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Abstract

Multimodal Large Language Models (MLLMs)
have achieved significant success in Speech-to-
Text Translation (S2TT) tasks. While most ex-
isting research has focused on English-centric
translation directions, the exploration of many-
to-many translation is still limited by the
scarcity of parallel data. To address this, we
propose a three-stage curriculum learning strat-
egy that leverages the machine translation ca-
pabilities of large language models and adapts
them to S2TT tasks, enabling effective learning
in low-resource settings. We trained MLLMs
with varying parameter sizes (3B, 7B, and
32B) and evaluated the proposed strategy using
the FLEURS and CoVoST-2 datasets. Experi-
mental results show that the proposed strategy
achieves state-of-the-art average performance
in 15 x 14 language pairs, requiring fewer than
10 hours of speech data per language to achieve
competitive results.

1 Introduction

Speech-to-Text Translation (S2TT) involves con-
verting speech from a source language into text in a
target language. Traditionally, S2TT tasks have re-
lied on a cascaded system, as shown in Figure 1(a),
where an Automatic Speech Recognition (ASR)
module transcribes speech into text (Baevski et al.,
2020; Gulati et al., 2020), followed by a Machine
Translation (MT) module that translates the tran-
scribed text into the target language (Cheng et al.,
2019; Beck et al., 2019). However, this cascade
system often suffers from error propagation (Sper-
ber and Paulik, 2020). Recently, Multimodal Large
Language Models (MLLMs), illustrated in Figure
1(b), have demonstrated advantages in simplifying
model architecture and mitigating error propaga-
tion in both ASR (Zhang et al., 2023; Ma et al.,
2024) and S2TT tasks (Chu et al., 2024).
*Corresponding author.

I'The source code and models are released at https://
github.com/yxduir/LLM-SRT.
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Figure 1: Comparison of S2TT Methods. (a) adopts a
cascaded system; (b) directly generates translated text;
(c) generates both transcription and translation text in an
end-to-end process, with <|eng|><|zho|> indicating
transcribing English and translating it into Chinese.

Current MLLMs process {speech, instruction}
inputs to directly generate {translation}, but
this approach heavily relies on large-scale S2TT
datasets. Existing datasets (Wang et al., 2020c;
Di Gangi et al., 2019) predominantly focus on
English, while datasets supporting many-to-many
S2TT, such as FLEURS (Conneau et al., 2022), re-
main limited. Meanwhile, Large Language Models
(LLMs) have demonstrated strong many-to-many
multilingual MT capabilities. This raises the ques-
tion: can the MT capabilities of LLMs be effec-
tively transferred to the S2TT task with limited
data?

Inspired by advances in transfer learning (Pham
et al., 2024; Mueller et al., 2024), we transform
the S2TT task into a Speech Recognition and
Translation (SRT) task, which involves training
{speech, instruction} to generate {transcription,
translation}, as shown in Figure 1(c). LLMs pos-
sess robust MT capabilities, which can be adapted
to S2TT tasks with minimal data. This approach al-
lows MLLM:s to harness MT capabilities for many-
to-many S2TT, effectively combining the advan-
tages of both cascade and end-to-end models.
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To connect MT and S2TT tasks, we propose a
three-stage curriculum learning strategy: (1) ASR,
which trains the MLLM for multimodal alignment,
enabling the model to understand speech and gen-
erate transcriptions; (2) Speech-Aided Machine
Translation (SMT), where both speech and tran-
scription are provided, and the MLLM generates
translations to improve cross-lingual capabilities;
(3) SRT, where only speech is provided, and the
MLLM generates both transcription and transla-
tion. The training proceeds sequentially through
these three stages, with each stage resuming from
the checkpoint of the previous one. The resulting
MLLM achieves many-to-many S2TT through the
SRT task. Additionally, we designed specialized
instructions for many-to-many S2TT and imple-
mented an optimized lightweight speech adapter
for efficient speech feature compression to acceler-
ate inference.

To evaluate our strategy, we trained three MLLM
variants (3B, 7B, and 32B). In low-resource sce-
narios (with fewer than 10 hours of data per
language), our MLLM, trained on the FLEURS
dataset, demonstrated strong many-to-many S2TT
capabilities, outperforming existing state-of-the-
art end-to-end models. We also assessed perfor-
mance on the EN-X direction of the CoVoST-2
dataset, where sufficient training data is available,
and found that our strategy remains effective, sur-
passing state-of-the-art models.

The key contributions of this work are:

* This paper adopts a strategy that transforms
the S2TT task into an SRT task, leverag-
ing the machine translation capabilities of
LLMs to enhance the many-to-many S2TT
performance of MLLMs, particularly in low-
resource settings.

* We propose a three-stage curriculum learn-
ing strategy and systematically evaluate our
strategy across datasets of varying scales and
model sizes (3B, 7B, 32B). To the best of our
knowledge, our model is the first MLLM to
support many-to-many S2TT at the 32B scale.

* Our model achieves state-of-the-art average
performance across 15x14 translation direc-
tions in the S2TT task under low-resource
settings on the FLEURS dataset, while
also demonstrating strong robustness on the
CoVoST-2 dataset in high-resource scenarios.

2 Methodology

In this section, we present the methodology of our
approach. Section 2.1 defines the tasks involved in
our method. Section 2.2 presents the architecture
of the LLM-SRT model. Section 2.3 explains our
curriculum learning strategy, which sequentially
fine-tunes the model for ASR, SMT, and SRT tasks.

2.1 Problem Formulation

In this section, we define the following tasks:

ASR: Given the audio input X and the instruc-
tion text T, the goal is to produce the transcribed
text Y.

SMT: Given the audio input X its corresponding
transcription Y, and the instruction text T, the goal
is to produce the translated text Z.

SRT: Given the audio input X and the instruction
text T, the goal is to produce both the transcription
Y and the translated text Z.

2.2 LLM-SRT

The LLM-SRT architecture is shown in Figure 2.
The speech encoder extracts features from the
speech input, and the speech adapter layer connects
these features to the LLM, aligning their dimen-
sions and incorporating speech feature compres-
sion. Finally, the LLM generates textual output by
processing the concatenated embeddings derived
from both text and speech features.

