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Abstract

Multi-modal Large Language Models
(MLLMs) integrating images, text, and speech
can provide farmers with accurate diagnoses
and treatment of pests and diseases, enhancing
agricultural efficiency and sustainability.
However, existing benchmarks lack compre-
hensive evaluations, particularly in multi-level
reasoning, making it challenging to identify
model limitations. To address this issue, we
introduce Agri-CM3, an expert-validated
benchmark assessing MLLMs’ understanding
and reasoning in agricultural management. It
includes 3,939 images and 15,901 multi-level
multiple-choice questions with detailed
explanations. Evaluations of 45 MLLMs reveal
significant gaps. Even GPT-40 achieves only
63.64% accuracy, falling short in fine-grained
reasoning tasks. Analysis across three reason-
ing levels and seven compositional abilities
highlights key challenges in accuracy and
cognitive understanding. Our study provides
insights for advancing MLLMs in agricultural
management, driving their development and
application. Code and data are available at
https://github.com/HIT-Kwoo/Agri-CM3.

1 Introduction

The modernization and intensification of agricul-
ture have led to increasing diversity and adaptabil-
ity of pests and diseases, making their management
increasingly challenging (Singh et al., 2024; Lenné
and Wood, 2024). Traditional diagnostic methods
primarily rely on manual observation and expert
experience, often suffering from delays, low accu-
racy, and high costs (John et al., 2023). With the
rapid advancement of artificial intelligence (Al),
particularly multi-modal large language models
(MLLMSs), agricultural pest and disease manage-
ment have entered a new era. By integrating mul-
tiple data modalities, MLLMs enable intelligent
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Q: Which of the following characteristics best
fits the form of the pathogen
suffered in the image?
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Figure 1: Existing benchmarks fail to identify the spe-
cific cause of failure in agricultural complex reasoning,
making it difficult to distinguish whether errors stem
from perception, mixed perception-cognition reasoning,
or knowledge application.

recognition, prediction, and decision support, help-
ing farmers optimize agricultural management, re-
duce pesticide use, and enhance sustainability (Zhu
et al., 2024; Kuska et al., 2024).

Despite the impressive performance of state-of-
the-art MLLMs (Hurst et al., 2024; Team et al.,
2024; Anthropic, 2025) in vision-language tasks
within the agricultural domain (Zhu et al., 2024),
their practical effectiveness in pest and disease
management remains unclear. A systematic bench-
mark is essential to evaluate their real-world ap-
plicability and reasoning capabilities in agricul-
tural management. Existing benchmarks, such as
AgriBench (Zhou and Ryo, 2024), focus primarily
on broader agricultural vision tasks (e.g., land seg-
mentation and captioning) but lack a dedicated eval-
uation framework for pest and disease management.
Furthermore, current domain-specific benchmarks
(Yue et al., 2024; Zhang et al., 2024b) fail to as-
sess models’ multi-level reasoning abilities, which
are critical for complex decision-making in agri-
cultural contexts. As illustrated in Figure 1, agri-
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Figure 2: Left: The process of deriving high-level data with clearly specified entities into low-level data. Middle:
Distribution of labels across the entire dataset. Right: Performance of 5 MLLMs and experts on the validation set.

cultural multi-modal reasoning tasks involve multi-
ple stages, including crop identification, symptom
recognition and disease diagnosis, and knowledge
integration and application. Any failure at one
stage may lead to an incorrect diagnosis. However,
existing benchmarks do not effectively distinguish
models’ performance at each reasoning step, mak-
ing it difficult to diagnose the root causes of errors.

To tackle these challenges, we propose Agri-
CM3, a novel benchmark designed to provide a
comprehensive, hierarchical evaluation of MLLMs
in agricultural pest and disease management.
Specifically, we decompose complex reason-
ing tasks into three fine-grained sub-reasoning
tasks: (1) Crop identification (Perception Stage).
(2) Symptom recognition and disease diagno-
sis (Mixture of Perception-Cognition Reasoning
Stage). (3) Agricultural knowledge integration
and application (Knowledge Application Stage).
These sub-tasks are then systematically organized
as a reasoning hierarchy, as illustrated in Figure
2(Left): Level 1 evaluates individual sub-reasoning
tasks. Level 2 assesses combinations of two sub-
reasoning tasks. Level 3 examines the whole rea-
soning pipeline involving all three tasks. Each
evaluation is structured as multiple-choice ques-
tions (MCQs) with detailed explanations, ensuring
a rigorous assessment of MLLMs across different
reasoning levels. This hierarchical design allows
Agri-CM? to systematically analyze models’ per-
formance at various reasoning levels and diagnose
their specific weaknesses.

To construct Agri-CM?3, we curated 3,939 high-
quality images covering diverse pest and disease
categories, rigorously filtered through model gen-
eration and expert validation. We designed 15,901

MCQs based on these images and conducted ex-
tensive evaluations on 38 open-source MLLMs
and seven proprietary state-of-the-art MLLMs, re-
vealing several key insights: (1) Open-source
MLLMs Surpassing Proprietary Models. (2) Mix-
ture cognition-perception reasoning tasks are the
key factor limiting model performance. (3) Multi-
modal training boosts performance in single-text
tasks.

In summary, the key contributions of our work
are as follows:

* To the best of our knowledge, we are the first
multi-modal benchmark for agricultural pest
and disease management, covering a wide
range of pests and diseases. The benchmark
is rigorously filtered and validated by experts,
ensuring high quality.

* We decompose complex reasoning tasks and
combine them based on practical needs, result-
ing in a multi-level benchmark. This frame-
work allows for a comprehensive assessment
of model capabilities at each reasoning stage,
helping identify weaknesses in various steps.

* We evaluated various models and summarized
several key insights. Our findings provide
valuable guidance for future research and de-
velopments in this area.

2 Related Work

2.1 Multi-modal Large Language Models

MLLMs have introduced a new paradigm for rea-
soning, offering a natural and intuitive way to in-
teract with users (Zhu et al., 2024). These models
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have demonstrated outstanding potential for ap-
plications in various vertical domains (Xie et al.,
2024; Xiao et al., 2025). Currently, leading pro-
prietary MLLMs have achieved exceptional perfor-
mance in multi-modal understanding and reason-
ing tasks. Meanwhile, the research community has
developed various open-source MLLMs with multi-
modal instruction-tuning datasets (Zhang et al.,
2024a). Notable open-source models include the
InternVL series (Chen et al., 2024b), LLaVA series
(Liu et al., 2024), Qwen-VL series (Wang et al.,
2024b), DeepSeek series (Wu et al., 2024), and
MiniCPM-V series (Yao et al., 2024), which have
been rapidly adopted across diverse domains.

To address domain-specific challenges, re-
searchers have developed specialized MLLMs
trained and fine-tuned on domain-specific datasets.
For example, medical MLLMs (Li et al., 2023;
Moor et al., 2023) and Financial MLLMs (Xie et al.,
2024) have been proposed to enhance Al capabil-
ities in their respective fields. In the agricultural
domain, Wang et al. (2024a) fine-tuned a multi-
modal agricultural model based on LLaVA (Liu
et al., 2023b), demonstrating promising potential
in pest and disease diagnosis. These advancements
highlight the growing impact of MLLMs in agri-
culture, yet a standardized evaluation framework
remains necessary to assess their real-world perfor-
mance systematically.

2.2 MLLM Benchmarks

Despite the rapid progress of MLLMs, systematic
benchmarking is equally crucial. It helps evalu-
ate strengths and weaknesses, guiding optimization
and accelerating real-world application. Several
multi-modal benchmarks, such as MMMU (Yue
et al., 2024) and CMMMU (Zhang et al., 2024b),
cover multiple vertical domains. However, their
domain-specific evaluation capabilities are limited.
To address domain-specific needs, researchers have
developed specialized benchmarks for evaluating
MLLMs in fields such as medicine (Sun et al.,
2025; Chen et al., 2024a) and industry (Jiang et al.,
2025). In the agricultural domain, Zhou and Ryo
(2024) proposed AgriBench, a multi-modal bench-
mark focusing on landscape understanding tasks.
While AgriBench provides a general framework
for evaluating MLLMs’ multi-modal reasoning in
agriculture, it lacks a dedicated assessment for
pest and disease management. Furthermore, ex-
isting domain-specific benchmarks fail to distin-
guish which specific reasoning abilities contribute

to model failures in complex reasoning tasks. Iden-
tifying these deficiencies at a granular level is es-
sential for improving MLLMs and guiding future
model development.

To address this gap, we propose Agri-CM?, a
benchmark designed to systematically evaluate
MLLMs’ hierarchical reasoning abilities in agri-
cultural pest and disease management. Unlike ex-
isting benchmarks, Agri-CM? explicitly evaluates
models across multiple reasoning levels, provid-
ing fine-grained insights into their strengths and
weaknesses.

3 The Agri-CM? Benchmark

3.1 Design Principal

Existing benchmarks often evaluate complex rea-
soning tasks as a whole, especially for tasks involv-
ing multiple reasoning steps, such as agricultural
knowledge reasoning. This approach fails to ac-
curately identify model strengths and weaknesses
at each reasoning stage, leading to a lack of clear
guidance for future model improvements.

To address this limitation, we propose Agri-
CM3, which aims to comprehensively assess the
complex reasoning capabilities of models in agri-
cultural pest and disease management through a
multi-level evaluation framework. We decompose
the complex reasoning task into three key sub-tasks:
i. Perception (P): The ability to identify crops and
pests. ii. Mixed Perception-Cognition Reasoning
(M): The ability to identify crop symptoms and rea-
son diseases. iii. Knowledge Application (K): The
ability to integration and apply agricultural knowl-
edge. These key abilities are then combined into
three levels based on task-specific needs:

Level 1: Evaluates model performance on a sin-
gle sub-reasoning task.

Level 2:  Assesses the model’s ability to perform
a combination of two sub-reasoning tasks.

Level 3: Evaluates the model’s performance
across the full reasoning chain.

Through this layered design, Agri-CM? provides
a comprehensive evaluation of a model’s capabili-
ties at different reasoning stages, offering detailed
feedback on performance at each level. The overall
data collection and generation process is illustrated
in Figure 3.
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Figure 3: Overview of the Agri-CM? generation process. Left: The collection and processing of images and
background knowledge. Right: Multi-level data generation, followed by filtering using LLMs, and final validation

by agricultural experts.

3.2 Data Collection and Preprocessing

Traditional agricultural visual datasets typically fo-
cus on a single crop or pest type. However, an
expert in agricultural pest and disease management
should be capable of identifying and diagnosing
various pests and diseases. To address this, we ex-
tensively collected existing agricultural pest and
disease image datasets, resulting in 21 datasets,
including 11 crops, 45 diseases, and 107 pests.

