
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 11818–11835
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Croppable Knowledge Graph Embedding

Yushan Zhu♠♢, Wen Zhang♠♢, Zhiqiang Liu♠♢, Mingyang Chen♠,
Lei Liang♣, Huajun Chen♠♢♡∗

♠ Zhejiang University ♣Ant Group
♢ Zhejiang University - Ant Group Joint Laboratory of Knowledge Graph

♡ Zhejiang Key Laboratory of Big Data Intelligent Computing
{yushanzhu, zhang.wen, zhiqiangliu, mingyangchen, huajunsir}@zju.edu.cn

Abstract
Knowledge Graph Embedding (KGE) is a com-
mon approach for Knowledge Graphs (KGs)
in AI tasks. Embedding dimensions depend
on application scenarios. Requiring a new di-
mension means training a new KGE model
from scratch, increasing cost and limiting ef-
ficiency and flexibility. In this work, we pro-
pose a novel KGE training framework MED.
It allows one training to obtain a croppable
KGE model for multiple scenarios with dif-
ferent dimensional needs. Sub-models of re-
quired dimensions can be directly cropped
and used without extra training. In MED,
we propose a mutual learning mechanism to
improve the low-dimensional sub-models and
make high-dimensional sub-models retain the
low-dimensional sub-models’ capacity, an evo-
lutionary improvement mechanism to promote
the high-dimensional sub-models to master the
triple that the low-dimensional sub-models can
not, and a dynamic loss weight to adaptively
balance the multiple losses. Experiments on 4
KGE models across 4 standard KG completion
datasets, 3 real-world scenarios using a large-
scale KG, and extending MED to the BERT
language model demonstrate its effectiveness,
high efficiency, and flexible extensibility.

1 Introduction

Knowledge Graphs (KGs) consist of triples in the
form of (head entity, relation, tail entity), abbre-
viated as (h, r, t). KGs are widely used in recom-
mendation systems (Zhu et al., 2021), information
extraction (Daiber et al., 2013), question answer-
ing (Diefenbach et al., 2018), etc. A common KG
application way is knowledge graph embedding
(KGE) (Bordes et al., 2013; Sun et al., 2019b),
which maps KG entities and relations into continu-
ous vector spaces for various tasks.

Higher-dimensional KGEs have more expressive
power and better performance but come with more
parameters, demanding more storage and comput-
ing resources (Zhu et al., 2022; Sachan, 2020). The

Figure 1: Diverse KGE dimensions for a KG.

suitable KGE dimensions vary by device or sce-
nario. As Fig. 1 shows, large remote servers can
support high-dimensional KGEs, while small-to-
medium terminal devices like in-vehicle systems or
smartphones can only handle low-dimensional ones
due to resource limits. Thus, people prefer training
high-quality KGEs with appropriate dimensions.
However, a new KGE must be trained from scratch
when a new dimension is needed. Especially for
low-dimensional KGEs, model compression tech-
niques like knowledge distillation (Hinton et al.,
2015; Zhu et al., 2022) are required to ensure per-
formance. This raises training costs and restricts
KGE’s efficiency and flexibility across scenarios.

Thus a new concept "croppable KGE" is pro-
posed and we are interested in the research question
that is it possible to train a croppable KGE, with
which KGEs of various required dimensions can
be cropped out of it and directly used without
extra training, and perform well?

In this work, our croppable KGE learning idea
is to train an entire KGE with multiple different-
dimensional sub-models sharing embedding pa-
rameters and trained simultaneously. The aim is
for low-dimensional sub-models to benefit from
high-dimensional ones, and high-dimensional sub-
models to retain low-dimensional ones’ ability and
learn what they can’t. Based on this, we pro-
pose a croppable KGE training framework MED,
with three main modules: Mutual learning mecha-
nism, Evolutionary improvement mechanism, and
Dynamic loss weight. Specifically, the mutual
learning mechanism, based on knowledge distil-
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lation, enables neighbor sub-models to learn from
each other, improving low-dimensional sub-model
performance and helping high-dimensional ones
retain low-dimensional abilities. The evolutionary
improvement mechanism helps high-dimensional
focus on and master triples that low-dimensional
ones can’t correctly predict. The dynamic loss
weight adaptively balances sub-models’ losses ac-
cording to dimension to enhance overall perfor-
mance.

We evaluate the effectiveness of MED by im-
plementing it on four typical KGE methods and
four standard KG datasets. We prove its practical
value via a real-world large-scale KG and down-
stream tasks, and demonstrate its extensibility on
BERT (Devlin et al., 2019) and GLUE (Wang et al.,
2019) benchmarks. Experimental results show that:
(1) MED trains a croppable KGE for various di-
mensional needs, with high-performing, parameter-
shared sub-models ready for direct use. (2) MED
has far higher training efficiency than independent
training or knowledge distillation. (3) MED can
be extended to other neural networks and performs
well. (4) The three modules in MED are crucial for
optimal performance. In summary, our contribu-
tions are as follows:

• We introduce the research question and task of
training croppable KGE, allowing direct use
of differently-dimensional KGEs.

• We propose a novel framework MED, includ-
ing a mutual learning mechanism, an evolu-
tionary improvement mechanism, and a dy-
namic loss weight, to ensure the overall per-
formance of all sub-models.

• We show that MED’s sub-models perform
well, with low-dimensional ones outperform-
ing KGEs trained by SOTA distillation meth-
ods. MED also shows good performance and
extensibility in real-world applications and
other types of neural networks.

2 Related Work

This work is to achieve a croppable KGE for dif-
ferent dimensional needs. A common way to get
a good-performance KGE of the target dimen-
sion is using knowledge distillation with a high-
dimensional powerful teacher KGE. So, we focus
on two relevant research areas: knowledge graph
embedding and knowledge distillation.

2.1 Knowledge Graph Embedding

Knowledge graph embedding (KGE) maps KG en-
tities and relations into continuous vector spaces
for downstream tasks. TransE (Bordes et al.,
2013), a representative translation-based KGE,
treats relations as translations between entities.
Its variants include TransH(Wang et al., 2014),
TransR(Lin et al., 2015), TransD(Ji et al., 2015),
etc. RESCAL(Nickel et al., 2011), based on vector
decomposition, was followed by improvements like
DistMult(Yang et al., 2015), ComplEx(Trouillon
et al., 2016), and SimplE(Kazemi and Poole, 2018).
RotatE(Sun et al., 2019b), a rotation-based method,
views relations as rotations between entities, simi-
lar to QuatE(Zhang et al., 2019) and DihEdral(Xu
and Li, 2019). PairRE(Chao et al., 2021) uses
two relation vectors for complex pattern encod-
ing. With neural network development, KGEs
based on graph neural networks (GNNs) (Dettmers
et al., 2018; Nguyen et al., 2018; Schlichtkrull et al.,
2018; Vashishth et al., 2020) also emerged. While
KGEs are simple and effective, a key challenge re-
mains: Different scenarios demand different KGE
dimensions based on device resources. Training
a new KGE model from scratch for each dimen-
sion requirement hikes training costs and restricts
flexibility in serving diverse scenarios.

2.2 Knowledge Distillation

High-dimensional KGEs possess strong expressive
power thanks to numerous parameters. However,
they demand substantial storage and computing
resources, rendering them unsuitable for all sce-
narios, particularly those involving small devices.
To address this, a prevalent approach is to com-
press a high-dimensional KGE into target dimen-
sion via knowledge distillation (Hinton et al., 2015;
Mirzadeh et al., 2020) and quantization (Bai et al.,
2021; Stock et al., 2021) technology.

Quantization replaces continuous vector repre-
sentations with lower-dimensional discrete codes.
TS-CL (Sachan, 2020) was the first to apply quanti-
zation in KGE compression. LightKG (Wang et al.,
2021a) uses a residual module to create diversity
in codebooks. Yet, as quantization doesn’t boost
inference speed, it’s still not suitable for devices
with limited computing resources.

Knowledge distillation (KD) is widely used in
Computer Vision (Mirzadeh et al., 2020) and Natu-
ral Language Processing (Devlin et al., 2019; Sun
et al., 2019a) to shrink model size and boost infer-
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ence speed. Its core is using a large teacher model’s
output to guide a small student model’s training.
DualDE (Zhu et al., 2022) is a representative KD-
based work to transfer knowledge from high- to
low-dimensional KGE, considering teacher-student
mutual influences. MulDE (Wang et al., 2021b)
transfers knowledge from multiple hyperbolic KGE
models to one student. ISD (Zhou et al., 2022b)
improves low-dimensional KGE by playing teacher
and student roles alternatively. IterDE (Liu et al.,
2023) introduces iterative distillation for smooth
knowledge transfer. Other KG-related distillation
works include PMD (Fan et al., 2024), which ap-
plies distillation to pre-trained language models
for KG completion, IncDE (Liu et al., 2024), us-
ing distillation between same-dimensional models
at different times for incremental learning, and
SKDE (Xu et al., 2024), which proposes self-
knowledge distillation to avoid a complex teacher
model. Among these, DualDE (Zhu et al., 2022)
and IterDE (Liu et al., 2023) are most relevant
to our work as they compress high-dimensional
teacher into low-dimensional student. In this
work, we propose a novel KD-based KGE train-
ing framework MED, one training can obtain a
croppable KGE that meets multiple dimensional
requirements.

