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Abstract

The rapid advancement of large language mod-
els has raised significant concerns regarding
their potential misuse by malicious actors. As
a result, developing effective detectors to miti-
gate these risks has become a critical priority.
However, most existing detection methods fo-
cus excessively on detection accuracy, often ne-
glecting the societal risks posed by high false
positive rates (FPRs). This paper addresses
this issue by leveraging Conformal Prediction
(CP), which effectively constrains the upper
bound of FPRs. While directly applying CP
constraints FPRs, it also leads to a significant re-
duction in detection performance. To overcome
this trade-off, this paper proposes a Zero-Shot
Machine-Generated Text Detection Framework
via Multiscaled Conformal Prediction (MCP),
which both enforces the FPR constraint and
improves detection performance. This paper
also introduces RealDet, a high-quality dataset
that spans a wide range of domains, ensuring
realistic calibration and enabling superior de-
tection performance when combined with MCP.
Empirical evaluations demonstrate that MCP
effectively constrains FPRs, significantly en-
hances detection performance, and increases
robustness against adversarial attacks across
multiple detectors and datasets. Dataset and
code are available at https://github.com/
Xiaoweizhu57/RealDet.

1 Introduction

The rapid advancement of large language models
(LLMs) has led to the generation of fluent, natural,
and high-quality text that increasingly resembles
human-written text. LLMs are being leveraged to
enhance productivity across various domains, in-
cluding news reporting, storytelling, and academic
research (Alshater, 2022; Yuan et al., 2022; Chris-
tian, 2023), significantly contributing to both indus-
trial and academic progress. However, this same
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Figure 1: Detection performance of detectors under
different framework configurations.

capability has also opened the door for misuse,
with malicious actors exploiting LLMs to generate
fake news (Ahmed et al., 2021), spam (Guo et al.,
2021), malicious reviews (Adelani et al., 2019), and
other harmful contents that pose substantial risks to
society. As a result, developing advanced Machine-
Generated Text (MGT) detectors has become an
urgent necessity.

Researchers have proposed numerous methods
for MGT detection, including zero-shot detec-
tors based on statistical metrics (Bao et al., 2024;
Hans et al., 2024; Mitchell et al., 2023) and su-
pervised detectors fine-tuned on pretrained mod-
els (Solaiman et al., 2019b; Conneau et al., 2019).
However, these approaches excessively emphasize
detection accuracy while neglecting the potential
societal harm caused by high false positive rates
(FPRs). This concern is consistent with the find-
ings of Dugan et al. (2024), who highlighted that
existing detectors often exhibit dangerously high
FPRs under default thresholds. Detectors with high
FPRs are impractical for real-world applications,
as they fail to provide reliable guidance to users.

In this paper, we propose leveraging conformal
prediction (CP) (Vovk et al., 1999) to address the
challenges of high false positive rates (FPRs) in
machine-generated text (MGT) detection. CP pro-
vides an upper bound on the FPR, ensuring that
the detection results are reliable. While directly
applying CP can constrain the FPR, it may also
allow certain machine-generated texts to evade de-
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tection, which would degrade overall detection per-
formance. To address this issue, we propose a novel
solution, the Zero-Shot Machine-Generated Text
Detection Framework via Multiscaled Conformal
Prediction (MCP). MCP not only effectively con-
strains the FPR but also improves detection perfor-
mance without additional training.

The MCP framework operates in the following
high-level manner: First, we sample both calibra-
tion and test sets from the target datasets. Next,
we select a baseline detector and compute its non-
conformity scores. From the calibration set’s non-
conformity scores, we derive multiscaled quantiles,
which act as thresholds for detection. These quan-
tiles ensure that the FPR is constrained. Finally, we
apply these thresholds to detect MGT instances in
new, unseen data. Additionally, we introduce Re-
alDet, a high-quality benchmark dataset designed
to simulate realistic scenarios for MGT detection.
RealDet is essential for ensuring that the calibration
set reflects the true distribution of human-written
text (HWT), addressing the gap in existing datasets.

Extensive experiments consistently demonstrate
that the MCP framework effectively constrains the
upper bound of the FPR while simultaneously im-
proving detection performance. In adversarial sce-
narios, the MCP significantly enhances robustness.
Our contributions are summarized as:

• We are the first to introduce CP into MGT
detection and provide an in-depth exploration
of potential optimization mechanisms.

• We propose MCP, a zero-shot detection frame-
work that not only constrains the FPR up-
per bound but also improves detection per-
formance and enhances robustness against ad-
versarial attacks.

• We construct RealDet, the large-scale and
comprehensive bilingual benchmark, consist-
ing of 836k raw texts spanning 15 representa-
tive domains, 22 popular and powerful LLMs,
and covering two adversarial attacks.

2 Preliminary

Conformal Prediction. Conformal prediction
(Vovk et al., 2005; Papadopoulos et al., 2002;
Lei and Wasserman, 2014) is a statistical learn-
ing framework that generates reliable predictions
without training. It provides statistical guarantees
for the coverage of the ground truth, assuming only
data exchangeability. The workflow is:

1. Split the data into a calibration set Dcal and a
test set Dtest, with Dcal containing n instances.

2. Given a model taking input x and produc-
ing output y. Then define a nonconformity score
s(x, y) ∈ R, where larger scores encode worse
agreement between x and y.

3. Compute quantile q̂ of s derived from Dcal:

q̂ = quantile
(
s(x1, y1), . . . , s(xn, yn);

⌈(n+1)(1−α)⌉
n

)
. (1)

4. Using q̂ as the prediction threshold to predict
each test instance:

C (Xtest ) = {y : s (Xtest , y) ≤ q̂} . (2)

Theorem 1. Conformal coverage guarantee (Vovk
et al., 1999). Suppose the calibration set
(Xi, Yi)i=1,...,n and the new instance (Xtest, Ytest)
are independent and identically distributed (i.i.d.).
Then, the following holds:

P (Ytest ∈ C (Xtest )) ≥ 1− α. (3)

MGT Detection within CP. Given n human-
written texts (X1, X2, . . . , Xn) as a calibration set,
we are tasked to predict a new instance Xtest is
human-written or machine-generated. Based on
the output of detector Det, we define a nonconfor-
mity score s ∈ [0, 1], where a larger score indicates
a lower probability that the text is human-written.
Then we compute quantile q̂ according to Equation
1 and use q̂ as the threshold to make prediction:

C(Xtest) =

{
HWT, s(Xtest, y) ≤ q̂

MGT, s(Xtest, y) > q̂.
(4)

This gives the guarantee in Theorem 1 that no
more than α fraction of future human-written texts
will be misclassified as machine-generated, i.e.,
FPR≤ α.

3 Multiscaled Conformal Prediction

Figure 2 illustrates the MCP prediction process.
First, we sample calibration and test sets from the
target datasets. Next, we determine a basic detector
and define its nonconformity scores. Subsequently,
we derive multiscaled quantiles from the calibra-
tion set’s nonconformity scores. Finally, we apply
the multiscaled quantiles as the threshold to per-
form MGT detection on new instances.
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Figure 2: The MCP Framework. The prediction process consists of four parts, which are executed sequentially:
data preparation, nonconformity score definition, multiscaled quantiles calculation, and MGT Detection.

3.1 Data Preparation
We sampled from the target dataset to create cal-
ibration and test sets, where the calibration set
Dcal consists entirely of human-written texts, while
the test set Dtest includes both human-written and
machine-generated texts. Sampling from the same
dataset ensures that the human-written text in both
the calibration and test sets is independent and iden-
tically distributed (i.i.d.).

