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Abstract

Concept Bottleneck Models (CBMs) decom-
pose image classification into a process gov-
erned by interpretable, human-readable con-
cepts. Recent advances in CBMs have used
Large Language Models (LLMs) to generate
candidate concepts. However, a critical ques-
tion remains: What is the optimal number of
concepts to use? Current concept banks suf-
fer from redundancy or insufficient coverage.
To address this issue, we introduce a dynamic,
agent-based approach that adjusts the concept
bank in response to environmental feedback,
optimizing the number of concepts for suffi-
ciency yet concise coverage. Moreover, we pro-
pose Conditional Concept Bottleneck Models
(CoCoBMs) to overcome the limitations in tra-
ditional CBMs’ concept scoring mechanisms.
It enhances the accuracy of assessing each con-
cept’s contribution to classification tasks and
feature an editable matrix that allows LLMs to
correct concept scores that conflict with their
internal knowledge. Our evaluations across
6 datasets show that our method not only im-
proves classification accuracy by 6% but also
enhances interpretability assessments by 30%.

1 Introduction

Deep Learning (DL) models have excelled in var-
ious fields, but their black-box nature limits the
interpretability of their decision-making processes
(Papernot et al., 2017). Increasing attention has
been directed toward developing intrinsically inter-
pretable and flexible DL models. This research pre-
dominantly revolves around concept analysis (Kim
et al., 2018), which aims to understand how neu-
ral networks encode and utilize high-level, human-
interpretable features. Concept Bottleneck Mod-
els (CBMs) (Koh et al., 2020) are among the
most representative approaches in this direction,
mapping visual representations to a set of human-
understandable textual concepts, from which the

final decision is derived through a linear combina-
tion of these concept scores.

Recent research on CBMs has established a new
language grounding paradigm (Oikarinen et al.,
2023; Yang et al., 2023; Yan et al., 2023a). It
first prompts pre-trained Large Language Models
(LLMs) with class names to generate candidate con-
cept sets. Various concept selection algorithms are
then designed to identify the most representative or
distinguishing concepts. Finally, multimodal pre-
trained models such as CLIP (Radford et al., 2021),
align visual features with textual descriptions by
projecting visual representations into each concept
embedding, forming a concept bottleneck layer.

This CLIP-based paradigm eliminates the need
for manually constructing a concept bank and an-
notating each concept within the images. Con-
currently, it retains the key advantage of CBMs
by enabling human intervention, allowing users
to directly edit erroneous concept scores to cor-
rect model behavior (Koh et al., 2020). Although
CBMs have improved the interpretability of image
classification tasks, several unresolved challenges
remain in grounding abstract concepts from LLMs
to diverse and unpredictable downstream images.

First, CBMs have an inherent intrepretability and
accuracy trade-off, but some CLIP-based CBMs
have provided a comparable performance to the
standard neural networks depending on the dataset.
Another key challenge lies in determining the opti-
mal number of concepts required for a concept
bank. Previous studies typically rely on manu-
ally specifying the number of concepts and sub-
sequently employing concept selection algorithms
to construct a fixed-size concept bank. For instance,
LaBo (Yang et al., 2023) assigns k concepts per cat-
egory, resulting in a concept bank with 10,000 con-
cepts for the CUB dataset (Wah et al., 2011), which
includes 200 bird species. In contrast, LM4CV
(Yan et al., 2023a) adopts a significantly smaller
concept bank with only 32 concepts, yet achieves
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competitive classification performance on the same
dataset. While accuracy generally improves as
the number of specified concepts increases, the
ideal number of concepts remains an open question.
Third, prior work (Oikarinen et al., 2023; Yan et al.,
2023b) has demonstrated that humans can interact
with CBMs by manually editing concept scores in
the bottleneck layer to correct mispredictions and
alter model behavior. These mispredictions often
stem from concept activations that contradict objec-
tive facts. However, such edits have been primarily
limited to the test-time setting (Koh et al., 2020;
Hu et al., 2025). To date, no research has explored
the use of LLMs’ inherent factual knowledge to
automatically edit incorrectly activated concepts in
CBMs during training.

In this work, we propose a novel framework
to holistically address the challenges introduced
above. Our analysis reveals that the performance
bottleneck of traditional CBMs primarily stems
from a unified scoring mechanism across all cate-
gories. To address this issue, we introduce Condi-
tional Concept Bottleneck Models (CoCoBMs) that
incorporates category-specific scoring and weight-
ing mechanisms to project visual information into
category-conditioned concept embeddings. This
forms a conditional concept bottleneck layer, sig-
nificantly enhancing the model’s performance.