Speech Encoder. The speech encoder processes
the audio input X into a high-dimensional represen-
tation using the frozen Whisper encoder (Radford
et al., 2023), which has been pretrained on large-
scale supervised datasets for speech recognition
and translation.

H = Encoder(X), (1)

where H € R”*P is the encoder’s output, with T
representing the time dimension and D the hidden
dimension of the encoder.

Speech Adapter. The speech adapter compresses
the time dimension 7 and adjusts the hidden di-
mension D to match the LLM’s hidden dimension
dLim-

We use a Q-Former to convert input sequences
into fixed-length query representations.

Q' = Q-Former(Q,H), )

where Q' € R"*P4 is the output of the Q-Former,
Q € R"*Pq is the trainable query matrix, n, is the
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Figure 2: The Architecture of LLM-SRT. LLM-SRT consists of a speech encoder, speech adapter, and LLM. A
three-stage curriculum learning strategy sequentially trains the ASR, SMT, and SRT tasks, as shown in Table 1. In
stages 1 and 2, the speech adapter is continuously trained to enable efficient fine-tuning. In stage 3, the LLM is
additionally unfrozen, while the speech adapter continues to be trained.

Task  Audio Instruction Prediction

ASR <|eng|> Will it rain tomorrow?

ASR <|zho|> R & TS

SMT Will it rain tomorrow ?<|eng|><|deu|> Regnet es morgen?

SMT BIR 2 NRIIS? <|zho|><|jpn|> BIH I 2 %2

SRT <|eng|><|deu|> Will it rain tomorrow?<|eng | ><|deu | >Regnet es morgen?
SRT <|zho|><|jpn|> BHRETIWIE? <|zho|><|jpn|>BHAH Z - N2 %&°?

Table 1: Instruction Design. The instruction design is intended for fine-tuning instructions for three tasks: ASR,
SMT, and SRT, using simple yet effective instructions to distinguish between them.

number of queries, and D, is the hidden dimension
of the Q-Former.

After the Q-Former layer, a multilayer percep-
tron (MLP) projects the feature dimensions from
Dq to diim:

EX =ReLU(Q'W; +b))Wa+by,  (3)

where EX € R">*um s the output of the MLP
layer, ready for LLM processing.

Tokenizer and LLM. The tokenizer and embed-
ding layer process the instruction T and produce
ET € R"*dum where n, is the length of the text
tokens.

The speech features EX and text features ET are
concatenated and fed into the frozen LLM:

E? = EX@ET, 4)

where EZ € R(+79)%dLim i processed by the LLM
to generate the output text.

The output text varies depending on the task.
During training, the parameters of the adapter layer
are updated based on the loss of the LLM’s output.

2.3 Curriculum Learning

LLM-SRT adopts a curriculum learning approach
that incorporates three training tasks: ASR, SMT,
and SRT.

Instruction Design. We designed minimalist in-
structions to help the model distinguish between
tasks while reducing the instruction token length, as
shown in Table 1. This design ensures that instruc-
tions like <|eng|><|deu|> appear in the generated
answers, effectively segmenting transcription and
translation content in the SRT task.
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ASR. In this stage, the model is pre-trained to de-
velop ASR capabilities with a focus on multimodal
alignment, while expanding language support by
training on all intended languages. The speech
adapter is trained with as much data as possible to
ensure efficient fine-tuning.

SMT. This stage enhances the model’s cross-
lingual abilities. Starting from the ASR checkpoint,
the model takes both transcribed text and audio as
input to generate translations based on the instruc-
tion. The purpose of this step is to activate the
LLM’s inherent machine translation capabilities
and establish the connection between the MT and
S2TT tasks.

SRT. This stage activates the SRT capabilities of
the MLLM, finalizing the model. Training contin-
ues from the SMT checkpoint, with the model re-
ceiving only audio input and a task-specific instruc-
tion, outputting both the transcription and transla-
tion of the speech. This extends the MT capabilities
of LLMs to the S2TT task.

3 Experiments

3.1 Datasets

FLEURS. FLEURS? (Conneau et al., 2022)
serves as the speech counterpart to the FLo-
Res? (Team et al., 2022) machine translation bench-
marks. It includes 102 languages, with each train-
ing set containing approximately 10 hours of super-
vised speech data per language.

CoVoST-2. CoVoST-2* (Wang et al., 2020c) is a
large-scale multilingual S2TT corpus derived from
the Common Voice dataset (Ardila et al., 2020). It
contains translations from 21 languages to English
and from English to 15 other languages.

3.2 Experiment Settings

Model Architecture. The baseline model con-
sists of an LLM (Qwen 3B, 7B, 32B), a frozen
speech encoder (Whisper-large-v3), and a trainable
adapter layer comprising a Q-Former and an MLP.
Following the configuration in Yu et al. (2024),
we use 80 queries, each with a dimension of 768.
Training can be minimized by freezing the LLM, or
LoRA (Hu et al., 2021) can be applied for training.

2https://huggingface.co/datasets/google/
fleurs

3https://huggingface.co/datasets/facebook/
flores

“https://github.com/facebookresearch/covost

Training Details. We used bf16 precision with
Distributed Data Parallel (DDP), a learning rate
of 1 x 10~*, 1000 warmup steps, and the AdamW
optimizer. The models were trained on four A100
GPUs. We provide detailed settings in Table 11,
12, 13, and 14 of the Appendix.

For the ASR task, we used the Common Voice®
dataset, and for the SMT and SRT tasks, we used
the FLEURS and CoVoST-2 datasets. In a 4-card
A100 environment, the 3B and 7B models train in
3 days, while the 32B model trains in 7 days.

3.3 Compared Methods

We compare both cascade and end-to-end S2TT
models, all of which support many-to-many S2TT.

* Cascaded systems are pipeline-based ap-
proaches, where an ASR model first tran-
scribes speech into text, which is then trans-
lated by a machine translation model.

 SeamlessM4T® (Barrault et al., 2023) is
a foundational multilingual and multitask
model capable of seamlessly translating and
transcribing both speech and text. It supports
speech-to-text translation for nearly 100 input
and output languages.

« Qwen-Audio’ (Chu et al., 2023) is the mul-
timodal extension of Qwen-LLM, designed
to process diverse audio modalities, includ-
ing speech, natural sounds, music, and songs,
alongside text, generating text-based outputs.

