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Abstract

Document Image Machine Translation (DIMT)
aims to translate text within document images,
facing generalization challenges due to lim-
ited training data and the complex interplay
between visual and textual information. To ad-
dress these challenges, we introduce M4Doc, a
novel single-to-mix modality alignment frame-
work leveraging Multimodal Large Language
Models (MLLMs). M4Doc aligns an image-
only encoder with the multimodal representa-
tions of an MLLM, pre-trained on large-scale
document image datasets. This alignment en-
ables a lightweight DIMT model to learn cru-
cial visual-textual correlations during train-
ing. During inference, M4Doc bypasses the
MLLM, maintaining computational efficiency
while benefiting from its multimodal knowl-
edge. Comprehensive experiments demonstrate
substantial improvements in translation quality,
especially in cross-domain generalization and
challenging document image scenarios.1

1 Introduction

Document Image Machine Translation (DIMT)
aims to translate text within document images from
one language to another while preserving the logi-
cal layout (Liang et al., 2024). With vast amounts
of information stored in document images (e.g.,
academic papers, magazines, scanned documents,
Figure 1), DIMT has gained increasing attention
as a critical sub-task of visual document under-
standing in the era of multimodal large language
models(Ye et al., 2023; Zhang et al., 2023a; Hu
et al., 2024; Yu et al., 2024).

Recent advancements in DIMT can be catego-
rized into two primary approaches: (1) Cascade
systems (Hinami et al., 2021; Sable et al., 2023;
Yao, 2023; Zhang et al., 2023c), which employ mul-
tiple models sequentially and encounter issues such

* Corresponding author.
1Our code is available at: https://github.com/

liangyupu/M4Doc
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Figure 1: Different test scenarios of end-to-end DIMT.

BLEU BLEU-PT

1 DoTA Test Set 38.68 42.34
2 Cross-domain 12.64 15.03
3 Long Context 34.85 33.73
4 Complex Layout 30.30 35.16

Table 1: Scores of the end-to-end DIMT model on dif-
ferent test scenarios. The model is trained on the DoTA
dataset. Cross-domain, Long Context, and Complex Lay-
out mean testing on the DITrans political report subset,
the DoTA long context subset, and the complex layout
subset, separately.

as structural redundancy, error propagation, and
high latency. (2) End-to-end methods (Jain et al.,
2021; Ma et al., 2022; Zhu et al., 2023; Zhang et al.,
2023b; Liang et al., 2024; Zhang et al., 2025b,a),
which streamline the process by optimizing a uni-
fied training objective, thus enhancing structural
efficiency.

However, both cascade and end-to-end ap-
proaches are hindered by the lack of large and
diverse DIMT datasets, which limits their ability
to generalize to new types of documents. This
limited generalization is evident in performance
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drops across several key scenarios, as shown in Ta-
ble 1: (1) cross-domain generalization: the model,
trained on the DoTA dataset (Liang et al., 2024),
achieves a BLEU score of 38.68 on the original test
set, but only 12.64 on the DITrans Political Report
test set (Zhang et al., 2023b) in a cross-domain zero-
shot scenario, which includes document images
with varying layouts, fonts, and background. (2)
long context generalization: there is a decrease of
3.83 BLEU score when testing on the same dataset
but with a long context subset, containing docu-
ment images with more than 750 English words.
(3) complex layout generalization: the model’s
performance drops by 8.38 BLEU when the test set
includes more images with complex layouts.2

Recent Multimodal Large Language Models
(MLLMs), pre-trained on extensive datasets of
images and text, have demonstrated impressive
generalization across various domains, contexts,
and layouts (Ye et al., 2023; Zhang et al., 2023a;
Hu et al., 2024; Yu et al., 2024). While MLLMs
hold great promise for DIMT (Liu et al., 2024a,b),
their large size and computational demands make
them difficult to use directly, especially in resource-
constrained environments.3

To address these limitations, we propose
M4Doc (single-to-mix Modality alignment with
Multimodal large language Model for Document
image Machine translation), a novel framework
that leverages the strong generalization capabilities
of MLLMs to enhance the performance and effi-
ciency of smaller DIMT models through a single-
to-mix modality alignment strategy. This strat-
egy aligns an image-only representation with the
MLLM’s rich multimodal representations, effec-
tively transferring knowledge from the MLLM.
Specifically, a novel single-to-mix modality align-
ment encoder is designed as a bridge to connect
the MLLM and the DIMT model. This encoder
with only image input learns to align with the mix-
modality representation of MLLM, using both im-
age and text as inputs. The alignment encoder can
serve as an alternative to the MLLM and provide
mix-modality information to the DIMT model in
the inference stage. A major advantage of this ap-
proach is that it requires aligning the DIMT model
with the MLLM only during training, allowing the
use of a smaller model during inference, which
achieves the trade-off between performance and

2The criteria for complex layouts is in Appendix A.1.
3More details on fine-tuning MLLMs for DIMT are in

Appendix B.3.

inference speed.
Our contributions are summarized as follows:

• A novel method, M4Doc, has been proposed,
which uses the pre-trained knowledge of the
MLLM to assist a small DIMT model in the
training stage and achieves the trade-off be-
tween translation quality and inference speed.

• A new approach, single-to-mix alignment, has
been developed, which only takes images as
input and aligns with the mix-modality repre-
sentation of the MLLM.

• Extensive experiments demonstrate the ef-
fectiveness of the proposed method, and
the DIMT model’s performances on cross-
domain, long context, and complex layout
scenarios are also improved.

