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Abstract
Multimodal Large Language Models (MLLMs)
have achieved significant success in Speech-to-
Text Translation (S2TT) tasks. While most ex-
isting research has focused on English-centric
translation directions, the exploration of many-
to-many translation is still limited by the
scarcity of parallel data. To address this, we
propose a three-stage curriculum learning strat-
egy that leverages the machine translation ca-
pabilities of large language models and adapts
them to S2TT tasks, enabling effective learning
in low-resource settings. We trained MLLMs
with varying parameter sizes (3B, 7B, and
32B) and evaluated the proposed strategy using
the FLEURS and CoVoST-2 datasets. Experi-
mental results show that the proposed strategy
achieves state-of-the-art average performance
in 15×14 language pairs, requiring fewer than
10 hours of speech data per language to achieve
competitive results. 1

1 Introduction

Speech-to-Text Translation (S2TT) involves con-
verting speech from a source language into text in a
target language. Traditionally, S2TT tasks have re-
lied on a cascaded system, as shown in Figure 1(a),
where an Automatic Speech Recognition (ASR)
module transcribes speech into text (Baevski et al.,
2020; Gulati et al., 2020), followed by a Machine
Translation (MT) module that translates the tran-
scribed text into the target language (Cheng et al.,
2019; Beck et al., 2019). However, this cascade
system often suffers from error propagation (Sper-
ber and Paulik, 2020). Recently, Multimodal Large
Language Models (MLLMs), illustrated in Figure
1(b), have demonstrated advantages in simplifying
model architecture and mitigating error propaga-
tion in both ASR (Zhang et al., 2023; Ma et al.,
2024) and S2TT tasks (Chu et al., 2024).

*Corresponding author.
1The source code and models are released at https://

github.com/yxduir/LLM-SRT.
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Figure 1: Comparison of S2TT Methods. (a) adopts a
cascaded system; (b) directly generates translated text;
(c) generates both transcription and translation text in an
end-to-end process, with <|eng|><|zho|> indicating
transcribing English and translating it into Chinese.

Current MLLMs process {speech, instruction}
inputs to directly generate {translation}, but
this approach heavily relies on large-scale S2TT
datasets. Existing datasets (Wang et al., 2020c;
Di Gangi et al., 2019) predominantly focus on
English, while datasets supporting many-to-many
S2TT, such as FLEURS (Conneau et al., 2022), re-
main limited. Meanwhile, Large Language Models
(LLMs) have demonstrated strong many-to-many
multilingual MT capabilities. This raises the ques-
tion: can the MT capabilities of LLMs be effec-
tively transferred to the S2TT task with limited
data?

Inspired by advances in transfer learning (Pham
et al., 2024; Mueller et al., 2024), we transform
the S2TT task into a Speech Recognition and
Translation (SRT) task, which involves training
{speech, instruction} to generate {transcription,
translation}, as shown in Figure 1(c). LLMs pos-
sess robust MT capabilities, which can be adapted
to S2TT tasks with minimal data. This approach al-
lows MLLMs to harness MT capabilities for many-
to-many S2TT, effectively combining the advan-
tages of both cascade and end-to-end models.
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To connect MT and S2TT tasks, we propose a
three-stage curriculum learning strategy: (1) ASR,
which trains the MLLM for multimodal alignment,
enabling the model to understand speech and gen-
erate transcriptions; (2) Speech-Aided Machine
Translation (SMT), where both speech and tran-
scription are provided, and the MLLM generates
translations to improve cross-lingual capabilities;
(3) SRT, where only speech is provided, and the
MLLM generates both transcription and transla-
tion. The training proceeds sequentially through
these three stages, with each stage resuming from
the checkpoint of the previous one. The resulting
MLLM achieves many-to-many S2TT through the
SRT task. Additionally, we designed specialized
instructions for many-to-many S2TT and imple-
mented an optimized lightweight speech adapter
for efficient speech feature compression to acceler-
ate inference.

To evaluate our strategy, we trained three MLLM
variants (3B, 7B, and 32B). In low-resource sce-
narios (with fewer than 10 hours of data per
language), our MLLM, trained on the FLEURS
dataset, demonstrated strong many-to-many S2TT
capabilities, outperforming existing state-of-the-
art end-to-end models. We also assessed perfor-
mance on the EN-X direction of the CoVoST-2
dataset, where sufficient training data is available,
and found that our strategy remains effective, sur-
passing state-of-the-art models.

The key contributions of this work are:

• This paper adopts a strategy that transforms
the S2TT task into an SRT task, leverag-
ing the machine translation capabilities of
LLMs to enhance the many-to-many S2TT
performance of MLLMs, particularly in low-
resource settings.

• We propose a three-stage curriculum learn-
ing strategy and systematically evaluate our
strategy across datasets of varying scales and
model sizes (3B, 7B, 32B). To the best of our
knowledge, our model is the first MLLM to
support many-to-many S2TT at the 32B scale.

• Our model achieves state-of-the-art average
performance across 15×14 translation direc-
tions in the S2TT task under low-resource
settings on the FLEURS dataset, while
also demonstrating strong robustness on the
CoVoST-2 dataset in high-resource scenarios.

2 Methodology

In this section, we present the methodology of our
approach. Section 2.1 defines the tasks involved in
our method. Section 2.2 presents the architecture
of the LLM-SRT model. Section 2.3 explains our
curriculum learning strategy, which sequentially
fine-tunes the model for ASR, SMT, and SRT tasks.

2.1 Problem Formulation
In this section, we define the following tasks:

ASR: Given the audio input X and the instruc-
tion text T, the goal is to produce the transcribed
text Y.

SMT: Given the audio input X, its corresponding
transcription Y, and the instruction text T, the goal
is to produce the translated text Z.

SRT: Given the audio input X and the instruction
text T, the goal is to produce both the transcription
Y and the translated text Z.

2.2 LLM-SRT
The LLM-SRT architecture is shown in Figure 2.
The speech encoder extracts features from the
speech input, and the speech adapter layer connects
these features to the LLM, aligning their dimen-
sions and incorporating speech feature compres-
sion. Finally, the LLM generates textual output by
processing the concatenated embeddings derived
from both text and speech features.

Speech Encoder. The speech encoder processes
the audio input X into a high-dimensional represen-
tation using the frozen Whisper encoder (Radford
et al., 2023), which has been pretrained on large-
scale supervised datasets for speech recognition
and translation.