To ensure the diversity, we applied K-means
(Arthur and Vassilvitskii, 2007) clustering to group
images and filter out highly similar images. We
filtered out low-resolution images to ensure that
details are clearly visible, resulting in a final aver-
age resolution of 1,800 x 1,500 for the retained
images. Additionally, we enlisted professional agri-
cultural experts to filter out unusable images manu-
ally. To prevent data leakage, we did not directly
use image-question pairs from existing datasets.
Instead, we collected images and their correspond-
ing captions and employed GPT-40 to generate
image-text question-answer pairs and other options.
Besides, we sourced domain-specific agricultural
knowledge from professional agricultural books
and reputable encyclopedic websites, ensuring the
model generated questions based on accurate, rel-
evant knowledge. See the Appendix A.1 for more
details.

3.3 Data Generation and Expert Validation

To ensure the accuracy and diversity of the gen-
erated data, we not only provide crop, disease,
and pest labels but also select relevant background

knowledge to generate high-quality knowledge rea-
soning data. To facilitate manual validation of the
generated data, we include answer explanation in
the generated data, ensuring that each question is
supported by a clear and justified rationale.

High-level Data Generation. We begin by gen-
erating high-level knowledge reasoning data based
on agricultural pest and disease images and relevant
background knowledge. The tasks include Disease-
P-M-K, Disease-P-M, and Pest-P-K. These tasks
require the model to perform multiple reasoning
steps, including crop and pest identification, symp-
tom recognition and disease diagnosis, followed
by final knowledge reasoning. Pest identification
involves only perceptual stage, with high-level data
considering only P-K.

Low-level Data Derivation. After generating
high-level data, we derive low-level data by ex-
plicitly replacing entities in the high-level data
questions. This method allows us to generate data
at different reasoning stages, thus providing more
granular tasks that align with the evaluation needs
of each reasoning level.

Data Filtering. To ensure that the generated data
relies heavily on the image information, we use
three LLMs to answer questions based on the ques-
tion and options. We then filter out the data where
two models provide correct answers, as these are
deemed to have low dependency on the images.
This ensures that the final dataset accurately re-
flects the image content.
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Validation  Test Disease Pest
Model Total Total

P M P-M K M-K P-M-K P K P-K
Random Choice 23.22 25.14 2544 26.04 2544 24.15 2431 26.61 25.04 2494 24.89
Expert Performance 79.56 - - - - - - - - - -

Multi-Modal Large Language Model(MLLMs): Text + Image as Input
LLaVA-1.5-13B (Liu et al., 2023a) 41.33 38.19 43.87 53.00 5241 40.52 4254 4238 2340 3331 3647
Phi-3.5-Vision (Abdin et al., 2024) 46.11 41.69 39.14 5799 5385 44.10 44.66 45.18 30.01 38.50 40.29
Deepseek-VL2 (Wu et al., 2024) 46.33 4291 36.18 4793 415 48.12 4847 4523 3728 44.17 4256
Yi-VL-34B (Al et al., 2024) 48.78 4598 49.79 52.83 38.46 5125 4843 4425 42.68 46.50 44.76
CogVLM2 (Hong et al., 2024) 48.11 46.37 76.84 45.65 43.11 3945 39.53 37.24 5892 3821 4091
Cambrian-34B (Tong et al., 2024) 56.00 49.16 74.13 5435 4598 53.13 4541 38.71 5399 4791 39.11
MiniCPM-V2.6 (Yao et al., 2024) 54.67 5224 6534 5858 5435 49.02 46770 4596 64.05 4485 4542
GLM4V-9B (GLM et al., 2024) 56.00 52.65 86.73 55.62 56.04 50.72 47.84 4771 57779 4332 4417
LLaVA-1.6-34B (Liu et al., 2024) 57.78 5271 59.09 59.51 5435 57.60 51.96 5047 5458 4851 47.76
Qwen2.5-VL-7B (Bai et al., 2025) 56.44 53.67 76.16 53.85 50.38 4946 4533 43775 7351 45770 44.87
LLaVA-OneVision-7B (Li et al., 2024) 57.00 5392 7033 58.66 53.00 51.25 50.78 50.54 64.87 4586 46.41
Molmo-7B (Deitke et al., 2024) 55.89 5476 54.69 66.19 59.93 5250 49.92 49.77 6741 4791 47.54
InternVL-2.5-8B (Chen et al., 2024b) 59.67 5573 70.58 62.13 57.06 5537 5243 5054 64.16 49.20 48.13
Qwen2-VL-7B (Wang et al., 2024b) 60.00 56.32 85.88 5892 57.82 5420 47.88 4627 7034 4743 46.26
InternVL-2.5-26B (Chen et al., 2024b) 64.78 6197 7430 71.09 66.61 63.69 57.06 56.07 7257 5491 51.50
Molmo-72B (Deitke et al., 2024) 66.33 63.13 63.14 7396 71.01 66.01 60.75 59.56 68.86 5837 55.61
LLaVA-OneVision-72B (Li et al., 2024) 69.00 6437 78.61 72.19 6898 6538 60.99 58.79 70.07 5732 57.66
Qwen2.5-VL-72B (Bai et al., 2025) 67.78 6470 84.02 68.64 67.03 6333 56.86 5446 79.11 5547 5341
Qwen2-VL-72B (Wang et al., 2024b) 72.00 64.81 8098 7329 7236 65.74 61.77 5995 72.07 55.07 56.27
InternVL-2.5-38B (Chen et al., 2024b) 68.11 65.31 7481 76.67 70.16 65.65 6130 60.26 75.04 56.84 56.89
InternVL-2.5-78B (Chen et al., 2024b) 69.89 6549 79.54 76.67 7278 6556 60.44 5933 73.04 58.00 56.38
" Qwen-VL-PLUS (Wang etal., 2024b)  51.67  51.54 80.56 47.76 4827 47.14 4529 4269 6839 4023 4542
Yi-Vision (Al et al., 2024) 61.56 56.59 60.27 58.66 5545 60.82 53.61 51.01 7031 51.85 48.35
Qwen-VL-MAX (Wang et al., 2024b) 59.44 57.97 76.84 60.19 60.19 6225 52.04 48.83 66.12 53.46 49.67
GPT-40-mini (Hurst et al., 2024) 63.00 5821 79.88 69.99 67.12 5349 5228 48.37 68.78 4887 47.80
Gemini-1.5-flash (Team et al., 2024) 64.67 61.73 87.57 6855 69.74 57.33 5251 52.72 80.40 4992 47.73
GPT-40 (Hurst et al., 2024) 67.33 63.64 8385 69.48 6830 65.65 54.71 49.53 80.09 56.84 51.10
Gemini-1.5-pro (Team et al., 2024) 67.78 64.73 89.18 69.82 7033 6243 5730 5420 78.72 57.36 52.49
Large Language Models (LLMs): Only Text as Input

GLM4-9B (GLM et al., 2024) 41.89 3537 34.66 3855 2798 4526 40.03 38.72 21.56 41.67 3691
Qwen2.5-7B (Hui et al., 2024) 40.67 3537 3643 44.04 19.78 48.21 40.89 3748 20.74 42.04 36.69
InternLM2.5-7B (Cai et al., 2024) 40.44 36.55 44.55 39.73 3212 46.33 39.72 3834 2238 42.12 3548
GPT-3.5-Turbo (OpenAl, 2023) 39.11 37.01 32.04 44.72 3229 4580 4333 39.04 23.28 41.55 39.11
GPT-4-Turbo (Achiam et al., 2023) 47.11 41.84 3339 4320 35.08 57.07 5283 46.27 23.08 50.36 44.21

Table 1: The zero-shot result of different models in Agri-CM3.

The best results are highlighted in bold, while

the second-best is underlined. The abbreviation in Agri-CM? means P: Perception, M: Mixture of Perception and
Cognition Reasoning, and K: Knowledge Application. Test Total represents the average of all test instances.

Expert Validation. To guarantee the quality of
the generated data, we employed two agricultural
experts for manual validation. Initially, we ran-
domly selected 200 data samples for annotation,
including questions, options, answers and answers
explanations. By evaluating the consistency of their
annotations, if the consistency is below 90%, we
retrain the experts on the inconsistent annotated
data and reassess their consistency until it exceeds
90%. Only after reaching this threshold can we
proceed with the formal annotation process. For
detailed annotation procedures, please refer to the
Appendix A.3.

3.4 Data Analysis

Base Statistics. The Agri-CM? contains 3,939
high-quality images and 15,901 multiple-choice

questions across three reasoning levels, six disease
tasks, and three pest tasks. 900 samples, 100 from
each subclass, form the validation set, with the
remaining 15,001 used for testing. More details in
Appendix A.4.

Multi-modal diversity. Figure 11 illustrates the
semantic space representation of images encoded
by CLIP (Radford et al., 2021). The results demon-
strate that Agri-CM? spans a broad semantic space,
highlighting its rich semantic diversity and compre-
hensive coverage.

4 Experiments

4.1 Experiments Setting

In this study, we conduct a systematic evaluation
of various MLLMs, including 38 open-source and
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seven proprietary models, to assess their perfor-
mance on the Agri-CM? benchmark. All evalua-
tions are conducted in a zero-shot setting, mean-
ing that the models do not receive any example
prompts during reasoning and have not been trained
explicitly on tasks related to the benchmark. This
approach allows us to measure the generalization
ability of MLLMs in agricultural pest and disease
management and evaluate their reasoning capabili-
ties on unseen tasks. All experiments are executed
on 4 NVIDIA H800 GPUs (80GB memory). De-
tailed experimental settings and hyperparameter
configurations are provided in the Appendix B.

4.2 Main Results

In this section, we comprehensively compare vari-
ous LLMs and MLLM s using the Agri-CM? bench-
mark. For clarity, we present results from selected
models in Table 1, while the complete experimental
results and data can be found in the Appendix A.4
and C. Based on these results, we summarize the
following key findings:

Agri-CM? remains a challenging benchmark.
The results from Table 1 show that 26 out of the
35 MLLMs achieved a performance below 60%.
The top-performing model on the test set reached
65.49%, demonstrating that real-world applications
in agricultural pest and disease management still
face significant challenges. Specifically, the mod-
els showed limited success in high-level reasoning
tasks, with the Disease-P-M-K and Pest-P-K tasks
achieving only 59.33% and 56.38%, respectively.
These results highlight substantial room for im-
provement, particularly in complex reasoning.

Open-source MLLMs gradually outperform
proprietary models. The top-performing open-
source model, InternVL-2.5-78B, achieved 65.49%
on the test set, outperforming the best proprietary
model, Gemini-1.5-Pro, by 0.73%. This result sug-
gests that the application potential of open-source
MLLMs in agricultural tasks is steadily increasing,
and in some cases, they have already surpassed
proprietary models. It also highlights the impor-
tance of open-source technologies in the future of
agricultural intelligence.

