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Abstract

Large language models (LLM) have focused
on expanding the context window in order to
incorporate more information effectively. How-
ever, training models to handle long contexts
poses significant challenges. These include the
scarcity of high-quality natural long-context
data, the potential of performance degradation
on short-context tasks, and the reduced train-
ing efficiency associated with attention mech-
anisms. In this paper, we introduce Untie the
Knots (UtK), a novel data augmentation strat-
egy employed during the continue pre-training
phase, designed to efficiently enable LLMs to
gain long-context capabilities without the need
of modifying the existing data mixture. In par-
ticular, we chunk the documents, shuffle the
chunks, and create a knotted structure of long
texts; LLMs are then trained to untie these
knots and identify relevant segments within
seemingly chaotic token sequences. This ap-
proach substantially enhances the model’s per-
formance by accurately attending to relevant
information in long contexts, while also greatly
improving the training efficiency. We con-
duct extensive experiments on models with 7B
and 72B parameters, trained on 20 billion to-
kens, demonstrating that UtK achieves 75%
and 84.5% accuracy on RULER at 128K con-
text length, significantly outperforming other
long-context strategies. The trained models
and data processing code are open-sourced for
further research. https://github.com/rgtjf/Untie-
the-Knots

1 Introduction

For the past few years, large language models
(LLM) research has focused on expanding the con-
text window in order to incorporate more infor-
mation effectively (Brown et al., 2020; Anthropic,
2023; OpenAI, 2023; Team et al., 2024). This
emphasis stems from the recognition that a wider
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Figure 1: Comparison of various long-context strategies
based on the Qwen2-base (7B) model on the RULER
benchmark. UtK more effectively maintains perfor-
mance at the 128K context length.

context window allows models to integrate more
task-specific information that is not present in the
training data during inference time, resulting in
better performance across various natural language
tasks (Caciularu et al., 2023; Bairi et al., 2023;
Mazumder and Liu, 2024; Jiang et al., 2024; Gur
et al., 2024).

However, training transformer-based models
(Vaswani et al., 2017) to handle long contexts effec-
tively poses significant challenges due to the lower
training efficiency and the quadratic computational
cost of attention mechanisms in long context mod-
els. As a result, many approaches treat long-context
extension as a distinct stage. Training-free methods
for length extrapolation, such as those that modify
rotary position embedding (RoPE) (Su et al., 2021),
often fail to deliver satisfactory performance. Con-
tinue pre-training approaches (Llama Team, 2024;
ChatGLM, 2024; Gunter et al., 2024) aiming at
improving long-context performance encounter a
critical issue: the scarcity of naturally occurring
long texts for training. Texts ranging from 32K
to 128K tokens are rare and typically consist of
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books and code. To mitigate this issue, methods
like LLama3.1 and GLM-Long use upsampling
and artificially constructed long texts (e.g., concate-
nated similar documents) to increase the presence
of long sequences in the training data. However,
these approaches alter the distribution of the data,
making it difficult to achieve a model that performs
well in both long- and short-context tasks while
maintaining efficiency (Fu et al., 2024).

In this paper, we introduce Untie the Knots
(UtK), a novel data augmentation training strategy
designed to enhance the long-context capabilities
of LLMs without changing the existing data mix-
ture. UtK employs an augmentation recipe that
helps the model adapt to longer input sequences
more effectively. Specifically, this strategy in-
volves chunking, shuffling, and reconstructing the
input documents, encouraging the model to learn
to attend to relevant segments of the same docu-
ments while skipping unrelated intervening seg-
ments. Furthermore, we introduce a backtracing
task that requires the model to explicitly locate all
corresponding segments in the correct order, which
significantly improves the accuracy of retrieving
the original context over longer ranges. This strat-
egy, illustrated in Figure 2, ensures that the model
maintains a coherent understanding between and
beyond documents, enhancing its ability to handle
short and long contexts at the same time.

To assess the effectiveness of Untie the Knots,
we have conducted continue pre-training of lan-
guage models with 7B and 72B parameters on
20 billion tokens. Our results demonstrate that
UtK outperforms the ABF baseline and other data
strategies, such as upsampling, as shown in Fig-
ure 1. It also significantly exceeds the perfor-
mance of training-free extrapolation methods like
YaRN (Peng et al., 2023) and Dual Chunk Atten-
tion (DCA) (An et al., 2024). Specifically, our mod-
els show significant improvements on widely-used
benchmarks, with a 15.0% performance increase
on RULER and a 17.2% increase on LV-Eval for
128K tasks, while retaining over 90% of the per-
formance achieved on 32K contexts. To support
further research in this field, we will open-source
the Qwen2-7B-UtK-128k and Qwen2-72B-UtK-
128k base models.

Our contributions are as follows:

1. We introduce Untie the Knots (UtK), an inno-
vative data augmentation strategy designed to
improve the long-context capabilities of large

language models. This method enhances both
training efficiency and model performance on
long-context tasks.

2. We conduct extensive experiments on 7B and
72B models, trained on up to 20 billion tokens.
Our results demonstrate that UtK significantly
outperforms existing data strategies, such as
length upsampling and DCA, across multiple
widely-used benchmarks.

3. We will open source two well-trained models,
Qwen2-UtK-7B-base 128K and Qwen2-UtK-
72B-base 128K, to facilitate further research
and development of the field of long-context
language models.

2 Related Work

Long document continue pre-training has become a
crucial step in enhancing long-context capabilities
in foundational models. Plenty of leading foun-
dational models (Team et al., 2024; Llama Team,
2024; Yang et al., 2024; ChatGLM, 2024; Gunter
et al., 2024) have emphasized the importance of
RoPE’s positional encoding (Su et al., 2021; Chen
et al., 2023; bloc97, 2023; Peng et al., 2023; Xiong
et al., 2023; Men et al., 2024) and the upsampling
of lengthy data. LLaMA 3.1 (Llama Team, 2024)
and Phi-3 (Abdin et al., 2024) leverage the Long
RoPE method (Ding et al., 2024) to extend their
context windows, while Qwen2 (Yang et al., 2024)
utilizes the YARN and Dual Chunk Attention mech-
anisms (Peng et al., 2023; An et al., 2024) to in-
crease the context length to 128k. Additionally,
GLM Long (ChatGLM, 2024) and Apple’s AFM
(Gunter et al., 2024) scale the RoPE base frequency
(Men et al., 2024) to improve generalization across
varying sequence lengths.

One series of works manipulates the order of
training tokens to achieve similar goals. For in-
stance, UL2 (Tay et al., 2022) designs mixture of
denoisers (MoD) objective to adapt the model to
different tasks. Similarly, T5 (Raffel et al., 2020)
employs a deshuffling approach, where a sequence
of tokens is first shuffled and then reconstructed to
match the original ordered sequence. FIM (Bavar-
ian et al., 2022) applied the data transformation by
splitting documents into three random segments
and rearranging them with sentinel tokens. FIM
gives the model ability to generate content condi-
tioned on both prefix and suffix, which is essential
on tasks like code editing. In-context pre-training
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Figure 2: Illustration of the UtK Pre-training process. In the Tangling phase, documents are split into chunks,
which are then randomly tied together. Knot Tokens are inserted at the split points to guide the model in locating
the partitions during the Untying phase. The Chunk IDs of each chunk are appended to the last chunk of the
document to help the model learn to correctly backtrace the original document structure.