Evaluation Metric. We use WER® (Morris et al.,
2004)(for the ASR task) and BLEU? (Post, 2018)
(for the S2TT task) as evaluation metrics.

Metric Details
WER

Text normalization follows Whisper

SacreBLEU signature:
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.4.3
Except for jpn, kor, tha, yue, zho with char:

nrefs:1|case:mixed |eff:no|tok:char |smooth:exp|version:2. 4.3

Table 2: Metric Details. We followed the settings of
SeamlessM4T-V2 (Barrault et al., 2023).

Shttps://commonvoice.mozilla.org/en/datasets
https://github.com/facebookresearch/
seamless_communication
7https://github.com/QwenLM/Qwen-Audio
8https://huggingface.co/spaces/
evaluate-metric/wer
Shttps://github.com/mjpost/sacrebleu
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X512 Laneuages S2TT Data FLEURS

guages (hour) Eng Deu Fra Jpn Rus Zho | Avg.

Cascaded ASR+MT Methods
Whisper + Qwen2.5-3B - 234 21.0 209 136 196 145 | 18.8
Whisper + Qwen2.5-7B - 267 233 225 151 215 164 | 209
Whisper + Qwen2.5-32B - 299 260 246 173 238 185 | 233
End-to-End Models

SeamlessM4T-V2 (2.3B) 351,000 331 205 196 132 196 152 | 20.2
Qwen2-Audio (7B) in-house 226 20.1 206 4.0 15.0 13.7 | 16.0
Baseline-3B 52 11.8 9.0 9.5 5.2 9.7 6.2 8.6
LLM-SRT-3B 52 272 22,6 220 143 213 16.5 | 20.6
LLM-SRT-7B 52 274 237 228 155 21.8 169 | 214
LLM-SRT-32B 52 325 268 261 175 256 19.2 | 24.6

Table 3: BLEU Scores on 6x12 Directions in FLEURS. Underlined denotes previous state-of-the-art end-to-end

models, while bold indicates models that outperform them.

93 99

indicates no S2TT data was used due to the cascade

system. The baseline uses the same instruction-tuning strategy as Qwen2-Audio.

3.4 Overall Results

As shown in Tables 3 and 4, we evaluate the
S2TT performance in low-resource settings on
the FLEURS dataset. The results indicate that
our model achieves state-of-the-art performance
in the many-to-many S2TT task. Similarly, Table 5
presents the results under high-resource conditions
on the CoVoST-2 dataset. Table 7 provides a com-
parison of inference speed, and Table 8 presents an
ablation study of the three-stage curriculum learn-
ing.

Language Support. As an LLM-based model
designed for many-to-many S2TT, conducting com-
prehensive baseline comparisons is both essential
and challenging. To ensure a thorough evaluation,
we compare baselines across 6x12 language di-
rections and benchmark our model against state-
of-the-art approaches in the 15x14 setting. The
supported languages are listed in Table 10, while
the complete experimental results are provided in
Table 18.

Baseline-3B vs. LLM-SRT-3B. For the base-
line model, we first conduct ASR pretraining as
in Qwen2-Audio, followed by S2TT instruction-
tuning with the same setup. Due to limited data,
the baseline performs poorly, highlighting the lim-
itations of traditional fine-tuning in low-resource
settings.

In contrast, our curriculum learning train-
ing strategy achieves state-of-the-art performance
(8.6—20.6) in low-resource scenarios, as we trans-
form S2TT into an SRT task, effectively leveraging
the machine translation capability of the LLM to
achieve many-to-many S2TT.

SeamlessM4T-V2 vs. LLM-SRT-3B. The LLM-
SRT-3B demonstrates superior performance over
SeamlessM4T-V2 on non-English languages (e.g.,
for French 18.8—22.0), while it lags behind
SeamlessM4T-V2 in English-to-X translation. This
discrepancy can largely be attributed to the larger
amount of S2TT data available for SeamlessM4T-
V2, which includes 351,000 hours of training data
compared to just 52 hours for LLM-SRT-3B. In
situations where data resources are limited, our
LLM-based approach has a greater advantage.

Cascaded Systems vs. LLM-SRT. As shown
in Table 3, when using the same LLM as in the
cascaded system, our MLLM demonstrates a clear
performance advantage (e.g., for 3B, 18.8—20.6),
highlighting the benefits of the end-to-end ap-
proach. The MLLM’s superior performance stems
from its integrated framework, which eliminates in-
termediate steps and enables more efficient knowl-
edge transfer, resulting in improved translation ac-
curacy and robustness. This makes the model more
effective in handling complex language tasks.

Scaling Law of LLM-SRT. As shown in Table
3, experiments on models with 3B, 7B, and 32B
parameters demonstrate that our method follows
the scaling law of LLMs (e.g., 20.6 for 3B, 21.4
for 7B, and 24.6 for 32B). Notably, the 32B model
achieved state-of-the-art performance across all di-
rections, confirming the generalizability of our ap-
proach. Our model’s performance is strongly corre-
lated with the machine translation capability of the
LLM, making the choice of an appropriate LLM
foundation crucial for optimal performance.

12470



X141 S2TT Data FLEURS

anguages (hour) |Eng Deu Fra Ind Ita Jpn Kor NId Por Rus Spa Tha Vie Yue Zho |Avg.

Machine Translation
Qwen2.5-3B | - [29.5 254 252 24.6 227 184 188 22.1 27.1 234 221 183 226 19.0 20.5|22.6
Speech to Text Translation

SeamlessM4T-V2 (2.3B) | 351,000 |33.3 21.6 21.1 184 19.1 145 172 184 18.8 20.6 17.6 128 175 152 16.7|18.8
SeamlessM4T-V2 +Lora | 351,129 |32.8 22.0 21.3 19.1 194 144 17.0 18.6 18.6 21.3 181 132 17.5 149 17.0|19.0
LLM-SRT-3B-V2 129 27.8 234 240 224 220 153 17.9 204 257 22.8 219 129 182 155 19.2|20.6
LLM-SRT-3B-V2 +Lora 129 29.1 24.5 243 229 228 165 18.0 20.9 26.2 23.3 22.6 14.7 19.0 16.3 19.6| 21.4

Table 4: BLEU Scores on 15x14 Directions. The complete results are in Table 15 and 18 in the Appendix.