3.2 Nonconformity Score Definition
First, we determine the basic detector Det, whose
selection is highly flexible and can include most
detectors designed for MGT detection. Then we
define a nonconformity score function s(·) that con-
verts the output of the basic detector Det(x) into a
nonconformity score s for making predictions:

s = (1 + e−k(Det(x)−τ))−1, (5)

where τ represents the default threshold of the basic
detector, and k takes a value of either -1 or 1. A
larger value of s signifies a lower probability that
the input text is human-written text.

3.3 Multiscaled Quantile Calculation
Problem in traditional quantile calculation
within CP. As illustrated in Figure 3, while tra-
ditional computational approaches effectively con-
trol the FPR of prediction results, they do so at
the significant cost of detection performance. This
trade-off prevents the detection of the majority of
machine-generated texts. Based on our data analy-
sis, we observe the following:

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000

1 - 

0.5

0.6

0.7

0.8

0.9

TP
R

CP Performance with Different Detectors

Binoculars
Fast-DetectGPT
OpenAI-D

200 400 600 800

Text Length

2

3

4

5

6

7

Qu
an

til
e 

Va
lu

e

Quantile Value vs. Text Length
quantile (  = 0.1)
quantile (  = 0.05)
quantile (  = 0.01)

Figure 3: Left: True Positive Rate (TPR) of different
detectors with the CP as a function of α. Right: Quantile
values calculated for different text length intervals in
Fast-DetectGPT.

Observation 1. Longer texts tend to have higher
nonconformity scores. Figure 3 shows that text
length significantly influences the magnitude of the
quantiles. Consequently, we further calculated the
Pearson correlation coefficient ρl,s between text
length and the nonconformity score, finding that
ρl,s is close to 1, which indicates a strong positive
correlation. Machine-generated texts with shorter
lengths and lower nonconformity scores may re-
main undetected, leading to a significant decline in
detection performance.

Multiscaled quantiles calculation within MCP.
We incorporate the positive correlation between
text length and nonconformity score into the predic-
tion process. So we perform length-aware binning
on the calibration set Dcal, dividing it into multiple
subsets {D1

cal, D
2
cal, . . . , D

K
cal}, corresponding to

a specific text length interval. We employ an equal-
width binning strategy, partitioning the maximum
input text length Lmax into fixed-width intervals of
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width w, as follows:

K = ⌊Lmax

w
⌋. (6)

The multiscaled quantiles q̂M are derived from
nonconformity scores calculated over the subsets,
each corresponding to different length intervals:

q̂M = {q̂i | q̂i = quantile
(
si1, s

i
2, . . . , s

i
ni
; (7)

⌈(ni + 1)(1− α)⌉ni
−1

)
, i = 1, 2, . . . ,K},

where ni denotes the number of texts in Di
cal,

si represents the nonconformity scores calculated
from Di

cal, and α denotes the desired upper bound
of the FPR. By utilizing q̂M , we can select more
appropriate quantiles for calibration across varying
text lengths.

3.4 MGT Detection

For a new instance Xtest from the test set Dtest,
we classify it based on its nonconformity score st
and text length lt. The detection result within MCP
can be expressed as follows:

st = (1 + e−k(Det(Xtest)−τ))−1, (8)

C(Xtest) = I(st > q̂⌊
lt
w
⌋), (9)

where q̂⌊
lt
w
⌋ represents the quantile within the corre-

sponding length interval, and C(Xtest) denotes the
detection result. C(Xtest) = 0 means that Xtest is
human-written text, while C(Xtest) = 1 indicates
that Xtest is machine-generated text. A detailed
case study is in Appendix A.

Corollary 1. The upper bound of the FPR for MGT
detection within the MCP framework is α. The
detailed proof is provided in Appendix B.

Algorithm 1 MCP Framework
1: Input: calibration set Dcal, test set Dtest, basic detector

Det, nonconformity score function s(·)
2: Compute multiscaled quantiles q̂M :
3: Number of subsets K ← ⌊Lmax

w
⌋

4: Bin calibration set {D1
cal, . . . , D

K
cal} ← Dcal

5: for i = 1 to K do
6: Si ← {si1, . . . , sini

}
7: δi ← ⌈(ni + 1)(1− α)⌉ni

−1

8: q̂i ← quantile(Si; δi)
9: end for

10: q̂M ← {q̂i | i = 1, 2, . . . ,K}
11: Detect: Xtest ∈ Dtest

12: st ← s(Xtest)

13: C(Xtest)← I(st > q̂⌊
lt
w

⌋)
14: if C(Xtest) = 0 then
15: Xtest is a human-written text.
16: else
17: Xtest is a machine-generated text.
18: end if

4 RealDet Dataset

Existing datasets are limited in scope and exhibit
domain-specific biases (Wu et al., 2024a,b), ren-
dering them inadequate for representing human-
written texts across all domains. We introduce the
RealDet dataset and compare it with publicly avail-
able datasets in Table 1. RealDet offers three key
advantages: (1) Comprehensive Domain Cover-
age. RealDet spans 15 distinct textual domains,
far exceeding existing datasets in domain diversity.
(2) Extensive Model Coverage. RealDet is con-
structed using 22 popular and powerful LLMs, with
the broadest range of base models currently. (3)
Large-scale Text Corpus. RealDet includes over
836k raw texts (excluding adversarial texts), with
more than 106k human-written texts, significantly
surpassing other datasets in the size of raw texts.
Furthermore, RealDet includes bilingual texts in
both Chinese and English and adversarial texts in-
volving paraphrasing and editing attacks.

Dataset Origin Size Domain
Coverage

Model
Coverage

Multilingual
Coverage

Adversarial
Coverage

TuringBench (Uchendu et al., 2021) 200k X ✓(10) X X
HC3 (Guo et al., 2023) 26.9k ✓(5) X ✓ X
CHEAT (Yu et al., 2023) 50k X X X ✓
MGTBench (He et al., 2024) 18.5k ✓(3) ✓(5) X X
M4 (Wang et al., 2024) 122k ✓(5) ✓(7) ✓ X
MAGE (Li et al., 2024) 447k ✓(10) ✓(9) X X
RAID (Dugan et al., 2024) 570k ✓(8) ✓(8) X ✓
RealDet (Ours) 836k ✓(15) ✓(22) ✓ ✓

Table 1: Comparison of open-source datasets in MGT detection. The “Origin size” refers to the number of raw
texts without adversarial attacks. The “Model Coverage” column represents the count of base models.
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Figure 4: The FPR of various detectors within the MCP framework across all datasets, after applying alpha
constraints with values of alpha set to 0.2, 0.1, 0.05, 0.02, 0.01, and 0.005.

Data Sources. To emulate the texts encountered
in real-world detection scenarios, we carefully fil-
tered the existing datasets and selected 15 represen-
tative data sources covering 6 writing tasks. (1)
Question Answering: ELI5 (Fan et al., 2019),
WiKiQA (Yang et al., 2015), Medical Dialog (He
et al., 2020), FiQA (Maia et al., 2018); (2) News
Article Writing: XSum (Narayan et al., 2018),
TLDR1, BBC News (Greene and Cunningham,
2006); (3) Story Generation: WritingPrompt (Fan
et al., 2018), ROC Stories (Mostafazadeh et al.,
2016); (4) Review Expression: Yelp (Zhang et al.,
2015), IMDB (Maas et al., 2011), CMV (Tan
et al., 2016); (5) Academic Writing: Abstracts2;
(6) Knowledge Explanation: Wikipedia (Aaditya
Bhat, 2023), SQuAD (Rajpurkar et al., 2016).