H = Encoder(X), (1)

where H ∈ RT×D is the encoder’s output, with T
representing the time dimension and D the hidden
dimension of the encoder.

Speech Adapter. The speech adapter compresses
the time dimension T and adjusts the hidden di-
mension D to match the LLM’s hidden dimension
dLLM.

We use a Q-Former to convert input sequences
into fixed-length query representations.

Q′ = Q-Former(Q,H), (2)

where Q′ ∈ Rnq×Dq is the output of the Q-Former,
Q ∈ Rnq×Dq is the trainable query matrix, nq is the
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Figure 2: The Architecture of LLM-SRT. LLM-SRT consists of a speech encoder, speech adapter, and LLM. A
three-stage curriculum learning strategy sequentially trains the ASR, SMT, and SRT tasks, as shown in Table 1. In
stages 1 and 2, the speech adapter is continuously trained to enable efficient fine-tuning. In stage 3, the LLM is
additionally unfrozen, while the speech adapter continues to be trained.

Task Audio Instruction Prediction
ASR ✓ <|eng|> Will it rain tomorrow?
ASR ✓ <|zho|> 明天会下雨吗？
SMT ✓ Will it rain tomorrow?<|eng|><|deu|> Regnet es morgen?
SMT ✓ 明天会下雨吗？<|zho|><|jpn|> 明日は、雨かな？
SRT ✓ <|eng|><|deu|> Will it rain tomorrow?<|eng|><|deu|>Regnet es morgen?
SRT ✓ <|zho|><|jpn|> 明天会下雨吗？<|zho|><|jpn|>明日は、雨かな？

Table 1: Instruction Design. The instruction design is intended for fine-tuning instructions for three tasks: ASR,
SMT, and SRT, using simple yet effective instructions to distinguish between them.

number of queries, and Dq is the hidden dimension
of the Q-Former.

After the Q-Former layer, a multilayer percep-
tron (MLP) projects the feature dimensions from
Dq to dLLM:

EX = ReLU(Q′W1 +b1)W2 +b2, (3)

where EX ∈ Rnq×dLLM is the output of the MLP
layer, ready for LLM processing.

Tokenizer and LLM. The tokenizer and embed-
ding layer process the instruction T and produce
ET ∈ Rnt×dLLM , where nt is the length of the text
tokens.

The speech features EX and text features ET are
concatenated and fed into the frozen LLM:

EZ = EX ⊕ET, (4)

where EZ ∈R(nt+nq)×dLLM is processed by the LLM
to generate the output text.

The output text varies depending on the task.
During training, the parameters of the adapter layer
are updated based on the loss of the LLM’s output.

2.3 Curriculum Learning

LLM-SRT adopts a curriculum learning approach
that incorporates three training tasks: ASR, SMT,
and SRT.

Instruction Design. We designed minimalist in-
structions to help the model distinguish between
tasks while reducing the instruction token length, as
shown in Table 1. This design ensures that instruc-
tions like <|eng|><|deu|> appear in the generated
answers, effectively segmenting transcription and
translation content in the SRT task.
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ASR. In this stage, the model is pre-trained to de-
velop ASR capabilities with a focus on multimodal
alignment, while expanding language support by
training on all intended languages. The speech
adapter is trained with as much data as possible to
ensure efficient fine-tuning.

SMT. This stage enhances the model’s cross-
lingual abilities. Starting from the ASR checkpoint,
the model takes both transcribed text and audio as
input to generate translations based on the instruc-
tion. The purpose of this step is to activate the
LLM’s inherent machine translation capabilities
and establish the connection between the MT and
S2TT tasks.

SRT. This stage activates the SRT capabilities of
the MLLM, finalizing the model. Training contin-
ues from the SMT checkpoint, with the model re-
ceiving only audio input and a task-specific instruc-
tion, outputting both the transcription and transla-
tion of the speech. This extends the MT capabilities
of LLMs to the S2TT task.

3 Experiments

3.1 Datasets
FLEURS. FLEURS2 (Conneau et al., 2022)
serves as the speech counterpart to the FLo-
Res3 (Team et al., 2022) machine translation bench-
marks. It includes 102 languages, with each train-
ing set containing approximately 10 hours of super-
vised speech data per language.

CoVoST-2. CoVoST-24 (Wang et al., 2020c) is a
large-scale multilingual S2TT corpus derived from
the Common Voice dataset (Ardila et al., 2020). It
contains translations from 21 languages to English
and from English to 15 other languages.

3.2 Experiment Settings
Model Architecture. The baseline model con-
sists of an LLM (Qwen 3B, 7B, 32B), a frozen
speech encoder (Whisper-large-v3), and a trainable
adapter layer comprising a Q-Former and an MLP.
Following the configuration in Yu et al. (2024),
we use 80 queries, each with a dimension of 768.
Training can be minimized by freezing the LLM, or
LoRA (Hu et al., 2021) can be applied for training.

2https://huggingface.co/datasets/google/
fleurs

3https://huggingface.co/datasets/facebook/
flores

4https://github.com/facebookresearch/covost

Training Details. We used bf16 precision with
Distributed Data Parallel (DDP), a learning rate
of 1×10−4, 1000 warmup steps, and the AdamW
optimizer. The models were trained on four A100
GPUs. We provide detailed settings in Table 11,
12, 13, and 14 of the Appendix.

For the ASR task, we used the Common Voice5

dataset, and for the SMT and SRT tasks, we used
the FLEURS and CoVoST-2 datasets. In a 4-card
A100 environment, the 3B and 7B models train in
3 days, while the 32B model trains in 7 days.

3.3 Compared Methods
We compare both cascade and end-to-end S2TT
models, all of which support many-to-many S2TT.

• Cascaded systems are pipeline-based ap-
proaches, where an ASR model first tran-
scribes speech into text, which is then trans-
lated by a machine translation model.

• SeamlessM4T6 (Barrault et al., 2023) is
a foundational multilingual and multitask
model capable of seamlessly translating and
transcribing both speech and text. It supports
speech-to-text translation for nearly 100 input
and output languages.

• Qwen-Audio7 (Chu et al., 2023) is the mul-
timodal extension of Qwen-LLM, designed
to process diverse audio modalities, includ-
ing speech, natural sounds, music, and songs,
alongside text, generating text-based outputs.

Evaluation Metric. We use WER8 (Morris et al.,
2004)(for the ASR task) and BLEU9 (Post, 2018)
(for the S2TT task) as evaluation metrics.