Moreover, existing studies follow a static lan-
guage grounding paradigm (Chandu et al., 2021),
which makes it difficult to determine the optimal
number of concepts. In a one-directional workflow,
LLMs generate concepts for CBMs without interac-
tion with downstream visual data, thereby missing
valuable feedback for refining grounded concepts.
To incorporate feedback, our proposed framework
incorporates a Concept Agent that leverages few-
shot feedback to analyze concept activation pat-
terns from downstream image data, enabling the
identification of redundant and insufficient con-
cepts. By dynamically refining and expanding the
concept bank, the Agent automates the determina-
tion of the optimal concept count. Furthermore, the
Concept Agent is endowed with global editing au-
thority over CoCoBMs’ activation scores, enabling
it to identify and suppress activations that conflict
with the factual knowledge encoded within LLMs.

Furthermore, we develop a quantitative metric
to evaluate the interpretability of model predictions
by converting conceptual evidence into textual de-
scriptions. These descriptions are then assessed
by LLMs in terms of truthfulness and distinguisha-

bility. Evaluations across 6 datasets validate the
effectiveness of our approach in terms of both clas-
sification accuracy and interpretability. Overall,
our main contributions are as follows:
• We propose Conditional Concept Bottleneck

Models (CoCoBMs), which incorporate category-
specific scoring and weighting mechanisms, to en-
hance the model’s classification performance.
• We propose a Concept Agent that dynamically

grounds the concept bank by using environmental
feedback to identify and refine redundancies and
gaps, optimizing the concept count.
• We conduct evaluations on 6 datasets, demon-

strating a 6% increase in classification accuracy,
and around a 30% improvement in interpretability
through our designed quantitative assessment.

2 Related Work

Concept Bottleneck Models. CBMs (Koh et al.,
2020) are a prominent approach for designing in-
herently interpretable DL models, as detailed by
Zhou et al. (2018) and Losch et al. (2019). CBMs
incorporate a concept bottleneck layer preceding
the final fully connected layer, where each neuron
represents a human-interpretable concept. Some
variants of CBMs have been developed to mitigate
inherent drawbacks. For example, Yüksekgönül
et al. (2023) and Oikarinen et al. (2023) proposed
data-efficient methods to convert any DL models
into CBMs without training from scratch. By lever-
aging multimodal pre-trained models (Fong and
Vedaldi, 2018) to learn concept activations, they
bypassed the necessity for concept annotations.
CBMs enable model debugging and analysis by
allowing edits to concept scores or weights, opti-
mizing single-sample predictions or global behav-
ior (Koh et al., 2020; Oikarinen et al., 2023; Yan
et al., 2023a). However, this process often demands
significant human effort, limiting its scalability.
Concept Bank Construction. Recent efforts such
as Label-free CBMs (Oikarinen et al., 2023), LaBo
(Yang et al., 2023) and LM4CV (Yan et al., 2023a)
have resorted to generate concepts by tapping into
the knowledge base of LLMs (Brown et al., 2020).
LaBo selected a fixed number of concepts for each
category, while LM4CV proposed a learning-to-
search approach to construct a concise bank cov-
ering all categories. On CUB dataset (Wah et al.,
2011), they built concept banks with scales differ-
ing by several orders of magnitude, highlighting
the question of what constitutes an optimal number
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of concepts for a bank. LaBo overlooks shared con-
cepts across labels, inevitably resulting in redun-
dancy. In contrast, LM4CV emphasizes concise-
ness but suffers from insufficiency. Recent studies
(Yan et al., 2023a; Shang et al., 2024) indicate that
a sufficiently large bank, even when constructed
from randomly selected words can achieve accu-
racy comparable to that of an interpretable one. A
reasonable number of concepts should lie between
log2 n and d, where n is the number of categories
and d is the dimensionality of the concept embed-
dings. Furthermore, some work, such as P-CBM
(Yüksekgönül et al., 2023) and Res-CBM (Shang
et al., 2024), retrieves concepts from Knowledge
Graphs (KG) (Speer et al., 2017), which heavily
depend on how the KG are built. While Res-CBM
trys to address insufficiency, it remains limited to
static KG, complementing selection algorithms. No
work has adopted a dynamic grounding paradigm
for concept bank construction and refinement.
LLM-based Autonomous Agents. Autonomous
agents aim to achieve AGI through self-directed
planning and actions (Wang et al., 2024). Recent
advances in Chain-of-Thought (CoT) reasoning
(Wei et al., 2022) have positioned LLMs as central
controllers, enabling human-like decision-making
by integrating perception, memory, and action capa-
bilities. LLM-based agents typically follow a uni-
fied framework comprising three modules: mem-
ory, planning, and action (Yao et al., 2023; Zhu
et al., 2023; Huang et al., 2022). The memory mod-
ule stores information to aid future planning, while
the planning module deconstructs tasks, often us-
ing feedback from environmental interactions to
enable self-evolution. The action module executes
decisions, directly interacting with and impacting
the environment. The research community has not
explored employing such LLM-based agents for
concept-based interpretable image classification.