Optimal MLLMs performance still below expert
level. We evaluated the performance of MLLMs
and agricultural experts on the validation set. As
shown in Table 1 and Figure 2 (right), although
the optimal MLLM has demonstrated strong per-

-~ Discase-M Disease-K. @~ Discase-P-M-K Pest-K.
Disease-P @~ Disease-P-M @ Disease-M-K Pest-P @~ Pest-P-K

Accuracy (%)

0 10 20 30 40 50 60 70 80
Parameters (B)

Figure 4: Scaling law of model size in Agri-CM?3. We
use the InternVL-2.5 series as examples.

formance on certain tasks, there remains a perfor-
mance gap of approximately 8% compared to ex-
perts. This indicates that while current MLLMs
have made notable progress in agricultural tasks,
further optimization is needed to integrate high-
level reasoning and domain-specific knowledge.

Besides, the experts’ performance did not meet
the expected level of excellence. Although agricul-
tural experts have in-depth knowledge of specific
crops or pests, their performance decreases when
dealing with a broader range of crops and diseases
due to the specialized nature of their research. This
suggests that while experts have substantial advan-
tages in specific areas, both their performance and
that of the models are limited when faced with
broader agricultural scenarios.

4.3 Further Analysis

Larger models improve performance, but with di-
minishing returns. We conducted experiments
using InternVL-2.5 with different parameter sizes,
as shown in Figure 4. The results indicate that
as the model size increases, overall performance
improves significantly. For tasks across different
reasoning levels, larger models consistently outper-
form smaller ones, with an average performance
gap of 24.78% between the largest and smallest
models. However, as the parameter size further in-
creases, the rate of performance improvement grad-
ually slows, exhibiting diminishing returns. This
suggests that although larger models enhance accu-
racy, the benefits of increasing model size become
less pronounced.

Mixed-reasoning tasks are the key factor limiting
model performance. To explore the impact of
different reasoning levels on model performance,
we use Disease-P-M-K as a case study. By succes-
sively specifying entities in the question: starting
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from Disease-P-M-K, then specifying crop to cre-
ate Disease-M-K, and further specifying disease
to obtain Disease-K, we investigate how different
reasoning levels influence model performance. The
experimental results are shown in Figure 5. The re-
sults indicate that eliminating perception reasoning
(Disease-M-K) leads to only a modest performance
improvement of approximately 2.32% on average.
However, when mixed perception-cognition rea-
soning is further removed (Disease-K), the perfor-
mance increase becomes more significant, with an
average improvement of 6.00%. This suggests that
mixed-reasoning tasks are more challenging for the
models, and improving their ability in this area is
key to further enhancing model performance.

Multi-modal training boosts performance in
single-text tasks. In this benchmark, the Disease-
K and Pest-K tasks focus on evaluating pest and
disease knowledge in a single-text modality. We
compared the performance of MLLMs and their
corresponding LLMs on these tasks, as shown in
Figure 6 and 12. The results demonstrate that, af-
ter multi-modal training, MLLMs exhibit signif-
icant improvements in single-text modality tasks
compared to their corresponding LLMs, with an

Accuracy (%)
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3 3 ES

'

:

@
S
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S

30
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Shnzt [6)
Figure 7: In-Context Learning performance of InternVL-
2.5-38B under different shots.

average performance increase of 5.06% and 4.01%.
This phenomenon indicates that multi-modal train-
ing not only enhances models’ ability for joint rea-
soning over images and text but also improves their
adaptability and generalization to complex contexts
through image information processing, align with
the conclusions of Ji et al. (2024).

4.4 Exploration

The structured reasoning process enabled by CoT
leads to superior performance. We applied the
CoT (Wei et al., 2022) method to enable step-by-
step thinking and assessed its impact on perfor-
mance. As shown in Table 2, GPT-40 demonstrated
significant improvement, particularly in complex
multi-step reasoning tasks. Compared to other mod-
els, GPT-4o effectively follows the multi-step pro-
cess required by the benchmark: first identifying
the crop, diagnosing the disease, and then perform-
ing knowledge integration and application based on
the options. Other models, lacking such structured
reasoning, tend to provide answers without step-
by-step logic, resulting in less pronounced CoT
performance. A detailed case analysis is provided
in Appendix D.1.

In-context learning cannot stably improve per-
Jormance. In this experiment, we conducted in-
context learning with different shot counts using
InternVL-2.5-38B, as shown in Figure 7. The re-
sults indicate that, despite some fluctuations in ac-
curacy across different shot counts, there is no clear
upward trend or consistent performance improve-
ment. The main reason for this may be that as the
number of images increases, the model could be-
come confused due to the additional information,
leading to potential interference. Therefore, this
issue is likely related to the selection of examples
in in-context learning. Future work could further
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Table 2: Performance comparison of different MLLMs with and without CoT.
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Figure 8: The average performance of different models

on seven image-dependent tasks, comparing results with
and without the use of images.

GPT-40

explore the selection of examples.

The dataset relies heavily on visual input. To as-
sess the dataset’s dependency on the visual modal-
ity, we conducted experiments on datasets requir-
ing image input for responses, comparing model
performance with and without image input. Specif-
ically, we evaluated MLLMs of different scales

under both settings. The results, shown in Figure 8,
indicate a significant performance drop across all
models when visual information is removed. This
finding demonstrates that the dataset is highly de-

pendent on visual input, as models require image
information for practical reasoning.

S Error Analysis and Future Work

In this section, we analyze the errors of GPT-40
CoT predictions by randomly sampling 200 incor-
rect predictions from the most challenging pest and
disease reasoning tasks. These errors were anno-
tated and categorized by agricultural experts, and
the distribution is shown in Figure 9. Analysis re-
veals that the primary cause of errors is the lack of
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Figure 9: Overall error distribution for 200 annotated
GPT-4o errors.

domain-specific knowledge, particularly in disease
reasoning tasks. Additionally, in pest reasoning
tasks, the model’s insufficient expertise leads to
inaccurate pest identification and noticeable per-
ceptual errors, highlighting the limitations of cur-
rent models: insufficient training on specialized
agricultural knowledge. To address these issues,
future work should focus on enhancing domain
knowledge. Overcoming these challenges will im-
prove the performance of multi-modal models in
agricultural disease and pest reasoning tasks. De-

tailed case studies and analyses are provided in the
Appendix D.2.

6 Conclusion

In this study, we introduce Agri-CM3, an innova-
tive multi-level benchmark designed to comprehen-
sively evaluate the complex reasoning capabilities
of MLLMs in agricultural pest and disease man-
agement, filling a gap in the field. This multi-level
design not only evaluates the model’s ability in indi-
vidual sub-reasoning tasks but also tests its perfor-
mance in combined reasoning tasks and complete
6



reasoning chains, offering clear direction for future
model optimization. Additionally, Agri-CM? pro-
vides valuable insights for designing and evaluating
MLLMs. Our study emphasizes the importance of
integrating visual and language modalities and vali-
dates the crucial role of domain-specific knowledge
in vertical tasks.

Limitations

In this study, we introduced Agri-CM?3, a multi-
level benchmark designed to evaluate the complex
reasoning abilities of MLLMs in agricultural pest
and disease management. Although we have con-
sidered various factors, there are still some limita-
tions. Firstly, the current benchmark is based on
the Chinese language, which limits its applicabil-
ity to multilingual tasks. To enhance its usability
across language communities, we employed GPT-
4o to translate the dataset into English, enabling
broader participation from the global research com-
munity. However, potential translation biases and
semantic shifts introduced by the model may affect
a small portion of the content. Secondly, agricul-
tural experts typically specialize in specific areas,
which may impact the accuracy of annotations for
tasks outside their area of expertise. This special-
ization bias could lead to annotation inconsisten-
cies, especially for tasks involving different crops
or pests. To address this, future efforts may in-
corporate multi-domain experts or cross-domain
knowledge to enhance annotation accuracy and
consistency.

Ethical Considerations

In constructing the Agri-CM? benchmark, we lever-
aged GPT-4o to assist in both translating Chinese
content into English and generating synthetic ques-
tion—answer pairs based on agricultural images and
structured domain knowledge. While this approach
improves scalability and consistency, it also intro-
duces potential ethical concerns.

First, GPT-40 may encode biases from its pre-
training data as a proprietary model, particularly
regarding domain-specific or culturally nuanced
content. Such biases may affect translation fidelity,
domain framing, or answer correctness. This is
particularly relevant in agriculture, where regional
terminology and knowledge may be underrepre-
sented. Second, although all generated content
was validated by human experts, the filtering and
editing of LLM outputs remain subject to human

limitations. As a result, some edge-case errors or
subtle biases may persist. Third, since the bench-
mark was originally constructed in Chinese and
then translated, there is a risk of semantic drift
or misinterpretation during translation. Lastly, all
image data were sourced from public datasets or
used under fair academic use, with no personal or
sensitive information involved. Nonetheless, we
acknowledge the importance of ongoing ethical re-
flection on data provenance, model transparency,
and equitable access.

Future iterations of Agri-CM? will incorporate
multilingual sources, fairness metrics, and explicit
documentation of observed biases to improve trans-
parency and inclusiveness.
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A Dataset Agri-CM? Details
A.1 Data Collection

To ensure high-quality image data, we collected a
large number of images from existing agricultural
pest and disease datasets and related websites, re-
sulting in 21 distinct pest and disease datasets (see

Table 3). We filtered the images based on resolution
and excluded those with fewer instances. Addition-
ally, we applied K-means clustering to eliminate
highly similar images, ensuring dataset diversity. In
the end, we retained 5,727 high-quality images. To
further validate the images, two agricultural experts
were hired to review and filter out the following
categories of unusable images:

i. Images containing crop, disease, pest names,
or symptom-related terms.

ii. Images with large watermarks obscuring key
features of pests and diseases.

iii. Images unrelated to pests and diseases.

After filtering, we obtained 3,939 high-quality
agricultural pest and disease images with crop and
pest labels. These images formed the foundation
for generating subsequent question-answer data.

To ensure the quality of the generated content
and prevent hallucinations, we gathered domain-
specific background knowledge related to pests
and diseases. The sources included professional
agricultural books, Baidu Baike!, and Wikipediaz,
totaling 5.2 million words of specialized content.
This knowledge was structured into a database for
reference by GPT-4o during data generation, pro-
viding a solid foundation for generating precise and
reliable question-answer data.