Metric Details

WER Text normalization follows Whisper

BLEU

SacreBLEU signature:
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.4.3

Except for jpn, kor, tha, yue, zho with char:
nrefs:1|case:mixed|eff:no|tok:char|smooth:exp|version:2.4.3

Table 2: Metric Details. We followed the settings of
SeamlessM4T-V2 (Barrault et al., 2023).

5https://commonvoice.mozilla.org/en/datasets
6https://github.com/facebookresearch/

seamless communication
7https://github.com/QwenLM/Qwen-Audio
8https://huggingface.co/spaces/

evaluate-metric/wer
9https://github.com/mjpost/sacrebleu
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X→12 Languages S2TT Data
(hour)

FLEURS
Eng Deu Fra Jpn Rus Zho Avg.

Cascaded ASR+MT Methods

Whisper + Qwen2.5-3B - 23.4 21.0 20.9 13.6 19.6 14.5 18.8
Whisper + Qwen2.5-7B - 26.7 23.3 22.5 15.1 21.5 16.4 20.9
Whisper + Qwen2.5-32B - 29.9 26.0 24.6 17.3 23.8 18.5 23.3

End-to-End Models

SeamlessM4T-V2 (2.3B) 351,000 33.1 20.5 19.6 13.2 19.6 15.2 20.2
Qwen2-Audio (7B) in-house 22.6 20.1 20.6 4.0 15.0 13.7 16.0
Baseline-3B 52 11.8 9.0 9.5 5.2 9.7 6.2 8.6
LLM-SRT-3B 52 27.2 22.6 22.0 14.3 21.3 16.5 20.6
LLM-SRT-7B 52 27.4 23.7 22.8 15.5 21.8 16.9 21.4
LLM-SRT-32B 52 32.5 26.8 26.1 17.5 25.6 19.2 24.6

Table 3: BLEU Scores on 6x12 Directions in FLEURS. Underlined denotes previous state-of-the-art end-to-end
models, while bold indicates models that outperform them. ”-” indicates no S2TT data was used due to the cascade
system. The baseline uses the same instruction-tuning strategy as Qwen2-Audio.

3.4 Overall Results

As shown in Tables 3 and 4, we evaluate the
S2TT performance in low-resource settings on
the FLEURS dataset. The results indicate that
our model achieves state-of-the-art performance
in the many-to-many S2TT task. Similarly, Table 5
presents the results under high-resource conditions
on the CoVoST-2 dataset. Table 7 provides a com-
parison of inference speed, and Table 8 presents an
ablation study of the three-stage curriculum learn-
ing.

Language Support. As an LLM-based model
designed for many-to-many S2TT, conducting com-
prehensive baseline comparisons is both essential
and challenging. To ensure a thorough evaluation,
we compare baselines across 6×12 language di-
rections and benchmark our model against state-
of-the-art approaches in the 15×14 setting. The
supported languages are listed in Table 10, while
the complete experimental results are provided in
Table 18.

Baseline-3B vs. LLM-SRT-3B. For the base-
line model, we first conduct ASR pretraining as
in Qwen2-Audio, followed by S2TT instruction-
tuning with the same setup. Due to limited data,
the baseline performs poorly, highlighting the lim-
itations of traditional fine-tuning in low-resource
settings.

In contrast, our curriculum learning train-
ing strategy achieves state-of-the-art performance
(8.6→20.6) in low-resource scenarios, as we trans-
form S2TT into an SRT task, effectively leveraging
the machine translation capability of the LLM to
achieve many-to-many S2TT.

SeamlessM4T-V2 vs. LLM-SRT-3B. The LLM-
SRT-3B demonstrates superior performance over
SeamlessM4T-V2 on non-English languages (e.g.,
for French 18.8→22.0), while it lags behind
SeamlessM4T-V2 in English-to-X translation. This
discrepancy can largely be attributed to the larger
amount of S2TT data available for SeamlessM4T-
V2, which includes 351,000 hours of training data
compared to just 52 hours for LLM-SRT-3B. In
situations where data resources are limited, our
LLM-based approach has a greater advantage.

Cascaded Systems vs. LLM-SRT. As shown
in Table 3, when using the same LLM as in the
cascaded system, our MLLM demonstrates a clear
performance advantage (e.g., for 3B, 18.8→20.6),
highlighting the benefits of the end-to-end ap-
proach. The MLLM’s superior performance stems
from its integrated framework, which eliminates in-
termediate steps and enables more efficient knowl-
edge transfer, resulting in improved translation ac-
curacy and robustness. This makes the model more
effective in handling complex language tasks.

Scaling Law of LLM-SRT. As shown in Table
3, experiments on models with 3B, 7B, and 32B
parameters demonstrate that our method follows
the scaling law of LLMs (e.g., 20.6 for 3B, 21.4
for 7B, and 24.6 for 32B). Notably, the 32B model
achieved state-of-the-art performance across all di-
rections, confirming the generalizability of our ap-
proach. Our model’s performance is strongly corre-
lated with the machine translation capability of the
LLM, making the choice of an appropriate LLM
foundation crucial for optimal performance.

12470



X→14 Languages
S2TT Data

(hour)
FLEURS

Eng Deu Fra Ind Ita Jpn Kor Nld Por Rus Spa Tha Vie Yue Zho Avg.

Machine Translation

Qwen2.5-3B - 29.5 25.4 25.2 24.6 22.7 18.4 18.8 22.1 27.1 23.4 22.1 18.3 22.6 19.0 20.5 22.6

Speech to Text Translation

SeamlessM4T-V2 (2.3B) 351,000 33.3 21.6 21.1 18.4 19.1 14.5 17.2 18.4 18.8 20.6 17.6 12.8 17.5 15.2 16.7 18.8
SeamlessM4T-V2 +Lora 351,129 32.8 22.0 21.3 19.1 19.4 14.4 17.0 18.6 18.6 21.3 18.1 13.2 17.5 14.9 17.0 19.0
LLM-SRT-3B-V2 129 27.8 23.4 24.0 22.4 22.0 15.3 17.9 20.4 25.7 22.8 21.9 12.9 18.2 15.5 19.2 20.6
LLM-SRT-3B-V2 +Lora 129 29.1 24.5 24.3 22.9 22.8 16.5 18.0 20.9 26.2 23.3 22.6 14.7 19.0 16.3 19.6 21.4

Table 4: BLEU Scores on 15×14 Directions. The complete results are in Table 15 and 18 in the Appendix.