3 Preliminary

KGE method Scoring Function f(h, r, t)

TransE (Bordes et al., 2013) −∥h+ r− t∥
SimplE (Kazemi and Poole, 2018) 1

2(< hH , r, tT > + < tH , r−1, hT >)
RotatE (Sun et al., 2019b) −∥h ◦ r− t∥
PairRE (Chao et al., 2021) −

∥∥h ◦ rH − t ◦ rT
∥∥

Table 1: Score functions.

Knowledge graph embedding (KGE) methods
use a scoring function f to represent entities and
relations in a continuous vector space. Given a
KG G = (E ,R, T ) where E , R and T are sets
of entities, relations and observed triples, for a
triple (h, r, t) (h ∈ E , r ∈ R, t ∈ E), we use the
triple scoring function s(h,r,t) = f(h, r, t) (with
entity and relation embeddings as input) to mea-
sure triple plausibility in the embedding space. Ta-
ble 1 summarizes scoring functions of some popu-
lar KGE methods, where ◦ is the Hadamard prod-
uct, < x1, ..., xk >=

∑
i x

1
i ...x

k
i is the generalized

dot product. Higher triple scores mean the model is
more likely to consider triples true. The optimiza-

Figure 2: Overview of MED.

tion objective of the KGE model is

LKGE = −
∑

(h,r,t)∈T ∪T −
y log σ(s(h,r,t))

+(1− y) log(1− σ(s(h,r,t))),

(1)

where T − = E ×R× E \ T is negative triple set,
σ is Sigmoid function, y is ground-truth label of
(h, r, t), y = 1 for positive and 0 for negative one.

4 MED Framework

As in Fig. 2, our croppable KGE framework MED
contains n sub-models of different dimensions,
Mi(i = 1, 2..., n) with dimension of di. Each
Mi consists of the first di dimensions of the
full embedding. The triple (h, r, t) score from
Mi is si(h,r,t) = f(h[0:di], r[0:di], t[0:di]), where
h[0:di] are the first di elements of vector h. The
parameters of sub-model Mi are shared by higher-
dimensional Mj(i<j⩽n). The number of sub-
models n and each sub-model’s dimension di can
be set per actual needs. For low-dimensional sub-
models, we aim to maximize performance. High-
dimensional sub-models should not only replicate
the capabilities of low-dimensional ones but also
learn what low-dimensional ones can’t, that is,
correctly predicting triples mispredicted by low-
dimensional sub-models. MED is based on knowl-
edge distillation (Hinton et al., 2015; Tang et al.,
2019; Devlin et al., 2019) technique, where stu-
dent fits hard (ground-truth) label and soft label
from teacher simultaneously. In MED, we first
introduce a mutual learning mechanism. This
helps low-dimensional sub-models learn from high-
dimensional ones for better performance, and vice
versa, so high-dimensional sub-models retain the
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capabilities of low-dimensional ones. Next, we
present an evolutionary improvement mechanism
to let high-dimensional sub-models acquire knowl-
edge that low-dimensional ones can’t learn well.
Finally, we train MED with dynamic loss weight to
adaptively balance multiple optimization goals of
sub-models.

4.1 Mutual Learning Mechanism
We consider each sub-model Mi as the student
of its higher-dimensional neighbor Mi+1 for better
performance, as high-dimensional KGEs with more
parameters are more expressive (Sachan, 2020; Zhu
et al., 2022). We also make Mi the student of its
lower-dimensional neighbor Mi−1, enabling the
higher-dimensional sub-model to review and re-
tain the lower-dimensional one’s capabilities. So,
pairwise neighbor sub-models are both teacher and
student, learning from each other. Mutual learning
loss between each pair of neighbor sub-models is

Li−1,i
ML =

∑

(h,r,t)∈T ∪T −
dδ

(
si−1
(h,r,t), s

i
(h,r,t)

)
, 1 < i ⩽ n,

(2)
where si(h,r,t) is the score of triple (h, r, t) from
sub-model Mi, indicating the triple’s existence like-
lihood. dδ is Huber loss (Huber and Peter, 1964)
with δ = 1, often used in KGE knowledge distil-
lation(Zhu et al., 2022). In MED, each sub-model
learns only from its neighbor sub-models. This
not only cuts down training computational com-
plexity but also keeps the dimension gap between
each teacher-student pair relatively small. A large
dimension gap between them can undermine the
distillation effect (Mirzadeh et al., 2020; Zhu et al.,
2022), making our approach crucial and effective.

4.2 Evolutionary Improvement Mechanism
In knowledge distillation (Hinton et al., 2015), the
hard (ground-truth) label is a key supervision sig-
nal during training. High-dimensional sub-models
need to master triples that low-dimensional sub-
models can not, that is correctly predicting positive
(negative) triples mispredicted as negative (posi-
tive) by low-dimensional sub-models. In MED,
for a triple (h, r, t), sub-model Mi’s optimization
weight for it depends on triple score from Mi−1.

For a positive triple, Mi’s optimization weight
is negatively correlated with the score from Mi−1.
If Mi−1 gives a high score (correctly identifying
it as positive), Mi’s optimization weight for it is
low. If Mi−1 gives a low score (misidentifying

it as negative), Mi’s optimization weight is high
as Mi−1 can’t predict it well. The optimization
weight of Mi for the positive triple is

posih,r,t =





1/|Tbatch|, i = 1
expw1/s

i−1
(h,r,t)∑

(h,r,t)∈Tb
expw1/s

i−1
(h,r,t)

, 1 < i ⩽ n,

(3)

where si−1
(h,r,t) is the score for triple (h, r, t) from

Mi−1, Tb is positive triple set in a batch, and w1 is a
learnable scaling parameter. Conversely, for a neg-
ative triple, Mi’s optimization weight is positively
correlated with the score from Mi−1, as also used
in (Sun et al., 2019b). The optimization weight of
Mi for negative triple is

negih,r,t =





1/|T−
batch|, i = 1
expw2·si−1

(h,r,t)∑

(h,r,t)∈T −
b

expw2·si−1
(h,r,t)

, 1 < i ⩽ n,

(4)

where T −
b is negative triple set in a batch, and w2

is a learnable scaling parameter. The evolutionary
improvement loss of the sub-model Mi is

Li
EI = −

∑

(h,r,t)∈T ∪T −
posih,r,t · y log σ(si(h,r,t))

+negih,r,t · (1− y) log(1− σ(si(h,r,t))),
(5)

In each sub-model, different hard-label loss
weights are set for different triples, and high-
dimensional sub-models focus more on triples low-
dimensional ones can’t learn well.

4.3 Dynamic Loss Weight
As MED optimizes multiple sub-models, we use
dynamic loss weights during training. At first, low-
dimensional sub-models prioritize learning from
high-dimensional ones to improve performance, re-
lying more on soft label information. Thus, for
them, evolutionary improvement loss should be
less than mutual learning loss. Conversely, high-
dimensional sub-models should focus more on
what low-dimensional ones can’t correctly pre-
dict and reduce the impact of low-quality low-
dimensional outputs. They rely more on hard la-
bel information, so their evolutionary improvement
loss should exceed mutual learning loss. For a
teacher-student pair, the mutual learning loss af-
fects both models equally. We set different evolu-
tionary improvement loss weights for sub-models,
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and the final training loss function of MED is

L =

n∑

i=2

Li−1,i
ML +

n∑

i=1

exp(
w3 · di
dn

) · Li
EI , (6)

where w3 is a learnable scaling parameter, and di
is the dimension of the ith sub-model.

5 Experiment

We evaluate MED on typical KGE and GLUE
benchmarks and address these research questions:
(RQ1) Can MED train a croppable KGE at once,
with multiple differently-dimensional sub-models
cropped from it, all performing well? (RQ2)
Can MED yield parameter-efficient KGE models?
(RQ3) Does MED work in real-world applications?
(RQ4) Can MED be extended to non-KGE neural
networks?

5.1 Experiment Setting

5.1.1 Dataset and KGE methods
MED is universal and applicable to any KGE
method with a triple score function. We take 4
common KGE methods in Table 1 as examples:
TransE (Bordes et al., 2013), SimplE (Kazemi
and Poole, 2018), RotatE (Sun et al., 2019b) and
PairRE (Chao et al., 2021).

Dataset #Ent. #Rel. #Train #Valid #Test

WN18RR 40,943 11 86,835 3,034 3,134
FB15K237 14,541 237 272,115 17,535 20,466
CoDEx-L 77,951 69 551,193 30,622 30,622
YAGO3-10 123,143 37 1,079,040 4,978 4,982
SKG 6,974,959 15 50,775,620 - -

Table 2: Statistics of datasets.

We conduct comparison experiments on on four
KG completion benchmark datasets: two com-
mon ones, WN18RR (Toutanova et al., 2015) and
FB15K237 (Dettmers et al., 2018), and two larger-
scale ones, CoDEx-L (Safavi and Koutra, 2020)
and YAGO3-10 (Mahdisoltani et al., 2015). In real-
world scenarios, we apply MED to a large-scale
e-commerce social knowledge graph (SKG) from
Taobao, which has over 50 million social record
triples from about 7 million users. Table 2 presents
dataset statistics.