(Shi et al., 2024) proposed training on a sequence
of related documents to explicitly encourage the
model to read and reason across document bound-
aries.

Another series of works, such as PoSE (Zhu
et al., 2024), introduce large random gaps within
the same document to help the model become fa-
miliar with out-of-distribution relative distances.
LongSkywork (Zhao et al., 2024) proposed Chunk
Interleaved Pre-training where documents are split
into segments, which are then arranged in an
interleaved fashion to form pseudo long-context
pre-training samples. Our approach differs by
employing a novel augmented training strategy
that involves tangling, backtracing, and untying
phases, thereby enhancing long-context capabili-
ties through a more straightforward yet effective
training process.

3 Method

Untie the Knots aims at effectively enhancing lan-
guage models’ long-context abilities. UtK creates
shuffled document chunks (Section 3.1) that the
model must reconstruct (Section 3.2). The process
is illustrated in Figure 2, and further details are
provided in Appendix B.

3.1 Tangling Phase

In the tangling phase, documents are split into
chunks that are randomly tied together. Combined
with backtracing, this process helps the model learn
to accurately reconstruct the original document.

Chunking We begin by chunking documents into
segments that fit the target sequence length, To
create variability, we choose split points randomly.
Knot tokens are inserted before and after each split
point, and a unique chunk ID is prepended to every
chunk.

Tying The chunks are then shuffled and tied to-
gether, forming a complex, knotted structure of
long texts. We experimented with two tying strate-
gies: one that preserves the original chunk order
and one that does not.

Backtracing After the final chunk of each doc-
ument, we append the correct chunk IDs for that
document as the learning target. This enhances the
model’s capacity to retrieve relevant information
across long-range sequences. A sentinel token is
included to trigger the backtracing output, and the
loss is masked on both knot tokens and the sentinel
token to prevent generating these markers.

3.2 Untying Phase (Training)

In the untying phase, the model is incentivized to
correctly identify and connect fragmented parts of
the text. When the language model encounters a
“head knot”, marking the start of the i-th fragment,
it must search the context to find the unique cor-
responding “tail knot” that signifies the end of the
(i − 1)-th fragment. By accurately locating this
match, the model can reconstruct the fragmented
document and continue its usual language process-
ing. Additionally, through backtracing, the model
learns to connect all related knots, fully restoring
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Figure 3: The top panel shows the UtK-augmented ex-
pected conditional information for the same four docu-
ments, while the bottom panel displays the changes in
the histogram of relative positional embedding distances
from the original to the UtK-augmented.

the original context and thereby enhancing its abil-
ity to handle long contexts.

3.3 Longer than claimed

Distances near the maximum sequence length are
rare in training data. To address this, we propose
using a slightly longer sequence length than the
claimed maximum during training, thereby increas-
ing the model’s exposure to the claimed context
length. We illustrate this process and its explana-
tion in Figure 3.

The upper part illustrates the expected attention
pattern that should be learned after training with
UtK-constructed data. The total sequence length is
41, comprising four text segments, each further di-
vided into 1 to 3 sub-segments, which are shuffled
and concatenated. On the x-axis, lighter markers in-
dicate knot tokens, while darker markers represent
original tokens. Without UtK, attention forms four
lower triangular matrices over the sequence. With
UtK, these matrices are shuffled along with sub-
segments, resulting in the observed pattern, while
the model maintains performance. Achieving the
expected pattern requires the model to search for
relevant preceding text across the entire sequence,

0K-32K

70.1%

32K-128K13.8%

>128K

16.1%

Document Length Distribution

Figure 4: Distribution of document lengths categorized
by token counts. The ratios represent the number of to-
kens within each document length category proportional
to the total number of tokens.

representing an additional long-sequence under-
standing ability that UtK helps develop.

The lower part shows the distribution histogram
of relative positional embeddings before and af-
ter using UtK. The left histogram (without UtK)
has a different distribution than the right histogram
(with UtK), where the model covers longer-range
relative positional embeddings. This demonstrates
that UtK influences the model’s positional encod-
ing, improving its capacity to leverage long-context
information.

4 Experimental Setting

4.1 Training Data
Following Touvron et al. (2023a,b); Llama Team
(2024); Yang et al. (2024), who emphasize the in-
fluence of data quality and diversity in training
models, our curated dataset incorporates sources
such as Common Crawl, books, Wikipedia, code,
and academic papers. To ensure safety, we ap-
plied filters to exclude data from websites likely
to contain unsafe content or significant amounts of
personally identifiable information (PII), as well as
domains flagged as harmful by a safety classifier.
Our dataset comprises 42% Chinese, 42% English,
and 16% code data. For continued training, we
employ a quality classifier to filter for high-quality
data. After filtering, we randomly sampled 300
billion tokens for pre-training. Figure 4 illustrates
the distribution of document lengths, with 70% of
the data falling within the 0-32K token range.

4.2 Model Details
We continue pre-training the Qwen2 models with
a sequence length of 128K tokens, up from their
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initial training sequence length of 32K tokens. We
use the AdamW optimizer (Loshchilov and Hutter,
2017) with parameters β1 = 0.9 and β2 = 0.95,
alongside a cosine learning rate schedule starting at
1e-5 and decaying to 1e-6, including 200 warmup
steps. To reduce memory consumption with the
models’ long context windows, we employ ring
attention (Liu et al., 2023) and flash attention (Dao
et al., 2022). Our training setup uses 128 H800
GPUs across 16 nodes, with a batch size of 4 mil-
lion tokens. Training the 7B parameter models on
20B tokens takes 15 hours, while the 72B models
require 5.5 days for the same amount of data.

For each document, with a certain probabil-
ity p, we split it into n parts: Chunk1, Chunk2,
· · · , Chunkn. This split occurs after tokeniza-
tion, making it an on-the-fly solution that can be
applied to other architectures (e.g., Mamba (Gu
and Dao, 2024)). We conduct experiments using
two UtK probabilities, 30%(low) and 80%(high),
which means how many sequences are augmented
by UtK. Moreover, we continue pre-training the
LLama3.1 models which are already trained on se-
quence length of 128K tokens to see whether UtK
could even improve the performance. We keep the
LongRoPE (Ding et al., 2024) modification made
in Llama3.1 128k during training and inference.

4.3 Comparison Methods
We compare UtK against the following methods:

CT In the naive continued pre-training experi-
ment, we increased the training sequence length
to 128K and trained on 20 billion tokens. Since
the models were already pre-trained on 128K data,
DCA was not applied during the inference stage
for Qwen2 models.

ABF We increased the base frequency b of RoPE
(Xiong et al., 2023) from 1e6 to 5e6, which is ap-
proximately the recommended base frequency as
proposed by Men et al. (2024). Note that the 5e6
base frequency was used in all experiments except
for the naive CT baseline in this paper.

Upsampling Following Fu et al. (2024), we ap-
plied per-source length upsampling to maintain a
fixed domain mixture ratio. Documents longer than
32K tokens were upsampled fivefold, without alter-
ing the overall domain mixture ratio.