Model Set. We consider black-box models (ser-
vice provider offers API access) and white-box
models (open-source models are deployed locally),
22 in total. (1) Black-box: Deepseek-V3, GPT-
4, GPT-4o, PaLM 2, Ernie Bot 3.5 turbo, Spark
Desk 2.0, Qwen turbo, 360GPT S2 V9, Mini-
max abab 5.5, Claude-3.7 Sonnet; (2) White-box:
LLaMA2-13B, ChatGLM2-6B, MOSS-moon-003,
MPT-7B, InternLM-7B, Alpaca-7B, Guanaco-7B,
Vicuna-13B, BLOOMz-7B, Falcon-7B, OPT-6.7B,
Baichuan-13B. Details are in Appendix C.1.

Prompt Design. To collect machine-generated
text for each instance, we design three types of
prompts to feed the LLMs. (1) Continuation Writ-

1https://huggingface.co/datasets/JulesBelveze/TLDR_news
2https://www.kaggle.com/datasets/spsayakpaul/arxiv-

paper-abstracts

ing: ask LLMs to continue generation based on the
first sentence of the original human-written text;
(2) Topical Writing: ask LLMs to generate topic-
specific texts (e.g., news article, paper abstract,
etc.); (3) Question-Answering: ask LLMs to gen-
erate an answer based on a given question. Specific
prompts are in Appendix C.2.

5 Experiments

We conduct comprehensive experiments to thor-
oughly evaluate MCP, focusing on its ability to
constrain the FPR, evaluate detection performance,
test robustness against real-world attacks, investi-
gate the impact of calibration data, and compare
with other calibration methods.

5.1 Experimental Setup

Datasets. We evaluate MCP on RealDet and
three representative datasets—M4 (Wang et al.,
2024), RAID (Dugan et al., 2024), and MAGE
(Li et al., 2024)—all are diverse, high-quality, and
large-scale datasets. For each dataset, we randomly
sampled 5,000 human-written texts as the calibra-
tion set, and 2,500 human-written texts alongside
2,500 machine-generated texts as the test set.

Metrics. We employ the FPR, defined as the
proportion of human-written texts misclassified
as machine-generated, as the primary metric in
MGT detection. Additionally, we use the TPR
(TP@FPR) and the F1 score (F1@FPR) as met-
rics to evaluate detection performance.

Basic Detectors. We selected SOTA zero-shot
detectors Fast-DetectGPT (Bao et al., 2024) and
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Detector Algorithm TP@20% F1@20% TP@10% F1@10% TP@5% F1@5% TP@2% F1@2% TP@1% F1@1% TP@0.5% F1@0.5%

M4
Fast-DetectGPT vanilla 78.56 79.13 74.44 80.72 70.04 80.03 65.32 78.08 60.56 74.97 54.84 70.60

MCP 79.56 80.35 75.24 81.50 71.72 81.33 67.36 79.55 62.44 76.33 58.64 73.67

Binoculars vanilla 83.20 81.87 79.44 83.87 74.80 83.19 69.72 81.21 64.52 77.96 55.36 71.03
MCP 83.24 82.40 80.00 84.41 75.72 83.87 71.20 82.27 66.68 79.59 62.72 76.88

RAID
Fast-DetectGPT vanilla 77.97 78.74 75.23 81.22 71.67 81.13 66.70 79.08 64.70 78.09 63.10 77.14

MCP 78.13 78.88 76.03 81.77 73.43 82.40 68.27 80.20 64.73 78.09 63.60 77.56

Binoculars vanilla 78.40 79.03 76.47 82.02 74.53 83.03 70.17 81.50 67.50 80.12 64.17 77.94
MCP 78.50 79.19 76.57 82.21 74.83 83.19 72.37 82.78 70.33 81.93 66.07 79.25

MAGE
Fast-DetectGPT vanilla 80.36 80.15 77.08 82.40 72.92 81.99 66.04 78.60 57.00 72.15 43.08 60.00

MCP 82.12 81.57 79.72 84.08 77.28 84.83 72.44 83.02 67.92 80.40 61.24 75.64

Binoculars vanilla 85.12 83.01 84.00 86.62 82.56 88.04 74.60 84.50 56.04 71.37 28.52 44.20
MCP 85.12 83.63 84.04 86.74 82.68 88.07 77.36 86.32 75.80 85.77 73.32 84.49

RealDet
Likelihood vanilla 83.60 82.11 79.70 84.03 76.08 84.03 67.38 79.56 58.98 73.73 36.92 53.73

MCP 84.10 82.23 80.64 84.53 76.66 84.50 70.06 81.43 62.24 76.21 52.60 68.67

Log-Rank vanilla 84.74 82.80 81.30 84.99 77.96 85.22 70.48 81.73 61.50 75.69 45.74 62.55
MCP 85.12 82.95 81.88 85.27 78.36 85.63 72.22 82.93 65.84 78.90 58.28 73.36

Entropy vanilla 68.28 72.51 46.44 59.37 30.24 44.72 14.26 24.53 6.58 12.23 3.18 6.13
MCP 70.60 74.01 48.16 60.79 31.92 46.55 17.68 29.48 9.38 16.97 5.66 10.65

DetectGPT vanilla 71.10 74.42 55.14 66.78 38.20 53.35 19.88 32.62 10.42 18.70 5.96 11.19
MCP 73.18 75.92 57.82 69.18 39.88 55.17 21.94 35.44 13.98 24.33 6.78 12.64

OpenAI-D vanilla 71.06 74.39 62.94 72.80 57.98 71.16 51.50 67.11 47.32 63.81 43.62 60.53
MCP 79.40 79.54 67.74 76.40 59.14 72.28 53.98 69.18 49.70 65.94 45.50 62.34

Fast-DetectGPT vanilla 86.02 83.52 81.86 85.34 77.46 84.91 72.00 82.76 63.74 77.38 51.22 67.52
MCP 87.10 84.07 84.24 86.68 80.86 86.93 76.86 85.90 73.20 83.97 69.32 81.59

Binoculars vanilla 90.96 86.20 90.36 90.19 89.16 91.83 84.98 90.90 78.98 87.77 70.16 82.22
MCP 91.06 86.30 90.36 90.36 89.26 92.13 87.50 92.44 86.28 92.28 84.34 91.29

Table 2: Main Experimental Results Across Various Detectors and Datasets. “Vanilla” refers to the detector’s
original configuration, with the detection threshold set based on the test set to satisfy a given FPR, whereas “MCP”
denotes detectors with MCP framework.

Binoculars (Hans et al., 2024), as well as other
zero-shot detectors including DetectGPT (Mitchell
et al., 2023), Likelihood, Log-Rank, and Entropy
(Gehrmann et al., 2019; Su et al., 2023; Ippolito
et al., 2020). We also considered the supervised de-
tectors OpenAI-D (Solaiman et al., 2019b), which
utilizes RoBERTa fine-tuned on the GPT-2 dataset.
In our experiments, Fast-DetectGPT uses GPT-2-
XL as the scoring model and GPT-J-6B as the sam-
pling model; DetectGPT employs GPT-2-XL as the
scoring model and T5-3B as the sampling model;
Other methods (e.g., Likelihood) uniformly use
GPT-2-XL as the scoring model. Considering that
different LLMs used as scoring models may result
in performance variations, more results are shown
in Appendix E.

Hyperparameter Settings. Detailed hyperpa-
rameter settings and analysis refer to Appendix F.

5.2 False Positive Rate Constraint

Figure 4 shows the FPR performance of vari-
ous detectors under the MCP framework across
different datasets, with α values selected from
{0.2, 0.1, 0.05, 0.02, 0.01, 0.005}. Each subfigure
corresponds to a specific α value, and datasets are

distinguished by color. The results confirm that
the FPRs are consistently constrained within the
theoretical upper bound determined by α, demon-
strating MCP’s efficacy in controlling false posi-
tives. Notably, the uniformity of FPR across de-
tectors highlights the framework’s generalizability,
making it an effective solution for environments
demanding tight FPR control.