Many-to-Many S2TT on FLEURS. As shown
in Tables 4 and 18, we compared performance
across 15 languages and 210 translation directions.
Table 4 reports the average performance across the
15 languages, where our model achieves state-of-
the-art BLEU performance (18.8—21.4). Table
11 presents detailed results for all 210 directions,
showing that our model outperforms SeamlessM4T-
V2 in 154 directions.

Train Adapter Only vs. Fine-tune LLM. As
shown in Table 4, LLM-SRT-3B-V2 achieves high
translation performance (20.6) by freezing the
speech encoder and LLM, while training only the
speech adapter. Further performance improvement
(20.6—21.4) can be achieved by unfreezing the
LLM, such as through LoRA training.

MT vs. S2TT. As shown in Figure 3, we com-
pared the MT performance of Qwen2.5-3B with the
S2TT performance of LLM-SRT-3B-V2 across 210
translation directions. The results show a strong
correlation between our MLLM’s S2TT and MT
performance, confirming that the strong S2TT ca-
pability of LLM-SRT-3B stems from the LLM’s
machine translation ability.

> Qwen2.5-3B(MT) © LLM-SRT-3B-V2(S2TT)

Figure 3: BLEU Scores for 15x14 Directions: Com-
parison between MT and S2TT. The results show a
strong correlation, suggesting that our S2TT capability
is derived from the MT model. Table 16 includes an
error analysis showing that S2TT outperforms MT.

S2TT Data| CoVoST-2
(hour)  |Deu Jpn Zho|Avg.

Cascaded ASR+MT Methods

Eng—X

Whisper+NLLB-3.3B - 33.4 31.0 32.0]32.1
Whisper+Qwen2.5-3B - 21.1 28.1 35.0/28.0
Whisper+Qwen2.5-7B - 24.1 29.8 37.6|30.5
Whisper+Qwen2.5-32B - 28.3 35.0 41.1|34.8
End-to-End Models

SeamlessM4T-V2 351,000 |37.0 39.7 35.9|37.5
Qwen-Audio (7B) 3,700 |25.1 - 403| -
Qwen2-Audio (7B) in-house |29.9 39.7 44.0|37.9
with FLEURS Data

LLM-SRT-3B 52 24.9 37.3 40.7|34.3
LLM-SRT-7B 52 26.6 40.1 41.4|36.0
LLM-SRT-32B 52 30.2 43.1 43.5|38.9
with CoVoST-2 Data

Baseline-3B* 430 23.6 34.7 38.6|32.3
Baseline-7B* 430 25.3 36.5 40.2|34.1
LLM-SRT-3B* 430 26.5 39.4 44.0|36.6
LLM-SRT-7B* 430 28.7 41.6 47.1|39.1

Table 5: BLEU Scores on CoVoST-2.
trained on CoVoST-2 dataset.

* indicates

Eng—X S2TT. As shown in Table 4, the rela-
tively weaker performance of our model in Eng—X
translations is primarily due to the limited amount
of English data, stemming from the balanced
FLEURS dataset, which contains fewer than 10
hours of data per language. Consequently, as
shown in Table 5, our 3B model underperforms
compared to SeamlessM4T-V2, but our method is
more efficient in data-constrained scenarios.

Scaling Law of S2TT Data. As shown in Table
5, we compare the performance of Eng— X transla-
tions in both low-resource and high-resource sce-
narios, with data scales ranging from 52 hours to
430 hours. The results indicate that both our 3B
(34.3—36.6) and 7B (35.0—39.1) models show
consistent performance improvements as the data
scale increases, demonstrating that our approach is
effective in low-resource settings and scales well
with more data.
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MLLM Architecture. Our Baseline-7B model
follows the Qwen2-Audio setup but keeps the
speech encoder frozen, leading to lower perfor-
mance (34.1 vs. 37.9).

LLM-SRT-7B employs a curriculum learning
strategy that incrementally fine-tunes only the
adapter layer, allowing the model to adapt more
effectively while maintaining efficiency. This ap-
proach leads to notable improvements in perfor-
mance by enabling stable and gradual optimization.
Although unfreezing both the speech encoder and
the LLM could yield further performance gains, it
would also result in significantly higher computa-
tional costs.

Multi-task Model LLM-SRT. LLM-SRT is a
multi-task model that supports ASR, SMT, and
SRT tasks. As shown in Table 6, we evaluated the
performance of all tasks.

We found that performing the SRT task did not
degrade, but rather slightly improved, ASR perfor-
mance. Moreover, with the correct transcription,
the model achieved a high BLEU score in the SMT
task.

Model Task WER| Deu Jpn Zho
ASR 11.1 - - -
LLM-SRT-7B*
Eng—X SMT 0 328 43.6 55.6

SRT 10.9 28.7 41,6 47.1

Model Strategy Batch  Time(s))

4 59

Qwen2-Audio Greedy Search 8 /
Beam Search 5 4 /

4 74

8 39

Greedy Search 16 28

32 22

LLM-SRT-7B* 64 19
4 93

Beam Search 5 8 64

12 56

Table 7: Inference Speed Comparison. We compared
the inference time for processing 1,000 speech samples
between Qwen2-Audio and LLM-SRT-7B, both with
similar parameter sizes, using a 4-card 4090 DDP FP16
inference setup. LLM-SRT-7B demonstrated a 3x speed
improvement. / Indicates out-of-memory issues.

decrease in BLEU score, emphasizing its impor-
tance in S2TT. This section explores the effect of
skipping the SMT task and proceeding directly to
SRT. As shown in Table 8, removing SMT and SRT
resulted in performance drops of 1.1 and 4.9 points,
respectively. While direct SRT maintains an MT-
S2TT link with only minor degradation, omitting
SRT and relying solely on instruction fine-tuning
leads to a substantial performance drop.

Table 6: Performance of Different Tasks. We evalu-
ated the model on the CoVoST-2 dataset and found that
the SMT task, which uses both speech and ground-truth
transcription as inputs, achieved a notably high BLEU
score.