AttnMask As suggested by Llama Team (2024),
an inter-document attention mask is essential dur-
ing continued pre-training for long context. We

applied this strategy in our experiment. Note that
this strategy cannot be combined with UtK, as UtK
requires the model to have full attention to locate
the corresponding knots.

Synthetic Xiong et al. (2024) demonstrated that
fine-tuning LLMs using specially designed syn-
thetic data can significantly enhance long-context
understanding. Inspired by their approach, we con-
structed five types of synthetic datasets focused on
specific tasks: sorting, multi-hop reasoning, state
tracking, similarity retrieval, and attribute inclusion.
Each dataset had a context length of 128K tokens.
In this experiment, 30% of the original data mix-
ture was replaced with synthetic data, comprising
6B tokens of synthetic data and 12B tokens of orig-
inal data. The detailed methodology for synthetic
data construction is described in Appendix C.

CIP Following the optimal CIP-2 configura-
tion from Zhao et al. (2024), each document
was randomly split into two chunks, which
were then interleaved in a pattern such as
D1

1, D
1
2, D

1
3, D

2
1, D

2
2, D

2
3.

5 Results

5.1 Main Results

Datasets & Metrics To quantify the long con-
text abilities, we mainly focus on evaluating long-
context language models on test sets with config-
urable sequence length. We use two widely rec-
ognized benchmarks: RULER (Hsieh et al., 2024)
and LV-Eval (Yuan et al., 2024). In addition, we
evaluate on real-world tasks from InfiniteBench
(Zhang et al., 2024).

RULER generates synthetic examples to assess
long-context capabilities beyond simple in-context
recall, comprising 13 tasks across 4 categories (i.e,
NIAH, VT, CWE+FWE, and QA). We use the
base model prompt template and report the average
score across these 13 tasks.

LV-Eval consists of two main tasks, single-hop
QA and multi-hop QA, across 11 bilingual datasets.
We report our results on 32K and 128K context
lengths. We exclude the factrecall-en and factrecall-
zh datasets, as factrecall-en and factrecall-zh are de-
signed to expect the model to find apparently wrong
facts in the context, which is against the harmless
principle. To better evaluate on base models, we
use pseudo 3-shot format guidance (Appendix D).

InfiniteBench requires supervised finetuning
models to follow instructions. Following ChatQA
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2.0 (Xu et al., 2024), we leverage the long SFT
dataset and the same data mix to enhance the
model’s ability to handle extended context se-
quences of up to 128k tokens. Unlike ChatQA
2.0, we simplify the training process by employ-
ing a one-stage approach instead of the three-stage
methodology. We adopt the same learning rate of
3e-5 as used in ChatQA 2.0.

RULER The results in Table 1 highlight our
model’s effectiveness across various long-context
evaluation benchmarks. On the RULER bench-
mark, our model, Qwen2-UtK-base (7B), consis-
tently outperforms most other models at the 128K
context length, achieving an average score of 75.0
—significantly higher than Qwen2-base by 15.0%
and Llama3.1-base by 13.5%. This demonstrates
that Qwen2-UtK-base is particularly robust in han-
dling extended contexts, maintaining strong per-
formance as context length increases. At the 32K
context length, Qwen2-UtK-base (7B) performs
just 0.6 points below Qwen2-base at 32K contexts,
yet it surpasses Qwen2-CT (7B) by 2.3 points. This
suggests that while the quality of our training data
may not fully match that of Qwen2, the UtK strat-
egy significantly enhances long-context capabilities
by enabling the model to more accurately attend
to relevant information. Furthermore, we applied
our UtK method to Llama3.1-base which is already
trained on 128k context length. UtK demonstrated
an improvement of 11.6% in performance. De-
tailed values for different datasets are provided in
Appendix F.

LV-Eval Table 2 show the results in the LV-Eval
benchmark. Our model once again exhibits supe-
rior performance at 128K. Note that the Qwen2-
Synthetic approach did not enhance performance
at the 32K level on LV-Eval, but the UtK method
demonstrated superior capability to maintain per-
formance at 128K.

InfiniteBench The results are as shown in Ta-
ble 3. Our model demonstrates excellent perfor-
mance in question-answering tasks but shows rela-
tively lower performance in summarization tasks.
This discrepancy can be attributed to the limited
amount of summarization data in the SFT dataset,
consistent with the observations in ChatQA 2.0.

5.2 Standard Short-Context Results

Datasets & Metrics Previous research (Xiong
et al., 2023; Llama Team, 2024) has identified a

Models 32K 64K 128K

API MODEL

Gemini-1.5-pro§ 95.9 95.9 94.4
GPT-4-1106-preview§ 93.2 87.0 81.2

INSTRUCT MODEL

Mistral (7B)§ 75.4 49.0 13.8
LWM (7B)§ 69.1 68.1 65.0
Llama3.1 (8B)§ 87.4 84.7 77.0

BASE MODEL

Mistral-base (7B)§ 77.2 52.3 8.0
LWM-base (7B)§ 64.6 61.3 59.0
Qwen2-base (7B)‡ 81.1 73.2 65.2
Llama3.1-base (8B)† 90.2 80.4 66.1
LONG-CONTEXT

Qwen2-CT (7B) 78.2 73.6 54.8
Qwen2-ABF (7B) 78.9 75.2 65.9
Qwen2-Upsampling (7B) 80.7 76.4 67.4
Qwen2-AttnMask (7B) 80.4 75.6 72.0
Qwen2-Synthetic (7B) 83.2 80.5 72.7
Qwen2-CIP (7B) 80.5 76.3 71.0
Qwen2-UtK-base (7B) 80.5 79.2 75.0
Llama3.1-UtK-base (8B)† 88.8 83.6 73.8

70B MODEL

Llama3.1 (70B)§ 94.8 88.4 66.6
Qwen2 (72B)§ 94.1 79.8 53.7
Llama3.1-base (70B)† 91.7 84.6 66.0
Qwen2-base (72B)‡ 93.3 85.9 78.0
Qwen2-UtK-base (72B) 93.3 90.6 84.5

Table 1: Performance on the RULER benchmark.
†Llama3.1-base was inferred with vLLM. ‡For Qwen2-
base (7B, 72B), we used vLLM DCA branch for tasks
over 32K tokens as suggested by Qwen Team. § results
are sourced from RULER.

model performance trade-off between short and
long tasks. To evaluate our models’ performance on
short tasks, we conducted tests on a series of widely
recognized benchmarks. Specifically, we assess our
models using three categories of datasets: Under-
standing, Code, and Math. For Understanding, we
assess 5-shot performance on Natural Questions
(Kwiatkowski et al., 2019) and TriviaQA (Joshi
et al., 2017), and 3-shot Chain-of-Thought perfor-
mance on BIG-Bench Hard (Suzgun et al., 2022).
In the Code category, we measure pass@1 on Hu-
manEval (Chen et al., 2021) and 3-shot perfor-
mance on the sanitized MPBB benchmark (Austin
et al., 2021). For Math, we evaluate the top-1 ac-
curacy in the 4-shot GSM8K dataset (Cobbe et al.,
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Models 32K 128K

Llama3.1-base (8B) 29.16 23.90
Qwen2-base (7B) 29.88 23.94
Qwen2-ABF (7B) 29.54 25.24
Qwen2-AttnMask (7B) 29.48 25.91
Qwen2-Synthetic (7B) 29.14 25.89
Llama3.1-UtK-base (8B) 29.63 26.89
Qwen2-UtK-base (7B) 29.36 28.06

Llama3.1-base (70B) 30.38 23.07
Qwen2-base (72B) 32.37 27.40
Qwen2-UtK-base (72B) 32.24 32.10

Table 2: Performance on LV-Eval benchmark.
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Figure 5: Performance with varying numbers of chunks
on the RULER 128K benchmark.