2 M4Doc Mehod

In this section, we introduce M4Doc, a novel single-
to-mix modality alignment framework designed to
enhance DIMT by leveraging the MLLMs. The
model architecture of M4Doc is illustrated in Fig-
ure 2. The key idea of M4Doc is to align the repre-
sentations of an image-only encoder with the rich
multimodal representations of an MLLM during
training, enabling a lightweight DIMT model to
effectively capture the interplay between textual
and visual features. The whole model contains an
MLLM, an alignment encoder, an image encoder,
and a translation decoder. In the training stage, the
alignment encoder simultaneously learns to align
with the MLLM and provides mix-modality infor-
mation to the translation decoder. In the inference
stage, the alignment encoder serves as an alterna-
tive to the MLLM and continues providing mix-
modality information with only image input.

2.1 Mix-modality Representation Extraction
The MLLM acts as a guide for the alignment en-
coder to provide mix-modality information with
image and text inputs. We input the image I ∈
RH×W×3 and corresponding ground truth source
language text X = {x1, x2, ..., xm} into the
MLLM. The input format is <System Prompt>
<Image Token> <User Prompt> <Source Text>,
which is the same as the format used in the
MLLM pre-training. <System Prompt> and <User
Prompt> are also the same as those used by the
MLLM in the OCR task. <Source Text> is the
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Figure 2: The diagram of the proposed M4Doc. During training, the alignment encoder learns to align with the
MLLM’s mix-modality representation with single-modality input. The MLLM is frozen, while the other modules
remain trainable. During inference, the MLLM is discarded for faster inference speed, while the alignment encoder
provides aligned mix-modality information to guide the translation decoder.

ground truth OCR text of the corresponding im-
age. We can get the mix-modality representation4

HMLLM ∈ RlMLLM×dMLLM , which can be formu-
lated as:

HMLLM = MLLM(I,X) (1)

where lMLLM and dMLLM are the sequence length
and dimension of the MLLM.

2.2 Single-to-mix Modality Alignment
The alignment encoder bridges the gap between
the single-modality (image-only) input and the
mix-modality (image and text) representations of
the MLLM. Using a pre-trained Swin Transformer
(Blecher et al., 2024), the alignment encoder ex-
tracts visual features HSwin ∈ RlSwin×dSwin from
the image I:

HSwin = Swin(I) (2)

To match the dimensions of the MLLM output, two
Feed Forward Networks (FFNs) are used to project
HSwin to HAlign ∈ RlMLLM×dMLLM :

HAlign = FFNlength(FFNdim(HSwin)
T )T (3)

After this process, an alignment loss guides the
alignment encoder to mimic the mix-modality rep-
resentation HAlign ∈ RlMLLM×dMLLM5:

Lalign = 1− Cos(HMLLM,HAlign) (4)

where Cos is the cosine similarity of two tensors.
4The last layer’s output hidden states of the MLLM.
5The effect of different alignment loss functions can be

found in Appendix B.1.

2.3 Aligned Mix-modality Guided Translation
The image encoder encodes the input image I to its
semantic representation HImage ∈ RlImage×dImage .
We also use a pre-trained Swin Transformer
(Blecher et al., 2024) to construct the image en-
coder. HImage is calculated as follows:

HImage = EncoderImage(I) (5)

where lImage is the number of output vectors and
dImage is the vectors’ dimension.

The translation decoder is aimed to generate
target language text under the guidance of the
alignment encoder and image encoder. We mod-
ify the vanilla Transformer’s decoder (Vaswani
et al., 2017) by incorporating a mix-modality cross-
attention module and an image cross-attention mod-
ule in each layer to receive representations from
the alignment encoder and the image encoder. At
each decoding timestep t, the translation decoder
takes HAlign, HImage and generated target tokens
y<t = {y1, y2, ..., yt−1} as input and outputs the
probability distribution of next target token yt. This
process can be defined as:

p(yt|y<t, I,X) = Decoder(y<t,HAlign,HImage) (6)

where HAlign and HImage both need to be con-
verted to the same dimension of the decoder
through two FFNs which are not shown in Figure 2
for simplicity.

The translation loss is as follows:

Ltrans = −
n∑

t=1

log p(yt|y<t, I,X;θ) (7)
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where θ is the parameters of the alignment encoder,
image encoder, and translation decoder.

2.4 Training & Inference Strategy
In the training stage, the Swin Transformer mod-
ules of the alignment encoder and image encoder
are initialized from the pre-trained OCR model’s
encoder. The translation decoder’s FFN, image
cross-attention, and self-attention modules are
initialized from the pre-trained text translation
model’s decoder. The other parts are randomly ini-
tialized. The parameters of the MLLM are frozen.

The total loss of M4Doc is as follows:

L = α× Lalign + Ltrans (8)

where α is a hyperparameter.6

In the inference stage, as shown in Figure 2, only
the alignment encoder, image encoder, and trans-
lation decoder are involved, which contain much
fewer parameters compared with the MLLM. Fur-
thermore, due to the introduction of the alignment
encoder aligning with the MLLM during the train-
ing stage, the entire model maintains high transla-
tion quality while achieving fast inference speed.

3 Experiments

3.1 Dataset & Metrics
Our models are comprehensively evaluated on two
public benchmarks DoTA (Liang et al., 2024) and
DITrans (Zhang et al., 2023c), under academic arti-
cle and political report scenarios. Detailed dataset
setting can be seen in Appendix A.1.