A.2 Data Generation

Firstly, we use GPT-40 to generate high-level com-
plex reasoning data based on agricultural pest and
disease images, crop, pest, and disease captions,
along with relevant agricultural background knowl-
edge. Based on this high-level data, we progres-
sively derive low-level complex reasoning data,
with the derivation sequence shown in Table 4 and
the prompts provided in Prompt A.1, A.2 A.3, and
A.4. To ensure the accuracy of the generated data,
we provide an example to guide the model towards
generating more accurate results.

It is important to note that the pest recognition
task only involves the perception stage, and there-
fore, the mixture of perception-cognition reasoning
stage is not included in the generation of high-level
pest data.

A.3 Expert Validation

To ensure the quality of the generated data, we in-
corporated external domain-specific background

1ht’cps: //baike.baidu.com/
2https://zh.wikipedia.org/
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Dataset Name Dataset Type # Crop # Disease/Pest Link

PlantDoc-Dataset (Singh et al., 2020) Disease 13 28 https://github.com/pratikkayal/PlantDoc-Dataset

Rice disease image classification Disease 1 5 https://www.kaggle.com/nurnob101/rice-disease

Rice Diseases Disease, Pest 1 4 https://www.kaggle.com/renzmarrionperea/ricedisease

ai_challenger_pdr2018 Disease 10 40 https://aistudio.baidu.com/datasetdetail/76075

Agricultural Pest Research Base Disease, Pest 8 40 http://www.icgroupcas.cn/website_bchtk/fuwu.html

CGIAR Computer Vision for Crop Dis- Disease 1 3 https://www.kaggle.com/datasets/shadabhussain/cgia

ease r-computer-vision-for-crop-disease

IP102 v1.1 (Wu et al., 2019) Pest 8 102 https://github.com/xpwu95/IP102

Wheat Leaf Dataset (Getachew, 2021) Disease 1 3 https://data.mendeley.com/datasets/wgd66f8n6h/1

Large Wheat Disease Classification Disease 1 4 https://drive.google.com/drive/folders/10HKtwD1Urd

Dataset (Goyal et al., 2021) mhagxrpQEeF _X_pgKotxRGD

Spectral and image dataset of apple leaf ~Disease, Pest 1 3 https://www.agridata.cn/data.html#/datadetail?id=4

diseases and insect pests in China in 363

2015 (Gao et al., 2020)

Image dataset of six common orchard Pest 0 6 https://www.agridata.cn/data.html#/datadetail?id=2

pests including Bactrocera dorsalis 86640

(Zhang et al., 2022)

Corn Disease Image Database Disease 1 5 https://www.agridata.cn/data.html#/datadetail?id=2
88848

Field images of maize annotated Disease 1 1 https://osf.io/p67rz/

with disease symptoms (Wiesner-Hanks

et al., 2018)

Database of rice pests and diseases in  Disease, Pest 1 20 https://www.agridata.cn/data.html#/datadetail?id=291

the field in South China and Southwest 593

China from 2018 to 2020

Data on the occurrence of insect pests Pest 5 53 https://www.agridata.cn/data.html#/datadetail?id=4

in major crop fields in China from 2013 437

to 2018

Data on the occurrence of major crop Disease 5 34 https://www.agridata.cn/data.html#/datadetail?id=4

field diseases in China from 2013 to 436

2018

Atlas of Alfalfa Diseases, Insect Pests, Pest 1 203 https://www.scidb.cn/en/detail?dataSetId=DS_455c0351

and Natural Enemies and Dataset of do4b4a7e912b6do1a66ee5f7

Major Alfalfa Diseases in Heilongjiang

Province (2015-2016) (Li, 2023)

Rice Leaf Diseases (Shah et al., 2017) Disease 1 3 https://archive.ics.uci.edu/dataset/486/rice+leaf+
diseases

Eggplant Disease Recognition Dataset  Disease, Pest 1 13 https://data.mendeley.com/datasets/r3tb5mzn4d/2

(Mafi et al., 2023)

paddy-doctor-diseases-medium (A Disease, Pest 1 13 https://ieee-dataport.org/competitions/design-class

etal., 2022) ifier-classify-diseases-paddy-based-leaf-color

Baidu Encyclopedia Data Pest 1 5 https://baike.baidu.com/

Table 3: Sources for agricultural pest and disease image data collection.

Derivation Sequence

Specified Crop Specified Disease
Rl it il [ Aty

Disease-P-M-K Disease-M-K
Disease-P-M m Disease-M
Pest-P-K SZefied Pest, pog

Disease-P

Disease-K

Disease-P

followed by reannotation of another 200 samples.
The detailed process is shown in Figure 10. After
two training rounds, the experts achieved over 90%
consistency, with the results in Table 5.

Table 4: Derivation sequence of high to low level com-
plex reasoning data.

knowledge during the generation process. How-
ever, due to the inherent hallucination issue of
MLLMs, errors in the data are unavoidable. There-
fore, we hired two agricultural experts to annotate
the data and filter out erroneous entries. To ensure
annotation consistency, the experts underwent train-
ing, followed by the annotation of 200 samples for
preliminary labeling. The annotation consistency
was calculated, and when it fell below 90%, fur-
ther training was provided to address discrepancies,

Metrics Round 1 Round 2
# Consistency of Question 92.5 94.0
# Consistency of Options 90.5 93.0
# Consistency of Answer 87.5 92.5
# Consistency of Answer Explanation 87.5 93.0

Table 5: Consistency among experts in different labeling
rounds.

A.4 Data Statistics

Through rigorous expert review, we obtained 3,939
high-quality images and 15,901 multiple-choice
questions. A total of 900 high-resolution data en-
tries were selected from each category, with 100
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Prompt A.1: High-Level Data Generation

(164 ] R —ZRAETUHHIBIN, (R ERFEEVHHRENTTHOERAREREZARERZEE, N5
I B 2 R AR A T « BB R R A R T 51 S22 A RSB H EIEYI T iR, B RAE]
FIBTRIZEYI RPN  IZBREIA RS R4, NEE SR TER LIS AFIE 528 B 4ERETT -

(Rfil)
{Example}

(58]
{E4): {Crop Name}
B7: {Disease or Pest Name)
HER40R: {Background Knowledge}

(ZK]
1. 2B AER TR E R, BRI

4. BRI — A EE — DEIEHM -
5. BZET4E M IEFRTR T £ o

7. 3 TR A R U B B R A -
8. B HEITAENT, B TR -
9. A3 L IEFE -

ZHEZEDEE4NTIA
2. ARYE LT ALZ R I A A R T, PROIE (A1 AR B A A RE [
3. ARSI EMIE IR, BIREH - FERA - BORETHER - BoRETHRE (AT . ME%) -

6. IRIMPBEM T FHAIAL HEHZE, SN PENMNEEETRN— TR, S-S PEEHEENGS

. Validation Test Diease Pest
Metric Overall Overall
P M P-M K M-K P-M-K P K P-K
Avg. Question Length 19.43 19.40 12.61 18.56 22.70 17.63 24.80 22.59 13.37 21.36 21.95
Avg. Option Length 3.66 3.55 2.03 5.11 3.55 5.11 3.54 3.54 3.39 3.28 3.28
# Question / # Images 900 /200 1500173767 1283/1283  1283/1283  1283/1283 1218/- 1375/1160  1389/1160  2656/2656 2586/— 2828 /2332

Avg. Image Resolution 2081 x 1642 1815 x 1489 2128 x 1783 2128 x 1783 2128 x 1783 -

2171 x 1808 2186 x 1819 1444 x 1140 - 1449 x 1139

Table 6: Detailed statistics on the Agri-CM?3 benchmark.

entries per category, to form the Validation set.
The remaining 15,001 entries were used as the Test
set. The dataset includes 11 crops, 45 diseases, and
107 pests. Figure 14 shows data cases for different
tasks, and Figure 13 illustrates the label distribution
across the global, disease, and pest levels, indicat-
ing a balanced distribution across all labels.

Further statistical analysis of the dataset is pro-
vided in Table 6, demonstrating the high image
quality of Agri-CM3. The average resolution is
1800 x 1500 pixels, ensuring high clarity and de-
tail. Additionally, homogenized images were fil-
tered out automatically by the model, ensuring di-
versity. All images were also manually annotated
and validated by agricultural experts to guarantee
data reliability and usability.

A.5 Diversity Analysis of Agri-CM3

Image Diversity Analysis. Figure 11 illustrates
the spatial representations of images encoded using
CLIP (Radford et al., 2021). The wide distribution
of image representations across the space indicates
rich semantic content and intense coverage, sug-
gesting that the dataset has a high diversity and
comprehensive representation. This diversity en-

ables a comprehensive evaluation of the model’s
ability across various agricultural pest and disease
management tasks.

Text Diversity Analysis. Further analysis of
phrase frequencies in questions and options is pre-
sented in the word clouds in Figure 15. In the
question word cloud, terms like “EH (Pest)”, “JA
% (Disease)”, “4%/iF (Characteristic)” and “FiVa
(Prevention)” dominate, reflecting the benchmark’s
focus on agricultural pest and disease management,
aligning with our objectives. In the option word
cloud, terms like “7K#4 (Rice)”, “/NZ& (Wheat)”
and “THJEJA (Rice Blast)” are prominent, validat-
ing the targeted approach of our dataset in reflect-
ing key agricultural issues.

A.6 Multilingual Dataset

Given the strong machine translation capabilities of
current large language models—particularly propri-
etary models like GPT-40—we utilized GPT-40 to
translate our Chinese dataset into English. This not
only ensures high-quality translations but also en-
hances reproducibility and facilitates community-
driven extensions.
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Prompt A.2: High-Level Data Generation (Translation)

(Example]
{Example}

[Information)

Crop: {Crop Name}

Disease: {Disease or Pest Name}

Background Knowledge: {Background Knowledge}
[Requirements)

four nodes.

referring to the diagram.

spores, bacteria, etc.).

4. Each option should be a word or a short phrase.
5. Provide the correct option in the answer key.

9. Generate three multiple-choice questions.

\

[Instruction] You are a teacher in the field of agronomy. Based on the background knowledge of a crop disease in a specific
aspect, you are required to generate a reasoning logic diagram to assess the knowledge. Then, based on the diagram,
generate multiple-choice questions. The purpose of generating questions from the logic diagram is to guide students from
identifying the crop to gradually delving into determining the type of disease affecting the crop, its related characteristics,
and comprehensively assess their knowledge application and logical thinking abilities in the field of agronomy.

1. The first two nodes of the logic diagram should be fixed as “Crop” and “Disease,” and the diagram should include at least
2. Generate questions and options based on the image and logic diagram, ensuring that the questions can only be answered by

3. The question should not mention the crop name, disease name, pest name, pathogen name, or the type of pathogen (such as

6. Based on the logic diagram and background knowledge, provide the reasoning for solving the question, where each step
corresponds to a node in the diagram. Each step should have a reasoning outcome.