2021). These metrics provide a comprehensive as-
sessment of the models’ capabilities across diverse
tasks.

Results Table 4 presents the average scores
across different model sizes. First, we analyze
the impact of data on the model performance and
find that using our data achieves a performance
comparable to the base model, with a slight de-
crease (-1.5%). Second, after removing the impact
of the data, we observe that our method’s metrics
are similar to those of the CT baseline. These re-
sults suggest that UtK enables language models on
long-context tasks while maintaining performance
on standard short-context tasks.
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Figure 6: Training Efficiency

5.3 Ablation Analysis

We have conducted ablation analyses on two key
design choices in the training strategy: (1) the op-
timal number of chunks for long-context training,
and (2) the effects of each designed component. We
have performed the ablation study on 7B models
with 20B training tokens and evaluated them with
the RULER benchmark. The results are illustrated
in Figure 5 and Table 5.

Number of Chunks When evaluating the num-
ber of chunks, we find that using 2 or 3 chunks
yields the best performance on the NIAH, VT,
and CWE+FWE datasets. For the QA dataset,
we observe that increasing the number of chunks
improves the model’s reasoning ability, suggest-
ing that more complex training benefits QA tasks.
We have also experimented with combining these
approaches, which resulted in even better perfor-
mance. We tried dividing the text into chunks of
1K tokens each, which resulted in an average score
of 68.92. This indicates that a higher number of
chunks can increase task complexity, potentially
hindering the model’s learning process.

Training Strategy In comparing different train-
ing strategies, we observe that maintaining partial
order and incorporating the tracing task are both
essential for long-context learning. We reckon that
keeping the partial order encourages the model to
attend to longer but related chunks, while the trac-
ing task requires the model to provide the "correct"
untie solution, as later segments cannot typically
correct errors in earlier ones. Finally, we find that
a higher probability of UtK is also necessary to
improve training efficiency.
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Model En.Avg. En.Sum En.QA En.MC En.Dia Zh.QA

GPT-4-Turbo-2024-04-09 33.2 17.6 19.3 77.7 18.0 -
Kimi-Chat 29.6 18.0 16.5 72.5 11.5 17.9

Llama3.1-8B-Instruct 33.2 29.2 31.5 59.0 13.0 -
Llama3-ChatQA2-8B 35.6 17.1 43.5 64.2 17.5 -
Qwen2-ChatQA2-7B 22.5 14.1 35.9 31.4 8.5 34.4
Qwen2-ABF-ChatQA2-7B 29.7 16.2 34.3 59.2 9.0 34.4
Qwen2-Synthetic-ChatQA2-7B 23.0 13.7 29.3 35.8 13.0 31.0
Qwen2-UtK-ChatQA2-7B 33.3 21.2 42.6 61.1 8.5 37.6

Llama3.1-70B-Instruct 39.8 30.9 38.5 75.6 14.3 -
Qwen2-72B-Instruct 39.8 31.7 21.5 83.0 23.0 -
Llama3-ChatQA2-70B 41.0 16.1 48.2 80.4 19.5 -
Qwen2-ChatQA2-72B 31.8 14.7 40.5 48.9 23.0 40.5
Qwen2-UtK-ChatQA2-72B 47.3 18.2 55.9 83.8 31.0 45.2

Table 3: Performance on InfiniteBench includes real-world long-context understanding tasks.

Models
Understanding Code Math

Avg. ∆
BBH
3shot

NQ
5shot

TriviaQA
5shot

HumanEval
0shot

MBPP
3shot

GSM8K
4shot

Llama3.1-base (8B) 63.9 33.5 80.2 35.4 54.5 58.0 54.2 -
Llama3.1-UtK-base (8B) 61.9 34.0 79.6 38.4 54.6 59.3 54.6 +0.7%
Qwen2-base (7B) 61.4 30.3 70.2 46.3 64.6 80.9 59.0 -
Qwen2-CT-base (7B) 61.1 29.6 70.3 44.5 66.2 77.6 58.1 -1.5%
Qwen2-UtK-base (7B) 61.6 29.5 70.2 45.1 64.2 78.1 58.2 -1.4%

Llama3.1-base (70B) 81.0 49.3 91.2 59.2 72.8 82.3 72.6 -
Qwen2-base (72B) 79.8 45.6 88.0 61.6 76.9 88.8 73.3 -
Qwen2-UtK-base (72B) 80.6 45.0 87.6 61.0 75.9 87.8 73.0 -0.4%

Table 4: Results on standard short-context benchmarks. ∆ represents the marginal effect of continued pre-training.

5.4 Training Efficiency

As illustrated in Figure 6, we compare the baseline
and UtK training methods by progressively increas-
ing the number of training tokens to determine the
required amount for effective long-context exten-
sion. We also include experiments with a longer
sequence length of 192K to assess whether even
longer context would enhance performance when
still evaluated on the 128K tasks.

Our findings indicate that: 1) Our approach UtK
does have a higher training efficiency compared
with the baseline regardless of how many training
tokens are used, and the performance gains are
steady. 2) Training on a 192K sequence length
does increase the training efficiency at both the 1B
and 5B token levels but the grains are diminishing
when we reach 20B tokens. 3) Most significantly,

with only 1B tokens, UtK-192K can already reach
ABF’s performance after 20B tokens training.

5.5 Attention Visualization

To visually represent the changes in attention of
the model trained with UtK at a length of 128k, we
have plotted the attention maps before and after dif-
ferent training methods. Although the ABF-trained
baseline can already accurately locate information
within the same document, the model trained with
UtK exhibits more attention on long-range depen-
dencies within the same document, thereby per-
forms better on using long-range contexts. Figure 7
gives the attention map of Qwen2-UtK-base 7B. A
comprehensive collection of attention maps can be
found in Figure 8 and Appendix A.3.
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Models Average NIAH VT
CWE+
FWE

QA

Qwen2-UtK-80% 75.0 90.3 97.6 29.9 48.0
- Disrupt order 73.0 90.4 97.8 17.4 46.0
- W/o backtracing 74.3 91.3 94.8 23.5 46.5
Qwen2-UtK-30% 73.1 88.8 94.8 28.5 44.0
- Disrupt order 72.3 89.0 89.8 21.7 47.0
- W/o backtracing 70.8 88.5 86.2 21.2 42.0

Table 5: Ablation Study. UtK (30%) denotes applying
UtK to 30% of the sequences. Disrupt order indicates
that the sequential order of the chunks within the docu-
ments is not preserved. W/o backtracing signifies that
backtracing is not applied during the process.