3 Methodology

3.1 Conditional Concept Bottleneck Models

Problem Formulation. Consider a dataset of
image-label pairs D = {(xi, yi)}, where each im-
age xi ∈ X is associated with a label yi ∈ Y
drawn from N predefined categories. To facilitate
interpretable classification, a set of M semantic
concepts C = {c1, c2, . . . , cM} is introduced as an
intermediate representation. Original CBMs (Koh
et al., 2020) decompose prediction as ŷ = f(g(x)),
where g : Rd → RM maps image features to con-

Figure 1: Architectural comparison of CBMs and Co-
CoBMs. CoCoBMs employ label-conditioned scoring
to enable category-specific concept evaluation. An ed-
itable matrix is introduced during training, allowing the
agent to suppress incorrectly activated concepts.

cept scores, and f : RM → Y aggregates these
scores into a label prediction.

Recent CBMs build on Visual-Language Mod-
els (VLMs), such as CLIP (Radford et al., 2021),
which consist of an image encoder I : X → Rd

and a text encoder T : C → Rd, projecting images
and text into a shared d-dimensional feature space.
Given an image xi and a concept set C, CLIP-based
CBMs (Yüksekgönül et al., 2023) compute concept
scores s⃗c = [sc1 , sc2 , . . . , scM ], where each score
is given by the dot product sck = I(xi) · T (ck),
measuring the cross-modal alignment. These con-
cept scores are then aggregated into label-level
scores SY = [s1y, s

2
y, . . . , s

N
y ] via a learned con-

cept weight matrix W ∈ RN×M that captures the
relative importance of each concept for each label.
This process adheres to a shared scoring mecha-
nism, where the same set of concept scores s⃗c is
reused across all labels Y:

s⃗c = P (s⃗c | xi, C), SY =
∥∥N
j=1

P (sjy | s⃗c) (1)

where
∥∥ denotes the concatenation of per-label

scores into the final prediction vector SY . How-
ever, this formulation assumes an overly equitable
sharing of concept scores across labels, overlook-
ing the fact that a single concept may contribute
unevenly to different categories.
Category-Specific Scoring. To address this limita-
tion, we propose a category-specific scoring mech-
anism in CoCoBMs, as illustrated in Figure 1,
that replaces the shared concept scores with label-
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Figure 2: Left: Modular components with intra-module and inter-module workflows in the Concept Agent. Right:
The planning module informs the action module to iteratively generate and refine concepts based on feedback.

specific ones. The computation of SY is redefined
as:

⃗
sjc =

∥∥M
k=1

P (sjck | xi, yj , ck)

SY =
∥∥N
j=1

P (sjy | ⃗sjc)
(2)

where sjck denotes the score of concept ck condi-
tioned on the image xi and the hypothesized la-

bel yj , and ⃗
sjc is the resulting label-specific con-

cept score vector. In contrast to original CBMs,
which use a shared concept bottleneck across all
labels, our formulation yields a label-specific con-
cept matrix. Collapsing this matrix along the label
dimension recovers the original CBM formulation,
making it a special case of our method.
Condition Learning. CoCoBMs incorporate la-
bels as conditional inputs during the concept scor-
ing process. To achieve this, we adopt a prompt-
learning strategy (Zhou et al., 2022; Mehta et al.,
2025), in which learnable condition prompts are
appended to the textual input, as illustrated in Fig-
ure 1. Specifically, for the concept score sjck , the
input text pjk is constructed as:

pjk = [t1] [t2] . . . [tq] [yj ] [ck] (3)

where [yj ] and [ck] denote the tokenized cate-
gory and concept name, respectively, while each
ti ∈ { 1, 2, ...q} is a learnable vector with the same
dimensionality as CLIP word embeddings. These
learnable tokens are shared across all labels and
concepts to prevent information leakage. The final
score is computed as I(xi) · T (pjk), which consti-
tutes an entry in the overall concept matrix RN×M .