5.3 Main Results

Table 2 presents the detection results across four
datasets and seven detectors. The MCP framework
consistently improves detection performance com-
pared to vanilla detectors, demonstrating strong
generalizability. While the gains are modest at
higher FPR levels (20%, 10%, and 5%), MCP
shows significant improvements at lower FPR
thresholds (2%, 1%, and 0.5%). On the RealDet
dataset, MCP results in an average improvement
of 11% in TPR and 8% in F1 score compared to
vanilla detectors, and an average improvement of
10% in TPR and 6% in F1 score across all datasets.
MCP enhances performance by balancing detec-
tion accuracy and FPR control through multiscaled
conformal quantiles, making it well-suited for ap-
plications with strict FPR constraints.
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Figure 5: Local ROC curves (with the horizontal axis representing 1 - FPR) for the basic detectors (Binoculars,
Fast-DetectGPT) under different real-world attacks, both with and without the MCP framework.

Dataset Detector Setting TP@1% F1@1% TP@0.5% F1@0.5%

MAGE
Fast-DetectGPT MCP 65.92 78.91 51.40 67.61

w/o q̂M 59.76 74.25 48.56 65.08

Binoculars MCP 75.80 85.77 73.32 84.49
w/o q̂M 50.20 66.49 24.12 38.72

RealDet
Fast-DetectGPT MCP 73.20 83.97 69.32 81.59

w/o q̂M 64.46 77.91 51.72 67.95

Binoculars MCP 86.28 92.28 84.34 91.29
w/o q̂M 80.82 88.88 73.56 84.44

Table 3: Ablation Study of multiscaled quantiles.

MCP demonstrates superior performance in low-
FPR scenarios. For example, on the MAGE dataset,
MCP achieves relative improvements of 157% in
TP@0.5% and 91% in F1@0.5%. At higher FPR
levels, the improvements are more limited, likely
due to the proximity of multiscaled quantiles. No-
tably, SOTA detectors with MCP maintain high
performance under stringent low-FPR constraints.
On RealDet, Fast-DetectGPT reaches 69.32% in
TP@0.5% and 81.59% in F1@0.5%, while Binoc-
ulars achieves 84.34% and 91.29%. MCP’s flex-
ibility in adjusting detection thresholds through
multiscaled quantiles allows for precise control of
low FPRs without sacrificing performance, making
it especially effective for high-precision detection.

5.4 Ablation Study

It is important to note that MCP is a framework,
and the ablation study focuses on the individual
modules within the framework, rather than remov-
ing the entire framework itself. Table 3 compares
detection performance with and without the multi-

scaled quantiles calculation module across differ-
ent datasets. “w/o q̂M” refers to single quantile
calculation based on the overall distribution. The
results demonstrate that incorporating multiscaled
quantiles into the MCP significantly improves de-
tection performance. Specifically, when q̂M is re-
moved, the average TPR decreases by 22%, and
the average F1 score drops by 15%. These findings
underscore that binning the calibration set and cal-
culating more appropriate quantiles over different
length intervals enables more precise calibration,
highlighting the necessity of multiscaled quantiles.

5.5 Robustness to Real-world Attacks

Figure 5 illustrates the robustness of the MCP
framework under two types of adversarial attacks:
paraphrasing and token-level edits (insertion, dele-
tion, and substitution). Paraphrasing attacks were
conducted using DIPPER (Krishna et al., 2023)
to rephrase the machine-generated texts. Editing
attacks involved random insertion, deletion, or sub-
stitution of tokens at rates of 1% or 3%.

The results show that, under all attack scenarios,
the MCP framework consistently achieves higher
TPR compared to the vanilla detectors. Specifically,
MCP demonstrates superior resilience, with higher
true positive rates across various attack types and
intensities. As attack strength increases (from 1%
to 3%), MCP continues to maintain a more robust
detection performance, whereas vanilla detectors
experience more significant drops in TPR. For ex-
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Figure 6: FPR of Binoculars within the MCP at α = 1%
when calibrated with different datasets.

ample, under insertion and deletion attacks, MCP
outperforms the vanilla detectors by a substantial
margin, indicating its effectiveness in mitigating
the impact of adversarial edits. These trends high-
light the effectiveness of the MCP framework in
maintaining strong detection performance even in
challenging adversarial scenarios, emphasizing its
robustness compared to the baseline detectors.

5.6 The Impact of Calibration Data

To explore the impact of calibration data on MCP
performance, we evaluate multiple datasets, includ-
ing the multi-domain datasets (M4, RAID, MAGE,
RealDet), as well as domain-specific datasets such
as news writing (BBC News), academic writing
(Abstracts), and social media text (ELI5). As
shown in Figure 6, we used a single dataset for
calibration, while the remaining datasets were se-
quentially used as test data.

The use of diverse calibration data generally
leads to better performance and improved gen-
eralization. Figure 6 shows the FPR of MCP un-
der different calibration data. The results demon-
strate that domain-specific datasets (BBC News,
Abstracts, ELI5) lead to relatively higher FPRs,
suggesting that these datasets are less effective in
achieving precise calibration. In contrast, multi-
domain datasets (RAID, MAGE) generally perform
better, although they still exhibit some limitations
due to inherent biases in the data. Notably, M4 and
RealDet calibration both yield promising results,
with RealDet providing slightly more stable and
consistent improvements. Specifically, TP@1% in-
creased by an average of 13% across all test sets
when calibrated with RealDet. However, M4 also
produces competitive calibration results, highlight-
ing that while RealDet offers a slight edge, diverse
calibration data from different domains still plays

a critical role in enhancing performance without
being overly reliant on a single dataset.

5.7 Comparison with Other Calibration
Methods

We compared MCP with other calibration methods
in Appendix G, including metric-based maximizing
F1 (Lipton et al., 2014), probability distribution-
based Platt Scaling (Platt, 1999), and Isotonic Re-
gression(Brunk et al., 1973). While these methods
offer a modest improvement in detection, they fall
short of effectively controlling the FPR. In contrast,
MCP achieves SOTA classification performance
while maintaining an exceptionally low FPR, en-
suring higher reliability.

6 Related Work

MGT Detection. Existing detectors can be
broadly categorized into two main types: zero-shot
detectors and supervised detectors. (1) Zero-shot
detectors leverage statistical measures extracted by
LLMs to identify outliers (Gehrmann et al., 2019;
Su et al., 2023; Ippolito et al., 2020; Yang et al.,
2023). For instance, the impressive DetectGPT
(Mitchell et al., 2023), based on the assumption
that MGT is more likely to lie at a local optimum
of the log probability, compares log probabilities
across multiple perturbations to detect MGT. Fast-
DetectGPT (Bao et al., 2024) further improves the
text perturbation process of its predecessor, signifi-
cantly enhancing detection efficiency. Binoculars
(Hans et al., 2024) uses cross perplexity between
two models from different perspectives to address
poor performance when detecting high-perplexity
text. (2) supervised detectors typically train a clas-
sification model using human-written and machine-
generated texts (Solaiman et al., 2019a; Uchendu
et al., 2020; Fagni et al., 2021; Zhang et al., 2024;
Tian et al., 2024; Pu et al., 2022; Hu et al., 2023;
Kumari et al., 2024). Specifically, OpenAI-D (So-
laiman et al., 2019b) fine-tuned a RoBERTa model
on GPT-2 generated text to detect MGT.