Figure 7: Attention map of Qwen2-UtK-base 7B.

6 Conclusion

In this paper, we propose UtK, an augmentation
recipe to adapt models to longer context more effi-
ciently and effectively. UtK is an on-the-fly solu-
tion that enables models to better learn long-range
dependencies and is applicable to other architec-
tures (e.g., Mamba) and languages without chang-
ing the data mixture. We trained and open sourced
Qwen2-7B-UtK-128k and Qwen2-72B-UtK-128k
base models, which demonstrate superior perfor-
mance compared to the base models and other long-
context enhancement strategies, including upsam-
pling and DCA. In addition to the performance gain,
our method also demonstrates a large increase of
training efficiency. We will open-source our mod-
els and data processing code and hope to see our
approach applied to more datasets and model train-
ing in the community.

Limitations

Limited Functionality. Although being efficient
among continue training methods, due to the limi-
tation of training tokens and practice patterns. As
a result, it can only perform adaptation or trans-
fer learning based on the model’s original ability.
Acquiring new abilities, such as solving complex
problems within long context, is not feasible and
may require further specialized training. Our ex-
periments are also limited to the datasets we use.
Our method applied to other datasets of different
languages or genres might lead to different results.

Potential Risk. Like other LLMs, we have ob-
served hallucination issue when testing the pro-
posed our model. While this issue is more com-
mon in short-context models, addressing it in long-
context models can be even more pronounced due
to the greater difficulty in the alignment process.
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A Attention Visualization at 128k
Lengths

Visualizing attention at 128k lengths presents some
challenges. This is because at a length of 128k,
with 28 layers and each layer having 28 atten-
tion heads, the attention scores would require
2 × 28 × 28 × 128k × 128k = 25TB (bf16) of
memory. Therefore, during the forward pass, we
only saved the Q and K for each layer to the disk.
We then computed the attention score for each head
of each layer offline, with each computation requir-
ing only 2 × 128k × 128k = 32GB of memory.
Due to the vast number of data points in the at-
tention maps, we performed a pooling operation
before plotting, retaining only the highest attention
score within each 16x16 block. To emphasize the
attention distribution, we multiplied each attention
score by 100 and clipped the values to range be-
tween 0 and 1, resulting in an 8k x 8k attention
map.

A.1 Selection of Layers and Attention Heads

Since most heads focus more on local attention,
we needed to identify the layers and heads that
represent long-range attention more effectively. We
computed the sum of attention scores for distances
greater than 1000 for each layer and attention head.
Across multiple model calculations, we found that
the head with the highest sum was the 5th head of
the 23rd layer. Thus, we used the attention score of
the 5th head of the 23rd layer for plotting.

A.2 Document Splitting

We selected six documents and concatenated them,
resulting in a total of 147,917 tokens. We truncated
any part exceeding 128k tokens. Each document
was randomly split into three pieces, making a total
of 18 chunks. Since the parts exceeding 128k to-
kens were truncated, only the first 16 chunks were
used for computation. The coordinate axes in the
plots display only 13 different slices because some
slices from the same document remain adjacent
even after shuffling.

A.3 Explanation of Figures

(a) The Qwen2-base 7B model is the original open-
source model. During plotting, the support of
DCA+YaRN in vLLM and HuggingFace caused
out-of-memory (OOM) issues, so we did not in-
clude the YaRN+DCA strategy in the plot. It can
be observed that for content beyond 32k tokens, the

model shows very little attention score, indicating
that the original model does not have the capability
beyond 32k tokens.

(b) The Qwen2-ABF-base 7B is a model trained
with the ABF strategy on 20B tokens. The ABF-
trained baseline can accurately locate information
within the same document.

(c) The Qwen2-UtK-base 7B is a model trained
with the UtK strategy on 20B tokens. The plot
shows that the UtK-trained model also accurately
locates information within the same document.

(d) To compare the Qwen2-ABF-base 7B and
Qwen2-UtK-base 7B models, we subtracted one
attention score from the other and plotted the dif-
ference in figure (d). Red indicates higher attention
scores for Qwen2-UtK-base, while blue indicates
higher scores for Qwen2-ABF-base. The compari-
son reveals that the model trained with UtK shows
more attention on long-range dependencies within
the same document, thereby reducing the loss of
long-range information.

B UtK Algorithm

Suppose n documents represent a sampled set of
training data of length l (e.g., 128k), the ith doc-
ument is represented as Di, which contains Li to-
kens.

∑n
i=1 Li >= l.

UtK rearranges the training data in the following
procedures:

1. For each document Di which Li >=
min_split, we split it into hi chunks, D1

i to
Dhi

i , hi ∼ P , P is a custom discrete distri-
bution, 2 ∗ (hi − 1) split points are randomly
chosen from (0,Li).

2. Prepend chunk label CLj
i for each chunk.

Chunk labels are randomly generated char-
acters, and are treated as normal words when
doing tokenization. Each chunk label is sur-
rounded by special tokens <CL> and </CL>.

3. For Dj
i with j > 1, prepend head knot token

<hj>

4. For Dj
i with j < hi, add tail knot token <tj>

at the end of this chunk.

5. Shuffle all Dj
i s, when PreserveOrder con-

straint is enabled, we adjust the position of
chunks of the same documents to preserve the
order within each document.
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(a) Qwen2-base 7B (b) Qwen2-UtK-base 7B

(c) Qwen2-ABF-base 7B (d) Qwen2-ABF-base v.s. Qwen2-UtK-base

Figure 8: Attention Visualization

6. Add unique label at the last chunk of each
document for backtracing, <S> CL1

i <s> CL2
i

<s> ... <s> CLhi
i </S>.

See Algorithm 1 for pseudo code implementation
of UtK and Figure 9 for illustration of the UtK
algorithm applied to an example document.

C Synthetic Dataset

We described the methodology used to create syn-
thetic data in Table 6.

D LV-Eval Evaluation Details

We report the average F1 score or ROUGE score
across the remaining 9 datasets. For all tasks
except dureader-mixup and cmrc-mixup, we use

a keyword-recall-based F1 metric, utilizing an-
notated answer keywords and a word blacklist.
For cmrc-mixup, we apply the F1 metric with a
word blacklist, and for dureader-mixup, we use the
ROUGE-L metric with a word blacklist.