7. Provide the background knowledge used to generate the multiple-choice questions.

8. Output option analysis, analyzing each option individually.

Prompt A.3: Low-Level Data Derivation

(=1 ]
{Example}

(EE]
{E#): {Crop Name}
FEEMAAE:  {Question)

(184 ] RR—BREZN, RIFEEBH M REZTEFMARE, KRECEHAREDRREN . 446
B AT AR, BObAERE H as HEYIATR - 456 B dEATIR A -

B Evaluation

For closed-source models, we directly call the cor-
responding APIs. For open-source models, if the
model supports VLLM?, we deploy it in the Ope-
nAl API format and test it according to the API call
procedure. If the model does not support vLLM,
we use the official inference method provided by
the model developers to perform reasoning. During
the evaluation, to ensure the stability of the results,
we set the temperature parameter to 0.0 and the
maximum output length to 1024.

See Prompt B.1, B.3, B.5 for the prompts in the
experiment. The English Prompt after translation
is B.2, B.4, and B.6.

Shttps://github.com/vllm-project/vllm

B.1 Evaluation Metric

Our benchmark consists entirely of multiple-choice
questions. For models that directly respond with an
option, we evaluate their performance by matching
the answer string with the correct option. For CoT
methods, we consider the final answer provided
after the reasoning process. The evaluation met-
ric used is accuracy (ACC), calculated using the
formula:
n

ACC = . ey
where n denotes the amount of data answered cor-
rectly and N denotes the amount of all data.

B.2 Evaluation Models

In this study, we evaluated 45 MLLMs and 5 LLMs
on Agri-CM3. The specific parameters of these
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Prompt A.4: Low-Level Data Derivation (Translation)

[Example]
{Example}

[Information]
Crop: {Crop Name}
Question to be modified: {Question}

[Instruction] You are an agronomy teacher. You are now required to modify a multiple-choice question in agronomy by
revising the original question, which previously did not specify the crop and disease names and was based on images, to a
version where the crop name is provided in the question along with the image for reference.

Randomly select Experts
100 data to be annotate them
labeled individually

Retrain for
inconsistencies

_> q

Consistency Start official

>90%7?

labeling

Figure 10: Expert annotation training process. To ensure annotation quality and consistency, formal annotation

begins only when expert agreement exceeds 90%.

* Disease  © Pest

Figure 11: Image spatial representation via CLIP encod-
ing and PCA dimensionality reduction.

models are listed in Table 7.

C Supplementary Results

In this section, we present the complete experimen-
tal results for all models on the benchmark in Table
10, including 45 MLLMs and 5 LLMs. Addition-
ally, Table 11 provides the full CoT experimental
results for 11 models of varying scales, covering
both open-source and proprietary models.

Expert Performance Analysis. To systemati-
cally evaluate expert performance across tasks, we
present each expert’s scores on individual tasks in

Prompt A.5: Translate Chinese Dataset to En-

glish

You are a translation expert in the field of agriculture. Be-
low is a Chinese agricultural exam question. Please trans-
late it into English and follow the requirements below: 1.
Ensure that the translation maintains professionalism, aca-
demic rigor, and accuracy. 2. The output should be in
JSON format.

Question: question Options:

A. {Option A}

B. {Option B}

C. {Option C}

D. {Option D}

Options Analysis: {Options Analysis}

Translation Result:

Table 8. Experimental results indicate that cur-
rent agricultural experts typically possess deep
expertise in specific crops or pest and disease
categories, with their knowledge being relatively
domain-focused rather than broadly distributed. As
a result, when confronted with the diverse crop and
pest categories included in our benchmark, their
overall performance exhibits noticeable variability,
highlighting limitations in cross-domain general-
ization.

Mixed reasoning poses a greater challenge
than perceptual complexity for current models.
To systematically evaluate deficiencies in different
model capabilities, we introduce two diagnostic
metrics using the Disease-P-M-K task as a case
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Models Size Vision Encoder LLM Parameter Link
LLaVA1.5-7B 7.06B CLIP ViT-L/14 Vicuna-v1.5-7B https://huggingface.co/1lava-hf/1lava-1.5-7b-hf
LLaVAL.5-13B 13.4B CLIP ViT-L/14 Vicuna-v1.5-13B https://huggingface.co/1lava-hf/1lava-1.5-13b-hf
LLaVA-1.6-7B 7.57B CLIP ViT-L/14 Mistral-7B https://huggingface.co/1lava-hf/1lava-v1.6-mistral-7b-hf
LLaVA-1.6-13B 13.4B CLIP ViT-L/14 Vicuna-v1.5-13B https://huggingface.co/1lava-hf/1lava-v1.6-vicuna-13b-hf
LLaVA-1.6-34B 34.8B CLIP ViT-L/14 Nous-Hermes-2-Yi-34B https://huggingface.co/1lava-hf/1lava-v1.6-34b-hf
LLaVA-OneVision-7B 8.03B SigLIP-SO400M Qwen2-7B https://huggingface.co/1lava-hf/1lava-onevision-qwen2-7b-ov-hf
LLaVA-OneVision-72B 73.2B SigLIP-SO400M Qwen2-72B https://huggingface.co/1lava-hf/llava-onevision-qwen2-72b-ov-hf
Phi-3.5-vision-instruct 4.15B CLIP ViT-L/14 Phi-3 Mini https://huggingface.co/microsoft/Phi-3.5-vision-instruct
Qwen-VL-Chat 9.6B ViT-bigG Qwen-7B https://huggingface.co/Qwen/Qwen-VL-Chat
Qwen2-VL-7B-Instruct 8.29B ViT-bigG Qwen2-7B https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
Qwen2-VL-72B-Instruct 73.4B ViT-bigG Qwen2-72B https://huggingface.co/Qwen/Qwen2-VL-72B-Instruct
MiniCPM-Llama3-V2.5 8.54B SigLip-400M Llama3-8B-Instruct https://huggingface.co/openbmb/MiniCPM-L1lama3-V-2_5
MiniCPM-V2.6 8.1B SigLip-400M Qwen2-7B https://huggingface.co/openbmb/MiniCPM-V-2_6
MiniCPM-0-2.6 8.67B SigLip-400M et al. Qwen2.5-7B https://huggingface.co/openbmb/MiniCPM-0-2_6
CogVLM2 19.5B EVA-CLIP-E LLaMA3-8B https://huggingface.co/THUDM/cogvlm2-1lama3-chat-19B
GLM-4V-9B 13.9B EVA-CLIP-E GLM4-9B https://huggingface.co/THUDM/glm-4v-9b
InternVL2-1B 938M InternViT-300M-448px Qwen2-0.5B-Instruct https://huggingface.co/OpenGVLab/InternvL2-1B
InternVL2-2B 2.21B InternViT-300M-448px internlm2-chat-1.8b https://huggingface.co/OpenGVLab/InternvL2-2B
InternVL2-4B 4.15B InternViT-300M-448px Phi-3-mini-128k-instruct https://huggingface.co/OpenGVLab/InternVL2-4B
InternVL2-8B 8.08B InternViT-300M-448px internlm2.5-7b-chat https://huggingface.co/OpenGVLab/InternvL2-8B
InternVL2-26B 25.5B InternViT-6B-448px-V1-5 internlm2-chat-20b https://huggingface.co/OpenGVLab/InternVL2-26B
InternVL2.5-1B 938M InternViT-300M-448px-V2.5  Qwen2.5-0.5B-Instruct https://huggingface.co/OpenGVLab/InternVL2_5-1B
InternVL2.5-2B 2.21B InternViT-300M-448px-V2.5 internlm2.5-1.8b-chat https://huggingface.co/OpenGVLab/InternvVL2_5-28B
InternVL2.5-4B 3.71B InternViT-300M-448px-V2.5 Qwen2.5-3B-Instruct https://huggingface.co/OpenGVLab/InternVL2_5-4B
InternVL2.5-8B 8.08B InternViT-300M-448px-V2.5 internlm2.5-7b-chat https://huggingface.co/OpenGVLab/InternvL2_5-8B
InternVL2.5-26B 25.5B InternViT-6B-448px-V2.5 internlm2.5-20b-chat https://huggingface.co/OpenGVLab/InternVL2_5-26B
InternVL2.5-38B 38.4B InternViT-6B-448px-V2.5 Qwen?2.5-32B-Instruct https://huggingface.co/OpenGVLab/InternvL2_5-38B
InternVL2.5-78B 78.4B InternViT-6B-448px-V2.5 Qwen?2.5-72B-Instruct https://huggingface.co/OpenGVLab/InternvL2_5-78B
Yi-VL-6B 6.6B CLIP ViT-H/14 Yi-6B-Chat https://huggingface.co/01-ai/Yi-VL-6B
Yi-VL-34B 34B CLIP ViT-H/14 Yi-34B-Chat https://huggingface.co/01-ai/Yi-VL-34B
Deepseek-vI2-tiny 1.0B/3.37B SigLIP-SO400M DeepSeek-MoE https://huggingface.co/deepseek-ai/deepseek-v12-tiny
Deepseek-vI2-small 2.8B/16.1B SigLIP-SO400M DeepSeek-MoE https://huggingface.co/deepseek-ai/deepseek-v12-small
Deepseek-v12 4.05B/27.5B SigLIP-SO400M DeepSeek-MoE https://huggingface.co/deepseek-ai/deepseek-v12
Molmo-7B 8.02B CLIP ViT-L/14 Qwen2-7B https://huggingface.co/allenai/Molmo-7B-D-0924
Molmo-72B 73.3B CLIP ViT-L/14 Qwen2-72B https://huggingface.co/allenai/Molmo-72B-0924
Cambrian-8B 8.33B SVA Llama3-8B-Instruct https://huggingface.co/nyu-visionx/cambrian-8b
Cambrian-13B 13.4B SVA Vicuna-v1.5-13B https://huggingface.co/nyu-visionx/cambrian-13b
Cambrian-34B 34.8B SVA Hermes2-Yi-34B https://huggingface.co/nyu-visionx/cambrian-34b
777777 GPT40 - ST e
GPT-40-mini - - - -
Gemini-1.5-flash - - - -
Gemini-1.5-pro - - - -
Yi-Vision - - - -
Qwen-VL-PLUS - - - -
Qwen-VL-MAX - - - -
””” GLM4-9B  94B - 77777777 nttps://huggingface.co/THUDM/glm-4-9b-chat
Qwen2.5-7B 7.62B - - https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
InternLM-2.5-7B 7.74B - -

https://huggingface.co/internlm/internlm2_5-7b-chat
GPT-3.5-Turbo - - - -
GPT-4-Turbo - - - -

Table 7: The model architecture of 45 MLLMSs a nd 5 LLMs evaluated on Agri-CM?3.