MGT Detection Dataset. Turing Bench
(Uchendu et al., 2021) collected 200k human-
written texts and machine-generated texts from 19
different models. However, it has become outdated
due to the less advanced models. Subsequently, re-
searchers constructed datasets focusing on specific
advanced models or particular domains (Fagni
et al., 2021; Yu et al., 2023; Mosca et al., 2023).
For instance, Guo et al. (2023) built the HC3
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dataset by collecting nearly 40k questions covering
multiple domains along with corresponding
answers generated by human experts and ChatGPT.
More recent efforts have introduced large-scale,
cross-domain, and cross-model benchmarks, such
as the MGTBench (He et al., 2024), M4 (Wang
et al., 2024), MAGE (Li et al., 2024), RAID
(Dugan et al., 2024), and DetectRL (Wu et al.,
2024b) datasets.

7 Conclusion

In this paper, we introduce a reliable machine-
generated text detection framework via multiscaled
conformal prediction (MCP), which constrains
FPRs to mitigate potential societal harms while
simultaneously enhancing detection performance.
Extensive experiments across seven detectors and
four datasets validate the effectiveness of MCP and
demonstrate its ability to improve robustness. In
future work, we will continue to update our high-
quality dataset, RealDet, to address the challenges
posed by the rapidly evolving LLMs. Additionally,
we plan to investigate an advanced detector, aim-
ing to maintain exceptional detection performance
even under stringent FPR within MCP.

Limitations

In our experiments, we found that although we
applied a multiscaled optimization strategy using
fixed-width binning based on CP, different bin
widths consistently corresponded to varying de-
tection performance. Therefore, a more flexible
binning strategy could potentially lead to better
detection results, an area we have not explored in
depth.

Ethics Statement

Detection inherently carries an accusatory implica-
tion. While our work constrains the upper bound
of the false positive rate, offering more reliable in-
sights to users, we strongly oppose using the detec-
tion results from this framework as direct evidence
in any punitive context. Regardless of the accuracy
of the detection, such use could cause significant
harm. Additionally, per the Code of Ethics, no pri-
vate data or non-public information was used in
constructing our dataset.
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A Case Study

Figure 7 illustrates the detailed detection steps of a
single instance within the MCP framework when
using Binoculars as the detector, with w = 100
and α = 0.05. First, the multiscaled quantiles q̂M
are calculated based on the nonconformity score
distribution of the calibration data. Next, for a
given instance Xtest, its token length is determined
and processed through Binoculars to obtain the
output Det(Xtest). The output Det(Xtest) is then
converted into a nonconformity score st following
Equation 8. Subsequently, using lt and w, the cor-
responding quantile q̂0 from q̂M is retrieved for the
matching length interval. Finally, the prediction

result C(Xtest) is determined based on the compari-
son between st and q̂0.

B Corollary Proof

This section provides a detailed proof of Corol-
lary 1.

Proof. Assumptions:

1. The calibration set Dcal and the test set Dtest

are independent and identically distributed
(i.i.d.).

2. The conformal prediction framework is em-
ployed to calibrate a decision rule based on
the calibration set Dcal, which is then applied
to the test set Dtest.

3. The nonconformity scores s(x) are properly
defined such that higher scores indicate a
lower likelihood of the text being HWT.

Within the MCP framework, all of the assump-
tions above are satisfied.

Objective: To demonstrate that under the MCP
framework, the False Positive Rate (FPR) on the
test set Dtest does not exceed the predefined thresh-
old α.

Proof Steps:
Nonconformity Scores Assignment: Assign a

nonconformity score s(x) to each instance x in
both Dcal and Dtest. These scores quantify how
atypical an instance is with respect to the detector.

Multiscaled Quantiles Calculation:

1. Bin the calibration set and sort the nonconfor-
mity scores of the subset Di

cal in ascending
order:

si(1) ≤ si(2) ≤ · · · ≤ si(n)

2. By applying Equation 7 to compute q̂M , the
following condition is guaranteed:

P (si(x) > qi) ≤ α for x ∈ Di
cal

Bounding the False Positive Rate:

1. Since Dcal and Dtest are i.i.d., the distribution
of nonconformity scores in Dcal mirrors that
of Dtest. After binning based on text length,
and since the selection is performed solely
on individual attributes, the subsets (Di

cal and
Di

test) obtained for different length intervals
remain i.i.d.
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Figure 7: Detailed Detection Process of a Single Instance within the MCP Framework.

2. Consequently, the same q̂M , when applied to
the test set, continues to satisfy the following
condition:

P (si(x) > qi) ≤ α for x ∈ Di
test

3. The FPR is computed from the instances
across all length intervals in Dtest:

FPR = E
(
P
(
si(x) > qi | i = 1, 2, . . .

))
≤ α

C Details of RealDet

In this subsection, we will provide additional de-
tailed information regarding various aspects of Re-
alDet.

C.1 Model Supplement
Table 4 presents all LLMs along with their cor-
responding text quantities. In collecting machine-
generated texts, we considered two distinct settings:
black-box models and white-box models. From the
black-box models, we selected 10 popular and pow-
erful LLMs for data collection, namely Deepseek-
V3 (Zhao et al., 2025), GPT-4, GPT-4o, PaLM 2,
Ernie Bot 3.5 Turbo, Spark Desk 2.0, Qwen Turbo,
360GPT S2 V9, Minimax Abab 5.5, and Claude-
3.7 Sonnet. Similarly, from the white-box models,
we selected 12 LLMs, including LLaMA2-13B
(Touvron et al., 2023), ChatGLM2-6B (GLM et al.,
2024), MOSS-moon-003, MPT-7B (Team, 2023),
InternLM-7B (Cai et al., 2024), Alpaca-7B (Taori
et al., 2023), Guanaco-7B (Dettmers et al., 2023),
Vicuna-13B (Chiang et al., 2023), BLOOMz-7B
(Muennighoff et al., 2023), Falcon-7B (Penedo
et al., 2023), OPT-6.7B (Zhang et al., 2022), and
Baichuan-13B. The number of machine-generated

English texts exceeds 604k, whereas the number of
machine-generated Chinese texts surpasses 125k.
The total number of texts exceeds 836k.

Source Model En-Text Cn-Text Total
Deepseek-V3 20,783 12,784 33,567
GPT-4 14,307 - 14,307
GPT-4o 20,600 12,376 32,976
PaLM2 21,878 - 21,878
Ernie Bot turbo 3.5 45,959 12,011 57,970
Spark Desk 2.0 42,963 8,280 51,243
Qwen turbo 45,911 11,993 57,904
360GPT S2 V9 44,833 12,054 56,887
Minimax abab 5.5 19,954 - 19,954
Claude-3.7 Sonnet 20,792 12,834 33,626
LLaMA2-13B 33,486 - 33,486
ChatGLM2-6B 29,132 12,221 41,353
MOSS-moon-003 28,902 10,721 39,623
MPT-7B 29,287 - 29,287
InternLM-7B 16,435 - 16,435
Alpaca-7B 28,233 - 28,233
Guanaco-7B 29,034 - 29,034
Vicuna-13B 28,520 - 28,520
BLOOMz-7B 7,259 7,782 15,041
Falcon-7B 22,501 - 22,501
OPT-6.7B 25,159 - 25,159
Baichuan-13B 29,060 12,239 41,299
Human 96,150 10,207 106,357
Total 701,138 135,502 836,640

Table 4: Specific Quantities in different LLMs generated
texts.

C.2 Prompt Design
In this study, we designed 3 types of generic
prompts—continuation writing, topical writing,
and question-answering—for LLMs to generate
texts across 15 distinct domains. Table 11 presents
sample prompts for the continuation type, Table 12
showcases examples of thematic writing prompts,
and Table 13 illustrates examples of question-
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Figure 8: The FPR of various detectors within Traditional CP framework across all datasets, after applying alpha
constraints with values of alpha set to 0.2, 0.1, 0.05, 0.02, 0.01, and 0.005.
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Figure 9: The TPR of various detectors within Traditional CP framework across 3 datasets.

answering prompts.