Inference Speed. As shown in Table 7, our
method achieves nearly a 3x improvement in infer-
ence speed compared to the Qwen2-Audio model,
which has a similar parameter size. Even with beam
search enabled (5 beams) in our model, the speed
remains faster than the greedy search of Qwen2-
Audio.

The speed difference is mainly due to our opti-
mized speech adapter design, which compresses
the audio features to a fixed size of 80, significantly
reducing the token length input to the LLM and
accelerating inference.

3.5 Ablation Study

Effect of the ASR, SMT, and SRT Tasks. Ini-
tially, ASR training was performed to establish a
strong baseline (Bansal et al., 2018; Le et al., 2023).
Removing ASR pre-training resulted in a 2.3-point

Model Deu Jpn Zho Avg.

LLM-SRT-7B*  28.7 41.6 47.1 39.1
w/o ASR  26.4(-2.3) 38.6(-3.0) 45.5(-1.6) 36.8(-2.3)
w/o SMT  27.6(-1.1) 39.7(-1.9) 46.5(-0.6) 38.0(-1.1)
w/o SRT 25.6(-3.1) 36.7(-4.9) 40.4(-6.7) 34.2(-4.9)

Table 8: Ablation Study. We evaluated the model on
the CoVoST-2 Eng—X dataset. Removing the SRT
task leads to a substantial reduction in BLEU score,
underscoring its critical role in overall performance.

Case Study. As shown in Tables 9 and 17,
SeamlessM4T-V2 demonstrates poor performance
in Japanese, achieving the lowest BLEU score.
Qwen-Audio outperforms it, while our method out-
performs significantly. Our approach follows a
two-step process: first, it generates a transcription
of the input speech, which is then used to produce
the translation. This strategy ensures that the trans-
lation benefits from the transcribed text, leverag-
ing its structure and context to improve accuracy.
By incorporating transcription into the translation
process, our method minimizes ambiguities and
enhances translation quality, especially in complex
or context-dependent scenarios.
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Model BLEU?T
Audio = ERPEE A RIIBI 2 — . BT 80N T 5 T8 23 s AL T -
Ground-truth =L HFEHOEEOFTRYIMA X < 2VRFRDIDTLE. LD KEBOEEZH S Fooh Tl T AL 4kt L XL/,
SeamlessMAT-V2 = B 1 15l (VIS THL b LI (Ro>— o T F I At 7 > S EIO I 1% 5 720012 i huan 147]5.6
Qwen2-Audio  —[HITHEHOIELE TRAIME XL VRO —-2TT. [l TALO Aht. HEDSHEEBOIEN 16 20T A T ET 279 |12.5
Lnsrrap  SERTEERE S LRBIENL — BT L AN T S SELEEEROREITIES - <Izhol>< jon|>

S AP EO S ETROIE X <3 VERO T, [ROFHEL SRRSO E S 20l BUTADTEC £ L7 3491165
insRrszy  EVETEEE  ERIBOR L — o RT LT AR TP FELEE R RIITIES - <Izhol><Ijonl>

SHEERIE. AEOBLORTRBIML < 3VHRD1D T, WROZHEL HHOLEEE > THTALD A ¢ n3C £ L7z, 49.3 | 40.4

Table 9: Case Study. We compare the BLEU scores of our method with those of other approaches, using the "char’
tokenizer (denoted in regular font) and the ’ja-mecab’ tokenizer (presented in ifalics). With a transcription Character
Error Rate (CER) score of 11.4 for the 3B model and 4.6 for the 32B model.

4 Related Work

Cascaded S2TT. This method follows a two-step
process: first, ASR transcribes the spoken language
into text, and then MT translates the transcribed
text into the target language. This approach lever-
ages the strengths of specialized ASR (Radford
etal.,2023; Baevski et al., 2020) and MT (Fan et al.,
2021) models, utilizing extensive training data and
advanced techniques. ASR models accurately con-
vert speech to text, while sophisticated MT models,
benefiting from large multilingual datasets, trans-
late with high accuracy and fluency. However, the
cascaded approach is prone to error propagation.

End-to-End S2TT. In this paradigm, a single
model is trained to directly map speech from the
source language to text in the target language,
skipping the intermediate transcription step (Wang
et al., 2020a,b; Inaguma et al., 2020). Early work
on joint speech recognition and translation primar-
ily used streaming models, aiming to provide real-
time multilingual synchronization (Sperber et al.,
2020; Dong et al., 2021; Papi et al., 2024). These
pioneering efforts focused more on reducing la-
tency and enhancing efficiency than offline speech
translation systems. End-to-end ST offers several
advantages, including reduced latency, simplified
system architecture, and the elimination of error
propagation between the ASR and MT stages. De-
spite these benefits, end-to-end ST models face
challenges, such as the need for extensive paral-
lel speech-to-text data, which is resource-intensive
and difficult to obtain.

Audio MLLMs. Recent advancements in au-
dio MLLMs (Li et al., 2025) have significantly
improved speech recognition and translation.

SpeechGPT (Zhang et al., 2023) uses prompting
to enhance speech recognition in large language
models. BLSP-KD (Wang et al., 2024) refines
speech-text alignment through knowledge distil-
lation. SALMONN (Tang et al., 2023) aims to
improve auditory comprehension of language and
music in models. Qwen-Audio (Chu et al., 2023)
advances audio recognition and translation by re-
training speech encoders within a multi-task frame-
work. Qwen2.5-Omni (Xu et al., 2025), the end-to-
end multimodal model, is designed for comprehen-
sive multimodal perception, seamlessly processing
heterogeneous input modalities.

5 Conclusion

In this paper, we propose a novel strategy that refor-
mulates the speech-to-text translation task as a com-
bination of speech recognition and translation tasks,
leveraging the machine translation capabilities of
LLMs to enhance the performance of MLLMs in
S2TT. To validate our approach, we train three
MLLMs with sizes 3B, 7B, and 32B, and imple-
ment a three-stage curriculum learning strategy,
which proves highly effective in low-resource sce-
narios while further improving performance when
sufficient training data is available. Our model
achieves state-of-the-art results across 15x14 trans-
lation directions, excelling in low-resource learning
on the FLEURS dataset and supervised training on
the CoVoST-2 dataset. These results highlight the
robustness and effectiveness of our approach across
diverse linguistic and data availability settings.