In order to evaluate the base model without
adding other questions as context and risk getting a
long. We developed a novel method called pseudo
few-shot format guidance. This method primes
the model with a series of simple, contextually rel-
evant questions and their corresponding answers,
which can be easily extracted using regular expres-
sions. These preliminary questions guide the model
towards the desired output format without intro-
ducing extraneous information, see Table 7 for a
pseudo format guidance example.
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Algorithm 1 UtK algorithm

Require: n > 0
Ensure:

∑
doci > seq_len

1: procedure BUILDUTK(docs)
2: for i← 1, n do ▷ Randomly split doci into h parts
3: s← []
4: parts← [doci]
5: if length(doc) ≥ min_split_len then
6: h← random.choice([1..maxh, 1], P]) ▷ Number of hops
7: s← random.choice([1..length(doci)), h) ▷ Split position
8: s.sort()

9: partsi ← [doci[: s1], doci[s1 : s2], ..., doci[sh−1 :]]
10: for j ← 1, h do ▷ Add Knot tokens before/after each doc
11: if j > 1 then
12: partsij ← ["<hj>"] + partsij

13: if j < h then
14: partsij ← partsij + ["<tj>"]

15: partsij ← <ID> + rand_idi + </ID> + partsij ▷ Add random id
16: if j = h then ▷ Add label for backtracing
17: partsij ← partsij + <ID> + rand_id1 + ...+ rand_idh + </ID>

18: total_parts←∑
length(partsi)

19: all_indices← random.permutation(total_parts)
20: start← 0
21: results← list of size total_parts
22: for i← 1, n do ▷ Gather parts of docs into a full sequence
23: this_part_indices← all_indices[start : start+ length(partsi)]
24: this_part_indices.sort()
25: for j ← 1, length(parts_i) do
26: idx← this_part_indices[j]
27: resultsidx ← partsij

28: start← starts+ length(partsi)
return results

E Open Source

We are publicly releasing the Qwen2-UtK and
Llama3.1-UtK base models to the research commu-
nity under the Apache License. These base models
are specifically designed for long-context modeling
(128K) and have been tested on both English and
Chinese datasets. We hope this release will con-
tribute to advancing the capabilities of language
models in handling longer contexts.

F Additional Results

We present detailed results for the RULER bench-
marks in Table 8, Table 9, Table 10, and LV-Eval
benchmarks in Table 13, Table 14, Table 15.

F.1 VT Task Output Truncation
There is a degradation in Multi-hop Tracing (VT)
tasks at 4K–8K context length in Table 8. This
degradation at shorter context lengths is primarily
due to output truncation, rather than an inherent
limitation of UtK. The VT task requires the model
to enumerate all variable names associated with
a value V , but the RULER dataset restricts the
generated output to 30 tokens for these settings.
As a result, truncated predictions at a 4K context
length often miss the final variables. For example:

• Prediction: “1. VAR KRUSV 2. VAR
XZNXP 3. VAR RCLWE 4. VAR GILIW
5” (missing “HYKVM”)

• Prediction: “1. PUFNL, 2. LWZHQ, 3.
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Original Text

The stars twinkle. ⟨EOS⟩ The sun rises above the calm sea. ⟨EOS⟩ Birds sing softly in the morning air. ⟨EOS⟩

Step 1: Split into Chunks

The stars twinkle. ⟨EOS⟩
The sun rises
above the calm sea. ⟨EOS⟩
Birds sing
softly in the
morning air. ⟨EOS⟩

Step 2: Prepend Chunk Label

⟨CL1⟩ The stars twinkle. ⟨EOS⟩
⟨CL2⟩ The sun rises
⟨CL3⟩ above the calm sea. ⟨EOS⟩
⟨CL4⟩ Birds sing
⟨CL5⟩ softly in the
⟨CL6⟩ morning air. ⟨EOS⟩

Step 3: Prepend Head Knot Token

⟨CL1⟩ The stars twinkle. ⟨EOS⟩
⟨CL2⟩ The sun rises
⟨H2⟩ ⟨CL3⟩ above the calm sea. ⟨EOS⟩
⟨CL4⟩ Birds sing
⟨H2⟩ ⟨CL5⟩ softly in the
⟨H3⟩ ⟨CL6⟩ morning air. ⟨EOS⟩

Step 4: Add Tail Knot Token

⟨CL1⟩ The stars twinkle. ⟨EOS⟩
⟨CL2⟩ The sun rises ⟨T1⟩
⟨H2⟩ ⟨CL3⟩ above the calm sea. ⟨EOS⟩
⟨CL4⟩ Birds sing ⟨T1⟩
⟨H2⟩ ⟨CL5⟩ softly in the ⟨T2⟩
⟨H3⟩ ⟨CL6⟩ morning air. ⟨EOS⟩

Step 5: Shuffle

⟨CL2⟩ The sun rises ⟨T1⟩
⟨CL4⟩ Birds sing ⟨T1⟩
⟨H2⟩ ⟨CL5⟩ softly in the ⟨T2⟩
⟨CL1⟩ The stars twinkle. ⟨EOS⟩
⟨H2⟩ ⟨CL3⟩ above the calm sea. ⟨EOS⟩
⟨H3⟩ ⟨CL6⟩ morning air. ⟨EOS⟩

Step 6: Backtracing

⟨CL2⟩ The sun rises ⟨T1⟩
⟨CL4⟩ Birds sing ⟨T1⟩
⟨H2⟩ ⟨CL5⟩ softly in the ⟨T2⟩
⟨CL1⟩ The stars twinkle. ⟨EOS⟩
⟨S⟩⟨CL1⟩⟨/S⟩
⟨H2⟩ ⟨CL3⟩ above the calm sea. ⟨EOS⟩
⟨S⟩⟨CL2⟩⟨s⟩⟨CL3⟩⟨/S⟩
⟨H3⟩ ⟨CL6⟩ morning air. ⟨EOS⟩
⟨S⟩⟨CL4⟩⟨s⟩⟨CL5⟩⟨s⟩⟨CL6⟩⟨/S⟩

UtK Text

⟨CL2⟩ The sun rises ⟨T1⟩ ⟨CL4⟩ Birds sing ⟨T1⟩ ⟨H2⟩ ⟨CL5⟩ softly in the ⟨T2⟩ ⟨CL1⟩ The stars twinkle. ⟨EOS⟩ ⟨S⟩
⟨CL1⟩ ⟨/S⟩ ⟨H2⟩ ⟨CL3⟩ above the calm sea. ⟨EOS⟩ ⟨S⟩ ⟨CL2⟩ ⟨s⟩ ⟨CL3⟩ ⟨/S⟩ ⟨H3⟩ ⟨CL6⟩ morning air. ⟨EOS⟩ ⟨S⟩
⟨CL4⟩ ⟨s⟩ ⟨CL5⟩ ⟨s⟩ ⟨CL6⟩ ⟨/S⟩

Figure 1: Illustration of the UtK algorithm applied to an example document.

1

Figure 9: Illustration of the UtK algorithm applied to an example document. ⟨CLi⟩ is a hash string enclosed by two
special tokens. ⟨Hi⟩, ⟨Ti⟩, ⟨S⟩, ⟨s⟩, and ⟨/S⟩ are special tokens.

PTYFF, 4. REEBA, 5.” (missing “LPHGS”)

In contrast, at a 128K context length, the model is
able to provide complete responses. For example:

• Prediction: “VAR IWPYM, VAR SDXPW,
VAR PAOLE, VAR IRPTX, VAR SFSVD.”

These findings indicate that the observed per-
formance drop is caused by the format constraints
imposed on shorter contexts, rather than a funda-
mental issue with UtK. Consequently, aggregate
metrics—including those in Table 8 for overall
RULER results—are affected by this artifact. To en-
sure a fair comparison with prior work, we strictly
follow RULER’s default settings for all evaluations.