We thoroughly evaluate the models’ capabilities
in three aspects: (1) full-text translation, which
means the translation quality of all the text in the
image - BLEU and COMET (Rei et al., 2020). (2)
plain-text translation, which means the transla-
tion quality of the text after removing formulas
and tables - BLEU-PT. (3) structure preserving,
which means the model’s ability to restore the lay-
out structure of the document images - STEDS
(Structure Tree-Edit-Distance-based Similarity).

We calculate BLEU, BLEU-PT, and STEDS the
same as Liang et al. (2024). For COMET calcu-
lation, due to the original COMET’s inability to
process long texts, we first used Trankit (Nguyen
et al., 2021) to segment the source and translated
texts into sentences, then used Sentalign (Stein-
grimsson et al., 2023) for sentence-level alignment,

6The effect of different hyperparameters can be found in
Appendix B.2.

and finally calculated the average of COMET score
in reference-free mode.7

3.2 Settings

Pre-trained Models Selection For the MLLM,
we select four MLLMs with different numbers of
parameters and training data: Vary-toy (Wei et al.,
2024), Vary-base (Wei et al., 2023), Llava-next
(Liu et al., 2024a) and Textmonkey (Liu et al.,
2024b). The Swin Transformers of alignment en-
coder and image encoder are initialized from the en-
coder of pre-trained OCR model Nougat (Blecher
et al., 2024). We follow the vanilla Transformer-
base (Vaswani et al., 2017) setting, pre-train an
English-Chinese translation model on UN Corpus
En-Zh (Ziemski et al., 2016), and use the pre-
trained decoder to initialize the translation decoder
in M4Doc.

Other Settings The hyperparameter α is set to
1.0. During training, we use the Adam optimizer
and employ a linear decay learning rate schedule
with a learning rate of 5e-5. The maximum number
of training steps is 15K and the batch size is 64.
More detailed settings are in Appendix A.2.

3.3 Baselines

We evaluate our method against diverse base-
lines, including text-only, cascade, end-to-end, and
knowledge distillation methods, to comprehen-
sively assess its performance and validate its ef-
fectiveness.

Text-only MT (Vaswani et al., 2017) We use
the DoTA dataset to fine-tune the Transformer-base
model pre-trained on UN Corpus En-Zh (Ziemski
et al., 2016).

3.3.1 Cascade Baselines
LARDIT (Zhang et al., 2023c) This cascade sys-

tem employs a layout analysis model (Yao, 2023),
an OCR tool, and a text-only MT, sequentially.

Nougat-trans We utilize the Nougat model
(Blecher et al., 2024) for combined layout anal-
ysis and OCR and the text-only MT is employed
for translation.

3.3.2 End-to-End Baselines
We evaluate the existing end-to-end methods under
two distinct settings: Document-level and Text-
line-level. The specific end-to-end models evalu-
ated are:

7The COMET model we used is wmt22-comet-da.
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DoTA DITrans # Params
(M)

Time
(s/page)B C BP S B C BP S

1 Text-only MT 47.61 67.51 54.16 92.89 21.50 48.76 22.55 86.96 99.5 8.81

Cascade Baselines

2 LARDIT 35.58 54.48 41.75 75.83 14.66 30.16 16.58 57.77 99.5 + θ1 12.46
3 Nougat-trans 43.37 65.25 50.79 88.16 18.39 35.80 19.21 52.12 346.9 17.03

End-to-end TIMT Baselines (Document-level)

4 ItNet 3.84 21.94 2.27 48.46 1.64 21.52 1.71 41.63 97.5 8.43
5 E2ETIT 1.51 20.80 1.69 32.90 2.71 23.45 2.83 40.53 122.0 8.19
6 PEIT 5.81 24.98 4.52 55.79 4.13 21.98 4.21 41.59 135.1 2.57

End-to-end TIMT Baselines (Text-line-level)

7 ItNet 21.75 43.29 23.52 75.83 6.16 28.82 8.77 57.77 97.5 + θ2 7.20
8 E2ETIT 17.42 38.25 17.74 75.83 6.72 28.55 7.81 57.77 122.0 + θ2 7.59
9 PEIT 27.43 44.08 31.29 75.83 9.08 26.18 9.38 57.77 135.1 + θ2 2.42

Knowledge Distillation Baselines

10 Seq-KD 34.42 53.54 36.63 82.51 10.58 25.89 11.38 56.92 212.4 9.76
11 MTKD 37.32 60.32 39.96 82.28 13.24 29.33 15.33 59.58 212.4 9.56
12 RD (Original) 5.13 23.86 3.85 53.06 0.53 24.37 0.56 40.07 212.4 8.38
13 RD (Trans) 31.05 48.16 32.00 77.62 9.31 22.69 9.72 58.24 212.4 9.86

End-to-end DIMT (Document-level)

14 Base 37.60 61.52 40.85 83.08 11.91 30.59 14.00 52.89 127.6 9.16
15 DIMTDA 38.68 61.30 42.34 84.44 12.64 32.30 15.03 60.86 242.6 9.82
16 M4Doc (Vary-toy) 39.95 62.78 42.33 83.97 14.79 32.03 18.67 53.73 212.4 9.61
17 M4Doc (Vary-base) 41.22 63.10 42.09 86.06 14.52 30.53 16.55 55.89 215.6 9.43
18 M4Doc (Llava-next) 34.36 57.88 37.60 82.67 11.03 30.79 12.58 57.81 216.8 9.96
19 M4Doc (Textmonkey) 42.98 65.41 44.92 86.69 18.18 35.27 19.82 59.98 215.6 9.52

Table 2: Results on DoTA and DITrans English-Chinese test set. The models are trained on DoTA, and tested on
DoTA and DITrans. B, C, BP, and S represent BLEU, COMET, BLEU-PT, and STEDS, respectively. # Params is
the number of parameters of the model during inference. Time is the average inference time on a single NVIDIA
V100 GPU. θ1 denotes the parameters of the layout analysis model and OCR model. θ2 denotes the parameters of
the parameters of the layout analysis model and sentence splitting model. The bold numbers represent the best
performance of the end-to-end DIMT.