For future work, we aim to further optimize the
LLM-SRT model to push its performance bound-
aries and extend its application to a broader range
of languages.
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Limitations

This paper presents a method for training an
MLLM for languages with less than 10 hours of
speech translation data.

However, the performance of S2TT and the
range of supported languages are constrained by
the capabilities of the LLM. MLLMSs trained using
this method may not perform well on languages
that are not supported by the LLM or on those with
poor machine translation performance.
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A Appendix

In this chapter, we report the language support in
Table 10, the case study in Table 17, and the BLEU
scores for the 15x14 directions of the FLEURS
dataset in Table 18.
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Code Language Family Subgrouping Script
deu German Indo-European Germanic Latn
eng English Indo-European Germanic Latn
fra French Indo-European Italic Latn
ind Indonesian  Austronesian Malayo-Polynesian Latn
ita Italian Indo-European Italic Latn
jpn Japanese Japonic Japanesic Jpan
kor Korean Koreanic Korean Kore
nld Dutch Indo-European Germanic Latn
por Portuguese  Indo-European Italic Latn
rus Russian Indo-European Balto-Slavic Cyrl
spa Spanish Indo-European Italic Latn
tha Thai Tai-Kadai Kam-Tai Thai
vie Vietnamese Austroasiatic Vietic Latn
yue Cantonese  Sino-Tibetan Sinitic Hant
zho Chinese Sino-Tibetan Sinitic Hans

Table 10: Language Support. The table lists language codes, names, families, subgroups, and scripts. Language
support is extensible based on ISO 639-3. 6 x 12 translation directions cover source languages (eng, deu, fra, zho,

rus, jpn) and target languages (eng, deu, fra, spa, por, ita, nld, rus, jpn, kor, vie, ind, zho).

Stage Dataset Hour Batch Step Learning Rate  Warmup Step  Optimizer
ASR Common Voice 19 4498 472000 le-4

FLEURS 129 16 le-4 1000 AdamW
SMT FLEURS 129 44000 le-4
SRT FLEURS 129 83000 le-5

Table 11: Training Details for LLM-SRT-3B-V2. The step count refers to the number of steps on a single GPU.

Model Encoder Adapter LLM Language Support
LLM-SRT-3B Qwen2.5-3B 6x12
LLM-SRT-7B Whisper large-v3’s Qwen2.5-7B 6x12
LLM-SRT-32B encoder Q-Former + MLP 0 1 5308 6x 12

LLM-SRT-3B-V2 Qwen2.5-3B 15x 14

Table 12: Model Settings. The V2 model employs the same architecture but supports more languages.

Model Rank (r) Alpha Dropout Target Keys Bias
SeamlessM4T-V2 32 64 0.2 .*_proj none
LLM-SRT-3B-V2 8 32 0.05 g._proj, v_proj none

Table 13: LoRA Configuration Settings. We only fine-tuned the LLM with LoRA for LLM-SRT-3B-V2.

Training Details

Modules Param stage

Speech Encoder  ~635M - Whisper’s encoder
Speech Adapter ~73.7M  I&II&II  Q-Former and MLP
LLM ~3.1B - Qwen2.5-3B

LLM adapter ~1.8M il LoRA

Total ~3.8B

Table 14: LLM-SRT-3B-V2 Training Parameters. The red indicates trainable parameters.
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X—14 SeamlessM4T-V2 SeamlessM4T-V2+Lora LLM-SRT-3B LLM-SRT-3B+Lora

deu 21.6/76.2 22.0/76.8 23417834 24.5/83.5
eng 33.3/84.8 32.8/84.3 27.81/85.5 29.1/85.4
fra 21.1/77.6 21.3/78.0 24.0/83.5 24.3/83.6
ind 18.4/73.8 19.1/75.0 2247823 22.9/82.2
ita 19.1/76.9 19.4/77.4 22.0/83.5 22.8/83.5
jpn 14.5/72.4 14.4/172.5 15.3/80.1 16.5/80.3
kor 17.2/76.6 17.0/76.5 17.9/81.8 18.0/81.9
nld 18.4/74.8 18.6/75.3 20.4/81.3 20.9/81.4
por 18.8/73.3 18.6/73.5 25.7/84.1 26.2/84.2
rus 20.6/75.9 21.3/76.7 22.81782.5 23.3/82.5
spa 17.6/76.1 18.1/76.9 21.9/83.9 22.6/83.9
tha 12.8/71.1 13.2/71.7 12.5/78.6 14.7/78.8
vie 17.5/774.1 17.5/74.1 18.2/79.7 19.0/79.8
yue 15.2/70.9 14.9/70.5 15.5/78.9 16.3/79.0
zho 16.8/77.5 17.0/77.7 19.2/82.5 19.6/82.6
Avg. 18.8/75.5 19.0/75.8 20.6/82.1 21.4/82.2

Table 15: BLEU/COMET Scores for 15 Languages Across 15x14 Translation Directions on FLEUR. Detailed
results are summarized in Tables 18.

Case BLEU?T
Audio There may be more maria on the near side because the crust is thinner. It was easier for lava to rise up to the surface.

AN TRHITGIEREL BB EAH Y FT . WEMFLLR S Ao TR L &
Qwen2.5-3B (MT) IEICIZATREIC Y ) 7 A3 % » & L h £ € Abecause the crustid & 75 & D i 22 5 VagmaZS RAIC LD R4 25 zlavaTd - 2.9
LLM-SRT-3B (S2TT) JTiciz & o& 7 ) 78S B A[REMEA H D £ 3. HAHV D TT . WEPRMIZ L0 roh»6TT . 30.6

Table 16: Error Analysis. We observe that the Qwen2.5-3B model exhibits language mixing (e.g., Japanese and
Cantonese) in certain translation directions. Consequently, S2TT outperforms MT in these scenarios.

Case BLEU?T
Audio # 1 EALBUSK AT UGB I 7S RS B A A B IO R B B AR A

This will allow players to control actions and movements in video games by moving the device through the air.
SeamlessM4T-V2 It allows players to control the movement and operation of electronic games through mobile devices in the air. 14.0
LLM.SRT-3B EALDUSK AT LUE I 7825 RS Bl A e i P T I MBI EAIERAE - <|zho|><|eng|>

It allows players to control the actions and operations of an electronic game by moving the device in the air. 232
LLM-SRT-32B BT AT OB 7E 2 R Bl ik A R P T I R MBI EAIERAE - <|zho|><|eng|>

It allows players to control actions and operations in electronic games by moving the device in the air. 43.0

In fact, it is not easy to find at all even if one knew it existed. Once inside the cave, it is a total isolation.