Many-to-Many S2TT on FLEURS. As shown
in Tables 4 and 18, we compared performance
across 15 languages and 210 translation directions.
Table 4 reports the average performance across the
15 languages, where our model achieves state-of-
the-art BLEU performance (18.8→21.4). Table
11 presents detailed results for all 210 directions,
showing that our model outperforms SeamlessM4T-
V2 in 154 directions.

Train Adapter Only vs. Fine-tune LLM. As
shown in Table 4, LLM-SRT-3B-V2 achieves high
translation performance (20.6) by freezing the
speech encoder and LLM, while training only the
speech adapter. Further performance improvement
(20.6→21.4) can be achieved by unfreezing the
LLM, such as through LoRA training.

MT vs. S2TT. As shown in Figure 3, we com-
pared the MT performance of Qwen2.5-3B with the
S2TT performance of LLM-SRT-3B-V2 across 210
translation directions. The results show a strong
correlation between our MLLM’s S2TT and MT
performance, confirming that the strong S2TT ca-
pability of LLM-SRT-3B stems from the LLM’s
machine translation ability.

Figure 3: BLEU Scores for 15×14 Directions: Com-
parison between MT and S2TT. The results show a
strong correlation, suggesting that our S2TT capability
is derived from the MT model. Table 16 includes an
error analysis showing that S2TT outperforms MT.

Eng→X S2TT Data
(hour)

CoVoST-2
Deu Jpn Zho Avg.

Cascaded ASR+MT Methods

Whisper+NLLB-3.3B - 33.4 31.0 32.0 32.1
Whisper+Qwen2.5-3B - 21.1 28.1 35.0 28.0
Whisper+Qwen2.5-7B - 24.1 29.8 37.6 30.5
Whisper+Qwen2.5-32B - 28.3 35.0 41.1 34.8

End-to-End Models

SeamlessM4T-V2 351,000 37.0 39.7 35.9 37.5
Qwen-Audio (7B) 3,700 25.1 - 40.3 -
Qwen2-Audio (7B) in-house 29.9 39.7 44.0 37.9
with FLEURS Data
LLM-SRT-3B 52 24.9 37.3 40.7 34.3
LLM-SRT-7B 52 26.6 40.1 41.4 36.0
LLM-SRT-32B 52 30.2 43.1 43.5 38.9
with CoVoST-2 Data
Baseline-3B∗ 430 23.6 34.7 38.6 32.3
Baseline-7B∗ 430 25.3 36.5 40.2 34.1
LLM-SRT-3B∗ 430 26.5 39.4 44.0 36.6
LLM-SRT-7B∗ 430 28.7 41.6 47.1 39.1

Table 5: BLEU Scores on CoVoST-2. * indicates
trained on CoVoST-2 dataset.

Eng→X S2TT. As shown in Table 4, the rela-
tively weaker performance of our model in Eng→X
translations is primarily due to the limited amount
of English data, stemming from the balanced
FLEURS dataset, which contains fewer than 10
hours of data per language. Consequently, as
shown in Table 5, our 3B model underperforms
compared to SeamlessM4T-V2, but our method is
more efficient in data-constrained scenarios.

Scaling Law of S2TT Data. As shown in Table
5, we compare the performance of Eng→X transla-
tions in both low-resource and high-resource sce-
narios, with data scales ranging from 52 hours to
430 hours. The results indicate that both our 3B
(34.3→36.6) and 7B (35.0→39.1) models show
consistent performance improvements as the data
scale increases, demonstrating that our approach is
effective in low-resource settings and scales well
with more data.
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MLLM Architecture. Our Baseline-7B model
follows the Qwen2-Audio setup but keeps the
speech encoder frozen, leading to lower perfor-
mance (34.1 vs. 37.9).

LLM-SRT-7B employs a curriculum learning
strategy that incrementally fine-tunes only the
adapter layer, allowing the model to adapt more
effectively while maintaining efficiency. This ap-
proach leads to notable improvements in perfor-
mance by enabling stable and gradual optimization.
Although unfreezing both the speech encoder and
the LLM could yield further performance gains, it
would also result in significantly higher computa-
tional costs.

Multi-task Model LLM-SRT. LLM-SRT is a
multi-task model that supports ASR, SMT, and
SRT tasks. As shown in Table 6, we evaluated the
performance of all tasks.

We found that performing the SRT task did not
degrade, but rather slightly improved, ASR perfor-
mance. Moreover, with the correct transcription,
the model achieved a high BLEU score in the SMT
task.

Model Task WER↓ Deu Jpn Zho

LLM-SRT-7B∗
Eng→X

ASR 11.1 - - -
SMT 0 32.8 43.6 55.6
SRT 10.9 28.7 41.6 47.1

Table 6: Performance of Different Tasks. We evalu-
ated the model on the CoVoST-2 dataset and found that
the SMT task, which uses both speech and ground-truth
transcription as inputs, achieved a notably high BLEU
score.

Inference Speed. As shown in Table 7, our
method achieves nearly a 3x improvement in infer-
ence speed compared to the Qwen2-Audio model,
which has a similar parameter size. Even with beam
search enabled (5 beams) in our model, the speed
remains faster than the greedy search of Qwen2-
Audio.

The speed difference is mainly due to our opti-
mized speech adapter design, which compresses
the audio features to a fixed size of 80, significantly
reducing the token length input to the LLM and
accelerating inference.

3.5 Ablation Study
Effect of the ASR, SMT, and SRT Tasks. Ini-
tially, ASR training was performed to establish a
strong baseline (Bansal et al., 2018; Le et al., 2023).
Removing ASR pre-training resulted in a 2.3-point

Model Strategy Batch Time(s)↓

Qwen2-Audio Greedy Search 4 59
8 /

Beam Search 5 4 /

LLM-SRT-7B∗
Greedy Search

4 74
8 39
16 28
32 22
64 19

Beam Search 5
4 93
8 64
12 56

Table 7: Inference Speed Comparison. We compared
the inference time for processing 1,000 speech samples
between Qwen2-Audio and LLM-SRT-7B, both with
similar parameter sizes, using a 4-card 4090 DDP FP16
inference setup. LLM-SRT-7B demonstrated a 3x speed
improvement. / Indicates out-of-memory issues.

decrease in BLEU score, emphasizing its impor-
tance in S2TT. This section explores the effect of
skipping the SMT task and proceeding directly to
SRT. As shown in Table 8, removing SMT and SRT
resulted in performance drops of 1.1 and 4.9 points,
respectively. While direct SRT maintains an MT-
S2TT link with only minor degradation, omitting
SRT and relying solely on instruction fine-tuning
leads to a substantial performance drop.