C.3 Adversarial Attacks

In this study, we do not consider adversarial attacks
on human-written texts, as evading detection with
human-written content is deemed inconsequential.
Instead, we focus on adversarial attacks in the con-
text of machine-generated texts by introducing 2
common attack types: paraphrasing attacks and
editing attacks. For paraphrasing attacks, we em-
ploy DIPPER with hyperparameters set to a lexical
diversity of 60 and a syntactic diversity of 60. This
level of paraphrasing is sufficient to potentially by-
pass state-of-the-art (SOTA) detectors. Regarding
editing attacks, we utilize the GPT-2 tokenizer to
encode the text and obtain a token sequence. We
then apply random insertions, deletions, and sub-
stitutions to the token sequence at proportions of
1%, 3%, and 5%. The tokens inserted and substi-
tuted are randomly selected from the tokenizer’s

vocabulary. In the adversarial attack scenario, each
raw text is associated with 10 adversarial texts (cal-
culated as 1 original + 3 proportions × 3 types of
edits).

D Performance of the Traditional CP

Figure 8 shows the FPR performance of differ-
ent detectors under the traditional CP framework
across various datasets. We observe that the tra-
ditional CP framework effectively constrains the
upper bound of the FPR. Figure 9 presents the TPR
performance of different detectors within the tra-
ditional CP framework. Although the traditional
CP framework successfully limits the FPR upper
bound, we find that the TPR sharply decreases un-
der low FPR settings. Even SOTA detectors ex-
perience a significant decline in TPR, making it
difficult to detect MGTs. This observation serves
as the motivation for our proposed MCP approach.
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Figure 10: Hyperparameter Sensitivity Analysis of w.

E More Supplement Results

Consistent Positive Correlation. Table 5
presents the quantile values of various detectors
across different text lengths and Pearson corre-
lation coefficients ρ(l,s) (obtained by quantile
and average interval length) when α = 0.01. It
is evident that the quantile values of different
detectors show a consistent positive correlation
with text length.

Performance with the same scoring model.
Considering that different LLMs used as scoring
models may result in performance variations, Ta-
ble 6 further includes experimental comparisons
with Falcon-7B-instruct uniformly set as the scor-
ing model and Falcon-7B as the sampling model,
thus eliminating the impact introduced by different
LLMs. The results demonstrate that MCP frame-
work brings consistent performance improvements,
aligned with the main results of the paper, partic-
ularly under settings with low false positive rates.
Specifically, Binoculars within the MCP frame-
work exhibits greater performance gains compared
to Fast-DetectGPT and achieves comparable per-
formance when using the same scoring model.

F Hyperparameter Sensitivity Analysis

The MCP framework encompasses 3 hyperpa-
rameters: the upper bound on the FPR (α),
the maximum input length (Lmax), and the bin
width (w). In the main experiments, the up-
per bound α is typically selected from the set
{0.2, 0.1, 0.05, 0.02, 0.01, 0.005}. Lmax is contin-
gent upon the basic detector integrated within the
framework. For instance, the OpenAI-D detec-
tor, which is fine-tuned based on RoBERTa, uti-
lizes Lmax = 512, whereas Fast-DetectGPT, which
employs GPT-2 for sampling and scoring, adopts
Lmax = 1024. The bin width w is influenced by
both the data distribution and the output distribu-
tion. In the main experiments, a default bin width
of w = 100 is employed, as this width yields the

most optimal and stable performance within the
framework.

Figure 10 presents the performance of varying
bin width (w) values across different datasets and
detectors. We observe that performance remains
consistently strong when w ≤ 200. However, at
w = 500, detection performance noticeably de-
clines, indicating that excessively large bin widths
undermine the MCP framework’s ability to enhance
detection performance.

The optimal bin width is influenced by the dis-
tribution of the textual data. Specifically, within
the M4 dataset, a bin width of w = 200 consis-
tently outperforms other values in detection per-
formance. We attribute this to the inherent text
distribution of the M4 dataset, where the major-
ity of texts pertain to academic writing and peer
review, introducing a certain degree of bias.

The distribution of the detector’s outputs af-
fects the optimal selection of w. The original
output distribution of Binoculars is more concen-
trated, leading to a similarly concentrated distri-
bution of the transformed nonconformity scores.
Consequently, a smaller and more refined bin
width enhances detection performance. In contrast,
Fast-DetectGPT exhibits a relatively dispersed and
smooth output distribution, suggesting that a larger
bin width may achieve superior detection perfor-
mance in this context.

G Comparison with Other Calibration
Methods

Existing calibration methods can be categorized
into two main types: metric-based methods (e.g.,
maximizing F1) and probability distribution-based
methods (e.g., Platt Scaling and Isotonic Regres-
sion). Maximizing F1 derives the optimal threshold
by identifying the threshold that maximizes the F1
score, whereas Platt Scaling and Isotonic Regres-
sion modify the output probability distribution to
enhance performance. MCP differs from other cal-
ibration methods in the following two key aspects:
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Detector Length (0,100) [100,200) [200,300) [300,400) [400,500) [500,600) [600,700) [700,800) [800,900) [900,1024] ρ(l,s)

Likelihood quantile 0.3516 0.3481 0.3448 0.3545 0.3603 0.3660 0.3786 0.3984 0.4582 0.5440 0.8200
LogRank quantile 0.3899 0.3854 0.3771 0.3818 0.3802 0.3877 0.3915 0.4052 0.4157 0.4585 0.7533
Entropy quantile 0.0591 0.1268 0.1492 0.1441 0.1575 0.1647 0.1617 0.1724 0.1656 0.1636 0.7622
Binoculars quantile 0.4089 0.4410 0.4491 0.4519 0.4577 0.4588 0.4583 0.4588 0.4571 0.4578 0.7344
Fast-DetectGPT quantile 0.6788 0.6826 0.6781 0.7540 0.8093 0.8577 0.8724 0.9400 0.9721 0.9920 0.9842

Table 5: Quantiles Across Different Lengths for Various Detectors

Detector Algorithm TP@2% F1@2% TP@1% F1@1% TP@0.5% F1@0.5%

RealDet
Likelihood vanilla 72.72 83.24 59.46 74.11 37.76 54.62

MCP 74.88 84.71 62.96 76.84 48.34 65.02

Log-Rank vanilla 74.74 84.58 64.50 77.95 49.80 66.27
MCP 75.64 85.26 65.66 78.88 56.94 72.32

Entropy vanilla 65.00 77.84 49.84 66.08 31.52 47.75
MCP 67.52 79.71 54.34 70.06 40.10 57.06

Fast-DetectGPT vanilla 88.42 92.87 86.88 92.47 84.08 91.10
MCP 88.84 92.98 87.60 92.88 86.26 92.37

Binoculars vanilla 84.98 90.90 78.98 87.77 70.16 82.22
MCP 87.50 92.44 86.28 92.28 84.34 91.29

Table 6: Supplementary experimental results on RealDet, with Falcon-7B-instruct as the scoring model and Falcon-
7B as the sampling model.

Detector Method FPR F1

Fast-DetectGPT

vanilla 9.84 85.36
Maximizing F1 9.24 85.53
Platt Scaling 8.46 85.65

Isotonic Regression 8.78 85.58
MCP (α = 10%) 9.94 86.68
MCP (α = 5%) 4.98 86.93
MCP (α = 2%) 1.98 85.90

Binoculars

vanilla 7.68 91.06
Maximizing F1 7.26 91.21
Platt Scaling 6.54 91.43

Isotonic Regression 7.34 91.18
MCP (α = 5%) 4.78 92.13
MCP (α = 2%) 1.82 92.44
MCP (α = 1%) 0.72 92.28

Table 7: Detection Performance with Different Calibra-
tion Methods.