Audio#2 H5 b, WA EIE, BREHRE . —EIARA, foh SR T .
SeamlessM4T-V2 550 b AIH#E \FLIE A7, WRMEREITE. — BRI, 22.7
LLM-SRT-3B In fact, it is not easy to find it at all, even if one knew it existed. Once inside the cave, it is a total isolation.<|eng|><|zho|>
HEE, AMEERE, ZRECHRREXMEN . —BEARN, BEEErRE . 49.3
LIM.SRT-32B In fact, it is not easy to find at all, even if one knew it existed. Once inside the cave, it is a total isolation. <|eng|><|zho|>
B b, AMERETRFE, AT —E#EARN, SaeS5HEeT . 86.8

Table 17: Case Study. We compare the BLEU scores of our models with SeamlessM4T-V2.
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SeamlessM4T-V2 LLM-SRT-3B-V2 SeamlessM4T-V2 LLM-SRT-3B-V2

sre-tgt BLEU Avg. +Lora Avg. BLEU Avg. +Lora  Avg. sre-tgt BLEU Avg. +Lora Avg. BLEU Avg. +Lora Avg.
deueng  37.1 36.9 323 343 por_deu 6.8 7.5 18.2 18.5
deu_fra 19.3 21.2 232 25.0 por_eng 384 37.7 38.3 40.8
deu.ind 19.1 19.4 17.2 18.8 por_fra 16.3 16.7 28.8 29.6
deu_ita 12.5 13.5 13.8 14.8 por_ind 13.9 152 20.5 21.6
deu_jpn 26.9 25.8 30.2 31.9 por_ita 10.3 10.4 17.4 17.5
deukor  29.1 29.0 23.1 24.6 por_jpn 24.5 234 31.8 32.8
deu_nld 132 13.8 142 15.0 por_kor 27.8 26.0 23.8 249
deupor  19.7 216 214 220 222 234 235 245 por_nld 9.8 1838 10.0 18.6 12.8 257 13.3 262
deu_rus 133 14.7 14.5 15.9 por_rus 9.1 9.3 172 18.0
deu_spa 13.7 14.8 16.2 17.2 por_spa 132 13.1 18.5 20.1
deutha 443 419 43.6 452 por_tha 442 427 46.6 47.1
deuvie  22.0 22.0 21.3 23.0 por_vie 19.0 19.2 252 259
deu_yue  12.2 12.8 249 255 por_yue 11.6 11.8 283 272
deu_zho  20.5 21.1 30.8 28.5 por_zho 17.9 17.9 327 30.1
eng.deu  33.4 33.1 212 22.7 rus_deu 15.2 16.3 14.9 15.5
eng_fra 42.6 41.8 33.0 347 rus_eng 30.2 29.6 28.7 30.0
mes ul @ B A A B B A
eng.ita . X . . rus_in E . . .
engjpn  36.0 342 33.7 373 rus_ita 14.7 15.7 14.0 14.0
eng_kor  40.2 387 264 283 rus_jpn 22.8 23.0 29.5 30.7
eng.nld 244 24.2 15.5 15.9 rus_kor 25.6 25.0 21.5 23.1
eng_por 429 333 42.9 328 345 278 36.1 21 rus_nld 13.0 206 13.9 213 11.6 28 11.6 233
eng._rus 26.2 25.8 19.4 20.2 rus_por 20.4 21.6 22.1 229
engspa  23.7 24.0 20.7 22.1 rus_spa 153 16.0 16.4 16.6
engtha  52.5 50.5 46.3 50.0 rus_tha 43.1 41.6 44.7 44.4
eng_vie 36.1 359 27.6 29.7 rus_vie 21.9 23.1 21.8 23.1
eng.yue  16.6 17.2 29.9 30.5 rus_yue 10.4 11.9 244 24.6
eng.zho  30.1 28.7 37.0 34.1 rus_zho 16.9 18.7 29.8 28.7
fra_deu 10.6 12.0 16.0 16.4 spa_deu 7.9 10.1 12.8 13.4
fra_eng 33.8 33.7 32.8 34.7 spa_eng 254 25.4 245 27.8
fra_ind 19.0 20.1 18.8 19.8 spa_fra 135 14.7 22.0 232
fra_ita 153 15.9 16.9 17.1 spaind 12.9 14.7 16.0 17.3
fra_jpn 279 26.6 30.6 31.1 spa.ita 11.1 11.8 14.8 15.9
fra_kor 29.1 28.9 23.1 234 spa_jpn 244 234 29.6 30.2
fra_nld 11.0 12.0 12.7 12.8 spa_kor 27.6 26.5 21.8 22.7
fra_por 20.0 21 20.9 213 245 240 25.5 243 spa.nld 9.2 176 10.2 18.1 10.3 219 11.6 226
fra_rus 12.2 12.9 15.7 15.9 spa_por 14.4 15.0 19.1 21.0
fra_spa 14.3 14.6 18.5 18.9 spa_rus 8.3 9.8 13.7 14.1
fra_tha 46.2 45.1 45.8 45.7 spa_tha 44.6 439 45.0 45.8
fra_vie 224 23.1 229 243 spa.vie 17.4 18.8 21.8 23.1
fra_yue 13.2 12.8 27.5 254 spa_yue 12.0 11.9 252 244
fra_zho 20.1 20.2 30.7 292 spa_zho 17.4 17.8 29.7 26.3
ind_deu 10.3 12.5 133 14.1 tha_deu 9.3 9.6 7.8 9.7
indeng 324 32.5 30.5 328 tha_eng 233 22.7 14.4 19.1
ind_fra 16.2 17.4 21.5 224 tha_fra 13.4 14.1 11.8 14.1
ind_ita 9.8 11.0 13.1 13.7 tha_ind 11.6 13.0 10.3 132
ind_jpn 248 234 29.7 30.6 tha_ita 8.6 9.5 7.2 8.7