5.1.2 Evaluation Metric
For link prediction task, we adopt standard metrics
MRR and Hit@k (k = 1, 3, 10) with filter set-
ting (Bordes et al., 2013). For a test triple (h, r, t),
we construct candidate triples by replacing h with
all entities and calculate the triple score rank of

(h, r, t) among candidate triples as the head pre-
diction rank rankh. Likewise, we get the tail pre-
diction rank rankt. We average rankh and rankt
as (h, r, t)’s final rank. MRR is the mean recip-
rocal rank of all test triples, Hit@k is the per-
centage of test triples with rank ≤ k. We use
Effi=MRR/#P (#P is the parameter number) (Chen
et al., 2023) to measure models’ parameter effi-
ciency. We use f1-score and accuracy for user la-
beling task, and normalized discounted cumulative
gain ndcg@k(k = 5, 10) for product recommenda-
tion task.

5.1.3 Implementation
For the link prediction task, we set dn = 640
for the highest-dimensional sub-model Mn and
d1 = 10 for the lowest-dimensional sub-model
M1. We set n = 64 and the dimension gap 10
for every pair of neighbor sub-models. There are
a total of 64 available sub-models of different di-
mensions from 10 to 640 in our croppable KGE
model. The dimension of Mi(i = 1, 2..., 64) is
10 × i. For the user labeling and product rec-
ommendation task, we set n = 3 and train the
croppable KGE containing 3 sub-models: M1 with
d1 = 10 for mobile phone (MB) terminals that are
limited by storage and computing resources, M2

with d2 = 100 for the personal computer (PC), and
M3 with d3 = 500 for the platform’s servers. We
initialize the learnable scaling parameters w1, w2

and w3 in (3), (4) and (6) to 1. We implement
MED by extending OpenKE (Han et al., 2018), an
open-source KGE framework based on PyTorch.
We set the batch size to 1024 and the maximum
training epoch to 3000 with early stopping. For
each positive triple, we generate 64 negative triples
by randomly replacing its head or tail entity with
another entity. We use Adam (Kingma and Ba,
2015) optimizer with a linear decay learning rate
scheduler and perform a search on the initial learn-
ing rate in {0.0001, 0.0005, 0.001, 0.01}. We train
all sub-models simultaneously by optimizing the
uniformly sampled sub-models from the full Crop-
pable model in each step.

5.1.4 Baselines
For each required dimension dr, we extract the
first dr dimensions from our croppable KGE as the
target model and compare it to the KGE models
obtained by 8 baselines of the following 3 types:

• Directly training the target KGE model of re-
quirement dimension dr, referred to as 1) DT.
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The directly trained highest-dimensional KGE
model (dr = dn) is denoted as MDT

max.

• Extracting the first dr dimensions from MDT
max as

the target model, called 2) Ext. We update MDT
max

by arranging 640 dimensions in descending or-
der based on their importance before extracting
as (Molchanov et al., 2017; Voita et al., 2019):
3) Ext-L, the importance for each dimension of
MDT

max is the variation of KGE loss on validation
set after removing it; and 4) Ext-V, the impor-
tance for each dimension is the average absolute
of parameter weights of all entities and relations.

• Distilling the target KGE by KD methods: 5)
BKD (Hinton et al., 2015) is the most basic
one by minimizing the KL divergence of the
output distributions of teacher and student; 6)
TA (Mirzadeh et al., 2020) uses a medium-size
teaching assistant (TA) model as a bridge for
size gap, where TA model has the same dimen-
sion as the directly trained one whose MRR is
closest to the average MRR of teacher and stu-
dent. We also compare with two KD methods
proposed for KGE, which have similar configura-
tions to ours, i.e. compressing high-dimensional
teacher into low-dimensional student: 7) Du-
alDE (Zhu et al., 2022) considers the mutual
influences between teacher and student and opti-
mizes them simultaneously; 8) IterDE (Liu et al.,
2023) enables the KGE model to alternately act
as student and teacher so that knowledge can be
transferred smoothly between high-dimensional
teacher and low-dimensional student. In these
baselines, MDT

max is the teacher, and other settings
including hyperparameters are the same as their
original papers.

5.2 Performance Comparison

We report the link prediction results of some rep-
resentative dimensions in Table 3, more results of
other dimensions and metrics are in Appendix A
and the ablation studies are in Appendix B.

MED outperforms baselines in most settings,
especially at extremely low dimensions. On
WN18RR with d=10, MED achieves an improve-
ment of 14.9% and 15.1% on TransE, 8.4% and
6.6% on RotatE, 29.4% and 10.6% on PairRE
than the best MRR and Hit@10 of baselines. A
similar trend is seen on FB15K237. This suc-
cess stems from MED’s rich knowledge sources
for low-dimensional models: For sub-model Mi,

Mi+1 is a direct teacher, and Mi+2 can indirectly
influence Mi via Mi+1. In theory, all higher-
dimensional sub-models can transfer knowledge
to lower-dimensional ones through stepwise propa-
gation. Although this propagation may harm high-
dimensional models with low-quality knowledge
from low-dimensional ones, MED’s evolutionary
improvement mechanism mitigates the damage, al-
lowing high-dimensional models to compete with
directly trained KGEs (Fig. 3). We also note that
Ext-based methods are highly unstable, perform-
ing worse than DT in most cases, suggesting that
dimension importance alone doesn’t ensure sub-
model performance.

Figure 3: Results of different dimensions for PairRE on
WN18RR (left) and FB15K237 (right).

5.3 Parameter efficiency of MED
In Table 4, we compare our sub-models of suit-
able low dimensions to parameter-efficient KGEs
especially proposed for large-scale KGs including
NodePiece (Galkin et al., 2022) and EARL (Chen
et al., 2023). With a similar number of model pa-
rameters, MED’s sub-models outperform special-
ized parameter-efficient KGE methods, showing
their parameter efficiency. More crucially, it can
offer different-sized parameter-efficient models for
applications.

5.4 MED in real applications
We apply the trained croppable KGE with TransE
on SKG to three real-world applications: user label-
ing on servers and product recommendation on PCs
and mobile phones. Table 5 shows that our crop-
pable user embeddings outperform all baselines, in-
cluding directly trained (DT), the best baseline Du-
alDE, and a common dimension reduction method
in industry principal components analysis (PCA)
on MDT

max. Notably, the strong performance in the
mobile phone task (constrained by storage and com-
puting resources to a max embedding dimension
of 10) highlights the great practical value of MED.
More application details are in Appendix C.

5.5 Extend MED to Neural Networks
To test our method’s extensibility to other neural
networks, we use BERT (Devlin et al., 2019) as
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WN18RR FB15K237
10d 40d 160d 640d 10d 40d 160d 640d

KGE Method MRR H10 MRR H10 MRR H10 MRR H10 MRR H10 MRR H10 MRR H10 MRR H10

TransE

DT 0.121 0.287 0.214 0.496 0.233 0.531 0.237 0.537 0.150 0.235 0.299 0.477 0.315 0.499 0.322 0.508
Ext 0.125 0.298 0.199 0.468 0.225 0.515 0.237 0.537 0.115 0.211 0.236 0.392 0.286 0.462 0.322 0.508
Ext-L 0.139 0.315 0.224 0.497 0.236 0.534 0.237 0.537 0.109 0.194 0.232 0.381 0.285 0.462 0.322 0.508
Ext-V 0.139 0.309 0.222 0.494 0.236 0.532 0.237 0.537 0.139 0.256 0.237 0.396 0.293 0.466 0.322 0.508
BKD 0.141 0.323 0.226 0.513 0.233 0.531 - - 0.176 0.293 0.303 0.480 0.315 0.501 - -
TA 0.144 0.335 0.226 0.512 0.234 0.533 - - 0.175 0.246 0.303 0.484 0.319 0.504 - -
DualDE 0.148 0.337 0.225 0.514 0.235 0.533 - - 0.179 0.301 0.306 0.483 0.319 0.505 - -
IterDE 0.143 0.332 0.224 0.511 0.236 0.531 - - 0.176 0.285 0.307 0.482 0.317 0.505 - -
MED 0.170 0.388 0.232 0.518 0.236 0.529 0.237 0.537 0.196 0.341 0.308 0.486 0.320 0.505 0.322 0.507

SimplE

DT 0.061 0.126 0.316 0.389 0.409 0.459 0.421 0.481 0.097 0.179 0.236 0.390 0.285 0.458 0.295 0.472
Ext 0.004 0.007 0.160 0.249 0.357 0.401 0.421 0.481 0.037 0.068 0.090 0.144 0.229 0.372 0.295 0.472
Ext-L 0.005 0.006 0.169 0.244 0.398 0.454 0.421 0.481 0.045 0.059 0.083 0.146 0.196 0.316 0.295 0.472
Ext-V 0.004 0.006 0.246 0.317 0.398 0.461 0.421 0.481 0.049 0.069 0.105 0.149 0.224 0.369 0.295 0.472
BKD 0.075 0.156 0.343 0.399 0.414 0.468 - - 0.113 0.204 0.244 0.412 0.287 0.463 - -
TA 0.089 0.189 0.368 0.418 0.415 0.472 - - 0.124 0.221 0.254 0.416 0.290 0.465 - -
DualDE 0.083 0.175 0.386 0.423 0.419 0.475 - - 0.120 0.213 0.258 0.429 0.293 0.466 - -
IterDE 0.077 0.162 0.375 0.419 0.416 0.469 - - 0.120 0.215 0.257 0.427 0.293 0.465 - -
MED 0.111 0.224 0.385 0.431 0.418 0.477 0.421 0.482 0.143 0.267 0.261 0.427 0.291 0.466 0.294 0.470