Prompt B.2: Zero-Shot Normal (Translation)

The following is a single-choice question in Agronomy.
No analysis or explanation is required, just output the
answer.

Prompt B.1: Zero-Shot Normal

LA BB AR A BIUERE, AT ZAHUE T o A A
B, EEEHER-

[A#i: {question} . .
1LT1: {options_str) Question: {question}
B Options: {options_str}

Answer:

\ J

study:

* Perception Drop: The percentage of sam-
ples where the model correctly answers both
Disease-K and Disease-M-K, but fails on
Disease-P-M-K. This reflects performance
degradation due to increased perceptual com-
plexity.

ing the impact of added reasoning complexity.

We compute these metrics across a range of rep-
resentative open-source and proprietary models. As
shown in Table 9, Mixed Reasoning Drop consis-
tently exceeds Perception Drop, highlighting mixed
reasoning as a more significant challenge for cur-
rent models.

* Mixed Reasoning Drop: The percentage of
samples where the model performs well on
Disease-K but fails on Disease-M-K, captur-
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https://huggingface.co/llava-hf/llava-1.5-7b-hf
https://huggingface.co/llava-hf/llava-1.5-13b-hf
https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf
https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf
https://huggingface.co/llava-hf/llava-v1.6-34b-hf
https://huggingface.co/llava-hf/llava-onevision-qwen2-7b-ov-hf
https://huggingface.co/llava-hf/llava-onevision-qwen2-72b-ov-hf
https://huggingface.co/microsoft/Phi-3.5-vision-instruct
https://huggingface.co/Qwen/Qwen-VL-Chat
https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
https://huggingface.co/Qwen/Qwen2-VL-72B-Instruct
https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5
https://huggingface.co/openbmb/MiniCPM-V-2_6
https://huggingface.co/openbmb/MiniCPM-o-2_6
https://huggingface.co/THUDM/cogvlm2-llama3-chat-19B
https://huggingface.co/THUDM/glm-4v-9b
https://huggingface.co/OpenGVLab/InternVL2-1B
https://huggingface.co/OpenGVLab/InternVL2-2B
https://huggingface.co/OpenGVLab/InternVL2-4B
https://huggingface.co/OpenGVLab/InternVL2-8B
https://huggingface.co/OpenGVLab/InternVL2-26B
https://huggingface.co/OpenGVLab/InternVL2_5-1B
https://huggingface.co/OpenGVLab/InternVL2_5-2B
https://huggingface.co/OpenGVLab/InternVL2_5-4B
https://huggingface.co/OpenGVLab/InternVL2_5-8B
https://huggingface.co/OpenGVLab/InternVL2_5-26B
https://huggingface.co/OpenGVLab/InternVL2_5-38B
https://huggingface.co/OpenGVLab/InternVL2_5-78B
https://huggingface.co/01-ai/Yi-VL-6B
https://huggingface.co/01-ai/Yi-VL-34B
https://huggingface.co/deepseek-ai/deepseek-vl2-tiny
https://huggingface.co/deepseek-ai/deepseek-vl2-small
https://huggingface.co/deepseek-ai/deepseek-vl2
https://huggingface.co/allenai/Molmo-7B-D-0924
https://huggingface.co/allenai/Molmo-72B-0924
https://huggingface.co/nyu-visionx/cambrian-8b
https://huggingface.co/nyu-visionx/cambrian-13b
https://huggingface.co/nyu-visionx/cambrian-34b
https://huggingface.co/THUDM/glm-4-9b-chat
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/internlm/internlm2_5-7b-chat

Expert Validation Disease Pest
P M P-M K M-K P-M-K P K P-K
1 80.00 100.00 85.00 83.00 66.00 71.00 69.00 95.00 76.00 75.00
2 79.11 100.00 73.00 77.00 73.00 73.00 71.00 94.00 76.00 75.00
Average 79.56 100.00 79.00 80.00 69.50 72.00 70.00 9450 76.00 75.00

Table 8: Expert performance across agricultural tasks.

Prompt B.3: Zero-Shot CoT

LUT R — B R I A,
EREHEEER -

H— DA%, I

[A]R%: {question}
1%ET1: {options_str)
L.

Prompt B.4: Zero-Shot CoT (Translation)

The following is a single-choice question in Agronomy.
Please think step by step and provide the answer at the
end.

Question: {question}
Options: {options_str}
Answer:

D Case Study

D.1 GPT-40 CoT Case Study

Through analyzing the CoT responses of GPT-40
and InternVL-2.5-78B, we observed that GPT-40
effectively follows the multi-level reasoning pro-
cess required by the benchmark, as shown in Fig-
ure 16. Specifically, GPT-40 diagnoses the disease,
analyzes key features, and performs knowledge in-
tegration and application, ultimately selecting the
correct answer through option analysis. In con-
trast, InternVL-2.5-78B lacks this structured rea-
soning process. These findings demonstrate that
GPT-40’s structured multi-step reasoning signifi-
cantly enhances CoT performance. This highlights
the importance of multi-level structured reason-
ing in improving model performance and provides
valuable insights for future model optimization.

D.2 Error Analysis and Case Study

We randomly selected 200 erroneous predictions
from GPT-40’s CoT responses in the most chal-
lenging disease and pest reasoning tasks. These
errors were annotated by two agricultural experts
and categorized into five types:

Prompt B.5: Few-Shot Normal

U8R AR, ATF MU oA i
B, BEEMHER.

DU & —Som

{examples}

BAE, ERELLT B HER:
[A: {question}
glﬁ . {options_str}

\

Prompt B.6: Few-Shot Normal (Translation)

The following is a single-choice question in Agronomy.
No analysis or explanation is required, just output the
answer.

Here are some examples:

{examples}

\

Now, please output the answer based on the following
question:

Question: {question}

Options: {options_str}

Answer:

* Question Misunderstanding: Errors caused
by incorrect comprehension of the question.

* Perceptual Error: Errors in interpreting vi-
sual information from images.

* Lack of Knowledge: Errors due to incorrect
or insufficient application of domain-specific
knowledge.

* Irrelevant Response: Model responses unre-
lated to the question.

* Refuse to Answer: The model refuses to re-
spond due to privacy or safety concerns.

Through the analysis of error distributions, we
identified the following characteristics: In disease
reasoning tasks, which involve a relatively small
number of crop types (only 11), perceptual tasks
are relatively simple, and most errors are attributed
to a lack of domain knowledge. This indicates that
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Model PD MRD

internvl2.5-8B 3.50 14.33
Internvl2.5-78B 276 15.71
Qwen2-VL-7B 443 14.27
Qwen2.5-VL-7B  3.17 13.33
Qwen2.5-VL-72B 4.54 16.2
Qwen-VL-MAX 499 18.05
Gemini-1.5-flash 3.72 15.71
Gemini-1.5-pro  4.67 17.09
GPT-40 6.66 21.99

Average 4.21 15.96

Table 9: Comparative analysis of Perception Drop (PD)
and Mixed Reasoning Drop (MRD) across models.

60 LLM
MLLM 58.0
56.84
56.0
55.07

55 1
- 52,8
s
» 50 49.2
<
s 47.43
=
S
< 45

42,12 42.36
40

InternVL-2.5 InternVL-2.5 InternVL-2.5 Qwen2-VL Qwen2-VL
(8B) (38B) (78B) (7B) (72B)

Figure 12: Performance of different MLLMs and their
corresponding LLMs on Pest-K (text modality).

models require further enhancement in domain-
specific knowledge reasoning to handle disease-
related tasks effectively. In contrast, pest reason-
ing tasks, with 107 pest types, exhibit significantly
higher perceptual complexity, making perceptual
errors the primary cause of failures. Analysis re-
veals that the perceptual errors in pest reasoning
tasks typically arise from the model’s failure to ac-
curately identify pests, which stems from a lack of
domain-specific knowledge.

Future efforts should strengthen models’ ability
to combine visual perception with domain-specific
knowledge to improve performance in complex
reasoning tasks. Additionally, expanding datasets
to cover a broader range of pest and disease types
and with improving multi-modal fusion techniques
will be crucial for reducing errors and enhancing
reasoning accuracy. Detailed case analyses for the
five error types are provided in Figures 18, 19, 20,
21,22, and 23.
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(a) Label distribution of the overall dataset

(b) Label distribution of the disease dataset

(c) Label distribution of the pest dataset

Figure 13: Label distribution across the global, disease, and pest levels.

A Disease-P-M-K ~
Question: Bt 5 LR EERFIHEESE BHATHETIRHME?
—— Options: A. f#l B. E& C. fifT D. &

J\-

1 Disease-P N
Question: B /AR HHIAY2BFEYD?
Options: A. XZ B.EXK C./KiE D/IE

i Answer: C Answer: D
1 Disease-M-K e Pest-P-K

Question: NERFFTHECHBFHESEEEHIHZASE?

Question: B H/NEH F_ EE BB FHEERESBILHZNSE? B N Question: BN ERRATAE(REE F R E X E B &7
— Options: A. fg#l B. BE£ C. pifT D. &£+ Options: A SIR#SAT BFRET CREKRIAERE DIZEE
Answer: C Answer: A
U J &
1 Disease-K a Pest-K

Question: B NIRRT RE(RFEZ K BRI FYIRI™ BB E?