indkor 259 255 22.0 232 tha_jpn 17.2 16.3 22.6 239
ind_nld 10.0 10.6 10.8 11.2 tha_kor 20.8 20.1 154 19.2
ind_por 17.0 184 19.3 191 20.3 24 215 29 tha_nld 8.4 128 9.1 132 6.8 125 8.2 147
ind_rus 82 9.8 13.8 13.9 tha_por 12.9 13.9 10.8 14.0
ind_spa 10.8 11.7 14.5 15.5 tha_rus 9.0 10.0 79 9.4
ind_tha 43.9 44.6 45.5 46.2 tha_spa 10.0 10.7 9.8 11.6
ind_vie 19.3 19.7 229 234 tha_vie 14.3 15.2 14.6 17.3
ind_yue 11.7 11.7 254 25.7 tha_yue 8.0 8.0 16.1 18.1
ind_zho 17.4 17.9 29.8 26.7 tha_zho 124 12.8 19.6 20.1
ita_deu 10.5 11.6 13.4 14.3 vie_deu 11.5 11.5 10.4 11.3
itaeng 26.5 26.1 247 27.1 vieeng 25.6 252 21.1 23.8
ita_fra 17.6 18.5 223 239 vie_fra 17.5 17.8 16.6 17.3
ita_ind 153 16.3 15.3 16.6 vie_ind 15.9 17.5 14.2 15.7
ita_jpn 24.7 23.7 29.8 30.6 vie_ita 11.3 11.5 10.2 11.2
ita_kor 26.8 26.6 220 23.3 vie_jpn 21.8 20.6 25.0 262
ita_nld 9.6 10.3 10.2 10.6 vie_kor 239 21.7 19.9 20.4
ita_por 15.4 19.1 15.9 194 19.4 220 214 28 vie_nld 10.6 17:5 10.9 17:5 8.5 18.2 9.3 19:0
ita_rus 11.4 12.1 13.0 13.9 vie_por 16.4 16.8 15.6 17.0
i a 13.9 14.2 16.3 17.7 vie_rus 12.1 12.1 11.0 11.6
ita_tha 447 432 45.1 45.6 vie_spa 12.1 12.3 127 13.8
ita_vie 19.1 20.0 22.1 23.0 vie_tha 40.6 394 42.6 43.1
ita_yue 12.8 12.8 253 244 vie_yue 114 12.0 21.8 21.0
ita_zho 19.1 204 293 26.2 vie_zho 14.8 15.1 25.0 24.1
pn.deu 8.5 8.6 7.9 9.1 yue-deu 8.6 8.6 7.6 8.2
pn_eng 182 17.8 16.5 19.3 yue_eng 18.8 17.8 16.1 18.2
R oM ® @ AR OB B R
pn-in E X . X yue-in ¥ . . .
pn-ita 9.0 8.9 8.5 9.2 yue-ita 10.0 9.8 8.9 9.3
pnkor 255 25.8 24.5 26.0 yue_jpn 14.8 14.8 229 24.6
pn_nld 9.3 9.3 7.8 83 yue_kor 19.9 19.4 18.2 20.5
pn-por 13.4 145 13.7 144 13.4 153 14.9 165 yue_nld 8.0 152 7.9 149 7.1 155 7.5 163
pn._rus 7.7 7.6 7.7 8.6 yue_por 12.9 12.9 12.1 12.8
pn_spa 11.6 11.7 10.9 11.8 yue_rus 8.6 8.4 8.2 8.4
pn-tha 37.0 34.0 384 40.2 yue_spa 10.8 10.9 10.8 11.1
pn_vie 15.8 15.6 149 16.4 yue_tha 352 32.8 38.7 39.9
pn.yue 7.7 8.2 19.1 19.4 yue.vie 15.7 16.0 16.0 17.1
pn_zho 132 135 21.7 212 yue_zho 234 233 26.7 24.8
kor.deu 9.4 9.3 8.7 9.1 zho_deu 10.2 10.4 9.6 11.0
koreng 243 229 20.3 21.9 zho_eng 21.7 224 23.1 239
kor_fra 16.5 16.4 15.0 14.9 zho_fra 16.7 16.6 17.4 18.2
kor_ind 16.7 16.2 133 135 zho_ind 13.9 15.5 14.0 14.8
kor_ita 10.3 10.3 9.2 9.9 zho_ita 11.6 114 10.7 113
kor_jpn 283 284 315 32.1 zho_jpn 18.1 17.9 27.1 28.8
kor_nld 8.9 9.6 8.1 83 zho_kor 234 234 223 23.0
llzor,por 558*3 17.2 %88 17.0 é51'7 17.9 é%l 18.0 onmld }gg 16.7 %22 17.0 18(;77 19.2 18793 19.6
or_rus . . . . zho_por . . . .
kor_spa 12.7 12.8 124 12.9 zho.rus 9.8 10.6 10.1 10.8
kor_tha 39.2 36.0 41.2 41.1 zho_spa 12.6 13.2 14.2 14.6
kor_vie 19.2 19.4 18.5 19.3 zho_tha 38.8 38.0 42.0 43.0
kor.yue 123 13.1 232 21.5 zho.vie 18.0 18.7 20.0 20.6
korzho  17.9 18.0 25.0 224 zho_yue 12.3 12.9 325 28.7
nld_deu 11.4 11.7 12.3 12.7 Avg. 18.8 19.0 20.6 21.4
nldeng  27.8 27.4 23.6 25.7
nld_fra 152 15.9 19.4 19.7
nld_ind 15.6 15.9 14.7 15.1
nidita  10.0 107 109 119 Table 18: BLEU Scores for 15 Languages Across
nld_jpn 24.3 234 27.3 29.0 . . .
nldkor 247  jga 2501 1ge 213 04 227 o9 15x14 Translation Directions on FLEURS.
nld_por 15.2 ! 15.9 : 16.6 ! 18.3 :
nld_rus 10.3 11.5 122 12,5
nld_spa 12.8 133 13.6 14.8
nld_tha 41.8 40.5 43.6 437
nld_vie 17.8 18.0 18.9 20.2
nld_yue 114 11.7 233 239
nld_zho 19.2 194 273 233
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