RotatE

DT 0.172 0.418 0.456 0.556 0.471 0.567 0.476 0.575 0.254 0.424 0.312 0.495 0.322 0.506 0.325 0.515
Ext 0.299 0.378 0.437 0.516 0.467 0.549 0.476 0.575 0.138 0.245 0.251 0.410 0.291 0.465 0.325 0.515
Ext-L 0.206 0.277 0.399 0.487 0.445 0.541 0.476 0.575 0.135 0.243 0.221 0.365 0.280 0.453 0.325 0.515
Ext-V 0.261 0.377 0.337 0.471 0.416 0.532 0.476 0.575 0.160 0.281 0.238 0.393 0.288 0.458 0.325 0.515
BKD 0.175 0.434 0.457 0.556 0.472 0.570 - - 0.277 0.442 0.314 0.503 0.322 0.510 - -
TA 0.177 0.438 0.459 0.558 0.473 0.572 - - 0.280 0.447 0.313 0.501 0.323 0.510 - -
DualDE 0.179 0.440 0.462 0.559 0.473 0.573 - - 0.282 0.449 0.315 0.502 0.322 0.512 - -
IterDE 0.176 0.436 0.459 0.560 0.471 0.569 - - 0.276 0.445 0.317 0.504 0.323 0.512 - -
MED 0.324 0.469 0.466 0.561 0.471 0.574 0.476 0.574 0.288 0.459 0.318 0.504 0.323 0.510 0.324 0.514

PairRE

DT 0.220 0.321 0.415 0.472 0.449 0.534 0.453 0.544 0.182 0.314 0.284 0.452 0.319 0.505 0.332 0.522
Ext 0.152 0.209 0.334 0.463 0.419 0.526 0.453 0.544 0.148 0.222 0.217 0.353 0.294 0.469 0.332 0.522
Ext-L 0.162 0.220 0.363 0.442 0.437 0.523 0.453 0.544 0.150 0.249 0.219 0.333 0.309 0.489 0.332 0.522
Ext-V 0.172 0.260 0.389 0.456 0.441 0.529 0.453 0.544 0.176 0.277 0.229 0.374 0.311 0.490 0.332 0.522
BKD 0.228 0.336 0.421 0.483 0.451 0.536 - - 0.198 0.332 0.288 0.453 0.321 0.508 - -
TA 0.245 0.340 0.426 0.487 0.452 0.537 - - 0.208 0.346 0.292 0.455 0.323 0.509 - -
DualDE 0.242 0.336 0.428 0.495 0.453 0.540 - - 0.207 0.342 0.293 0.456 0.326 0.512 - -
IterDE 0.235 0.336 0.426 0.495 0.450 0.538 - - 0.205 0.340 0.293 0.462 0.324 0.508 - -
MED 0.317 0.376 0.433 0.502 0.451 0.541 0.451 0.542 0.239 0.384 0.303 0.466 0.324 0.510 0.330 0.520

Table 3: MRR and Hit@10 (H10) of some dimensions on WN18RR (WN) and FB15K237 (FB).

FB15k-237 WN18RR CoDEx-L YAGO3-10
Dim #P(M) MRR Hit@10 Effi Dim #P(M) MRR Hit@10 Effi Dim #P(M) MRR Hit@10 Effi Dim #P(M) MRR Hit@10 Effi

RotatE 1000 29.3 0.336 0.532 0.011 500 40.6 0.508 0.612 0.013 500 78 0.258 0.387 0.003 500 123.2 0.495 0.670 0.004
RotatE 100 2.9 0.296 0.473 0.102 50 4.1 0.411 0.429 0.100 25 3.8 0.196 0.322 0.052 20 4.8 0.121 0.262 0.025
+ NodePiece 100 3.2 0.256 0.420 0.080 100 4.4 0.403 0.515 0.092 100 3.6 0.190 0.313 0.053 100 4.1 0.247 0.488 0.060
+ EARL 150 1.8 0.310 0.501 0.172 200 3.8 0.440 0.527 0.116 100 2.1 0.238 0.390 0.113 100 3 0.302 0.498 0.101
+ MED 40 1.2 0.318 0.504 0.265 40 3.2 0.466 0.561 0.146 20 3.1 0.243 0.385 0.078 20 4.9 0.313 0.528 0.064

Table 4: Link prediction results on WN18RR, FB15K237, CoDEx-L and YAGO3-10.

User Labeling Product Recommendation
server (500d) PC terminal (100d) MP terminal (10d)

Method train time acc. f1 ndcg@5 ndcg@10 ndcg@5 ndcg@10
DT 103h 0.889 0.874 0.411 0.441 0.344 0.361
PCA - - - 0.417 0.447 0.392 0.418
DualDE 195h - - 0.423 0.456 0.404 0.433
MED 53h 0.893 0.879 0.431 0.465 0.422 0.451

Table 5: Results on SKG.

an example. We use distillation methods based
on Hugging Face Transformers (Wolf et al., 2020)
as baselines. As in previous works(Sun et al.,
2019a; Tang et al., 2019; Jung et al., 2023; Zhou
et al., 2022a), we perform distillation at the fine-
tuning stage. See Appendix D for more details.
Table 6 shows the results on the GLUE develop-
ment set(Wang et al., 2019). We compare MED
with other KD models of similar speedup or param-
eter number. MED performs competitively on most
tasks against BERT-specialized KD methods. Com-
pared to HAT (Wang et al., 2020a), which has a
similar architecture to ours, MED’s sub-models out-
perform HAT across three parameter levels. Sub-
models with 54M, 17.5M, and 6.36M parameters
show average improvements of 16.3%, 21.7% and
19.7% respectively.

5.6 Analysis of MED
5.6.1 Training efficiency

500 1000 1500 2000
epoch

0.1

0.2

0.3

0.4

M
RR

10d
40d

160d
640d

Figure 4: Sub-models’ MRR during training on
WN18RR with RotatE.

Table 7 reports the training time of getting 64
models of various sizes (d=10, 20, ..., 640). Fig-
ure 4 shows MRR change of MED’s sub-models
during training. For fair comparison, all training is
done on a single NVIDIA Tesla A100 40GB GPU.
For DT, the training time is the sum of directly
training 64 KGE models sequentially. Ext-based
baselines have the same training time, equal to that
of training a dn-dimensional KGE model as dimen-
sion arrangement time is negligible. KD-based
baselines’ training time is the sum of training a
dn-dimensional teacher model and distilling 63 stu-
dent models. On FB15K237, we don’t train all
63 sizes of student models for TA, DualDE, and
IterDE, estimated to take over 400 hours per KGE
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Method #P(M) Speedup MNLI-m
acc.

MNLI-mm
acc.

MRPC
f1/acc.

QNLI
acc.

QQP
f1/acc.

RTE
acc.

STS-2
acc.

STS-B
pear./spear.

BERT†
Base 110 1.0× 84.4 85.3 88.6/84.1 89.7 89.6/91.1 67.5 92.5 88.8/88.5

BERT6-BKD 66 2.0× 82.2 82.9 86.2/80.8 88.5 88.0/91.0 65.4 90.9 88.2/87.8
BERT6-PKD 66 2.0× 82.3 82.6 86.4/81.0 88.6 87.9/91.0 63.9 90.8 88.5/88.1
BERT6-MiniLM 66 2.0× 82.2 82.6 84.6/78.1 89.5 87.2/90.5 61.5 90.2 87.8/87.5
BERT6-RKD 66 2.0× 82.4 82.9 86.9/81.8 88.9 88.1/91.2 65.2 91.0 88.4/88.1
BERT6-FSD 66 2.0× 82.4 83.0 87.1/82.2 89.0 88.1/91.2 66.6 91.0 88.7/88.3
BERT4-BKD 55 2.9× 80.5 80.9 87.2/83.1 87.5 86.6/90.4 65.2 90.2 84.5/84.2
BERT4-PKD 55 2.9× 80.9 81.3 87.0/82.9 87.7 86.8/90.5 66.1 90.5 84.3/84.0
BERT4-MetaDistil 55 2.9× 82.4 82.7 88.4/84.2 88.6 87.8/90.8 67.8 91.8 86.3/86.0
BERT-HAT† 54 2.0× 70.8 71.6 81.2/74.8 65.3 76.1/80.4 52.7 84.3 79.6/80.1
BERT-MED 54 2.0× 82.7 83.3 88.0/84.0 86.8 89.1/90.7 67.2 91.9 87.6/87.2

BERT-HAT† 17.5 4.7× 63.6 64.2 68.4/78.4 61.1 69.0/79.7 47.2 82.9 74.1/75.8
BERT-MED 17.5 4.7× 81.2 82.4 86.1/82.0 86.4 83.8/86.2 64.6 88.2 86.1/86.4

BERT-HAT† 6.36 5.2× 59.9 60.0 66.5/77.3 60.1 66.5/77.1 46.2 81.7 71.9/70.4
BERT-MED 6.36 5.2× 72.6 73.7 84.1/78.1 86.0 79.6/82.7 61.7 86.9 82.8/81.6

Table 6: Results on the dev set of GLUE. The results of knowledge distillation methods for BERT4 and BERT6 are
reported by (Jung et al., 2023; Zhou et al., 2022a) and the †results reported by us.