Base This baseline end-to-end DIMT model
uses the same image encoder and translation de-
coder architecture as M4Doc, without incorporat-
ing an alignment encoder or multimodal knowledge
transfer.

DIMTDA (Liang et al., 2024) This end-to-end
DIMT model uses a model assembler to integrate
multiple pre-trained models to enhance the under-
standing of layout and translation capabilities.

ItNet (Jain et al., 2021) This end-to-end Text
Image Machine Translation (TIMT) system first
pre-trains a vanilla Transformer on a text parallel
dataset. The combination of the image encoder and
pre-trained decoder is fine-tuned.

E2ETIT (Ma et al., 2022) This end-to-end TIMT
model uses a TPSNet and a ResNet as an image
encoder combined with a Transformer decoder and
utilizes text translation as an auxiliary task.

PEIT (Zhu et al., 2023) This end-to-end TIMT
system employs a vision-text representation aligner

and a cross-model regularize to bridge the modality
gap between visual inputs and textual inputs.

3.3.3 Knowledge Distillation Baselines
We conduct experiments to compare our method
with three different knowledge distillation methods.

Seq-KD (Kim and Rush, 2016) This is
the vanilla sequence-level knowledge distillation
method for machine translation.

MTKD (Ma et al., 2023c) This method employs
a pre-trained OCR model and a pre-trained machine
translation model as teacher models, with a TIMT
model serving as the student model.

RD (Zhu et al., 2024) This approach leverages
an LLM, based on the OCR results of document
images, to generate rationales, subsequently em-
ploying these rationales to train a document under-
standing model. As the original RD method per-
forms poorly, we mix the generated rationales with
the translation data from the DoTA dataset during
training, resulting in the RD (Trans) method.

12395



4 Results & Analysis

4.1 Main Results

Table 2 reports the performance of all methods.
It can be observed that M4Doc outperforms the
cascade methods LARDIT (line 2 vs. 19) by 7.40
BLEU, 10.93 COMET and 10.86 STEDS scores on
the DoTA test set. Besides, M4Doc also achieves
comparable performance with Nougat-trans (line 3
vs. 19) on both DoTA and DITrans test sets, while
the number of parameters of M4Doc is reduced
by 37.8% compared to Nougat-trans and inference
time decreases by 44.1%.

Moreover, our method outperforms all the end-
to-end TIMT baselines on both document-level and
text-line-level settings. As the TIMT models are de-
signed for text-line-level images, the performances
of all TIMT models under the text-line-level set-
tings are better than document-level settings. How-
ever, M4Doc still surpasses the highest-performing
TIMT model (line 9 vs. 19) by a margin of 15.55
BLEU on the DoTA test set and 9.10 BLEU on the
DITrans test set.

By comparing line 11 and line 19, our method
is superior to the end-to-end DIMT baseline in
in-domain and cross-domain zero-shot settings.
In the in-domain setting, there is an increase of
4.30 BLEU, 4.11 COMET, and 2.58 BLEU-PT
scores. In the cross-domain zero-shot setting, our
method outperforms DIMTDA by 5.54 BLEU, 2.97
COMET, and 4.79 BLEU-PT scores, which con-
firms introducing MLLMs as auxiliaries during
training can enhance the model’s generalization
abilities.

From the results presented in lines 10–13,
M4Doc demonstrates superior performance com-
pared to all knowledge distillation baselines.
Furthermore, M4Doc surpasses the highest-
performing baseline (lines 11 vs. 16) by 2.63
BLEU, 2.46 COMET, and 2.37 BLEU-PT scores
on the DoTA test set.

From the results of line 16-19, as the number
of parameters in the MLLM models increases,
the DIMT model’s translation quality also gen-
erally improves. However, due to the difference
in pre-training data between Llava-next and other
MLLMs, MLLMs pre-trained on document images
are more suitable for assisting in the training of the
DIMT model.

Ads & News Political Report
BLEU STEDS BLEU STEDS

1 DIMTDA 14.21 77.12 26.71 89.33
2 M4Doc (Vary-toy) 17.07 78.18 27.62 88.83
3 M4Doc (Vary-base) 21.30 80.67 31.71 90.76
4 M4Doc (Textmonkey) 24.28 82.05 34.26 91.06

Table 3: Results on DITrans English-Chinese test set
after finetuning.
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Figure 3: BLEU scores of M4Doc models testing on
different context length valid sets. Detailed data can be
seen in Appendix C.

4.2 Generalization Ability towards Difficult
DIMT Scenarios

We pay special attention to challenging DIMT
scenarios, where our model exhibits advantages
through single-to-mix modality alignment. Conse-
quently, we conduct three sets of experiments.

4.2.1 Cross-domain
We fine-tune end-to-end DIMT models on two sub-
sets of the DITrans dataset separately after training
on the DoTA dataset. Detailed dataset setting can
be seen in Appendix A.1. The results are shown in
Table 3. With the help of MLLM during training,
all three variants of our method achieve better per-
formance than DIMTDA. This could be because
the MLLM is pre-trained on a large amount of data,
allowing the alignment encoder to learn similar rep-
resentations from the MLLM, thus enhancing the
generalization capability of the DIMT model.