Question: X FrH-F AT BERRER T BRFIZRRA?
Options: A/NERFER BAEEER C/EQNRE DEKBNE

Answer: A

\-

1 = R = — I . " — e = JPENN
Nofm;?v.en Options: A. fB#l B. BE C. BfT D. & N 'm;?v:“ Options: A SiEXER BFEET CHEFRALERN DBEE
Answer: C Answer: A
L J
~_ Disease-P-M e Pest-P

Question: IXGKEFRIEREMHA?
Options: A JEEREEH; B. B 7RS C.EKET D/

Answer: C )

~1__ Disease-M

- Question: X AN I FRTAERR T WRRhEeRs?
E

Options: A/NERIER BIKTERBER C/\EBME D.EKEBMH
Answer: A )

J\-
~

Figure 14: Data cases in the Agri-CM? benchmark. The abbreviation in Agri-CM? means P: Perception, M: Mixture
of Perception and Cognition, and K: Knowledge Application.
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Figure 15: The word frequency information for both questions and options is separately calculated and presented in

the form of word clouds.
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Validation Test Disease Pest

Model

Total — Total ~p pM K MK PMK P K PK
Random Choice 23.22 25.14 2544 26.04 2544 24.15 2431 26.61 25.04 2494 24.89
Expert Performance 79.56 - - - - - - - - - -

Multi-Modal Large Language Model(MLLMs): Text + Image as Input
LLaVA-1.6-13B (Liu et al., 2024) 3333 31.43 3542 36.77 2874 4249 30.61 30.17 2437 3524 28.12
Cambrian-8B (Tong et al., 2024) 40.11 3759 41.42 5275 47.17 40.07 36.63 339  30.05 36.56 34.38
LLaVA-1.5-7B (Liu et al., 2023a) 38.00 35.67 27773 5199 5199 40.70 40.66 40.82 22.65 3294 32.84
Deepseek-vI2-tiny (Wu et al., 2024) 40.22 36.38 2857 492 41.08 38.82 37.33 36.77 2383 39.5 3944
LLaVA-1.5-13B (Liu et al., 2023a) 41.33 38.19 4387 53.00 5241 40.52 42.54 4238 2340 3331 3647
Cambrian-13B (Tong et al., 2024) 41.56 38.78 54.86 52.16 45.05 41.86 36.08 32.74 30.59 38.82 338
InternVL-2-1B (Chen et al., 2024c) 44.33 39.11 47.00 50.63 43.28 4231 37.83 3740 27.50 39.58 3941
Deepseek-VL2-small (Wu et al., 2024) 44.56 39.42 4835 4598 37.28 47.58 44.86 42.13 1995 4348 41.02
InternVL-2.5-1B (Chen et al., 2024b) 44.33 40.71 50.55 48.01 3939 3578 3878 36.70 4441 3564 39.85
LLaVA-1.6-7B (Liu et al., 2024) 42.11 40.73 4582 5241 4658 4034 4262 4246 33.06 3797 39.08
Phi-3.5-Vision (Abdin et al., 2024) 46.11 41.69 39.14 5799 5385 44.10 44.66 45.18 30.01 38.50 40.29
Deepseek-VL2 (Wu et al., 2024) 46.33 4291 36.18 4793 415 48.12 4847 4523 3728 44.17 4256
InternVL-2-2B (Chen et al., 2024c) 47.11 4296 4531 5123 47.17 4222 4027 3896 4491 39.74 41.09
Qwen-VL (Bai et al., 2023) 46.11 4426 66.61 4598 37770 44.54 40.58 39.66 47.65 41.67 39.63
MiniCPM-V2.5 (Yao et al., 2024) 44.78 4475 6433 47.00 4649 50.09 42.62 42.07 40.14 4553 3820
InternVL-2-4B (Chen et al., 2024c) 50.00 45.04 56.72 5545 50.04 4785 46.08 44.87 36.03 42.04 42.89
Yi-VL-6B (Al et al., 2024) 49.56 4545 3593 4954 41.67 49.19 4796 4572 50.94 43.04 43.66
Yi-VL-34B (Al et al., 2024) 48.78 4598 49.79 52.83 3846 5125 4843 4425 4268 46.50 44.76
InternVL-2.5-2B (Chen et al., 2024b) 50.56 46.14 55779 5934 5241 4624 4254 39.27 48.63 42.04 39.81
CogVLM?2 (Hong et al., 2024) 48.11 46.37 76.84 4565 43.11 3945 3953 37.24 5892 3821 4091
Cambrian-34B (Tong et al., 2024) 56.00 49.16 74.13 5435 4598 53.13 4541 38771 5399 4791 39.11
MiniCPM-0-2.6 (Yao et al., 2024) 55.78 51.56 6551 58.07 5148 5242 46.75 4523 60.52 4537 44.83
InternVL-2-8B (Chen et al., 2024c) 56.33 51.70 5621 58.41 5334 54.03 4898 48.76 57775 47.02 46.44
InternVL-2.5-4B (Chen et al., 2024b) 55.33 51.76 6492 5824 5123 55.19 52.04 49.38 54.03 4630 4593
Qwen2.5-VL-3B (Bai et al., 2025) 54.44 52.08 73.03 5131 4446 5242 4776 4523 62779 46.14 45.53
MiniCPM-V2.6 (Yao et al., 2024) 54.67 5224 6534 5858 5435 49.02 46.70 4596 64.05 44.85 4542
GLM4V-9B (GLM et al., 2024) 56.00 52.65 86.73 55.62 56.04 50.72 4784 47.71 5779 4332 44.17
LLaVA-1.6-34B (Liu et al., 2024) 57.78 5271 59.09 59.51 5435 57.60 5196 5047 5458 4851 47.76
Qwen2.5-VL-7B (Bai et al., 2025) 56.44 53.67 76.16 5385 5038 49.46 4533 43.75 7351 4570 44.87
LLaVA-OneVision-7B (Li et al., 2024) 57.00 5392 7033 58.66 53.00 51.25 50.78 50.54 64.87 4586 46.41
Molmo-7B (Deitke et al., 2024) 55.89 5476 54.69 66.19 5993 5250 4992 49.77 6741 4791 47.54
InternVL-2.5-8B (Chen et al., 2024b) 59.67 5573 70.58 62.13 57.06 5537 5243 50.54 64.16 49.20 48.13
Qwen2-VL-7B (Wang et al., 2024b) 60.00 56.32 85.88 5892 57.82 5420 47.88 4627 7034 4743 46.26
InternVL-2-26B (Chen et al., 2024c) 61.33 57.01 814 64.67 6027 5626 49.06 49.92 66.82 50.2 46.08
InternVL-2.5-26B (Chen et al., 2024b) 64.78 61.97 7430 71.09 66.61 63.69 57.06 56.07 7257 5491 51.50
Molmo-72B (Deitke et al., 2024) 66.33 63.13 63.14 7396 71.01 66.01 60.75 59.56 68.86 5837 55.61
LLaVA-OneVision-72B (Li et al., 2024) 69.00 6437 78.61 7219 6898 6538 60.99 58.79 70.07 5732 57.66
Qwen2.5-VL-72B (Bai et al., 2025) 67.78 6470 84.02 68.64 67.03 63.33 56.86 5446 79.11 5547 5341
Qwen2-VL-72B (Wang et al., 2024b) 72.00 64.81 8098 7329 7236 6574 61.77 5995 72.07 55.07 56.27
InternVL-2.5-38B (Chen et al., 2024b) 68.11 6531 7481 76.67 70.16 65.65 6130 6026 75.04 56.84 56.89
InternVL-2.5-78B (Chen et al., 2024b) 69.89 65.49 79.54 76.67 7278 6556 6044 59.33 73.04 58.00 56.38
" Qwen-VL-PLUS (Wang etal., 2024b) ~ 51.67  51.54 80.56 47.76 4827 47.14 4529 4269 6839 4023 4542
Yi-Vision (Al et al., 2024) 61.56 56.59 60.27 58.66 5545 60.82 53.61 51.01 7031 51.85 48.35
Qwen-VL-MAX (Wang et al., 2024b) 59.44 57.97 76.84 60.19 60.19 6225 52.04 48.83 66.12 53.46 49.67
GPT-40-mini (Hurst et al., 2024) 63.00 5821 79.88 69.99 67.12 5349 5228 48.37 68.78 4887 47.80
Gemini-1.5-flash (Team et al., 2024) 64.67 61.73 87.57 6855 69.74 5733 5251 5272 80.40 49.92 47.73
GPT-40 (Hurst et al., 2024) 67.33 63.64 8385 69.48 6830 65.65 5471 49.53 80.09 56.84 51.10
Gemini-1.5-pro (Team et al., 2024) 67.78 64.73 89.18 69.82 70.33 6243 5730 5420 78772 5736 5249
Large Language Models (LLMs): Only Text as Input

GLM4-9B (GLM et al., 2024) 41.89 3537 34.66 3855 2798 4526 40.03 38.72 21.56 41.67 3691
Qwen2.5-7B (Hui et al., 2024) 40.67 3537 36.43 44.04 19.78 48.21 40.89 3748 20.74 42.04 36.69
InternLM2.5-7B (Cai et al., 2024) 40.44 36.55 44.55 39.73 3212 46.33 39.72 38.34 2238 42.12 3548
GPT-3.5-Turbo (OpenAl, 2023) 39.11 37.01 32.04 4472 3229 4580 43.33 39.04 2328 41.55 39.11
GPT-4-Turbo (Achiam et al., 2023) 47.11 41.84 3339 4320 3508 57.07 52.83 46.27 23.08 5036 44.21

Table 10: The zero-shot result of 45 MLLMs and 5 LLMs in Agri-CM?3. The abbreviation in Agri-CM? means
P: Perception, M: Mixture of Perception and Cognition Reasoning, and K: Knowledge Application. Test total
represents the average of all test instances.
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Validation Test Disease Pest

Model CoT

Total Total P M P-M K M-K  P-MK 3 K PK
X 44.33 40.71 50.55 48.01 39.39 35.78 38.78 36.70 44.41 35.64 39.85
InternVL-2.5-1B
39.33 |50 3501 157 39.05,115 415065 31.87 .75 3497 08 350138 3289 38 36.62 78 31.54 41 3449 |54
X 50.56 46.14 55.79 59.34 52.41 46.24 42.54 39.27 48.63 42.04 39.81
InternVL-2.5-2B i -
46.00 146 41.14 |50 4041 154  53.09 162 4446 179 40.07 |62 40.58 |20 35.85 34 4448 142 37.69 44 38.05 18
InternVLo2.5-4B x 55.33 51.76 64.92 58.24 51.23 55.19 52.04 49.38 54.03 46.30 45.93
¢ - 5278 125 4876 130 5731 .76 5334 49 4438 |68 53.67 15 49.84 |22 4526 41 4973 43 4654102 4520 07
InternVL-2.5-8B X 59.67 55.73 70.58 62.13 57.06 55.37 52.43 50.54 64.16 49.20 48.13
e 582215 553004 693213 616205 5959125 50.89 45 5283104 51.09+06 6471105 4678 24 4853104
IntemVL-2.5268 X 64.78 61.97 74.30 71.09 66.61 63.69 57.06 56.07 72.57 5491 51.50
¢ : 62.78 120 6197 o0 7430 100 7337123 6830117 56.89 68 551020 5241137 7T1.67 .09 50.52 44 49.85 16
IntemVL2.5.388 X 68.11 65.31 74.81 76.67 70.16 65.65 61.30 60.26 75.04 56.84 56.89
e 64.56 |35 59.89 |54 7329 15 720247 6407 61 580576 5597153 533469 70.15 149 52864 4945 74
IntermVL-2.5.788 X 69.89 65.49 79.54 76.67 72.78 65.56 60.44 59.33 73.04 58.00 56.38
: 67.56 123  61.71 138 7937 102 742225 69.23 35 61.81 138 554250 555238 69.87 32 5386 .41 50.70 57
Qwen2-VL.7B X 60.00 56.32 85.88 58.92 57.82 54.20 47.88 46.27 70.34 47.43 46.26
wens-Vie 60.00 100 55.87 05 79.71.62 6255136 6112133 5161126 4804102 4759113 69.41 05 4590 15 46.08 0.2
X 72.00 64.81 80.98 73.29 72.36 65.74 61.77 59.95 72.07 55.07 56.27
Qwen2-VL-72B ~ B ~ ~
67.44 |46 6219 126 7946 15 7117 121 6653155 6521 105 5557 62 5544 145 7042 16 54.83 02 5297 33
GPT-do-mini X 63.00 58.21 79.88 69.99 67.12 53.49 52.28 48.37 68.78 48.87 47.80
“o-mim 6178 112 56.14 121 8225124 683017 667803 5206 14 48.12 42 46.03 23 6467 41 4666 22 4575 20
GPTAo X 67.33 63.64 83.85 69.48 68.30 65.65 54.71 49.53 80.09 56.84 51.10
70.56 132 6543118 8791141 7895195 7523169 614542 5848138 54.04145 80.13100 539429 5249114

Table 11: All experimental results for performance comparison of different mlms with and without CoT.