TransE SimplE RotatE PairRE

WN

DT 74.0 (9.49×) 68.0 (12.14×) 141.0 (11.10×) 67.4 (10.06×)
Ext-based 1.5 (0.19×) 1.3 (0.23×) 2.5 (0.20×) 1.6 (0.24×)
BKD 91.5 (11.73×) 72.0 (12.86×) 163.0 (12.83×) 87.5 (13.06×)
TA 172.0 (22.05×) 142.0 (25.36×) 272.0 (21.42×) 166.0 (24.78×)
DualDE 151.0 (19.36×) 133.0 (23.75×) 240.0 (18.90×) 133.0 (19.85×)
IterDE 140.9 (18.06×) 118.0 (21.07×) 216.0 (17.01×) 124.0 (18.51×)
MED 7.8 (1.00×) 5.6 (1.00×) 12.7 (1.00×) 6.7 (1.00×)

FB

DT 218.0 (10.23×) 179.0 (10.65×) 381.0 (10.73×) 179.0 (9.37×)
Ext-based 4.7 (0.22×) 5.1 (0.30×) 9.5 (0.27×) 3.7 (0.19×)
BKD 248.0 (11.64×) 227.0 (13.51×) 443.0 (12.48×) 231.0 (12.09×)
MED 21.3 (1.00×) 16.8 (1.00×) 35.5 (1.00×) 19.1 (1.00×)

Table 7: Training time (hours).

10d 40d 160d 640d
n train time MRR H10 MRR H10 MRR H10 MRR H10

64 12.7h 0.324 0.469 0.466 0.561 0.471 0.574 0.476 0.574
16 6.2h 0.322 0.467 0.465 0.561 0.473 0.575 0.477 0.576
4 3.3h 0.319 0.463 0.463 0.561 0.475 0.577 0.480 0.578

Table 8: Results of different n.

method. Compared to DT, MED speeds up by up to
10× for 4 KGE methods. Ext-based baselines have
the shortest training time but poor performance and
low practical value. Except for BKD, other KD-
based methods need to optimize both student and
teacher, increasing train cost.

5.6.2 Effect of the number of sub-models
We set the number of different sub-models (n= 64,
16, 4) for RotatE on WN18RR. Table 8 shows that
reducing the number of sub - models boosts high-
dimensional (d=160 and 640) model performance
but lowers that of low-dimensional (d=10 and 40)
models.Training efficiency is nearly linearly related
to the number of models.

5.6.3 Whether high-dimensional sub-models
cover low-dimensional ones’ capabilities

A high-dimensional model retaining lower-
dimensional ones’ ability should correctly predict
all triples the latter can. We calculate the percent-
age of test-set triples where if the smallest sub-
model correctly predicting a triple is Mi, all higher-
dimensional ones (Mi+1, Mi+2, ..., Mn) do too.

Figure 5: The ability retention ratio (ARR).

This result is the ability retention ratio (ARR). We
use Hit@10 to judge correct prediction: Mi pre-
dicts a triple correctly if it scores in the top 10
among candidates. Fig. 5 shows that MED’s ARR
is is much higher than baselines, especially on
FB15K237. This means MED’s high-dimensional
sub-models cover low-dimensional ones’ power,
thanks to the mutual learning mechanism for knowl-
edge review. This advantage of MED provides a
simple way to judge triple difficulty for KGE meth-
ods: triples low-dimensional sub-models predict
may be easy as high-dimensional ones can too,
while those only predicted by high-dimensional
sub-models are difficult.

6 Conclusion

In this work, we propose a novel KGE training
framework, MED, which trains a croppable KGE
in one go. Sub-models of various dimensions can
be cropped from it and used directly without ex-
tra training. In MED, we introduce the mutual
learning mechanism to improve low-dimensional
sub-models and make the high-dimensional sub-
models retain low-dimensional ones’ ability, the
evolutionary improvement mechanism to prompt
high-dimensional sub-models to learn what low-
dimensional ones can’t, and dynamic loss weights
to balance multiple losses adaptively. Experimen-
tal results demonstrate MED’s effectiveness, high
efficiency, and flexible extensibility.
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7 Limitations

As a research paper, we are unable to conduct exper-
iments on all knowledge graph embedding (KGE)
methods. To demonstrate the generality of the
method proposed in this paper, we selected repre-
sentative models from different types of KGE meth-
ods, including distance-based TransE, rotation-
based RotatE, semantic matching-based SimplE,
and subrelation encoding-based PairRE. In fact,
there are many KGE methods that outperform those
used in our experiments. However, the method
proposed in this paper is applicable to any KGE
method with a triple scoring function.
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A More Results of link prediction

More results of link prediction are shown in Ta-
ble 9 and Table 10 for WN18RR, and Table 11 and
Table 12 for FB15K237. All comparison results of
sub-models of MED to the directly trained KGEs
(DT) of 10- to 640-dimension are shown in Fig. 6.

B Ablation Study

We conduct ablation studies to evaluate the effect of
three modules in MED: the mutual learning mecha-
nism (MLM), the evolutionary improvement mech-
anism (EIM), and the dynamic loss weight (DLW).
Table 13 shows the MRR and Hit@k (k = 1, 3, 10)
of MED removing these modules respectively on
WN18RR and TransE.
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10d 20d 40d 80d 160d 320d 640d

TransE

Method MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10

DT 0.121 0.287 0.176 0.453 0.214 0.496 0.227 0.524 0.233 0.531 0.235 0.534 0.237 0.537
Ext 0.125 0.298 0.172 0.423 0.199 0.468 0.213 0.495 0.225 0.515 0.226 0.521 0.237 0.537
Ext-L 0.139 0.315 0.196 0.461 0.224 0.497 0.232 0.516 0.236 0.534 0.236 0.535 0.237 0.537
Ext-V 0.139 0.309 0.198 0.458 0.222 0.494 0.234 0.525 0.236 0.532 0.236 0.536 0.237 0.537
BKD 0.141 0.323 0.207 0.480 0.226 0.513 0.232 0.527 0.233 0.531 0.236 0.533 - -
TA 0.144 0.335 0.211 0.483 0.226 0.512 0.233 0.527 0.234 0.533 0.236 0.535 - -
DualDE 0.148 0.337 0.213 0.488 0.225 0.514 0.234 0.530 0.235 0.533 0.238 0.535 - -
IterDE 0.143 0.332 0.211 0.484 0.224 0.511 0.232 0.528 0.236 0.531 0.237 0.533 - -
MED 0.170 0.388 0.219 0.491 0.232 0.518 0.232 0.523 0.236 0.529 0.237 0.536 0.237 0.537

SimplE

Method MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10
DT 0.061 0.126 0.257 0.372 0.316 0.389 0.382 0.446 0.409 0.459 0.417 0.474 0.421 0.481
Ext 0.004 0.007 0.051 0.107 0.160 0.249 0.219 0.314 0.357 0.401 0.407 0.451 0.421 0.481
Ext-L 0.005 0.006 0.048 0.078 0.169 0.244 0.369 0.435 0.398 0.454 0.417 0.481 0.421 0.481
Ext-V 0.004 0.006 0.047 0.076 0.246 0.317 0.368 0.402 0.398 0.461 0.413 0.472 0.421 0.481
BKD 0.075 0.156 0.285 0.381 0.343 0.399 0.394 0.450 0.414 0.468 0.418 0.475 - -
TA 0.089 0.189 0.316 0.386 0.368 0.418 0.405 0.456 0.415 0.472 0.421 0.481 - -
DualDE 0.083 0.175 0.328 0.388 0.386 0.423 0.407 0.454 0.419 0.475 0.422 0.482 - -
IterDE 0.077 0.162 0.321 0.378 0.375 0.419 0.404 0.452 0.416 0.469 0.421 0.482 - -
MED 0.111 0.224 0.335 0.395 0.385 0.431 0.407 0.457 0.418 0.477 0.421 0.481 0.421 0.482

RotatE

Method MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10
DT 0.172 0.418 0.409 0.504 0.456 0.556 0.465 0.564 0.471 0.567 0.474 0.573 0.476 0.575
Ext 0.299 0.378 0.379 0.464 0.437 0.516 0.458 0.544 0.467 0.549 0.471 0.552 0.476 0.575
Ext-L 0.206 0.277 0.336 0.424 0.399 0.487 0.423 0.515 0.445 0.541 0.466 0.564 0.476 0.575
Ext-V 0.261 0.377 0.304 0.433 0.337 0.471 0.366 0.497 0.416 0.532 0.451 0.561 0.476 0.575
BKD 0.175 0.434 0.424 0.540 0.457 0.556 0.471 0.565 0.472 0.570 0.474 0.572 - -
TA 0.177 0.438 0.424 0.542 0.459 0.558 0.470 0.567 0.473 0.572 0.474 0.572 - -
DualDE 0.179 0.440 0.425 0.542 0.462 0.559 0.471 0.567 0.473 0.573 0.475 0.573 - -
IterDE 0.176 0.436 0.421 0.538 0.459 0.560 0.470 0.567 0.471 0.569 0.474 0.572 - -
MED 0.324 0.469 0.456 0.543 0.466 0.561 0.471 0.568 0.471 0.574 0.476 0.573 0.476 0.574