4.2.2 Long Context
We select samples from the valid set within dif-
ferent context lengths.8 Detailed settings can be
seen in Appendix A.1. Results are shown in Fig-
ure 3. Our models outperform the baseline across
all context length scenarios. The performance of all
models decreases as the context length increases,
but the decline is less pronounced with our mod-

8Context length refers to the number of English words in
the image.
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BLEU BLEU-PT STEDS

1 Simple DIMTDA 55.24 55.26 90.54
2 M4Doc 56.88 56.72 92.25

3 Complex DIMTDA 30.30 35.16 84.57
4 M4Doc 35.88 41.24 83.76

Table 4: Results of different layout complexity on DoTA
English-Chinese valid set.

BLEU BLEU-PT STEDS

1 M4Doc (Vary-toy) 40.05 42.58 83.93

2 w/o Lalign 36.58 40.06 83.54
3 w/o Alignment Encoder 36.62 40.09 83.65
4 w MLLM Output 42.56 46.93 89.48

Table 5: Ablation study results on DoTA English-
Chinese valid set.

els compared to DIMTDA, which indicates that
the introducing of MLLM can improve the DIMT
models’ ability to handle images with long context.

4.2.3 Complex Layout
We select two subsets (images with simple lay-
out and complex layout) from the valid set of the
DoTA dataset. Detailed settings can be seen in
Appendix A.1. As shown in Table 4, our meth-
ods perform similarly to DIMTDA on images with
simple layouts, but on images with complex lay-
outs, our methods can achieve up to 5.58 BLEU
and 6.08 BLEU-PT scores higher than DIMTDA.
It suggests that the assistance of the MLLM during
training can improve the DIMT models’ ability to
understand complex layout structures and further
improve the translation ability.

4.3 Ablation Study

4.3.1 Effect of Different Module
To investigate the effectiveness of the proposed
modules, we conduct ablation experiments. The
results are shown in Table 5.

w/o Lalign We remove the MLLM during train-
ing, keep the alignment encoder, and only use
Ltrans to guide the model. By comparing line 1 and
line 2, a decline of 3.47 BLEU and 2.52 BLEU-PT
scores can be observed, which demonstrates the
effectiveness of the MLLM during training.

w/o Alignment Encoder We remove the Swin
Transformer in the alignment encoder and use the
output of the image encoder to do alignment with
MLLM and image encoding simultaneously. It can
be seen from the comparison between line 1 and
line 3 that simultaneously achieving alignment and

BLEU BLEU-PT STEDS

1 M4Doc (Vary-toy) 40.05 42.58 83.93

2 w/o MLLM Image Input 38.77 42.00 84.99
3 w/o MLLM Text Input 37.06 38.69 84.98

Table 6: Results on DoTA English-Chinese valid set
with different modalities input.

30 20 10 0 10 20
10

5

0

5

10
Mix-modality of MLLM
Single-modality after Alignment
Single-modality before Alignment

Figure 4: T-SNE visualization of different representa-
tions for MLLM and alignment encoder.

image encoding is challenging for a single encoder
and causes a decrease in translation quality.

w MLLM Output The output hidden states of
MLLM are directly sent to the translation decoder
without the alignment encoder as an intermediary.
By comparing line 1 and line 4, there is an increase
of 2.51 BLEU and 5.55 STEDS scores. However,
this approach significantly increases the parameters
of the model (× 11.53) and inference time (× 1.26).
Our method strikes a balance between translation
quality and inference speed.

4.3.2 Effect of Mix-modality Input
To explore the impact of mix-modality input, we
only send English text or the corresponding im-
age to the MLLM during training. The input for-
mats are <System Prompt> <Image Token> and
<System Prompt> <Source Text>. As the results
of Table 6 show, the performance degradation of the
model is greater when text input is removed com-
pared to when image input is removed. This may be
because the source text contains more translation-
relevant textual information. When MLLM has
only image input, the alignment from image modal-
ity to image modality does not introduce additional
information.

We provide a visualization of the representations
of 100 samples in Figure 4. The single-modality
representation output by the alignment encoder,
after training, largely overlaps with the distribu-
tion of the mix-modality representation output by
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(a) Cross-domain: Political Report

(b) Complex Layout

Diverse text fonts, sizes, and colors

Hierarchical relationship of multi-level headings preserving

Combination of single and double-column layouts

Mix of text and formulasCombination of 
paragraphs, lists and 

headings

Figure 5: The output samples of M4Doc. For each
image pair, the left is the input document image, and
the right is the output translations in markdown format
after rendering. It is better to zoom in for a clearer view.
More samples can be seen in Appendix D.

the MLLM. This demonstrates that our proposed
single-to-mix modality alignment allows the align-
ment encoder to effectively learn the MLLM out-
puts, providing additional information to guide the
translation decoder in generating translations.

4.4 Case Study

We provide the output samples of M4Doc cross-
domain and complex layout scenarios in Figure 5.
More samples can be seen in Appendix D.

Figure 5 (a) is an image from the political re-
port subset of the DITrans dataset. The fonts, sizes,
and colors of the texts are diverse, which is quite
different from the DoTA dataset used for training.
After fine-tuning, our model can still perform trans-
lations and obtain the hierarchical relationship of
multi-level headings and lists.

Figure 5 (b) comes from the DoTA dataset. The
image contains a mix of text, figures, and formu-
las, with headings and lists, and a combination of

single and double-column layouts, resulting in a
highly complex layout structure. Our model can
still output the translation results in a logical order,
formatted in Markdown.