F.2 Result Analysis with respect to Language
our proposed approach is applicable to other lan-
guage mixtures as well, and, importantly, it does
not require modifying the language proportions.

We analyze the language performance compari-
son on InfiniteBench and LV-Eval. Table 11 re-
ports the breakdown of model performance on
the English (En.QA) and Chinese (Zh.QA) sub-
sets of InfiniteBench. The results demonstrate that
our method yields consistent improvements across
both languages. Table 12 summarizes this anal-
ysis on LV-Eval at 32K and 128K contexts. The
results consistently indicate that the UtK strategy
achieves superior performance at 128K, demon-
strating language-agnostic improvements.
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Dataset Size Objective

sorting 1B We provide the model with a list of entities, each possessing
multiple attributes represented by integer values. We then
ask it to identify the maximum or minimum value of a
specific attribute, as well as the name of the corresponding
entity.

multi-hop reasoning 5B This task resembles entity linking in the field of knowledge
graphs. We provide the model with numerous triplets, such
as (Alice, likes, Bob), and ask it to identify the end_entity
based on the given start_entity and relationships. The num-
ber of hops is a hyperparameter, and we have constructed
datasets ranging from 1 to 5 hops in total.

state tracking 1B We have constructed a virtual trading scenario and provide
the model with daily transaction details. The model is
required to determine which trader ultimately possesses a
specific initial item from a particular trader.

similarity retrieval 1B We provide the model with numerous objects, each asso-
ciated with a list of multiple random strings. The task for
the model is to identify, from the context, the object that
contains all of these given strings.

attribute inclusion 3B We provide the model with numerous entities, each con-
taining 5 inherent attributes and 15 optional attributes. The
task is for the model to identify the corresponding entity
based on the given attributes. There are three task variants:
in the first variant, the attributes in the query match the
attributes of the answer entity exactly; in the second variant,
the attributes in the query are a subset of the attributes of
the answer entity; and in the third variant, the attributes of
the answer entity are a subset of the attributes in the query.

Table 6: The methodology used to create synthetic data.

Model En.QA Zh.QA

Qwen2-ChatQA2-7B 35.9 34.4
Qwen2-UtK-ChatQA2-7B 42.6 37.6
Qwen2-ChatQA2-72B 40.5 40.5
Qwen2-UtK-ChatQA2-72B 55.9 45.2

Table 11: Performance on InfiniteBench’s English
En.QA and Chinese Zh.QA subsets.

Model Avg.En Avg.Zh Avg.En Avg.Zh
32K 32K 128K 128K

Qwen2-base (7B) 27.90 32.35 21.97 26.40
Qwen2-UtK-base (7B) 27.41 30.17 26.44 31.53
Qwen2-base (72B) 31.22 33.80 26.52 28.50
Qwen2-UtK-base (72B) 31.11 33.66 31.45 32.93

Table 12: Comparison of average English (Avg.En) and
Chinese (Avg.Zh) performance on LV-Eval at different
context lengths.
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Please answer the following question based on the given passages.
Questions and answers are only relevant to one passage. Only give
me the answer and do not output any other explanation and evidence.

Article:

### Passage 1
Ann’s Mega Dub: 12/19/10 - 12/26/10
Got o have a penis to be an expert . . .

### Passage 2

Probably one of the most frustrating things about building
experimental aircraft, especially when starting with a minimum of
pre-fabricated parts, is to start building and ending up with an
unexpected result. . . .

### Passage 3
. . .

Pseudo format guidance

Question: How many passages are there in total?
Answer:11

Pseudo format guidance

Question: What is the title of Passage 10?
Answer:Paper Info

Pseudo format guidance

Question: What is the title of Passage 1?
Answer:Ann’s Mega Dub: 12/19/10 - 12/26/10

Actual question

Question: What are some reasons for the lack of data sharing in
archaeobotany?
Answer:

Table 7: An illustration of 3-shot pseudo format guidance example in LV-Eval hotpotwikiqa dataset
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Model 4K 8K 16K 32K 64K 128K

Llama3.1-UtK-base (8B) 94.64 92.19 91.73 88.83 83.60 73.79
Llama3.1-base (70B) 95.78 94.54 93.04 91.66 84.64 66.02
Llama3.1-base (8B) 94.35 92.06 92.31 90.17 80.40 66.10
Qwen2-ABF (7B) 99.78 98.53 82.46 78.94 75.21 65.91
Qwen2-AttnMask (7B) 90.57 84.9 82.74 80.38 75.59 71.97
Qwen2-CIP (7B) 90.5 85.38 82.21 80.50 76.26 71.04
Qwen2-CT-base (7B) 92.82 85.79 83.12 78.16 73.64 54.75
Qwen2-Synthetic (7B) 99.72 99.16 85.55 83.21 80.45 72.68
Qwen2-Upsampling (7B) 91.75 87.32 82.76 80.69 76.38 67.41
Qwen2-UtK-base (72B) 95.0 93.78 94.67 93.26 90.57 84.45
Qwen2-UtK-base (7B) 90.59 85.01 82.01 80.50 79.20 75.03
Qwen2-base (72B) 96.91 95.69 94.53 93.31 85.87 78.00
Qwen2-base (7B) 90.81 84.78 82.33 81.05 73.16 65.22

Table 8: Performance of the reported base models across length 4K to 128K by averaging 13 task scores of RULER.

Model
NIAH VT

4K 8K 16K 32K 64K 128K 4K 8K 16K 32K 64K 128K

Llama3.1-UtK-base (8B) 99.88 99.88 99.59 98.19 97.34 88.25 93.6 90.6 91.8 94.4 89.2 65.0
Llama3.1-base (70B) 100.0 99.62 99.59 97.56 95.09 74.88 94.4 94.0 94.8 85.4 83.6 75.0
Llama3.1-base (8B) 99.88 100.0 99.72 99.03 94.66 81.53 95.8 92.4 94.6 92.4 88.8 31.0
Qwen2-ABF (7B) 99.78 98.53 98.16 95.53 93.72 83.06 78.4 80.2 71.8 66.2 65.6 71.6
Qwen2-AttnMask (7B) 98.38 98.09 97.38 96.69 92.09 86.34 72.4 60.4 58.0 48.4 46.6 76.4
Qwen2-CIP (7B) 99.38 99.31 98.22 95.97 93.50 86.12 63.8 65.4 65.0 69.0 72.4 90.4
Qwen2-CT-base (7B) 99.84 99.09 98.50 94.88 93.12 66.72 91.6 71.2 63.4 61.4 66.2 68.4
Qwen2-Synthetic (7B) 99.72 99.16 98.75 96.91 96.09 89.97 98.4 99.6 93.8 96.0 96.4 92.4
Qwen2-Upsampling (7B) 99.47 99.12 98.66 97.44 95.78 87.28 71.4 70.8 62.4 60.8 57.0 61.6
Qwen2-UtK-base (72B) 99.34 98.69 99.78 98.69 98.59 96.59 89.6 92.0 95.0 98.4 98.6 97.6
Qwen2-UtK-base (7B) 99.78 99.0 98.25 97.38 95.19 90.25 55.8 57.8 60.2 63.4 80.2 97.6
Qwen2-base (72B) 100.0 99.69 99.50 98.66 91.50 84.81 96.2 97.8 98.0 98.6 95.6 94.2
Qwen2-base (7B) 99.62 98.94 97.97 95.22 86.78 78.31 47.6 53.6 48.2 76.0 69.0 62.0