PairRE

Method MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10
DT 0.220 0.321 0.342 0.381 0.415 0.472 0.435 0.516 0.449 0.534 0.452 0.542 0.453 0.544
Ext 0.152 0.209 0.261 0.379 0.334 0.463 0.375 0.493 0.419 0.526 0.438 0.545 0.453 0.544
Ext-L 0.162 0.220 0.281 0.360 0.363 0.442 0.417 0.495 0.437 0.523 0.446 0.544 0.453 0.544
Ext-V 0.172 0.260 0.306 0.374 0.389 0.456 0.420 0.498 0.441 0.529 0.446 0.541 0.453 0.544
BKD 0.228 0.336 0.375 0.413 0.421 0.483 0.443 0.525 0.451 0.536 0.453 0.542 - -
TA 0.245 0.340 0.381 0.427 0.426 0.487 0.448 0.534 0.452 0.537 0.453 0.543 - -
DualDE 0.242 0.336 0.377 0.424 0.428 0.495 0.451 0.536 0.453 0.540 0.454 0.544 - -
IterDE 0.235 0.336 0.379 0.423 0.426 0.495 0.449 0.533 0.450 0.538 0.452 0.543 - -
MED 0.317 0.376 0.408 0.467 0.433 0.502 0.449 0.537 0.451 0.541 0.451 0.542 0.451 0.542

Table 9: MRR and Hit@10 of some representative dimensions on WN18RR.
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10d 20d 40d 80d 160d 320d 640d

TransE

Method Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1
DT 0.202 0.011 0.291 0.016 0.385 0.018 0.401 0.025 0.403 0.027 0.407 0.033 0.412 0.034
Ext 0.201 0.016 0.285 0.023 0.338 0.023 0.364 0.028 0.384 0.033 0.388 0.028 0.412 0.034
Ext-L 0.218 0.029 0.317 0.025 0.361 0.039 0.403 0.046 0.405 0.036 0.408 0.033 0.412 0.034
Ext-V 0.218 0.029 0.314 0.045 0.391 0.051 0.407 0.047 0.408 0.036 0.411 0.027 0.412 0.034
BKD 0.216 0.035 0.331 0.040 0.392 0.033 0.401 0.031 0.404 0.030 0.407 0.032 - -
TA 0.224 0.040 0.343 0.043 0.395 0.037 0.408 0.030 0.407 0.030 0.410 0.034 - -
DualDE 0.226 0.037 0.346 0.043 0.394 0.037 0.408 0.031 0.408 0.031 0.411 0.034 - -
IterDE 0.217 0.032 0.345 0.044 0.392 0.036 0.407 0.030 0.408 0.031 0.407 0.033 - -
MED 0.269 0.040 0.369 0.045 0.399 0.038 0.404 0.042 0.407 0.037 0.410 0.033 0.412 0.031

SimplE

Method Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1
DT 0.061 0.028 0.297 0.193 0.361 0.289 0.406 0.343 0.420 0.382 0.428 0.386 0.433 0.391
Ext 0.003 0.001 0.055 0.023 0.181 0.114 0.249 0.168 0.377 0.329 0.422 0.381 0.433 0.391
Ext-L 0.004 0.003 0.051 0.031 0.187 0.128 0.389 0.333 0.413 0.365 0.429 0.384 0.433 0.391
Ext-V 0.004 0.002 0.050 0.029 0.269 0.205 0.378 0.349 0.409 0.372 0.426 0.382 0.433 0.391
BKD 0.077 0.034 0.331 0.225 0.384 0.311 0.415 0.358 0.426 0.371 0.431 0.385 - -
TA 0.093 0.042 0.349 0.269 0.375 0.349 0.412 0.384 0.425 0.388 0.431 0.389 - -
DualDE 0.086 0.038 0.361 0.285 0.391 0.368 0.416 0.383 0.427 0.389 0.434 0.392 - -
IterDE 0.079 0.033 0.355 0.279 0.382 0.356 0.415 0.379 0.424 0.383 0.433 0.389 - -
MED 0.119 0.048 0.366 0.292 0.395 0.359 0.419 0.380 0.429 0.389 0.435 0.391 0.434 0.390

RotatE

Method Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1
DT 0.304 0.005 0.436 0.357 0.475 0.393 0.487 0.420 0.489 0.423 0.491 0.428 0.493 0.429
Ext 0.315 0.257 0.399 0.335 0.452 0.395 0.472 0.415 0.480 0.413 0.470 0.418 0.493 0.429
Ext-L 0.224 0.166 0.359 0.288 0.420 0.352 0.441 0.373 0.461 0.396 0.481 0.417 0.493 0.429
Ext-V 0.289 0.197 0.336 0.234 0.377 0.263 0.402 0.293 0.442 0.357 0.467 0.397 0.493 0.429
BKD 0.312 0.009 0.452 0.361 0.479 0.403 0.487 0.421 0.490 0.424 0.492 0.425 - -
TA 0.314 0.010 0.452 0.363 0.481 0.408 0.489 0.420 0.488 0.422 0.492 0.425 - -
DualDE 0.320 0.011 0.452 0.364 0.483 0.412 0.489 0.423 0.488 0.426 0.491 0.425 - -
IterDE 0.311 0.013 0.439 0.356 0.479 0.407 0.484 0.423 0.488 0.425 0.493 0.424 - -
MED 0.354 0.277 0.476 0.409 0.486 0.418 0.490 0.422 0.492 0.424 0.493 0.427 0.495 0.428

PairRE

Method Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1
DT 0.271 0.174 0.368 0.313 0.428 0.384 0.450 0.399 0.463 0.405 0.462 0.406 0.464 0.407
Ext 0.163 0.120 0.292 0.198 0.366 0.267 0.398 0.314 0.437 0.364 0.452 0.388 0.464 0.407
Ext-L 0.175 0.129 0.302 0.237 0.383 0.319 0.431 0.377 0.450 0.395 0.455 0.400 0.464 0.407
Ext-V 0.192 0.124 0.323 0.269 0.407 0.352 0.435 0.379 0.452 0.398 0.458 0.400 0.464 0.407
BKD 0.279 0.184 0.388 0.334 0.435 0.372 0.452 0.405 0.460 0.405 0.463 0.407 - -
TA 0.293 0.197 0.387 0.332 0.437 0.380 0.460 0.404 0.462 0.409 0.463 0.408 - -
DualDE 0.281 0.175 0.389 0.330 0.437 0.381 0.463 0.409 0.463 0.410 0.465 0.410 - -
IterDE 0.285 0.172 0.390 0.331 0.435 0.377 0.461 0.405 0.463 0.411 0.464 0.410 - -
MED 0.314 0.259 0.426 0.367 0.443 0.392 0.462 0.405 0.464 0.406 0.465 0.407 0.464 0.406

Table 10: Hit@3 and Hit@1 of some representative dimensions on WN18RR.
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10d 20d 40d 80d 160d 320d 640d

TransE

Method MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10
DT 0.150 0.235 0.277 0.440 0.299 0.477 0.313 0.484 0.315 0.499 0.318 0.501 0.322 0.508
Ext 0.115 0.211 0.191 0.324 0.236 0.392 0.266 0.436 0.286 0.462 0.299 0.479 0.322 0.508
Ext-L 0.109 0.194 0.175 0.293 0.232 0.381 0.263 0.424 0.285 0.462 0.301 0.484 0.322 0.508
Ext-V 0.139 0.256 0.200 0.348 0.237 0.396 0.270 0.437 0.293 0.466 0.308 0.488 0.322 0.508
BKD 0.176 0.293 0.279 0.446 0.303 0.480 0.315 0.500 0.315 0.501 0.320 0.502 - -
TA 0.175 0.246 0.281 0.441 0.303 0.484 0.314 0.498 0.319 0.504 0.321 0.504 - -
DualDE 0.179 0.301 0.281 0.443 0.306 0.483 0.316 0.502 0.319 0.505 0.322 0.508 - -
IterDE 0.176 0.285 0.276 0.446 0.307 0.482 0.315 0.503 0.317 0.505 0.319 0.505 - -
MED 0.196 0.341 0.290 0.472 0.308 0.486 0.317 0.502 0.320 0.505 0.321 0.507 0.322 0.507

SimplE

Method MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10
DT 0.097 0.179 0.176 0.321 0.236 0.390 0.271 0.431 0.285 0.458 0.291 0.467 0.295 0.472
Ext 0.037 0.068 0.069 0.107 0.090 0.144 0.159 0.258 0.229 0.372 0.269 0.432 0.295 0.472
Ext-L 0.045 0.059 0.056 0.062 0.083 0.146 0.114 0.205 0.196 0.316 0.258 0.421 0.295 0.472
Ext-V 0.049 0.069 0.066 0.101 0.105 0.149 0.138 0.224 0.224 0.369 0.261 0.414 0.295 0.472
BKD 0.113 0.204 0.182 0.315 0.244 0.412 0.275 0.439 0.287 0.463 0.293 0.470 - -
TA 0.124 0.221 0.192 0.329 0.254 0.416 0.276 0.448 0.290 0.465 0.295 0.471 - -
DualDE 0.120 0.213 0.195 0.346 0.258 0.429 0.279 0.443 0.293 0.466 0.296 0.468 - -
IterDE 0.120 0.215 0.193 0.338 0.257 0.427 0.281 0.440 0.293 0.465 0.297 0.468 - -
MED 0.143 0.267 0.233 0.384 0.261 0.427 0.279 0.448 0.291 0.466 0.293 0.468 0.294 0.470