5 Related Work

Text Image Machine Translation (TIMT) refers
to translating texts from one language to another
within images, as explored by Lan et al. (2023).
In recent years, various end-to-end TIMT methods
(Ma et al., 2023a,b,c, 2024a; Tian et al., 2023; Ma
et al., 2024b; Lan et al., 2024; Qian et al., 2024;
Guan et al., 2025) have been proposed. Jain et al.
(2021) follows the encoder-decoder paradigm and
uses a convolutional encoder and an autoregres-
sive Transformer decoder to build the model. Ma
et al. (2022) proposes a text translation enhanced
text image translation method, which trains the
end-to-end TIMT model with text translation as an
auxiliary task. Zhu et al. (2023) introduces an end-
to-end TIMT framework that bridges the modality
gap with pre-trained models. While these end-to-
end methods have demonstrated satisfactory perfor-
mance, their effectiveness is limited to images with
short context and simple layout structure, different
from document images.

Recent advancements in MLLMs have signif-
icantly improved the processing and understand-
ing of text-rich images (Ye et al., 2023; Wei et al.,
2024; Hu et al., 2024; Yu et al., 2024). Wei et al.
(2023) explores adding fine-grained vision percep-
tion for document images to the MLLM without
affecting its existing natural image understanding
capabilities. Zhang et al. (2023a) and Liu et al.
(2024a) utilize GPT-4 (Yang et al., 2023) to con-
struct a visual instruction tuning dataset and im-
prove LLaVA’s (Liu et al., 2023) ability to compre-
hend textual detail within images. Liu et al. (2024b)
proposes shifted window attention to achieve cross-
window connectivity at higher input resolutions
and token resampler to filter out significant tokens.
As MLLMs take both images and texts as inputs
during the pre-training stage, the integration of vi-
sual and linguistic information provides a better
understanding of document images, which inspires
us to leverage the MLLM for the DIMT task.

6 Conclusion

In this paper, we propose a novel method, single-to-
mix modality alignment with multimodal large lan-
guage model for document image machine transla-
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tion (M4Doc), which has three advantages. Firstly,
single-to-mix modality alignment allows the align-
ment encoder to infer more textual information
from the image input. Secondly, the alignment
with MLLM enhances the generalization capability
towards three difficult DIMT scenarios. Finally,
the introduction of the alignment encoder achieves
the SOTA translation quality while preserving high
inference efficiency. Extensive experiments demon-
strate the effectiveness of M4Doc and highlight
its advantage in enhancing the performance of the
DIMT model in cross-domain and complex docu-
ment image scenarios.

Limitations

Although M4Doc achieves notable results on the
DIMT task, current end-to-end models generate
the entire translated text of the document image
in a single output. In the future, we plan to ex-
plore integrating user prompts to translate text in
specific regions of the image, thereby making the
translation more aligned with user preferences.
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Appendix

A Setting Details

A.1 Dataset Settings

In the DITrans dataset, the sample sizes for the ad-
vertisement, news, and political report subdomains
are 485, 610, and 1397, respectively. Due to the
small number of images in the advertisement and
news domains and their similar layout structures
as scanned document images, we merge these two
domains. We then randomly select 100 images as
the test set and another 100 images as the valid set.
For the political report domain, we also randomly
select 100 images as the test set and another 100
images as the valid set.

In the experiment of varying context length, to
shield the impact of layout difference, we select
images with a single column and without formu-
las, tables, or figures. Context length refers to the
number of English words in the image.

In the experiment of varying layout complexity,
we transform samples from the valid set into trees,
selecting the 100 trees with the fewest nodes as a
simple layout set and the 100 trees with the most
nodes as a complex layout set.

A.2 Main Experiment Settings

We segment the Chinese texts with jieba and apply
WordPiece to segment both English and Chinese
texts and the vocabulary size of both English and
Chinese is 52K. We use the pre-trained OCR model
Nougat’s encoder (Blecher et al., 2024) to initialize
the Swin Transformer of alignment encoder and im-
age encoder. The layer numbers and window size
are 2, 2, 14, 2 and 7. The hidden size of each layer
is 1024 and the patch size is 4. The input image size
is 896 × 672. We follow the vanilla Transformer-
base (Vaswani et al., 2017) setting and pre-train
an English-Chinese translation model on the UN
Corpus. We set the decoder’s max length and max
position embeddings to 1536 to cover most input
texts. For the MLLM, we select four MLLMs with
different numbers of parameters and training data:
Vary-toy (Wei et al., 2024), Vary-base (Wei et al.,
2023), Llava-next (Liu et al., 2024a) and Textmon-
key (Liu et al., 2024b), as shown in Table 7. The
hyperparameter α is set to 1.0 and the sequence
lengths for all MLLMs, except Llava-next, are set
to 2048 to cover the long context of document im-
ages. The sequence length for Llava-next is 4096
due to the different image encoders and prompts
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MLLM # Params (M) Training Data

1 Vary-toy 2237.4 Document images
2 Vary-base 8123.7 Document images
3 Llava-next 8354.8 Natural images
4 Textmonkey 9715.8 Document images

Table 7: The number of parameters and training data of
different MLLMs.