(1) MCP effectively constrains the upper bound of
the FPR, whereas other calibration methods pri-
marily optimize classification performance without
explicitly controlling FPR. (2) MCP is a zero-shot,
dynamic threshold calibration method. Maximiz-
ing F1 determines a fixed threshold that maximizes
F1 performance, while Platt Scaling and Isotonic
Regression train a calibration model to optimize the
output probability distribution and then classify in-
stances based on the newly calibrated probabilities.

In contrast, MCP requires no additional training
and dynamically adjusts the threshold across dif-
ferent text lengths, demonstrating its efficiency and
flexibility.

Table 7 compares the experimental performance
of MCP with other calibration methods. Using
the RealDet dataset, we conducted experiments
on Fast-DetectGPT and Binoculars with different
calibration methods. The results indicate that al-
though other methods (maximizing F1, Platt Scal-
ing, and Isotonic Regression) achieve modest im-
provements in classification performance, they still
exhibit dangerously high FPRs (FPR > 5%). In
contrast, MCP achieves SOTA classification per-
formance and maintains an exceptionally low FPR
(FPR < 2%), ensuring higher reliability.

H Main Experiment Supplement

Tables 8, 9, and 10 present a comparative analysis
of the detection performance of 7 different detec-
tors on the M4, RAID, and MAGE datasets, respec-
tively, both with and without the MCP framework.
These tables serve as supplementary material to
the primary experiments. The results consistently
demonstrate that the MCP framework enhances the
detection capabilities of the detectors, particularly
under settings with low false positive rates. Fur-
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thermore, it was observed that non-state-of-the-art
(non-SOTA) detectors sometimes do not exhibit
performance improvements when integrated with
the MCP framework, especially when their baseline
performance is bad. We attribute this phenomenon
to the possibility that inaccurate outputs from non-
SOTA detectors may hinder the calibration pro-
cess within the MCP framework. This observa-
tion aligns with the conclusions drawn in Subsec-
tion 5.3, where it was noted that accurate outputs
from SOTA detectors facilitate more effective cali-
bration within MCP.
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Detector Algorithm TP@20% F1@20% TP@10% F1@10% TP@5% F1@5% TP@2% F1@2% TP@1% F1@1% TP@0.5% F1@0.5%

M4
Likelihood vanilla 81.48 80.87 72.76 79.62 65.12 76.54 54.72 69.85 43.92 60.61 35.96 52.70

MCP 87.28 84.17 78.68 83.52 70.04 80.10 58.12 72.89 48.28 64.88 36.04 52.83

Log-Rank vanilla 82.52 81.49 71.84 79.03 62.04 74.28 50.76 66.47 42.96 59.68 35.32 52.02
MCP 87.24 84.32 78.80 83.72 70.12 80.12 56.68 71.66 48.48 64.99 38.56 55.51

Entropy vanilla 57.12 64.50 35.28 48.53 25.12 38.61 14.00 24.14 10.48 18.80 8.48 15.57
MCP 64.80 70.59 45.48 58.71 28.44 42.82 14.84 25.53 9.88 17.87 6.48 12.14

DetectGPT vanilla 61.20 67.53 44.68 57.77 31.12 45.72 16.96 28.51 10.08 18.15 7.28 13.51
MCP 62.00 68.19 46.28 59.35 31.52 46.12 18.36 30.53 11.52 20.49 7.08 13.17

OpenAI-D vanilla 64.00 69.53 54.12 65.95 49.60 64.17 42.60 58.92 38.56 55.26 35.88 52.63
MCP 67.24 71.43 59.28 69.84 52.08 66.45 45.04 61.28 38.92 55.73 35.04 51.76

Fast-DetectGPT vanilla 78.56 79.13 74.44 80.72 70.04 80.03 65.32 78.08 60.56 74.97 54.84 70.60
MCP 79.56 80.35 75.24 81.50 71.72 81.33 67.36 79.55 62.44 76.33 58.64 73.67

Binoculars vanilla 83.20 81.87 79.44 83.87 74.80 83.19 69.72 81.21 64.52 77.96 55.36 71.03
MCP 83.24 82.40 80.00 84.41 75.72 83.87 71.20 82.27 66.68 79.59 62.72 76.88

Table 8: Main Experimental Supplement on the M4 dataset. “Vanilla” refers to the detector’s original configuration,
whereas “MCP” denotes detectors with MCP framework.

Detector Algorithm TP@20% F1@20% TP@10% F1@10% TP@5% F1@5% TP@2% F1@2% TP@1% F1@1% TP@0.5% F1@0.5%

RAID
Likelihood vanilla 64.37 69.82 52.47 64.59 38.70 53.86 24.80 39.12 19.37 32.18 14.00 24.46

MCP 62.93 68.87 53.57 65.59 44.90 60.00 36.50 52.63 32.17 48.20 26.63 41.83

Log-Rank vanilla 66.10 71.01 54.10 65.91 40.63 55.80 28.83 44.08 22.67 36.66 19.77 32.88
MCP 64.97 70.26 54.73 66.60 46.47 61.61 39.43 55.70 34.23 50.59 29.40 45.23

Entropy vanilla 40.03 50.06 22.37 33.80 17.90 29.14 15.57 26.48 14.13 24.54 11.77 20.96
MCP 42.33 52.30 29.33 42.37 23.53 36.61 17.43 29.11 14.73 25.43 12.27 21.74

DetectGPT vanilla 58.57 65.62 46.53 59.45 34.50 49.46 21.20 34.41 14.67 25.36 8.80 16.10
MCP 60.10 67.06 48.37 61.51 35.20 50.64 21.20 34.54 12.67 22.38 7.47 13.86

OpenAI-D vanilla 74.47 76.57 63.80 73.40 56.07 69.62 45.63 61.82 39.93 56.67 17.00 28.94
MCP 73.83 76.33 62.63 72.87 54.77 68.83 47.07 63.13 41.93 58.66 33.47 49.93

Fast-DetectGPT vanilla 77.97 78.74 75.23 81.22 71.67 81.13 66.70 79.08 64.70 78.09 63.10 77.14
MCP 78.13 78.88 76.03 81.77 73.43 82.40 68.27 80.20 64.73 78.09 63.60 77.56

Binoculars vanilla 78.40 79.03 76.47 82.02 74.53 83.03 70.17 81.50 67.50 80.12 64.17 77.94
MCP 78.50 79.19 76.57 82.21 74.83 83.19 72.37 82.78 70.33 81.93 66.07 79.25

Table 9: Main Experimental Supplement on the RAID dataset. “Vanilla” refers to the detector’s original configura-
tion, whereas “MCP” denotes detectors with MCP framework.