RotatE

Method MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10
DT 0.254 0.424 0.297 0.477 0.312 0.495 0.317 0.502 0.322 0.506 0.323 0.510 0.325 0.515
Ext 0.138 0.245 0.203 0.340 0.251 0.410 0.276 0.443 0.291 0.465 0.305 0.485 0.325 0.515
Ext-L 0.135 0.243 0.188 0.319 0.221 0.365 0.246 0.402 0.280 0.453 0.299 0.477 0.325 0.515
Ext-V 0.160 0.281 0.198 0.340 0.238 0.393 0.265 0.427 0.288 0.458 0.302 0.478 0.325 0.515
BKD 0.277 0.442 0.305 0.485 0.314 0.503 0.321 0.508 0.322 0.510 0.323 0.509 - -
TA 0.280 0.447 0.306 0.485 0.313 0.501 0.319 0.507 0.323 0.510 0.323 0.509 - -
DualDE 0.282 0.449 0.307 0.486 0.315 0.502 0.318 0.507 0.322 0.512 0.324 0.514 - -
IterDE 0.276 0.445 0.306 0.482 0.317 0.504 0.319 0.508 0.323 0.512 0.324 0.513 - -
MED 0.288 0.459 0.311 0.492 0.318 0.504 0.322 0.509 0.323 0.510 0.324 0.512 0.324 0.514

PairRE

Method MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10
DT 0.182 0.314 0.243 0.395 0.284 0.452 0.307 0.476 0.319 0.505 0.328 0.518 0.332 0.522
Ext 0.148 0.222 0.177 0.289 0.217 0.353 0.259 0.416 0.294 0.469 0.321 0.506 0.332 0.522
Ext-L 0.150 0.249 0.196 0.294 0.219 0.333 0.271 0.436 0.309 0.489 0.326 0.513 0.332 0.522
Ext-V 0.176 0.277 0.192 0.303 0.229 0.374 0.279 0.450 0.311 0.490 0.329 0.513 0.332 0.522
BKD 0.198 0.332 0.251 0.407 0.288 0.453 0.311 0.487 0.321 0.508 0.330 0.521 - -
TA 0.208 0.346 0.263 0.430 0.292 0.455 0.314 0.493 0.323 0.509 0.332 0.521 - -
DualDE 0.207 0.342 0.261 0.427 0.293 0.456 0.316 0.495 0.326 0.512 0.334 0.524 - -
IterDE 0.205 0.340 0.264 0.431 0.293 0.462 0.314 0.494 0.324 0.508 0.332 0.522 - -
MED 0.239 0.384 0.274 0.437 0.303 0.466 0.314 0.495 0.324 0.510 0.329 0.521 0.330 0.520

Table 11: MRR and Hit@10 of some representative dimensions on FB15K237.
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10d 20d 40d 80d 160d 320d 640d

TransE

Method Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1
DT 0.169 0.102 0.301 0.190 0.327 0.212 0.340 0.218 0.348 0.222 0.353 0.224 0.358 0.228
Ext 0.123 0.065 0.211 0.122 0.264 0.156 0.296 0.180 0.320 0.197 0.331 0.208 0.358 0.228
Ext-L 0.118 0.065 0.192 0.115 0.256 0.157 0.292 0.180 0.316 0.198 0.333 0.210 0.358 0.228
Ext-V 0.150 0.081 0.222 0.126 0.265 0.156 0.301 0.185 0.325 0.205 0.341 0.217 0.358 0.228
BKD 0.178 0.106 0.308 0.198 0.336 0.208 0.349 0.222 0.349 0.223 0.354 0.226 - -
TA 0.188 0.112 0.307 0.200 0.336 0.212 0.348 0.220 0.353 0.225 0.355 0.223 - -
DualDE 0.193 0.115 0.307 0.201 0.337 0.216 0.351 0.223 0.354 0.226 0.356 0.227 - -
IterDE 0.187 0.112 0.299 0.185 0.333 0.214 0.351 0.222 0.353 0.223 0.354 0.224 - -
MED 0.215 0.122 0.321 0.199 0.338 0.218 0.347 0.223 0.351 0.226 0.356 0.227 0.358 0.227

SimplE

Method Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1
DT 0.103 0.055 0.193 0.105 0.256 0.161 0.297 0.191 0.314 0.197 0.323 0.208 0.324 0.211
Ext 0.039 0.019 0.071 0.047 0.091 0.057 0.171 0.109 0.251 0.159 0.294 0.187 0.324 0.211
Ext-L 0.043 0.035 0.048 0.037 0.111 0.040 0.131 0.093 0.216 0.134 0.281 0.177 0.324 0.211
Ext-V 0.047 0.036 0.074 0.043 0.097 0.077 0.145 0.109 0.248 0.156 0.289 0.189 0.324 0.211
BKD 0.123 0.064 0.201 0.115 0.261 0.164 0.299 0.191 0.308 0.202 0.318 0.213 - -
TA 0.133 0.073 0.210 0.123 0.276 0.175 0.302 0.195 0.318 0.203 0.323 0.211 - -
DualDE 0.130 0.071 0.224 0.115 0.279 0.175 0.305 0.196 0.324 0.208 0.326 0.211 - -
IterDE 0.132 0.069 0.217 0.118 0.276 0.174 0.303 0.192 0.326 0.204 0.324 0.212 - -
MED 0.164 0.073 0.254 0.158 0.288 0.177 0.305 0.196 0.319 0.205 0.318 0.209 0.322 0.209

RotatE

Method Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1
DT 0.284 0.168 0.330 0.207 0.346 0.223 0.352 0.224 0.353 0.229 0.357 0.230 0.363 0.234
Ext 0.152 0.080 0.225 0.129 0.278 0.170 0.304 0.190 0.322 0.203 0.335 0.217 0.363 0.234
Ext-L 0.147 0.078 0.209 0.121 0.247 0.146 0.275 0.166 0.312 0.193 0.333 0.209 0.363 0.234
Ext-V 0.174 0.097 0.218 0.126 0.264 0.159 0.293 0.182 0.319 0.201 0.336 0.213 0.363 0.234
BKD 0.306 0.193 0.338 0.214 0.352 0.224 0.354 0.230 0.356 0.230 0.358 0.231 - -
TA 0.308 0.196 0.339 0.216 0.353 0.225 0.358 0.229 0.359 0.229 0.358 0.231 - -
DualDE 0.311 0.197 0.341 0.216 0.353 0.227 0.360 0.230 0.361 0.232 0.361 0.233 - -
IterDE 0.307 0.195 0.342 0.215 0.355 0.225 0.359 0.232 0.363 0.233 0.362 0.234 - -
MED 0.324 0.201 0.344 0.216 0.355 0.225 0.357 0.231 0.358 0.233 0.362 0.233 0.362 0.232

PairRE

Method Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1
DT 0.198 0.116 0.262 0.162 0.312 0.202 0.337 0.222 0.352 0.227 0.364 0.235 0.368 0.237
Ext 0.158 0.107 0.187 0.118 0.236 0.149 0.283 0.182 0.325 0.207 0.354 0.230 0.368 0.237
Ext-L 0.159 0.099 0.196 0.134 0.238 0.159 0.298 0.188 0.342 0.219 0.359 0.233 0.368 0.237
Ext-V 0.181 0.116 0.192 0.125 0.250 0.154 0.307 0.193 0.343 0.221 0.362 0.237 0.368 0.237
BKD 0.215 0.132 0.265 0.168 0.314 0.203 0.343 0.224 0.355 0.233 0.366 0.236 - -
TA 0.226 0.139 0.291 0.182 0.316 0.210 0.347 0.224 0.358 0.232 0.368 0.235 - -
DualDE 0.224 0.139 0.286 0.179 0.318 0.212 0.351 0.226 0.359 0.234 0.371 0.238 - -
IterDE 0.225 0.135 0.293 0.185 0.324 0.212 0.352 0.224 0.357 0.234 0.369 0.236 - -
MED 0.253 0.172 0.299 0.189 0.327 0.213 0.346 0.224 0.357 0.232 0.366 0.236 0.368 0.235

Table 12: Hit@3 and Hit@1 of some representative dimensions on FB15K237.

dim MED MED w/o MLM MED w/o EIM MED w/o DLW
MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1

10 .170 .388 .269 .036 .149 .335 .234 .032 .169 .388 .267 .037 .171 .387 .268 .035
20 .219 .491 .369 .042 .197 .437 .323 .032 .217 .488 .366 .044 .218 .487 .367 .039
40 .232 .518 .399 .048 .224 .496 .379 .029 .232 .517 .403 .042 .232 .517 .402 .037
80 .232 .523 .404 .042 .228 .521 .399 .033 .235 .529 .408 .037 .234 .523 .410 .041
160 .236 .529 .407 .037 .234 .525 .406 .034 .234 .527 .405 .032 .235 .527 .405 .032
320 .237 .536 .410 .033 .236 .532 .409 .035 .233 .530 .398 .031 .234 .533 .405 .029
640 .237 .537 .412 .031 .238 .535 .412 .042 .232 .528 .402 .029 .233 .530 .396 .025

Table 13: Ablation study on WN18RR with TransE.
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(a) TransE on WN18RR (b) SimplE on WN18RR (c) RotatE on WN18RR (d) PairRE on WN18RR

(e) TransE on FB15K237 (f) SimplE on FB15K237 (g) RotatE on FB15K237 (h) PairRE on FB15K237

Figure 6: Performance of sub-models of MED and the directly trained (DT) KGEs of dimensions from 10 to 640.