Model Deu Jpn Zho Avg.
LLM-SRT-7B∗ 28.7 41.6 47.1 39.1

w/o ASR 26.4(-2.3) 38.6(-3.0) 45.5(-1.6) 36.8(-2.3)
w/o SMT 27.6(-1.1) 39.7(-1.9) 46.5(-0.6) 38.0(-1.1)
w/o SRT 25.6(-3.1) 36.7(-4.9) 40.4(-6.7) 34.2(-4.9)

Table 8: Ablation Study. We evaluated the model on
the CoVoST-2 Eng→X dataset. Removing the SRT
task leads to a substantial reduction in BLEU score,
underscoring its critical role in overall performance.

Case Study. As shown in Tables 9 and 17,
SeamlessM4T-V2 demonstrates poor performance
in Japanese, achieving the lowest BLEU score.
Qwen-Audio outperforms it, while our method out-
performs significantly. Our approach follows a
two-step process: first, it generates a transcription
of the input speech, which is then used to produce
the translation. This strategy ensures that the trans-
lation benefits from the transcribed text, leverag-
ing its structure and context to improve accuracy.
By incorporating transcription into the translation
process, our method minimizes ambiguities and
enhances translation quality, especially in complex
or context-dependent scenarios.
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Model BLEU↑

Audio 三国是中国古代历史上最血腥的时代之一。成千上万的人为了争夺西安豪华宫殿最高的权力而死去。

Ground-truth 三国志は、古代中国の歴史の中で最も血なまぐさい時代の1つでした。西安の大宮殿の最高位を狙う争いの中で何千人もが戦士しました。

SeamlessM4T-V2 三国は中国古代歴史で最も血腥な時代の一つ千上万の人がシアン豪華宮殿の最高権力を争うために死ぬ huan 14.7 | 5.6
Qwen2-Audio 三国は中国の歴史で最も血なましい時代の一つです。何千人もの人が、西安の豪華宮殿の権力を得るために死んでいます。 27.9 | 12.5

LLM-SRT-3B
三国是中国古代历史上最血腥的时期之一，成千上万人为了争夺西安豪华宫殿的最高权力而死去。<|zho|><|jpn|>

三国時代は中国の歴史上で最も血なまぐさい時代の一つで、西安の豪華な宮殿で最高の権力を争うために、数万人が死にました。 34.9 | 16.5

LLM-SRT-32B
三国是中国古代历史上最血腥的时代之一。成千上万的人为了争夺西安豪华宫殿的最高权力而死去。<|zho|><|jpn|>

三国時代は、中国の歴史の中で最も血なまぐさい時代の1つで、西安の豪華な宮殿の支配権を巡って何千人もの人々が死にました。 49.3 | 40.4

Table 9: Case Study. We compare the BLEU scores of our method with those of other approaches, using the ’char’
tokenizer (denoted in regular font) and the ’ja-mecab’ tokenizer (presented in italics). With a transcription Character
Error Rate (CER) score of 11.4 for the 3B model and 4.6 for the 32B model.

4 Related Work

Cascaded S2TT. This method follows a two-step
process: first, ASR transcribes the spoken language
into text, and then MT translates the transcribed
text into the target language. This approach lever-
ages the strengths of specialized ASR (Radford
et al., 2023; Baevski et al., 2020) and MT (Fan et al.,
2021) models, utilizing extensive training data and
advanced techniques. ASR models accurately con-
vert speech to text, while sophisticated MT models,
benefiting from large multilingual datasets, trans-
late with high accuracy and fluency. However, the
cascaded approach is prone to error propagation.

End-to-End S2TT. In this paradigm, a single
model is trained to directly map speech from the
source language to text in the target language,
skipping the intermediate transcription step (Wang
et al., 2020a,b; Inaguma et al., 2020). Early work
on joint speech recognition and translation primar-
ily used streaming models, aiming to provide real-
time multilingual synchronization (Sperber et al.,
2020; Dong et al., 2021; Papi et al., 2024). These
pioneering efforts focused more on reducing la-
tency and enhancing efficiency than offline speech
translation systems. End-to-end ST offers several
advantages, including reduced latency, simplified
system architecture, and the elimination of error
propagation between the ASR and MT stages. De-
spite these benefits, end-to-end ST models face
challenges, such as the need for extensive paral-
lel speech-to-text data, which is resource-intensive
and difficult to obtain.

Audio MLLMs. Recent advancements in au-
dio MLLMs (Li et al., 2025) have significantly
improved speech recognition and translation.

SpeechGPT (Zhang et al., 2023) uses prompting
to enhance speech recognition in large language
models. BLSP-KD (Wang et al., 2024) refines
speech-text alignment through knowledge distil-
lation. SALMONN (Tang et al., 2023) aims to
improve auditory comprehension of language and
music in models. Qwen-Audio (Chu et al., 2023)
advances audio recognition and translation by re-
training speech encoders within a multi-task frame-
work. Qwen2.5-Omni (Xu et al., 2025), the end-to-
end multimodal model, is designed for comprehen-
sive multimodal perception, seamlessly processing
heterogeneous input modalities.

5 Conclusion

In this paper, we propose a novel strategy that refor-
mulates the speech-to-text translation task as a com-
bination of speech recognition and translation tasks,
leveraging the machine translation capabilities of
LLMs to enhance the performance of MLLMs in
S2TT. To validate our approach, we train three
MLLMs with sizes 3B, 7B, and 32B, and imple-
ment a three-stage curriculum learning strategy,
which proves highly effective in low-resource sce-
narios while further improving performance when
sufficient training data is available. Our model
achieves state-of-the-art results across 15×14 trans-
lation directions, excelling in low-resource learning
on the FLEURS dataset and supervised training on
the CoVoST-2 dataset. These results highlight the
robustness and effectiveness of our approach across
diverse linguistic and data availability settings.

For future work, we aim to further optimize the
LLM-SRT model to push its performance bound-
aries and extend its application to a broader range
of languages.
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Limitations

This paper presents a method for training an
MLLM for languages with less than 10 hours of
speech translation data.