Detector Algorithm TP@20% F1@20% TP@10% F1@10% TP@5% F1@5% TP@2% F1@2% TP@1% F1@1% TP@0.5% F1@0.5%

MAGE
Likelihood vanilla 78.52 79.12 73.60 80.14 68.88 79.23 61.56 75.28 49.84 66.08 37.20 54.02

MCP 79.56 80.14 74.60 80.81 69.20 79.50 62.96 76.26 53.08 68.88 35.44 52.21

Log-Rank vanilla 78.64 79.18 74.12 80.43 69.48 79.62 61.64 75.34 51.00 67.11 45.52 62.34
MCP 79.28 80.11 74.52 80.95 70.24 80.24 64.24 77.17 55.00 70.51 44.60 61.53

Entropy vanilla 58.96 65.88 44.76 57.84 31.76 46.43 22.68 36.38 15.44 26.52 10.52 18.95
MCP 58.76 66.47 43.20 56.63 31.72 46.46 21.44 34.85 16.12 27.55 10.44 18.84

DetectGPT vanilla 59.36 66.21 38.20 51.54 19.80 31.73 7.64 13.94 3.88 7.40 2.04 3.98
MCP 58.16 65.60 39.92 53.11 24.76 38.01 11.40 20.07 6.36 11.81 2.92 5.64

OpenAI-D vanilla 82.84 81.68 71.72 78.92 63.08 75.06 54.96 70.03 49.96 66.19 43.08 60.02
MCP 80.96 80.96 74.04 80.74 67.68 78.50 59.36 73.68 53.16 69.02 44.76 61.70

Fast-DetectGPT vanilla 80.36 80.15 77.08 82.40 72.92 81.99 66.04 78.60 57.00 72.15 43.08 60.00
MCP 82.12 81.57 79.72 84.08 77.28 84.83 72.44 83.02 67.92 80.40 61.24 75.64

Binoculars vanilla 85.12 83.01 84.00 86.62 82.56 88.04 74.60 84.50 56.04 71.37 28.52 44.20
MCP 85.12 83.63 84.04 86.74 82.68 88.07 77.36 86.32 75.80 85.77 73.32 84.49

Table 10: Main Experimental Supplement on the MAGE dataset. “Vanilla” refers to the detector’s original
configuration, whereas “MCP” denotes detectors with MCP framework.
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Prompt Type Prompt Generated Text Domain Model

Continuation Writing
First, I’m well aware of the fiasco that was
1989 on the cold fusion front. Please con-
tinue.

Certainly, after Martin Fleischmann and Stan-
ley Pons announced they had achieved cold
fusion in 1989, many laboratories across the
world attempted to replicate these results with
mixed results. This brought the legitimacy of
their claims into question and the scientific
community largely dismissed cold fusion as
a viable technology.

CMV GPT-4

While the main story is supposed to take place
in Morocco, this movie was shot in foggy
Romania in 18 days on a very tight budget.
Please continue.

The decision to film in Romania instead of
Morocco was likely influenced by financial
constraints and logistical challenges. Shoot-
ing in a foreign country can be expensive,
especially for a production with a limited bud-
get. Romania offered more cost-effective op-
tions, including lower labor costs, tax incen-
tives, and accessible filming locations that
could double for Moroccan settings.

IMDB 360GPT S2 V9

In 1986, Michael Dell brought in Lee Walker,
a 51-year-old venture capitalist, as presi-
dent and chief operating officer, to serve as
Michael’s mentor and implement Michael’s
ideas for growing the company. Please con-
tinue.

With Lee Walker’s appointment as Presi-
dent and Chief Operating Officer in 1986,
Dell Computer Corporation began to experi-
ence significant growth under Michael Dell’s
vision and Walker’s experienced guidance.
Walker, a seasoned venture capitalist, brought
a wealth of knowledge and expertise in fi-
nance, operations, and strategic planning to
the company.

SQuAD Ernie Bot 3.5 turbo

Table 11: Some Examples in Continuation Writing.

12317



Prompt Type Prompt Generated Text Domain Model

Topical Writing Please write an abstract based on the following
title “Addressing Visual Search in Open and
Closed Set Settings”.

Certainly! Here is an abstract based on the title
“Addressing Visual Search in Open and Closed
Set Settings”: In recent years, visual search has
become a critical component of various applica-
tions, ranging from e-commerce to augmented
reality. This paper explores the challenges and
solutions associated with visual search in both
open and closed set settings. In closed set sce-
narios, where all possible categories are known,
the focus is on accurate classification and re-
trieval, ensuring high precision and recall rates.
Conversely, open set scenarios involve the iden-
tification of unknown categories, necessitating
robust mechanisms for distinguishing novel ob-
jects from familiar ones. We present a compre-
hensive framework that leverages deep learning
models tailored for each setting, incorporating
strategies such as feature extraction, similar-
ity metrics, and anomaly detection. Our ap-
proach aims to enhance the performance of vi-
sual search systems by adapting to the dynamic
nature of real-world data, thereby bridging the
gap between theoretical advancements and prac-
tical applications. Experimental results demon-
strate significant improvements in accuracy and
efficiency, paving the way for more versatile
and reliable visual search solutions.

Abstracts Qwen turbo

Please write a news article based on the follow-
ing title: “Wales hails new superstar”.

Title: Wales Hails New Superstar Subtitle: The
Rise of a Welsh Sporting Icon Date: 2023-04-10
Wales has been abuzz with excitement as a new
superstar emerges in the world of sports. The
unveiling of this extraordinary talent has cap-
tured the hearts and imaginations of the Welsh
public and has sparked a renewed sense of pride
and optimism for the future of Welsh sports.
The young athlete, who wishes to remain anony-
mous for the time being, has been making waves
in their chosen sport, demonstrating an unpar-
alleled level of skill, determination, and sports-
manship. Their meteoric rise to fame has been
nothing short of remarkable, with many industry
experts predicting a long and illustrious career
ahead. The new superstar’s impact has been
felt far beyond the realm of sports, with their
success inspiring a new generation of Welsh
athletes to pursue their dreams. Their story
serves as a powerful reminder of the impor-
tance of hard work, dedication, and persever-
ance in achieving one’s goals. As the excite-
ment surrounding this new superstar continues
to grow, the Welsh public eagerly awaits their
next move. With the eyes of the world now
fixed on Wales, there is no doubt that the future
of Welsh sports is in good hands. In conclu-
sion, the emergence of this new superstar has
injected a much-needed dose of enthusiasm and
optimism into the Welsh sports scene. Their
remarkable journey serves as an inspiration to
us all, and we eagerly await the next chapter in
their incredible story.

BBC News Minimax abab 5.5

Table 12: Some Examples in Topical Writing.
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Prompt Type Prompt Generated Text Domain Model

Question-Answering
Please explain what is “2021 FIBA Women’s Amer-
iCup”.

The 2021 FIBA Women’s AmeriCup is a basketball
tournament for women’s national teams from the
Americas, organized by the International Basketball
Federation (FIBA). It represents one of FIBA Amer-
icas’ biggest events, featuring top teams from across
the continent. In 2021, the event took place from
June 11 to June 19 in San Juan, Puerto Rico. Ten
teams participated in the tournament, which aimed
to provide international competition experience for
players and contribute to the global promotion of
the sport. The United States won the tournament,
defeating Puerto Rico in the final.

Wikipedia GPT-4

How can I judge loan availability? To judge loan availability, you can consider the fol-
lowing factors: Credit Score: Your credit score is a
key factor in determining loan availability. Lenders
use credit scores to assess the risk of lending money
to you. A good credit score indicates that you are a
low-risk borrower and may qualify for better loan
terms. Income: Lenders will consider your income
level when determining loan availability. They will
want to ensure that you have the ability to repay the
loan. Debt-to-Income Ratio: Your debt-to-income
ratio is a measure of how much of your income is
going towards debt payments. Lenders will consider
this ratio when evaluating loan applications. A high
debt-to-income ratio may indicate that you have too
much debt and may not be a good candidate for a
loan. Credit History: Your credit history is another
important factor in determining loan availability.
Lenders will consider how long you have had credit,
whether you have any negative marks on your credit
report, and how you have managed your credit in
the past. Loan Type: The type of loan you are ap-
plying for will also impact its availability. Different
types of loans, such as personal loans, mortgages,
or auto loans, have different requirements and con-
ditions. By considering these factors, you can get a
better idea of whether a loan is available to you and
what terms you may be offered.

FiQA GPT-4

Table 13: Some Examples in Question-Answering.
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