Editable Matrix. CBMs provide interactivity (Koh
et al., 2020) through editable scores and weights,
but may activate concepts that contradict factual
knowledge (Oikarinen et al., 2023). We propose
an editable matrix E to constrain false positive
concepts ck associated with label yj , defined as:

Ejk =

{
1, if ck /∈ yj ,

0, if ck ∈ yj .
(4)

where ck /∈ yj indicates that concept ck is factu-
ally incompatible with category yj under any cir-
cumstances. The matrix E encodes the factual
relevance of each concept-label pair, determined
automatically by our LLM-based Concept Agent
(described in Section 3.4). To suppress factual false
positives, we enforce:

sjck = min(sjck , 0), where Ejk = 1 (5)

which sets the concept score to zero for any label-
concept pair deemed invalid by the editable matrix.
Objective Function. The model is trained using a
binary cross-entropy loss computed for each sam-
ple:

− 1

N

N∑

j=1

[
Wpyi log(ŷi)+(1−yi) log(1−ŷi)

]
(6)

where N is the number of labels, yi is the ground-
truth label for input image xi, and ŷi = σ(sjy) is the
predicted probability after applying the Sigmoid
activation. The positive class weight Wp = N com-
pensates for label imbalance within each sample.
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3.2 Overview of the Concept Agent

The Concept Agent is designed to construct a con-
cept bank tailored to downstream image data, aim-
ing to ensure sufficiency while minimizing redun-
dancy by automatically optimizing the number of
concepts. Figure 2 depicts the structure and overall
workflow of the proposed agent, which comprises
three key modules: memory, action, and planning.

The action module equips the agent with visual
perception, enabling direct interaction with the en-
vironment. It is responsible for generating, select-
ing, and verifying concepts, as well as choosing in-
stances that serve as feedback environments via Co-
CoBMs. The planning module processes feedback
to evaluate concept-label associations, removes re-
dundant concepts, and supplements missing ones
by guiding the action module. The memory module
logs interaction history and maintains versioned
updates of the concept bank. The agent refines
the concept bank iteratively until all labels can be
reliably identified after eliminating redundancies.

3.3 Memory Module

The memory module maintains structured lists of
generated concepts (Mg), deleted concepts (Md),
and fact-verified concept-label pairs (Mf ). It also
stores the updated concept bank after each itera-
tion. This design enables the agent to perform read,
write, and delete operations during action execu-
tion and planning, providing long-term, traceable
memory to support iterative refinement.

3.4 Action Module

Concept Generation. We prompt LLMs with cate-
gory names to generate candidate concept lists. The
prompt template is as follows (omitting detailed
instructions on concept constraints and output for-
mat): What are the helpful visual features to dis-
tinguish [CLS] from other [S-CLS]? Here, [CLS]
denotes the category name and [S-CLS] refers to
its superclass (if known), or general object cate-
gories otherwise. For example, in the CUB dataset,
the class [CLS] may be Cardinal, while the super-
class [S-CLS] is bird. To avoid duplicate concepts
during iteration, if a deleted concept cj ∈ Md was
previously generated by the same [CLS] prompt, it
is appended to the prompt to prevent regeneration.
Concept Selection. This action selects a fixed num-
ber of concepts from the candidate pool to augment
the current concept bank. We adopt the learning-
to-search method proposed by Yan et al. (2023a),

which learns a dictionary to approximate a sub-
set of concepts (Oord et al., 2017), and applies a
classification head to project the dictionary onto
N labels, trained by categorical cross-entropy loss.
In our setting, if the planning module identifies a
subset n ∈ N of unidentifiable labels, the classifi-
cation head is modified to predict |n|+ 1 classes,
where N \n is grouped into a single negative class.
Fact Verification. It verifies each concept-label
pair and updates the editable matrix E for Co-
CoBMs according to Equation 4. We prompt an
LLM with a concept ck and a label yj using a
multiple-choice question (MCQ) to assess the rel-
evance of ck to images annotated with yj . The re-
sponse options are: critical feature (ck ∈ yj), occa-
sionally present (ck ∈ yj), and unrelated (ck /∈ yj).
The matrix entry Ejk is set to 1 if the concept is
judged as either a critical feature or occasionally
present, and 0 otherwise.
Instance Selection. To build a few-shot environ-
ment that enhances perceptual efficiency and better
reflects real-world scenarios, we extract representa-
tive samples from the training set. These instances
are selected via K-Means Clustering (Arthur and
Vassilvitskii, 2007) applied to the image features
I(X ), yielding β clusters per label. The cluster
centroids are used as βN fixed instances across it-
erations, thereby stabilizing the grounding process.
Environment Perception. It employs the proposed
CoCoBMs as a tool to interact with the environ-
ment, represented by the pre-selected instances.
These instances are used to optimize the parame-
ters of CoCoBMs, with the resulting validation set
scores serving as environmental feedback. Notably,
this feedback depends solely on the concept scores
and is independent of the image labels.