However, the performance of S2TT and the
range of supported languages are constrained by
the capabilities of the LLM. MLLMs trained using
this method may not perform well on languages
that are not supported by the LLM or on those with
poor machine translation performance.
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Code Language Family Subgrouping Script

deu German Indo-European Germanic Latn
eng English Indo-European Germanic Latn
fra French Indo-European Italic Latn
ind Indonesian Austronesian Malayo-Polynesian Latn
ita Italian Indo-European Italic Latn
jpn Japanese Japonic Japanesic Jpan
kor Korean Koreanic Korean Kore
nld Dutch Indo-European Germanic Latn
por Portuguese Indo-European Italic Latn
rus Russian Indo-European Balto-Slavic Cyrl
spa Spanish Indo-European Italic Latn
tha Thai Tai-Kadai Kam-Tai Thai
vie Vietnamese Austroasiatic Vietic Latn
yue Cantonese Sino-Tibetan Sinitic Hant
zho Chinese Sino-Tibetan Sinitic Hans

Table 10: Language Support. The table lists language codes, names, families, subgroups, and scripts. Language
support is extensible based on ISO 639-3. 6×12 translation directions cover source languages (eng, deu, fra, zho,
rus, jpn) and target languages (eng, deu, fra, spa, por, ita, nld, rus, jpn, kor, vie, ind, zho).

Stage Dataset Hour Batch Step Learning Rate Warmup Step Optimizer

ASR Common Voice 19 4498

16
472000 1e-4

1000 AdamWFLEURS 129 1e-4
SMT FLEURS 129 44000 1e-4
SRT FLEURS 129 83000 1e-5

Table 11: Training Details for LLM-SRT-3B-V2. The step count refers to the number of steps on a single GPU.

Model Encoder Adapter LLM Language Support
LLM-SRT-3B

Q-Former + MLP

Qwen2.5-3B 6×12
LLM-SRT-7B Whisper large-v3’s Qwen2.5-7B 6×12

LLM-SRT-32B encoder Qwen2.5-32B 6×12
LLM-SRT-3B-V2 Qwen2.5-3B 15×14

Table 12: Model Settings. The V2 model employs the same architecture but supports more languages.

Model Rank (r) Alpha Dropout Target Keys Bias

SeamlessM4T-V2 32 64 0.2 .* proj none

LLM-SRT-3B-V2 8 32 0.05 q proj, v proj none

Table 13: LoRA Configuration Settings. We only fine-tuned the LLM with LoRA for LLM-SRT-3B-V2.

Modules Param Training Details
stage

Speech Encoder ∼635M – Whisper’s encoder

Speech Adapter ∼73.7M I&II&III Q-Former and MLP

LLM ∼3.1B – Qwen2.5-3B

LLM adapter ∼1.8M III LoRA

Total ∼3.8B

Table 14: LLM-SRT-3B-V2 Training Parameters. The red indicates trainable parameters.
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X→14 SeamlessM4T-V2 SeamlessM4T-V2+Lora LLM-SRT-3B LLM-SRT-3B+Lora

deu 21.6 / 76.2 22.0 / 76.8 23.4 / 83.4 24.5 / 83.5
eng 33.3 / 84.8 32.8 / 84.3 27.8 / 85.5 29.1 / 85.4
fra 21.1 / 77.6 21.3 / 78.0 24.0 / 83.5 24.3 / 83.6
ind 18.4 / 73.8 19.1 / 75.0 22.4 / 82.3 22.9 / 82.2
ita 19.1 / 76.9 19.4 / 77.4 22.0 / 83.5 22.8 / 83.5
jpn 14.5 / 72.4 14.4 / 72.5 15.3 / 80.1 16.5 / 80.3
kor 17.2 / 76.6 17.0 / 76.5 17.9 / 81.8 18.0 / 81.9
nld 18.4 / 74.8 18.6 / 75.3 20.4 / 81.3 20.9 / 81.4
por 18.8 / 73.3 18.6 / 73.5 25.7 / 84.1 26.2 / 84.2
rus 20.6 / 75.9 21.3 / 76.7 22.8 / 82.5 23.3 / 82.5
spa 17.6 / 76.1 18.1 / 76.9 21.9 / 83.9 22.6 / 83.9
tha 12.8 / 71.1 13.2 / 71.7 12.5 / 78.6 14.7 / 78.8
vie 17.5 / 74.1 17.5 / 74.1 18.2 / 79.7 19.0 / 79.8
yue 15.2 / 70.9 14.9 / 70.5 15.5 / 78.9 16.3 / 79.0
zho 16.8 / 77.5 17.0 / 77.7 19.2 / 82.5 19.6 / 82.6

Avg. 18.8 / 75.5 19.0 / 75.8 20.6 / 82.1 21.4 / 82.2

Table 15: BLEU/COMET Scores for 15 Languages Across 15×14 Translation Directions on FLEUR. Detailed
results are summarized in Tables 18.

Case BLEU↑

Audio
There may be more maria on the near side because the crust is thinner. It was easier for lava to rise up to the surface.

地が薄いため、近い方には海が多くなることがあります。溶岩が浮上しやすくなっていました。

Qwen2.5-3B (MT) 近には可能にマリアがあるかもしれませんbecause the crustははがより薄いからマagmaが表面に上りやすかったlavaです。 2.9
LLM-SRT-3B (S2TT) 近にはもっとマリアがある可能性があります。地が薄いためです。溶岩が表面に上りやすかったからです。 30.6

Table 16: Error Analysis. We observe that the Qwen2.5-3B model exhibits language mixing (e.g., Japanese and
Cantonese) in certain translation directions. Consequently, S2TT outperforms MT in these scenarios.

Case BLEU↑

Audio # 1
它让玩家可以通过在空中移动设备来控制电子游戏中的运动和操作。
This will allow players to control actions and movements in video games by moving the device through the air.

SeamlessM4T-V2 It allows players to control the movement and operation of electronic games through mobile devices in the air. 14.0

LLM-SRT-3B
它让玩家可以通过在空中移动设备来控制电子游戏中的动作和操作。<|zho|><|eng|>

It allows players to control the actions and operations of an electronic game by moving the device in the air. 23.2

LLM-SRT-32B
它让玩家可以通过在空中移动设备来控制电子游戏中的动作和操作。<|zho|><|eng|>

It allows players to control actions and operations in electronic games by moving the device in the air. 43.0

Audio # 2
In fact, it is not easy to find at all even if one knew it existed. Once inside the cave, it is a total isolation.