B.1 Mutual Learning Mechanism (MLM)
We remove the mutual learning mechanism from
MED and keep the other parts unchanged, where
(6) is rewritten as

L =

n∑

i=1

exp

(
w3 · di
dn

)
· Li

EI . (7)

From the result of “MED w/o MLM” in Table
13, we find that after removing the mutual learning
mechanism, the performance of low-dimensional
sub-models deteriorates seriously since the low-
dimensional sub-models can not learn from the
high-dimensional sub-models. For example, the
MRR of the 10-dimensional sub-model decreased
by 12.4%, and the MRR of the 20-dimensional
sub-model decreased by 10%. While the perfor-
mance degradation of the high-dimensional sub-
model is not particularly obvious, and the MRR of
the highest-dimensional sub-model (dim = 640) is
not worse than that of MED, which is because to a
certain degree, removing the mutual learning mech-
anism also avoids the negative influence to high-
dimensional sub-models from low-dimensional
sub-models. On the whole, this mechanism greatly
improves the performance of low-dimensional sub-
models.

B.2 Evolutionary Improvement Mechanism
(EIM)

In this part, we replace evolutionary improvement
loss Li

EI in (6) with the regular KGE loss Li
KGE :

Li
KGE =

∑

(h,r,t)∈T ∪T −
y log σ(si(h,r,t))

+(1− y) log(1− σ(si(h,r,t))).

(8)

From the result of “MED w/o EIM” in Table 13,
we find that removing the evolutionary improve-
ment mechanism mainly degrades the performance
of high-dimensional sub-models. While due to the
existence of the mutual learning mechanism, the
low-dimensional sub-model can still learn from the
high-dimensional sub-model, so as to ensure the
certain performance of the low-dimensional sub-
model. In addition, we also find that as the dimen-
sion increases to a certain extent, the performance
of the sub-model does not improve, and even be-
gins to decline. We guess that this is because the
mutual learning mechanism makes every pair of
neighbor sub-models learn from each other, result-
ing in some low-quality or wrong knowledge grad-
ually transferring from the low-dimensional sub-
models to the high-dimensional sub-models, and
when the evolutionary improvement mechanism is
removed, the high-dimensional sub-models can no
longer correct the wrong information from the low-
dimensional sub-models. The higher the dimension
of the sub-model, the more the accumulated error,
so the performance of the high-dimensional sub-
models is seriously damaged. On the whole, this
mechanism mainly helps to improve the effect of
high-dimensional sub-models.

B.3 Dynamic Loss Weight (DLW)
To study the effect of the dynamic loss weight, we
fix the ratio of all mutual learning losses to all
evolutionary improvement losses as 1 : 1, and (6)
is rewritten as

L =
n∑

i=2

Li−1,i
ML +

n∑

i=1

Li
EI . (9)

According to the result of “MED w/o DLW” in
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Table 13, the overall results of “MED w/o DLW”
are in the middle of the results of “MED w/o
MLM” and “MED w/o EIM”: the performance
of the low-dimensional sub-model is better than
that of “MED w/o MLM”, and the performance of
the high-dimensional sub-model is better than that
of “MED w/o EIM”. On the whole, its results are
more similar to “MED w/o EIM”, that is, the per-
formance of the low-dimensional sub-model does
not change much, while the performance of the
high-dimensional sub-model decreases more sig-
nificantly. We believe that for the high-dimensional
sub-model, the proportion of mutual learning loss
is still too large, which makes it more negatively
affected by the low-dimensional sub-model. This
result indicates that the dynamic loss weight plays
a role in adaptively balancing multiple losses and
contributes to improving overall performance.

C Details of applying the trained KGE by
MED to real applications

The SKG is used in many tasks related to users, and
injecting user embeddings trained over SKG into
downstream task models is a common and practical
way.

User labeling is one of the common user man-
agement tasks that e-commerce platforms run on
backend servers. We model user labeling as a mul-
ticlass classification task for user embeddings with
a 2-layer MLP:

L = − 1

|U|

|U|∑

i=1

|CLS|∑

j=1

yij log(MLP(ui)), (10)

where ui is the i-th user’s embedding, the label
yij = 1 if user ui belongs to class clsj , otherwise
yij = 0.

The product recommendation task is to prop-
erly recommend items to users that users will in-
teract with a high probability and it often runs
on terminal devices. Following PKGM (Zhang
et al., 2021), which recommends items to users
using the neural collaborative filtering (NCF) (He
et al., 2017) framework with the help of pre-trained
user embeddings as service vectors, we add trained
user embeddings over SKG as service vectors to
NCF. In NCF, the MLP layer is used to learn item-
user interactions based on the latent feature of the
user and item, that is, for a given user-item pair
useri − itemj , the interaction function is

ϕMLP
1 (pi, qj) = MLP([pi; qj ]), (11)

where pi and qj are latent feature vectors of user
and item learned in NCF. We add the trained user
embedding ui to NCF’s MLP layer and rewrite
Equation (11) as

ϕMLP
1 (pi, qj , ui) = MLP([pi; qj ;ui]), (12)

and the other parts of NCF stay the same as in
PKGM (Zhang et al., 2021).

We train entity and relation embeddings for SKG
based on TransE (Bordes et al., 2013) and input the
trained entity (user) embedding into Equation (10)
and Equation (12).

D Details of extending MED to language
model BERT-base

D.1 Dataset and Evaluation Metric
For the experiments extending MED to BERT, we
adopt the common GLUE (Wang et al., 2019)
benchmark for evaluation. To be specific, we
use the development set of the GLUE benchmark
which includes four tasks: Paraphrase Similarity
Matching, Sentiment Classification, Natural Lan-
guage Inference, and Linguistic Acceptability. For
Paraphrase Similarity Matching, we use MRPC
(Dolan and Brockett, 2005), QQP and STS-B (Con-
neau and Kiela, 2018) for evaluation. For Senti-
ment Classification, we use SST-2 (Socher et al.,
2013). For Natural Language Inference, we use
MNLI (Williams et al., 2018), QNLI (Rajpurkar
et al., 2016), and RTE for evaluation. In terms of
evaluation metrics, we follow previous work (De-
vlin et al., 2019; Sun et al., 2019a). For MRPC and
QQP, we report F1 and accuracy. For STS-B, we
consider Pearson and Spearman correlation as our
metrics. The other tasks use accuracy as the metric.
For MNLI, the results of MNLI-m and MNLI-mm
are both reported separately.

D.2 Baselines
For comparison, we choose Knowledge Distilla-
tion (KD) models and Hardware-Aware Transform-
ers (Wang et al., 2020a) (HAT) customized for
transformers as baselines. For the KD models,
we compare MED with Basic KD (BKD) (Hin-
ton et al., 2015), Patient KD (PKD) (Sun et al.,
2019a), Relational Knowledge Distillation (RKD)
(Park et al., 2019), Deep Self-attention Distillation
(MiniLM) (Wang et al., 2020b), Meta Learning-
based KD (MetaDistill) (Zhou et al., 2022a) and
Feature Structure Distillation (FSD) (Jung et al.,
2023). For the comparability of the results, we
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Figure 7: Clustering on FB15K237 with RotatE.

choose 4-layer BERT (BERT4) or 6-layer BERT
(BERT6) as the student model architectures, which
guarantees that the number of model parameters
(#P(M)) or speedup is comparable. For HAT, we
use the same model architecture as our MED for
training and show the results of sub-models with
three parameter scales.

D.3 Implementation

To implement MED on BERT, for the word embed-
ding layer, all sub-models share the front portion
of embedding parameters in the same way as in
KGE, and for the transformer layer, all sub-models
share the front portion of weight parameters as in
HAT (Wang et al., 2020a). Specifically, assum-
ing that the embedding dimension of the largest
BERT model Bn is dn, and the embedding dimen-
sion of the sub-model Bi is di, for any parameter
matrix with the shape x × y in Bn, the front por-
tion sub-matrix of it with the shape di

dn
x× di

dn
y is

the parameter matrix of the corresponding position
in Bi. Finally, it just need to replace the triple
score s(h,r,t) in Equation (2), Equation (3), Equa-
tion (4), and Equation (5) with the logits output for
the corresponding category of the classifier in the
classification task.

We set n = 4 for BERT applying MED, and 4
sub-models have the following settings: [768, 512,
256, 128] for embedding dim and [768, 512, 256,
128] for hidden dim, [12, 12, 6, 6] for the head
number in attention modules, 12 for encoder layer

number.

E Visual analysis of embedding

We select four primary entity categories (‘organiza-
tion’, ‘sports’, ‘location’, and ‘music’) that contain
more than 300 entities in FB15K237, and randomly
select 250 entities for each. We cluster these enti-
ties’ embeddings of 3 different dimensions (d=10,
100, 600) by the t-SNE algorithm, and the cluster-
ing results are visualized in Fig. 7. Under the same
dimension, the clustering result of MED is always
the best, followed by DualDE, while the result of
Ext-V is generally poor, which is consistent with
the conclusion in Section 5.2. We also find some
special phenomenons for MED when dimension
increases: 1) the nodes of the ‘sports’ gradually
become two clusters meaning MED learns more
fine-grained category information as dimension
increases, and 2) the relative distribution among
different categories hardly changes and shows a
trend of “inheritance” and “improvement”. This
further proves MED achieves our expectation that
high-dimensional sub-models retain the ability of
low-dimensional sub-models, and can learn more
knowledge than low-dimensional sub-models.
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