most thresholds. We also
analyzed the redundancy of knowledge, defined as
the proportion of dissimilar knowledge generated
during inference. As shown in Figure 7, correct
groups have higher redundancy. However, since
redundancy has no upper limit and increases with
more generated knowledge, its reference value is
slightly lower than coverage.

C Human annotations

In addition to model-generated priors, we con-
ducted human annotation to collect prior knowl-
edge required for answering questions across com-
monsense benchmarks. The annotators were uni-
versity students with higher education backgrounds
and general world knowledge. Prior to annotation,
we instructed them to explicitly state all the knowl-
edge necessary to answer each question—even if
it appeared trivial or self-evident. Annotators were
provided with model generated knowledges based
on the ReComSBench framework as references, but
were also encouraged to freely supplement addi-
tional prior knowledge when they deemed it nec-
essary. This approach ensures a comprehensive
coverage of both commonly recognized and nu-
anced background knowledge. Some illustrative
examples are shown in Table 7.
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Figure 7: Boxplot of Knowledge Redundancy Ratio differences between correct and incorrect reasoning groups on
commonsense benchmarks

(a) CommonsenseQA Dataset (b) OpenBookQA Dataset

(c) ARC Dataset (d) QASC Dataset

Figure 8: U statistic for knowledge coverage (upper) and redundancy (lower) under different similarity thresholds in
four datasets. The left axis shows statistical advantage, while the right axis shows P values.
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Dataset Model
Accuracy (%) KBA (%)

Overall Easy Hard Diff Overall Easy Hard Diff

CommonsenseQA

llama2 47.4 52.6 43.7 8.9 60.3 66.0 50.6 15.4
llama3.1 73.2 84.1 59.3 24.8 83.8 87.8 80.9 6.9
gemma 66.6 71.0 59.3 11.7 70.6 75.9 64.0 11.9
gemma2 79.7 87.3 67.7 19.6 83.6 83.1 82.9 0.2

OpenBookQA

llama2 42.8 52.4 31.3 21.1 56.4 66.3 46.4 19.9
llama3.1 79.4 88.6 67.5 21.1 87.2 90.4 79.5 10.8
gemma 61.0 66.3 57.2 9.1 65.8 67.5 63.3 4.2
gemma2 87.0 92.8 83.1 9.7 88.4 92.8 83.1 9.6

ARC

llama2 45.8 50.5 40.4 10.1 56.2 58.6 47.5 11.1
llama3.1 81.3 88.9 74.7 14.1 92.0 91.9 91.9 0.0
gemma 65.2 61.6 68.7 -7.1 74.9 73.7 74.7 -1.0
gemma2 91.3 96.0 88.9 7.1 92.3 93.9 92.9 1.0

QASC

llama2 43.5 46.1 37.7 8.4 62.7 66.9 52.6 14.3
llama3.1 78.0 83.4 68.8 14.6 88.2 89.9 83.8 6.2
gemma 65.0 70.5 56.5 14.0 67.8 68.5 64.6 3.9
gemma2 79.6 84.1 70.5 13.6 81.4 76.0 80.8 -4.9

Table 5: Accuracy and KBA for different models on commonsense benchmarks

Dataset Model
Accuracy (%) MSG(K) (%)

pass@1 pass@2 pass@3 pass@4 pass@5 K=2 K=3 K=4 K=5

CommonsenseQA

llama2 52.8 66.2 72.7 77.4 80.4 13.4 6.5 4.7 3.0
llama3.1 71.0 80.4 84.4 86.8 88.7 9.4 4.0 2.4 1.9
gemma 65.4 70.8 73.9 75.8 76.7 5.4 3.1 1.9 0.9
gemma2 75.4 81.2 84.2 85.3 86.4 5.8 3.0 1.1 1.1

OpenBookQA

llama2 53.4 64.6 72.6 76.8 79.2 11.2 8.0 4.2 2.4
llama3.1 79.8 88.4 91.8 94.6 95.2 8.6 3.4 2.8 0.6
gemma 61.6 68.0 71.8 74.0 77.4 6.4 3.8 2.2 3.4
gemma2 80.0 87.8 90.4 91.8 92.6 7.8 2.6 1.4 0.8

ARC

llama2 50.2 62.2 71.5 76.6 82.6 12.0 9.3 5.1 6.0
llama3.1 82.9 90.6 93.0 94.3 95.0 7.7 2.4 1.3 0.7
gemma 65.9 72.6 74.2 75.9 77.9 6.7 1.6 1.7 2.0
gemma2 83.6 90.0 93.0 94.0 95.0 6.4 3.0 1.0 1.0

QASC

llama2 43.1 55.7 62.4 66.5 70.8 12.6 6.7 4.1 4.3
llama3.1 69.9 84.6 89.1 91.4 92.4 14.7 4.5 2.3 1.0
gemma 61.4 67.6 71.0 72.7 74.3 6.2 3.4 1.7 1.6
gemma2 66.8 76.7 81.6 83.2 84.6 9.9 4.9 1.6 1.4

Table 6: Accuracy and MSG for different models on commonsense benchmarks
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Q&A Question: A wooden floor will be easier to slide a chair over than a carpeted
floor will be because a wooden floor?
Options: (A). has dry friction; (B). has enormous friction; (C). has less
roughness; (D). has more texture.

Llama3.1 (1). friction is a force that opposes motion between two surfaces in contact; (2).
wooden floor is easier to slide a chair over than carpeted floor; (3). wooden
floor has less resistance or force opposing the motion of the chair than carpeted
floor; (4). type of surface can affect the amount of friction; (5). smooth surface
has less friction; (6). rough surface has more friction; (7). wooden floor is
considered a smoother surface; (8). carpeted floor can have various textures and
irregularities; (9). wooden floor is smooth; (10). carpeted floor is not smooth.

Gemma2 (1). chair is easier to slide on wood; (2). chair is harder to slide on carpet; (3).
friction is the force that resists motion; (4). friction resists motion between
two surfaces; (5). two surfaces are in contact; (6). rougher surfaces have more
friction; (7). wood is typically smoother than carpet.

Human (1). chair is easier to slide on wood; (2). chair is harder to slide on carpet;
(3). friction is a force that opposes motion between two surfaces in contact;
(4). smooth surface has less friction; (5). rough surface has more friction;
(6). wooden floor is smooth; (7). carpeted floor can have various textures and
irregularities.

Table 7: Examples of prior knowledge from models and human annotators in the OpenBookQA benchmark

12835