BLEU BLEU-PT STEDS

1 Cross-entropy 31.67 34.60 81.60
2 MSE 33.00 35.67 82.68
3 Cosine-similarity 40.05 42.58 83.93

Table 8: Results on DoTA English-Chinese valid set
with different alignment loss functions.

used by the MLLMs.
During translation model pre-training, the maxi-

mum training step is 100K and the maximum token
per batch is 4096. A linear decay learning rate
schedule with a learning rate of 7e-4 and a warmup
ratio of 0.05 is used. During the training stage of
M4Doc, the maximum number of training steps
is 15K and the batch size is 64. We use a linear
decay learning rate schedule with a learning rate of
5e-5 and the number of warmup steps is 1000. We
use Adam optimizer with β1 = 0.9, β2 = 0.999,
ϵ = 1e − 8 for both training stages. We used
two NVIDIA A100 GPUs and spent 28 hours to
complete the training of M4Doc (Vary-toy), and 68
hours to complete the training of M4Doc (Textmon-
key). For inference, we use beam search with 4
beams.

A.3 Prompts for Each MLLM
The <System Prompt> and <User Prompt> used
in the main experiment are listed as follows.

Prompts for Vary-toy/base

<System Prompt>
None

<User Prompt>
Convert the image to markdown/latex format.

Prompts for Llava-next

<System Prompt>
You are a helpful language and vision assistant. You
are able to understand the visual content that the user
provides, and assist the user with a variety of tasks
using natural language.

<User Prompt>

0.0 0.5 1.0 2.0 4.0
32

34

36

38

40

42

B
LE

U

BLEU
BLEU-PT

Figure 6: BLEU and BLEU-PT scores of M4Doc (Vary-
toy) trained with different α values on the valid set.
Detailed data can be seen in Appendix C.

OCR this image.

Prompts for Textmonkey

<System Prompt>
You are a helpful assistant.

<User Prompt>
Read all the text in the image.

B Detailed Analysis

B.1 Effect of Different Alignment Loss
Functions

To explore the impact of different alignment loss
functions, we use cross-entropy loss, mean square
error (MSE) loss, and cosine-similarity loss as
the alignment loss function and conduct experi-
ments with the same setting as the main experi-
ment M4Doc (Vary-toy). The results are shown in
Table 8.

As shown in the table, using cosine similarity as
the alignment loss function yields the best results.
We think this may be because the loss values cal-
culated by cosine-similarity range between [−1, 1],
allowing the model to strike a balance between
learning the alignment task and the translation task.
Therefore, we choose cosine-similarity loss for the
main experiment.

B.2 Hyperparameter Sensitivity Analysis

To explore the impact of α in the loss function, we
vary α and get results in Figure 6. As shown in the
figure, the model’s performance initially increases
and then decreases with the increase in α, achieving
the best performance when α = 1.0. This could
potentially be attributed to the fact that a small α
diminishes the influence of MLLM, while a large
α introduces too much noise. So, we set α = 1.0
in the main experiment.
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DoTA DITrans # Params
(M)

Time
(s/page)BLEU BLEU-PT STEDS BLEU BLEU-PT STEDS

1 Vary-toy (Original) 10.64 4.92 66.23 2.07 2.10 45.12 2237.4 62.58
2 Vary-toy (Fine-tuned) 22.67 22.75 73.99 5.87 6.14 49.59 2253.9 57.60
3 M4Doc (Vary-toy) 39.95 42.33 83.97 14.79 18.67 53.73 212.4 9.61

4 Vary-base (Original) 13.45 5.79 76.26 2.84 2.79 56.21 8123.7 68.84
5 Vary-base (Fine-tuned) 38.60 38.53 82.95 11.61 11.72 54.59 8137.9 69.67
6 M4Doc (Vary-base) 41.22 42.09 86.06 14.52 16.55 55.89 215.6 9.43

Table 9: Results of directly fine-tuning MLLMs on the DoTA dataset. # Params is the number of parameters of the
model during inference. Time is the average inference time on a single NVIDIA V100 GPU.

B C BP S

1 GPT-4o 29.17 60.32 31.95 59.45
2 Gemini 30.31 59.67 31.69 63.32

3 DIMTDA 38.73 61.33 42.37 84.98
4 M4Doc (Vary-toy) 39.45 62.42 42.59 83.50
5 M4Doc (Vary-base) 41.11 63.57 42.00 86.62
6 M4Doc (Textmonkey) 42.27 65.40 44.17 86.93

Table 10: Results on comparison with commercial
MLLMs. B, C, BP, and S represent BLEU, COMET,
BLEU-PT, and STEDS, respectively.

B.3 Comparison with Fine-tuning MLLM

We conduct comparative experiments to evaluate
the DIMT capabilities of MLLMs by directly ap-
plying MLLMs to the DIMT task and fine-tuning
them specifically for this task. We fine-tune Vary-
toy and Vary-base using LoRA (Hu et al., 2022)
with a lora_rank of 32, while keeping other set-
tings consistent with the main experiment. The
results are presented in Table 9.

As shown in the table, directly using MLLMs
for the DIMT task yields very poor performance
(line 1 and 4), with almost no translation capability
on the political report domain. After fine-tuning on
the DoTA dataset, the DIMT capability of MLLMs
improves significantly but still falls short of the
performance achieved by our proposed M4Doc
method. By comparing line 5 and 6, our method
outperforms the best-performing Vary-base (Fine-
tuned) model by 2.62 BLEU scores and achieves a
greater improvement of 2.91 BLEU scores in zero-
shot cross-domain scenarios. This highlights the
potential of our method for efficiently leveraging
MLLMs across various downstream tasks.

B.4 Comparison with Commercial MLLMs

With the rapid development of MLLMs, some com-
mercial MLLMs (Hurst et al., 2024; Team et al.,
2024) demonstrate the capability of understanding
text-rich document images. To assess their ability

to accomplish the DIMT task, we randomly choose
200 samples from the test set of the DoTA dataset,
then prompt GPT-4o and Gemini with three dif-
ferent prompts to complete the document image
machine translation task. The prompts we used are
as follows.