3.5 Feedback-based Concept Bank Planning
The agent evaluates concept scores on the valida-
tion set as feedback, treating each concept as an
atomic unit to assess its contribution within the
overall concept bank. This analysis allows the plan-
ning module to identify and remove redundant con-
cepts, while detecting gaps where certain labels
lack identifiable concepts. These insights guide the
action module in iteratively refining the concept
bank to address such deficiencies.
Score Activation Pattern. For each concept c, let
Sc = {sji} ∈ RK×N denote its contribution scores
on the validation set, where sji is the score of the
ith sample for the jth label, K is the number of
validation samples, and N is the number of labels.
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We first normalize the scores of each sample to
the range [−1, 1] using Equation 7, categorizing
the concept’s contribution to each label as positive,
negative, or neutral.

s̃ji =





sji

max{sni
∣∣sni >0, n∈[1,N ]}

, if sji > 0

sji

max{|sni |
∣∣sni <0, n∈[1,N ]}

, if sji < 0

0, if sji = 0

(7)

We then compute the average normalized score for
each label to obtain the score pattern Pc

sc:

Pc
sc =

[
s̄1c , . . . , s̄

N
c

]
,where s̄jc =

1

K

K∑

i=1

s̃ji (8)

The final binary score activation pattern P c
act =

[ac1, . . . , a
c
N ] is obtained by thresholding:

acj =

{
1, if s̄jc > ta

0, otherwise
(9)

where ta ∈ [0, 1] is a threshold controlling con-
cept activation. When ta = 1, only the label
with the highest contribution is activated; when
ta = 0, all labels with non-zero contributions are
retained. This label-specific activation is unique to
CoCoBMs, as original CBMs share concept scores
across all labels, making it impossible to isolate
contributions at the label level.
Redundant Concept. We categorize redundancy
into two cases: (1) the concept does not contribute
to any label when activated (i.e.,

∑N
j=1 a

c
j = 0);

(2) for a concept ci, there exists another con-
cept cj with an identical binary activation pattern
(P i

act = P j
act). To assess redundancy, we compute

the Hadamard product of each concept’s activation
pattern and contribution scores (i.e., P i

sc · P i
act and

P j
sc · P j

act) and calculate the Manhattan distance
between them. If the distance is below a threshold
tm and ci has a lower total positive contribution,
defined as the sum of elements in the Hadamard
product (i.e.,

∑
(P i

sc ·P i
act) <

∑
(P j

sc ·P j
act)), then

ci is considered redundant and only cj is retained.
Insufficient Concept. For each label, we analyze
its support from the current concept set. A label
is deemed unidentifiable if: (1) no concept is acti-
vated for it; or (2) it shares identical set of activated
concepts with another label. These labels are for-
warded to the action module to guide the generation
of additional concepts.

If no missing concepts are detected, the agent ter-
minates the iteration process and trains CoCoBMs
on the full dataset to obtain the final performance.

4 Experiments

4.1 Datasets

We evaluate and benchmark our approach on 6
datasets of diverse scales and challenges, follow-
ing the dataset partitioning strategy of Yan et al.
(2023a): CUB (Wah et al., 2011), CIFAR-10
and CIFAR-100 (Krizhevsky, 2009), Food-101
(Bossard et al., 2014), Flower (Nilsback and Zisser-
man, 2008) and Oxford-Pets (Parkhi et al., 2012).

4.2 Evaluations

Performance is evaluated in terms of accuracy and
interpretability. Accuracy is measured using the
standard classification metric, and interpretability
is quantitatively assessed via a novel LLM-based
approach.
Interpretability. We define positively contributing
concept scores as reasoning evidence that supports
the model’s prediction, offering interpretable in-
sights for humans. Interpretability is evaluated at
the label level from two complementary aspects:
truthfulness and distinguishability.