事实上，即使知道它的存在，也不容易找到。一旦进入洞穴，就完全与世隔绝了。

SeamlessM4T-V2 事实上,即使有人知道它存在,也很难找到它.一旦进入洞穴, 22.7

LLM-SRT-3B
In fact, it is not easy to find it at all, even if one knew it existed. Once inside the cave, it is a total isolation.<|eng|><|zho|>

事实上，即使知道它存在，要找到它也是很困难的。一旦进入洞穴，就是完全的隔离。 49.3

LLM-SRT-32B
In fact, it is not easy to find at all, even if one knew it existed. Once inside the cave, it is a total isolation. <|eng|><|zho|>

事实上，即使知道它的存在，也很难找到。一旦进入洞穴，就完全与世隔绝了。 86.8

Table 17: Case Study. We compare the BLEU scores of our models with SeamlessM4T-V2.

12477



src tgt SeamlessM4T-V2 LLM-SRT-3B-V2
BLEU Avg. +Lora Avg. BLEU Avg. +Lora Avg.

deu eng 37.1

21.6

36.9

22.0

32.3

23.4

34.3

24.5

deu fra 19.3 21.2 23.2 25.0
deu ind 19.1 19.4 17.2 18.8
deu ita 12.5 13.5 13.8 14.8
deu jpn 26.9 25.8 30.2 31.9
deu kor 29.1 29.0 23.1 24.6
deu nld 13.2 13.8 14.2 15.0
deu por 19.7 21.4 22.2 23.5
deu rus 13.3 14.7 14.5 15.9
deu spa 13.7 14.8 16.2 17.2
deu tha 44.3 41.9 43.6 45.2
deu vie 22.0 22.0 21.3 23.0
deu yue 12.2 12.8 24.9 25.5
deu zho 20.5 21.1 30.8 28.5

eng deu 33.4

33.3

33.1

32.8

21.2

27.8

22.7

29.1

eng fra 42.6 41.8 33.0 34.7
eng ind 37.1 37.2 25.6 27.4
eng ita 24.5 24.6 18.3 19.2
eng jpn 36.0 34.2 33.7 37.3
eng kor 40.2 38.7 26.4 28.3
eng nld 24.4 24.2 15.5 15.9
eng por 42.9 42.9 34.5 36.1
eng rus 26.2 25.8 19.4 20.2
eng spa 23.7 24.0 20.7 22.1
eng tha 52.5 50.5 46.3 50.0
eng vie 36.1 35.9 27.6 29.7
eng yue 16.6 17.2 29.9 30.5
eng zho 30.1 28.7 37.0 34.1

fra deu 10.6

21.1

12.0

21.3

16.0

24.0

16.4

24.3

fra eng 33.8 33.7 32.8 34.7
fra ind 19.0 20.1 18.8 19.8
fra ita 15.3 15.9 16.9 17.1
fra jpn 27.9 26.6 30.6 31.1
fra kor 29.1 28.9 23.1 23.4
fra nld 11.0 12.0 12.7 12.8
fra por 20.0 20.9 24.5 25.5
fra rus 12.2 12.9 15.7 15.9
fra spa 14.3 14.6 18.5 18.9
fra tha 46.2 45.1 45.8 45.7
fra vie 22.4 23.1 22.9 24.3
fra yue 13.2 12.8 27.5 25.4
fra zho 20.1 20.2 30.7 29.2

ind deu 10.3

18.4

12.5

19.1

13.3

22.4

14.1

22.9

ind eng 32.4 32.5 30.5 32.8
ind fra 16.2 17.4 21.5 22.4
ind ita 9.8 11.0 13.1 13.7
ind jpn 24.8 23.4 29.7 30.6
ind kor 25.9 25.5 22.0 23.2
ind nld 10.0 10.6 10.8 11.2
ind por 17.0 19.3 20.3 21.5
ind rus 8.2 9.8 13.8 13.9
ind spa 10.8 11.7 14.5 15.5
ind tha 43.9 44.6 45.5 46.2
ind vie 19.3 19.7 22.9 23.4
ind yue 11.7 11.7 25.4 25.7
ind zho 17.4 17.9 29.8 26.7

ita deu 10.5

19.1

11.6

19.4

13.4

22.0

14.3

22.8

ita eng 26.5 26.1 24.7 27.1
ita fra 17.6 18.5 22.3 23.9
ita ind 15.3 16.3 15.3 16.6
ita jpn 24.7 23.7 29.8 30.6
ita kor 26.8 26.6 22.0 23.3
ita nld 9.6 10.3 10.2 10.6
ita por 15.4 15.9 19.4 21.4
ita rus 11.4 12.1 13.0 13.9
ita spa 13.9 14.2 16.3 17.7
ita tha 44.7 43.2 45.1 45.6
ita vie 19.1 20.0 22.1 23.0
ita yue 12.8 12.8 25.3 24.4
ita zho 19.1 20.4 29.3 26.2

jpn deu 8.5

14.5

8.6

14.4

7.9

15.3

9.1

16.5

jpn eng 18.2 17.8 16.5 19.3
jpn fra 14.7 14.5 13.4 15.0
jpn ind 11.4 12.6 10.3 11.7
jpn ita 9.0 8.9 8.5 9.2
jpn kor 25.5 25.8 24.5 26.0
jpn nld 9.3 9.3 7.8 8.3
jpn por 13.4 13.7 13.4 14.9
jpn rus 7.7 7.6 7.7 8.6
jpn spa 11.6 11.7 10.9 11.8
jpn tha 37.0 34.0 38.4 40.2
jpn vie 15.8 15.6 14.9 16.4
jpn yue 7.7 8.2 19.1 19.4
jpn zho 13.2 13.5 21.7 21.2

kor deu 9.4

17.2

9.3

17.0

8.7

17.9

9.1

18.0

kor eng 24.3 22.9 20.3 21.9
kor fra 16.5 16.4 15.0 14.9
kor ind 16.7 16.2 13.3 13.5
kor ita 10.3 10.3 9.2 9.9
kor jpn 28.3 28.4 31.5 32.1
kor nld 8.9 9.6 8.1 8.3
kor por 15.3 15.6 15.7 16.1
kor rus 9.8 10.0 9.1 8.9
kor spa 12.7 12.8 12.4 12.9
kor tha 39.2 36.0 41.2 41.1
kor vie 19.2 19.4 18.5 19.3
kor yue 12.3 13.1 23.2 21.5
kor zho 17.9 18.0 25.0 22.4

nld deu 11.4

18.4

11.7

18.6

12.3

20.4

12.7

20.9

nld eng 27.8 27.4 23.6 25.7
nld fra 15.2 15.9 19.4 19.7
nld ind 15.6 15.9 14.7 15.1
nld ita 10.0 10.7 10.9 11.9
nld jpn 24.3 23.4 27.3 29.0
nld kor 24.7 25.1 21.3 22.7
nld por 15.2 15.9 16.6 18.3
nld rus 10.3 11.5 12.2 12.5
nld spa 12.8 13.3 13.6 14.8
nld tha 41.8 40.5 43.6 43.7
nld vie 17.8 18.0 18.9 20.2
nld yue 11.4 11.7 23.3 23.9
nld zho 19.2 19.4 27.3 23.3

src tgt SeamlessM4T-V2 LLM-SRT-3B-V2
BLEU Avg. +Lora Avg. BLEU Avg. +Lora Avg.