[ Disease-P-M-K: Wheat Stem Rust ] \

Question: B R R EMIREERFIRIANEERSD?
Options: A: 40% B:55% C:75% D: 100%
Answer: D

Background Knowledge: NEFHERENNREE XKD, FE/KEZ100%EEAEEA,

InternVL-2.5-78B CoT Response:

EREE AT FIRSEAMGINEE, RIFESTEFhaERERE. BRaILEEEYH A L
BRENFR, XEEEFHRIER. BREREESIEN, BRTSEERNES,
BRIRREEREEEEREAAIIERE. RIEERIEFIAR, HHlRRREEEEERI75%
LR, SEENTFREFRIELIER.

Eit, SEERTRRERFISRIEETRK, FX2: C.75%

GPT-40 CoT Response:
MERHRILIES, %ERIRER
IR,
DHTIRE:
1 EmAS R HRRHERS BN, RERFERAMEANBIENN, FTESEEINNE.
2. EERFHEANEERR: —&KiR, BRFRERFINRABEFEESSIENEEILT] 95%-100% AIXKF.
Hit, XHFHFRSEEEHE. IEZHNNETEZERL.
3. IR :
< A40%: RERR, FHRESHFERRTFRIEA.
© B.55%: BRARE, BARESHERREREA.
+ C.75%: BARRERS, ENTHERLEEAEABREFELR.
© D.100%: XERHAMESERREERINEETE.
B=: D.100%
\_ /

XA R EEIRE—E

Figure 16: Comparison of CoT responses between GPT-40 and InternVL-2.5-78B. GPT-40 demonstrates superior
performance due to its reasoning logic, which better aligns with the benchmark’s evaluation criteria. Red bold
highlights the wrong content.
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Refisse to Answer Refuse (0 Answer Refuse o Answer
0.500% 0.00% 1.00%

N . Trrelevant Response Irrelevant Response
Irncevant Response o ant
Question Question Lack of Knowledge
Misunderstanding Misunderstanding 40.00% Question
3.00% 1.00%

Misunderstanding
5.00%
Perceptual Error
3.00%

Lack of Knowledge
68.00%

Perceptual Error Lack of Knowledge
27.50% 96.00%
Perceptual Error
52.00%
(a) Overall error distribution for 200 (b) Error distribution for Disease-P-M- (c) Error distribution for Pest-P-K
annotated GPT-4o errors. K annotated GPT-4o errors. annotated GPT-4o errors.

Figure 17: Error distribution on different complex reasoning tasks.

[ Disease-P-M-K: Lack of Knowledge } N

Disease: 3REEfF
Question: XMYRFHIEHARE FEKSRAEE?
Options: A: 30°C B: 10°C C:20°C D:25°C

Answer: C

GPT-40 Response:

MNERE, XMEREARHERRSSIEN, SERRESEIANRE. ERRSEETREHTARES
ARENEE., ERZIEE20°CERS CRRRE FTEKSMRIF. 30°CAlES AR, HIF—YLHEERERK, 10°CRY
ATREXIRMAFI TR, FEit, Z=AJRERME20°CE25°C, TEEiE20°Cek25°CZ AT, EREIFZSEESE
HEERREMRERERR, Bl crgEElSHE.,

&2 D.25°C

Error Analysis:
BRERZ T WHIRESERE , WMREMZETAREREBRER, EoLRES VIR EEREERRFEEREE
KiREH20°C,

Figure 18: A lack of knowledge example in Disease-P-M-K. Red bold highlights the wrong content.
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[ Pest-P-K: Lack of Knowledge ] ~N

Pest: [HHEE|
Question: [E 5@/ RYE HIB H iR A TE MR FIER R X 15,
Options: A: SEXis B: [F5/4t C:7KE D: Tk

Answer: A

GPT-40 Response:
XE—RIHERNER, BELIRSED TRAAE, AEHAEEHRERRE, NAGHES, XERPECIEEH
BEDLEIEE. LIS RRNES ST :

F—F: EREESH
HigSERBEEEEENRE, THEHARE, XS5ERRTFNRFIZSIEHEH h ERESEVEHT.

X SIRRIXRER

Mg E R—RAEFEEREFHEEREMNREXE, B!

-RBRIF (A): HERSRETIHAT, EXHAEERRFHME, EAEXEHTEESSHIIR.
- BARZAE (B): MRS ELERXTEEYIM FROSEENIARR ST, LSRR EHARIBRE.

-7KME (CO): HEHAEFEKE, SlSENEIEX,

- FIg4t (D) FIREPMEFAFEHIENERENRMT, EAC(IBEETRIAEFER.

Error Analysis:
BEIRZ T WHTREERER , RIEEXARFZW AR SRR R EEEEANE, EIES TR
ZE REENRERSRXIRER,

N J

Figure 19: A lack of knowledge example in Pest-P-K. Red bold highlights the wrong content.

[ Disease-P-M-K: Perceptual Error } ~N

Disease: i Fme/A
Question: XFEEEHAMNERH TESZRE?
Options: A: [HREE B:f2HMR C.{KEZE D EETE

Answer: D

GPT-40 Response:

RIEERREYITR LB e IRYR, XMEERUEREAMNE. AR FEREEES IBN—FERL
ERE, BERIUAHAR EHIBEENRKEE.

BmmBEEEUTRERG TERZRE:

-ELE: SRESHTEERFIERTIZEE.

- BEEF: BMEERREIRSHENENL,

RIEXEER, LARIEICRE:

-A PEREE: FE2fE, BARREEEFTFRERE, ERFIMEAAFEEMRINEREM.
-B.JEHER: SEMBIIREREEEXRR,

-CEEZIE: (KENREEERFTFEMRIRRE.

-D. BETER: TEAFTENRE, ERSHNEETESEHEMFEERDPMEPIIRE.

SRR B RUANERA AT LR IR EING R, (BEXLIRINF, "[HREE" A TEMER
R AJREERES [ REMEINRE, RECHARSEMMEA, Eit, 15E:

A FHIREE

Error Analysis:
EERNE R SRR RIR, HERTIMFHARERBESMH, BEETLURA. T RERER I TFm
\Efﬁ, EREEERRAANBNE, SEEEFIMER. J

Figure 20: An example of perceptual error in Disease-P-M-K. Red bold highlights the wrong content.
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[ Pest-P-K: Perceptual Error } ~

Pest: Bt
Question: E|FFHERE YR ELTEZR, STEMEMEE?
Options: A: TRX#ME B: Thif& C: BYEE D: KHEE

Answer: B

GPT-40 Response:
XER—REBEXYG (Atanycolus cappaerti) , EHEWA "LABBEXRF" , RBAHE, LEHBIE,

EREXERRRN, ERETHEXITRRAVNERIMN. K4HR (Cerambycidae) BIBRLNRFERLUAMEAE
MALAR, XEEEREEISEARENTES —HBOHEENERMNER. B, XXEBRONREESE
EYERT (AIFETEEERESRINT. Mikh) &,

AL, ZEHBBERFBERN—RETI, HREEVREAENERTEIZR.

Eit, BRPHEREUNEIAEIER, SEMEMZIE? GEEC. EE.,

Error Analysis:
ERIRAEER, IRBERANEENERIMAEETE, FICREEIEMREMERAIGHMZIZRT (LhEE) . )
-

Figure 21: An example of perceptual error in Pest-P-K. Red bold highlights the wrong content.

[ Disease-P-M-K: Question Misunderstanding ] ~N

N\ Disease: INEMHSE
| Question: JIREERTREY R, RAMHEHHEEREHAIE?
' Options: A: BEMERER] B: RATHEK C: ST D RBEKE

Answer: B

GPT-40 Response:

XKBE R ErRERNERE, HIEN A EHIEEEREN/I A, XWREEHERS e,
ERITESEE, ARBTENRG TESY J.

AT BERXMRENT B, RNFTERDN—FERAFIEER. 1ERIEORD TR NER:

A BHERER: XEMUEEMRENENGZE, BYEERNERIR, FJLABMI=aRETY &,

B. REHEK: BASZAEETREHFFNARRE, EBHPKEEREATRUZHEIFE.

C. IEERE: SHEARBRESEERI TIXE, EXNMEEE, RMIUENERS.

D.RHERE: XE—FEMRTEREFYERENGE, IR MRRERESAR, EXTELRFERIENRE
3, FEHARNERAR.

SR, WTFELHANNEFRK, REFRENEREEMEURhGEE. Bit, FHREE::

A. BHERE

Error Analysis:

FEFRY “FiShimREE" SIERpiaHERE, MEIEHINERRE "HERER" . RERERENhEE
Hhhiams, (EERFHFHaERE, SEEERAR, REEREXDENERFERE. )
\

Figure 22: A question misunderstanding example in Disease-P-M-K. Red bold highlights the wrong content.
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| Pest-P-K: Question Misunderstanding |

Pest: 17
Question: EFRF/RE R E—SE—ERHIIEHARRER?
Options: (KB4 B: _8{L C:=8BL D: HEL

Answer: D

GPT-40 Response:

IR EEZREA JRERTAR "EE" X—SREHEERHIATEREA.

- EFRTAIRETR (Aphid) |, XERRTAARMAIEZ —HEESTEREEE.

- IRIBAIER, FRAGESHBIANHIE—EL (Permian) BHMUEHA, HE=BL (Triassic) AIHBELULRE.
- RERFRE=SLEEHN, SliINCaSEXRIitEPHEEMR,

Eitt, FBEEEPEE "ERHREF ARER" | FREC. =8BL,

Error Analysis:
BREN RSB S B PHEIANEREA—E: IEPRENSEFR “BE" SHRMARNRHING, mE
BIE ST R HIAYRTEA.

Figure 23: A question misunderstanding example in Pest-P-K. Red bold highlights the wrong content.
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