Let ŷj = {sjck} denote the predicted label ŷj of
a given sample along with the corresponding con-
cept scores, where sjck is the score of concept ck
for the predicted jth label, and k ∈ {1, . . . ,M}.
For scores where sjck > 0, we apply local min-
max normalization and set all non-positive scores
to zero. Next, we compute the mean of the normal-
ized scores across all validation samples to obtain
a global contribution profile for each label. Global
min-max normalization is then applied to the ag-
gregated concept scores, and concepts are ranked
by their normalized contributions s̃jck . The final ex-
planation for label prediction ŷj across the dataset
is thus represented as an ordered list of concepts
[c1, . . . , cp], where p ≤ M .
Truthfulness. This metric evaluates whether the
concepts that support the predicted labels are con-
sistent with objective real-world facts. To bet-
ter reflect practical reasoning, the evaluation fo-
cuses on combinations of relevant concepts rather
than individual ones. Given that concepts vary in
importance, we define a set of thresholds tc =
{0, 0.25, 0.50, 0.75, 1} to enable hierarchical eval-
uation based on contribution strength. At each
threshold level, we select the subset of concepts
[c1, . . . , cp] satisfying s̃jck > tc. When tc = 1,
only the most impactful concepts are evaluated;
when tc = 0, all positively contributing concepts
are included. For each threshold, we construct an
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Figure 3: Comparison with state-of-the-art CBMs and black-box models. The legend follows the format: method
(#concepts used). For example, LM4CV (2n) indicates using twice #labels as concepts for each dataset. Red arrows
mark the #concepts used by our method and LF-CBM. Marker size reflects the relative size of each concept bank.

MCQ to prompt an LLM for judgment. Each MCQ
provides two options: (1) the concept combination
aligns with objective facts; or (2) most concepts
are irrelevant or contradictory.
Distinguishability. This metric assesses whether
the provided concepts can effectively distinguish
among labels. We prompt an LLM with a concept
set and a list of labels to identify the most appro-
priate one. To construct distractor options, we first
compute textual similarity between label names
using RoBERTa embeddings (Liu et al., 2019), se-
lecting the top 8 most similar labels. Likewise,
visual similarity is computed using the CLIP image
encoder by averaging image representations per
label. Based on these two similarity rankings, we
create two MCQs per modality: one using the top
4 and another using the bottom 4 similar labels as
distractors, with option order randomized. An ad-
ditional MCQ includes 4 randomly sampled labels
and the correct answer. In total, each evaluation
consists of 5 MCQs, each with 5 options.

Thus, interpretability for each label is assessed
using 10 MCQs, with 5 for truthfulness and 5 for
distinguishability. The final score is calculated as
the arithmetic mean of these two metrics. To ensure
fairness and reproducibility, all MCQs remain fixed
for each dataset during evaluation.

4.3 Implementation Details

We use CLIP ViT-B/32 as the backbone for Co-
CoBMs and all baseline models. Following Zhou
et al. (2022), the number of learnable tokens in

conditional learning is set to 8. The batch size is
configured to 2,048 across all datasets. All models
are trained using the Adam optimizer (Kingma and
Ba, 2015) with a constant learning rate of 0.01.

The Concept Agent prompts the GPT-4o API
(Hurst et al., 2024) for concept generation and veri-
fication. The number of selected concepts equals
the number of prompt labels. In the few-shot feed-
back phase, 16 samples are used as instances. A
threshold of ta = 0.1 is empirically chosen to iden-
tify feedback-activated concepts. Concept pairs
with a Manhattan distance below tm = 0.3 are con-
sidered redundant. For evaluation, GPT-4-turbo is
prompted to answer MCQs, each repeated 3 times,
with the majority vote taken as the final result.

4.4 Baselines

We compare our approach with SOTA CBMs that
construct concept banks using LLMs, including
Label-free CBMs (Oikarinen et al., 2023), LaBo
(Yang et al., 2023) and LM4CV (Yan et al., 2023a).
To illustrate that CBMs can achieve high accuracy
without interpretability given a sufficiently large
concept set, we also include random-word concept
banks as a non-interpretable baseline. For LaBo,
we experiment with 1, 2 and 3 concepts per label.
For concise LM4CV, we build concept banks sized
at 0.6×, 1×, and 2× the number of labels. Publicly
released concept banks provided by these work are
used. As black-box baselines, we include image
feature-based linear probes and CLIP-based prompt
learning (Zhou et al., 2022) with 8 learnable tokens.
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Figure 4: Effect of sample size on the classification accu-
racy (Acc%) and interpretability (Inte%) of CoCoBMs.
The x-axis indicates the number of samples.