por deu 6.8

18.8

7.5

18.6

18.2

25.7

18.5

26.2

por eng 38.4 37.7 38.3 40.8
por fra 16.3 16.7 28.8 29.6
por ind 13.9 15.2 20.5 21.6
por ita 10.3 10.4 17.4 17.5
por jpn 24.5 23.4 31.8 32.8
por kor 27.8 26.0 23.8 24.9
por nld 9.8 10.0 12.8 13.3
por rus 9.1 9.3 17.2 18.0
por spa 13.2 13.1 18.5 20.1
por tha 44.2 42.7 46.6 47.1
por vie 19.0 19.2 25.2 25.9
por yue 11.6 11.8 28.3 27.2
por zho 17.9 17.9 32.7 30.1

rus deu 15.2

20.6

16.3

21.3

14.9

22.8

15.5

23.3

rus eng 30.2 29.6 28.7 30.0
rus fra 20.8 22.5 22.2 23.3
rus ind 17.9 19.0 16.9 18.1
rus ita 14.7 15.7 14.0 14.0
rus jpn 22.8 23.0 29.5 30.7
rus kor 25.6 25.0 21.5 23.1
rus nld 13.0 13.9 11.6 11.6
rus por 20.4 21.6 22.1 22.9
rus spa 15.3 16.0 16.4 16.6
rus tha 43.1 41.6 44.7 44.4
rus vie 21.9 23.1 21.8 23.1
rus yue 10.4 11.9 24.4 24.6
rus zho 16.9 18.7 29.8 28.7

spa deu 7.9

17.6

10.1

18.1

12.8

21.9

13.4

22.6

spa eng 25.4 25.4 24.5 27.8
spa fra 13.5 14.7 22.0 23.2
spa ind 12.9 14.7 16.0 17.3
spa ita 11.1 11.8 14.8 15.9
spa jpn 24.4 23.4 29.6 30.2
spa kor 27.6 26.5 21.8 22.7
spa nld 9.2 10.2 10.3 11.6
spa por 14.4 15.0 19.1 21.0
spa rus 8.3 9.8 13.7 14.1
spa tha 44.6 43.9 45.0 45.8
spa vie 17.4 18.8 21.8 23.1
spa yue 12.0 11.9 25.2 24.4
spa zho 17.4 17.8 29.7 26.3

tha deu 9.3

12.8

9.6

13.2

7.8

12.5

9.7

14.7

tha eng 23.3 22.7 14.4 19.1
tha fra 13.4 14.1 11.8 14.1
tha ind 11.6 13.0 10.3 13.2
tha ita 8.6 9.5 7.2 8.7
tha jpn 17.2 16.3 22.6 23.9
tha kor 20.8 20.1 15.4 19.2
tha nld 8.4 9.1 6.8 8.2
tha por 12.9 13.9 10.8 14.0
tha rus 9.0 10.0 7.9 9.4
tha spa 10.0 10.7 9.8 11.6
tha vie 14.3 15.2 14.6 17.3
tha yue 8.0 8.0 16.1 18.1
tha zho 12.4 12.8 19.6 20.1

vie deu 11.5

17.5

11.5

17.5

10.4

18.2

11.3

19.0

vie eng 25.6 25.2 21.1 23.8
vie fra 17.5 17.8 16.6 17.3
vie ind 15.9 17.5 14.2 15.7
vie ita 11.3 11.5 10.2 11.2
vie jpn 21.8 20.6 25.0 26.2
vie kor 23.9 21.7 19.9 20.4
vie nld 10.6 10.9 8.5 9.3
vie por 16.4 16.8 15.6 17.0
vie rus 12.1 12.1 11.0 11.6
vie spa 12.1 12.3 12.7 13.8
vie tha 40.6 39.4 42.6 43.1
vie yue 11.4 12.0 21.8 21.0
vie zho 14.8 15.1 25.0 24.1

yue deu 8.6

15.2

8.6

14.9

7.6

15.5

8.2

16.3

yue eng 18.8 17.8 16.1 18.2
yue fra 13.4 13.5 13.6 14.0
yue ind 12.2 12.9 10.4 11.8
yue ita 10.0 9.8 8.9 9.3
yue jpn 14.8 14.8 22.9 24.6
yue kor 19.9 19.4 18.2 20.5
yue nld 8.0 7.9 7.1 7.5
yue por 12.9 12.9 12.1 12.8
yue rus 8.6 8.4 8.2 8.4
yue spa 10.8 10.9 10.8 11.1
yue tha 35.2 32.8 38.7 39.9
yue vie 15.7 16.0 16.0 17.1
yue zho 23.4 23.3 26.7 24.8

zho deu 10.2

16.7

10.4

17.0

9.6

19.2

11.0

19.6

zho eng 21.7 22.4 23.1 23.9
zho fra 16.7 16.6 17.4 18.2
zho ind 13.9 15.5 14.0 14.8
zho ita 11.6 11.4 10.7 11.3
zho jpn 18.1 17.9 27.1 28.8
zho kor 23.4 23.4 22.3 23.0
zho nld 10.8 10.9 8.7 8.9
zho por 16.2 16.4 16.7 17.3
zho rus 9.8 10.6 10.1 10.8
zho spa 12.6 13.2 14.2 14.6
zho tha 38.8 38.0 42.0 43.0
zho vie 18.0 18.7 20.0 20.6
zho yue 12.3 12.9 32.5 28.7

Avg. 18.8 19.0 20.6 21.4

Table 18: BLEU Scores for 15 Languages Across
15×14 Translation Directions on FLEURS.
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