Table 9: Performance of RULER’s Retrieval (NIAH) and Multi-hop Tracing (VT) tasks across context lengths from
4K to 128K, averaged over 8 task scores for NIAH and 1 task score for VT.
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Model
CWE+FWE QA

4K 8K 16K 32K 64K 128K 4K 8K 16K 32K 64K 128K

Llama3.1-UtK-base (8B) 95.84 90.44 90.00 73.44 49.95 43.14 73.0 64.0 62.0 64.0 59.5 51.0
Llama3.1-base (70B) 99.84 97.5 97.98 98.38 74.52 43.62 75.5 71.5 61.0 64.5 53.5 48.5
Llama3.1-base (8B) 96.36 91.72 92.85 83.76 47.05 38.56 69.5 60.5 61.0 60.0 52.5 49.5
Qwen2-ABF (7B) 89.65 68.48 52.95 49.89 38.71 23.35 69.0 59.0 54.5 48.0 42.5 37.0
Qwen2-AttnMask (7B) 85.98 61.3 53.28 50.98 41.68 43.26 73.0 68.0 66.0 60.5 58.0 41.0
Qwen2-CIP (7B) 86.3 62.05 51.50 50.86 43.98 33.55 72.5 63.0 57.5 54.0 41.5 38.5
Qwen2-CT-base (7B) 90.18 67.68 56.58 47.84 33.58 16.31 68.0 58.0 58.0 50.0 39.5 38.5
Qwen2-Synthetic (7B) 94.82 79.05 57.16 54.74 44.85 31.82 64.5 60.0 57.0 50.5 45.5 34.5
Qwen2-Upsampling (7B) 90.8 75.2 55.58 53.35 39.35 21.74 72.0 60.5 56.5 51.0 45.5 36.5
Qwen2-UtK-base (72B) 99.34 97.78 96.25 95.20 77.54 58.25 76.0 71.0 72.5 67.0 67.5 55.5
Qwen2-UtK-base (7B) 88.84 65.68 53.98 50.56 44.94 29.92 73.0 62.0 56.0 51.5 49.0 48.0
Qwen2-base (72B) 99.84 97.85 94.42 95.58 80.37 70.16 82.0 76.5 73.0 67.0 64.0 50.5
Qwen2-base (7B) 94.46 66.54 58.66 55.96 48.90 40.71 73.5 62.0 60.5 52.0 45.0 39.0

Table 10: Performance of RULER’s aggregation (CWE+FWE) and question answering (QA) tasks across context
lengths from 4K to 128K, averaged over 2 task scores for CWE+FWE and 2 task scores for QA.

Models cmrc dureader
hotpot
wikiqa

lic
loogle

CR
loogle
MIR

loogle
SD

mfqa
en

mfqa
zh

Avg.
F1

Llama3.1-base (8B) 39.15 13.55 22.60 16.77 14.93 13.31 45.25 20.95 28.59 23.90
Qwen2-base (7B) 48.88 15.76 22.67 15.36 11.34 8.68 40.93 26.22 25.60 23.94
Qwen2-ABF (7B) 51.28 17.08 19.82 21.40 10.77 13.79 40.32 23.08 29.60 25.24
Qwen2-AttnMask (7B) 51.80 17.26 24.18 21.05 12.67 13.67 41.93 26.96 23.71 25.91
Qwen2-Synthetic (7B) 48.68 16.72 22.68 18.83 12.76 13.64 43.83 25.40 30.51 25.89
Llama3.1-UtK-base (8B) 47.99 14.42 24.63 22.40 14.74 14.48 48.44 27.65 27.30 26.89
Qwen2-UtK-base (7B) 55.85 18.88 25.94 24.42 15.77 14.34 43.96 32.17 26.98 28.70

LLama3.1-base (70B) 31.82 13.46 21.08 17 .08 18.92 13.02 44.01 20.47 27.76 23.07
Qwen2-base (72B) 44.64 20.76 24.68 18.68 16.37 16.62 48.78 26.17 29.91 27.40
Qwen2-UtK-base (72B) 55.46 21.04 35.18 21.08 19.03 16.94 56.96 29.13 34.12 32.10

Table 13: Performance of LV-Eval at 128K context length, averaged across 9 question answering task scores.
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Models cmrc dureader
hotpot
wikiqa

lic
loogle

CR
loogle
MIR

loogle
SD

mfqa
en

mfqa
zh

Avg.
F1

Llama3.1-base (8B) 53.79 14.52 20.23 23.05 17.83 14.09 59.03 28.61 31.30 29.16
Qwen2-base (7B) 58.85 17.90 29.79 21.32 13.16 15.86 54.17 26.54 31.32 29.88
Qwen2-ABF (7B) 55.66 20.59 27.22 22.5 16.78 16.05 51.56 24.74 30.72 29.54
Qwen2-AttnMask (7B) 58.42 18.81 29.67 22.92 14.58 13.86 49.91 25.87 31.31 29.48
Qwen2-Synthetic (7B) 56.12 19.17 28.59 20.34 14.77 14.08 52.35 29.35 27.53 29.14
Llama3.1-UtK-base (8B) 61.27 15.55 21.81 24.50 18.31 13.10 56.82 28.52 26.82 29.63
Qwen2-UtK-base (7B) 55.35 17.10 32.24 23.18 13.84 14.43 48.86 27.69 25.03 28.64

LLama3.1-base (70B) 53.07 14.83 29.67 19.35 22.84 18.00 55.02 29.12 31.54 30.38
Qwen2-base (72B) 57.58 20.86 32.48 21.06 21.46 18.54 58.52 25.08 35.71 32.37
Qwen2-UtK-base (72B) 58.09 22.54 31.97 22.49 19.69 19.33 58.37 26.17 31.52 32.24

Table 14: Performance of LV-Eval at 32K context length, averaged across 9 question answering task scores.

Models
32K 128K

Average Single-hop Multi-hop Average Single-hop Multi-hop

Llama3.1-base (8B) 29.16 43.18 17.94 23.90 33.49 16.23
Qwen2-base (7B) 29.88 42.72 19.61 23.94 35.41 14.76
Qwen2-ABF (7B) 29.54 40.67 20.63 25.24 36.07 16.57
Qwen2-AttnMask (7B) 29.48 41.38 19.97 25.91 36.10 17.77
Qwen2-Synthetic (7B) 29.14 41.34 19.39 25.89 37.11 16.93
Llama3.1-UtK-base (8B) 29.63 43.36 18.65 26.89 37.85 18.13
Qwen2-UtK-base (7B) 29.36 39.79 21.02 28.06 38.99 19.32

Llama3.1-base (70B) 30.38 42.19 20.94 23.07 31.02 16.71
Qwen2-base (72B) 32.37 44.22 22.88 27.40 37.38 19.42
Qwen2-UtK-base (72B) 32.24 43.54 23.20 32.10 43.92 22.65

Table 15: Performance on LV-Eval benchmark.
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