4.5 Accuracy vs. Interpretability Trade-Off

Figure 3 shows the evaluation results of our Con-
cept Agent in comparison with CBM baselines and
black-box models across six datasets.
Accuracy. Under our configuration, the number of
concepts determined by the Concept Agent approx-
imately equals the number of labels. For a fair com-
parison, we evaluate against LaBo-n and LM4CV-
n, where n denotes the number of labels. Our
method achieves an average accuracy gain of 6.15%
over LaBo-n across five datasets. Remarkably, it
still outperforms LaBo-3n by 0.51% on average,
despite LaBo using three times as many concepts.
Similarly, our approach outperforms LM4CV-n by
5.97% and LM4CV-2n by 3.21%. Compared to LF-
CBM, which uses significantly more concepts (e.g.,
16× on CIFAR-10), our method achieves a 1.36%
higher average accuracy. These results demonstrate
that our method delivers superior classification per-
formance with a much more compact concept bank.
Our method narrows the performance gap between
CBM-style models and black-box models, reduc-
ing it to 3.45% relative to linear probing and 2.44%
relative to prompt learning.
Interpretability. Our approach also substantially
enhances interpretability, achieving an average
score of 77.46%, with truthfulness and distinguisha-
bility scores of 81.59% and 73.34%, respectively.
This represents an approximately 30% improve-
ment over LM4CV-2n, demonstrating superiority
over existing CBM-based models. We also show
that CBMs can still attain strong classification ac-
curacy when using a concept bank composed of
random words with 512 concepts, emphasizing the
need for rigorous interpretability evaluation.

Dataset Acc (Sta → Dyn) Inte (Sta → Dyn)
CIFAR-100 72.67 → 74.63 67.90 → 79.30

Flower 87.45 → 89.51 70.59 → 82.35
Food 85.31 → 85.23 70.89 → 80.00

Table 1: Accuracy (Acc%) and interpretability (Inte%)
comparison between static (Sta) grounding and dynamic
(Dyn) grounding. Static grounding is based on the ini-
tialized concept bank in a one-directional workflow.

Dataset Acc (w/ E → w/o E) Inte (w/ E → w/o E)
CIFAR-100 74.63 → 76.95 79.30 → 39.60

Flower 89.51 → 89.61 82.35 → 35.59
Oxford-Pets 89.62 → 89.94 68.92 → 39.46

Table 2: Ablation results on accuracy (Acc%) and inter-
pretability (Inte%) between CoCoBMs with and without
editable matrix (E) across three datasets.

It reveals that our method consistently trends
towards the top-right region across all datasets, re-
flecting a better trade-off between accuracy and
interpretability than existing SOTA CBMs.

4.6 Ablation Study

Interpretability in Few-shot Learning. The agent
refines the concept bank through feedback-driven
optimization in a few-shot environment. As shown
in Figure 4, evaluation on few-shot samples using
the finalized concept bank demonstrates that accu-
racy improves with increasing sample size, while
interpretability remains stable with only minor fluc-
tuations. These results highlight the model’s robust-
ness in maintaining interpretability under limited
data conditions, while enhancing perceptual effi-
ciency during feedback.
Dynamic Grounding vs. Static Grounding. To
assess the effectiveness of dynamic grounding, we
compare the adaptively refined concept bank with
its initial static version. As shown in Table 1,
incorporating environment feedback significantly
enhances interpretability, yielding an average im-
provement of 10.76%. While a slight drop in ac-
curacy is observed on the Food dataset, the overall
classification accuracy improves across datasets.
Editable Matrix. We evaluate the effect of remov-
ing the editable matrix from CoCoBMs. As shown
in Table 2, the editable matrix slightly constrains
accuracy but substantially improves interpretability
by incorporating factual knowledge from LLMs.
Without the editable matrix, the interpretability
of our method becomes comparable to baseline
models. These results suggest that while condi-
tion learning and category-specific scoring enhance
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Figure 5: Case Study. Left: Concept bank evolution on CIFAR-10 (3rd iteration omitted), concluding after 4 rounds
with 9 final concepts. The x-axis of the Action module denotes the number of labels used to prompt the LLM, total
generated concepts, and selected concepts. Right: Label-level concepts for Newfoundland Dog in Oxford-Pets,
ranked by normalized contribution. Bottom right: MCQs with distractors based on textual and visual similarity.

classification performance, they contribute less to
interpretability in the absence of factual constraints.

4.7 Case Study

Figure 5 illustrates the iterative process by which
the Concept Agent dynamically grounds a concept
bank on the CIFAR-10 dataset. After four itera-
tions, the final bank contains nine concepts. Dur-
ing this process, inactive concepts, those with min-
imal contributions to any label, are removed. This
reveals a limitation of LLM-based static concept
grounding: although concepts are derived from
label names, some do not appear in downstream
images due to dataset bias or remain undetected
due to CLIP pretraining bias. We also observe that
some redundant concepts are removed due to identi-
cal activation patterns and mutually low Manhattan
distances, suggesting that existing selection algo-
rithms may still yield functionally similar concepts.