Prompts for GPT-4o and Gemini to com-
plete DIMT task

<Prompt 1>
Output the Chinese translations of this image in
markdown format.

<Prompt 2>
Please extract and provide the Chinese translations
of the text contained within this image, ensuring
that the translations are accurately represented, and
format them using markdown for clear presentation.

<Prompt 3>
Please translate the all texts in this image into
English and adhere to the following translation
standards:
Accuracy: Ensure that the translation fully captures
the meaning of all the texts in the image without
adding or omitting any information.
Fluency: The translation should read naturally and
smoothly, reflecting the conventions of the target
language and the translation should follow the
reading order of the image.
Format: The translation should be presented in
markdown format.

We average the metric values of the translation
results obtained from different prompts to deter-
mine the final results. As the output format of
MLLMs may be unstable, we filter the English
parts of the output text and only keep the Chinese
parts.

Table 10 reveals that both GPT-4o and Gem-
ini can accomplish the DIMT task directly, but
exhibit inferior performance compared to M4Doc
(line 2 vs. line 6). This may be because commer-
cial MLLMs are not trained on the DoTA dataset,
their output formats differ from the reference. This
leads to commercial MLLMs performing signifi-
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En-Fr En-De
BLEU STEDS BLEU STEDS

1 Text-only MT 59.68 95.93 49.25 96.04

Cascade Baselines

2 LARDIT 42.79 75.59 32.65 75.59
3 Nougat-trans 55.82 90.77 43.73 89.92

End-to-end DIMT

4 DIMTDA 45.82 84.84 37.83 85.92
5 M4Doc (Vary-toy) 48.88 85.04 41.47 86.72
6 M4Doc (Vary-base) 49.18 86.83 42.61 86.64
7 M4Doc (Textmonkey) 54.64 89.85 46.70 89.58

Table 11: Results on DoTA English-French and English-
German test set.

cantly worse than M4Doc on metrics like BLEU
and STEDS. However, semantic-based evaluation
metrics, such as COMET, can more accurately re-
flect the model’s translation performance, which
shows that the DIMT ability of existing commercial
MLLMs is comparable to that of M4Doc.

B.5 Evaluation on Other Languages
To verify our method’s effectiveness in other lan-
guages, we conduct English-French and English-
German DIMT experiments. The text machine
translation models are pre-trained on the UN Cor-
pus En-Fr and WMT14 En-De dataset. We use
the En-Fr and En-De subsets of the DoTA dataset
to train our models. The rest of the settings re-
main the same as the main experiment. Table 11
demonstrates the effectiveness of M4Doc on other
languages’ DIMT tasks.

C Detailed Data

Table 12 presents the detailed data corresponding
to the BLEU scores of M4Doc models tested on
validation sets with different context lengths, as
shown in Figure 3. Table 13 provides the detailed
data corresponding to the BLEU and BLEU-PT
scores of M4Doc (Vary-toy) trained with differ-
ent α values on the validation set, as illustrated in
Figure 6.

D Output Samples

We provide the output samples of M4Doc in cross-
domain and long context scenarios in Figure 7. Fig-
ure 7 (a) is an image from the ads & news subset
of the DITrans dataset. The scanned document im-
age contains a lot of noise, and the font size varies
significantly, which makes the image difficult to
handle. After fine-tuning our model on the subset,
it can translate the text in the image, even if some
of the text appears blurry.

(0,250] (250,500]

DIMTDA 51.13 45.95
M4Doc (Vary-toy) 51.82 45.75
M4Doc (Vary-base) 52.85 49.46
M4Doc (Textmonkey) 56.04 50.15

(500,750] (750,)

DIMTDA 39.98 34.85
M4Doc (Vary-toy) 45.54 41.10
M4Doc (Vary-base) 45.43 39.02
M4Doc (Textmonkey) 48.65 45.63

Table 12: Detailed data of Figure 3.

α BLEU BLEU-PT

0.0 36.58 40.06
0.5 39.42 42.77
1.0 39.63 42.95
2.0 38.74 42.15
4.0 31.94 34.08

Table 13: Detailed data of Figure 6.

Figure 7 (b) is an image from the DoTA dataset,
which contains more than 1000 English words. For
images containing such long contexts, our model
still achieves end-to-end DIMT without omissions.

We also list other output samples in Figure 8,
Figure 9, and Figure 10.
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(b) Long Context

(a) Cross-domain: Ads & News

Blurred text with 
significant noise

Combination of texts in 
various fonts and sizes.

Containing over 1000 words

Figure 7: The output samples of M4Doc. For each image pair, the left is the input document image, and the right is
the output translations in markdown format after rendering. It is better to zoom in for a clearer view.
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Table 
translation and 

structure 
restoration

Combination of 
paragraphs, lists 

and headings

Table 
translation 

and 
structure 

restoration

Text translation with inline formulas

Figure 8: The output samples of M4Doc in the DoTA dataset. It is better to zoom in for a clearer view.
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Hierarchical relationship of multi-level headings preserving

Small text

Combination of single and double-column layouts
Text in various fonts, sizes, and colors

Figure 9: The output samples of M4Doc in the political report subset of the DITrans dataset. It is better to zoom in
for a clearer view.
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Blurred text with significant noise

Long text images with substantial noise

Small text with noise

Text in various fonts and sizes

Figure 10: The output samples of M4Doc in the ads & news subset of the DITrans dataset. It is better to zoom in for
a clearer view.
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