For categories with insufficient concepts, we
identify semantically similar label pairs that are
difficult to distinguish and align with human per-
ception, such as cat versus dog (both pets), automo-
bile versus truck (both vehicles), and bird versus
airplane (visually similar). These findings demon-
strate the agent’s ability to uncover confounding
label pairs that can guide further refinement and

expansion of the concept bank. We additionally
observe that removing inactive concepts can leave
some labels without any associated concepts. The
agent detects and compensates for these missing-
label cases, highlighting its capacity to repair and
maintain a complete concept bank.

The right side of Figure 5 presents a case study
of the Newfoundland Dog from the Oxford-Pets
dataset, illustrating seven concepts that are both
factually grounded and contribute to its recognition.
Concepts are ranked by normalized contribution
scores, and thresholds are defined to enable hierar-
chical evaluation of truthfulness. The bottom-right
section presents distractors of varying difficulty,
generated via text and image similarity, posing
greater challenges to distinguishability evaluation.

5 Conclusion

We present an LLM-driven Concept Agent that
dynamically adjusts the concept bank based on
environmental feedback to determine the optimal
number of concepts. The agent uses our proposed
CoCoBMs as a tool to perceive, enabling concept-
based interpretable image classification. Our ap-
proach not only improves classification accuracy
but also significantly enhances the interpretability
through a novel quantitative evaluation metric.
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Limitations

Our approach utilizes open-source LLMs for con-
cept generation. However, evaluating the internal
knowledge of LLMs and managing the inherent
randomness in concept generation, both of which
may affect the performance and evaluation of con-
cept agents, remains open challenges.

In the fact verification phase, all possible con-
cept–category pairs are validated, which limits the
scalability of our method. This limitation stems
from the nature of traditional CBMs, which re-
quire scoring all concepts in the bank to produce
final predictions. To mitigate this, we explored
a filtering strategy using CLIP’s modality align-
ment to preselect concept–category pairs for ver-
ification. However, our experiments showed that
this approach substantially increases the number of
agent iterations, leading to higher computational
costs compared to exhaustive enumeration.
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A Prompt Templates

Prompt for Concept Generation (Initialization and Unidentifiable Labels.)

What are the helpful visual features to distinguish "[ class name]" from other "[ superclass ]"?

Each feature should be a longish modifier noun phrase. The noun should represent a single visually

observable aspect , depicting one characteristic or attribute. The modifiers should be rich and specific ,

highlighting the unique presentation of this aspect and avoiding vague terms like "distinctive" or "

signature ".

Do not use the word "[ class name]" or any specific instance names from "[ class name ]".

List each feature on a new line with no additional content or numbering.

Note: Please ensure that your listed features do not overlap with the following features:

Prompt for Concept Generation (Indistinguishable Labels)

What are the helpful visual features to distinguish between "[ class name list ]"?

Each feature should be a longish modifier noun phrase. The noun should represent a single visually

observable aspect , depicting one characteristic or attribute. The modifiers should be rich and specific ,

highlighting the unique presentation of this aspect and avoiding vague terms like "distinctive" or "

signature ".

List each feature on a new line with no additional content or numbering.

Note: Please ensure that your listed features do not overlap with the following features:

Prompt for Fact Verification

Is the phrase "[ concept ]" a feature that helps identify the presence of "[ class name]" in photos?

Select the most appropriate option without providing an explanation.

A. This feature is critical and highly prominent.

B. This feature may occasionally appear , but it is typically not significant.

C. This feature is unrelated to the described object and unhelpful for identification.

Prompt for Evaluation (Truthfulness)

I have a batch of images of "[class name ]". Someone has summarized several critical features , ranked by

prominence (with the most prominent features listed first) for recognizing "[ class name ]":

"[ feature list]"

Please evaluate whether the summarized features align with objective facts or real -world knowledge?

Select the most appropriate option without providing an explanation.

A. Overall aligns with facts.

B. Most features do not align with facts or are contradictory to each other.

Prompt for Evaluation (Distinguishability)

I have a batch of images characterized by the following features , ranked by prominence (with the most

prominent features listed first):

"[ feature list]"

Which of the following "[ superclass ]" is most likely to appear in these images? Please select the most

appropriate answer without providing an explanation.

A. [A]; B. [B]; C. [C]; D. [D]; E. [E]

Figure 6: Prompt templates used in the Concept Agent’s action module, and interpretability evaluation templates.
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