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Abstract

This paper introduces Uniform Orthogonal
Reinitialization Adaptation (UORA), a novel
parameter-efficient fine-tuning (PEFT) ap-
proach for Large Language Models (LLMs).
UORA achieves state-of-the-art performance
and parameter efficiency by leveraging a low-
rank approximation method to reduce the num-
ber of trainable parameters. Unlike existing
methods such as LoRA and VeRA, UORA
employs an interpolation-based reparametriza-
tion mechanism that selectively reinitializes
rows and columns in frozen projection matri-
ces, guided by the vector magnitude heuris-
tic. This results in substantially fewer train-
able parameters compared to LoRA and outper-
forms VeRA in computation and storage effi-
ciency. Comprehensive experiments across var-
ious benchmarks demonstrate UORA’s superi-
ority in achieving competitive fine-tuning per-
formance with negligible computational over-
head. We demonstrate its performance on
GLUE and E2E benchmarks and its effective-
ness in instruction-tuning large language mod-
els and image classification models. Our contri-
butions establish a new paradigm for scalable
and resource-efficient fine-tuning of LLMs.

1 Introduction

Large models have demonstrated unparalleled per-
formance in many tasks (Li, 2024; Zhang et al.,
2025; Wu et al., 2025a; Ma et al., 2025). Pop-
ular models like GPT-3 (Brown et al., 2020),
LLaMA3 (Dubey et al., 2024), and Qwen (Yang
et al., 2024a) have shown promising capability in
various practical domains such as Reasoning (Cai
et al., 2025; Yang et al., 2024b; Xu et al., 2025; Li
et al., 2025b; Bi et al., 2025b), education (Chen
et al., 2025) and RAG (Peng et al., 2024a; Liu
et al., 2024a; Peng et al., 2024b). However, many
downstream applications still require fine-tuning
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to improve the zero-shot experience, incorporate
domain-specific content (Wu et al., 2025b; Zheng
et al., 2025; Luo et al., 2025; Wang et al., 2025;
Dong et al., 2024a), and optimize performance
in diverse scenarios (Chen et al., 2024; Yu et al.,
2025). The full fine-tuning (FFT) process adapts
the model by updating all pre-trained weights
within the model. Depending on the goal of down-
stream tasks, FFT may require a significant amount
of time and computing resources; meanwhile, as
the model size increases exponentially, the demand
for multiple checkpoints for iterative pre-training
and downstream adaption cycles poses significant
challenges to storage efficiency.

Parameter-efficient fine-tuning (PEFT) methods
aim to address this challenge by injecting adapters
for the fine-tuning process while keeping the pre-
trained weights untouched. Compared to the exist-
ing approaches at the time (Houlsby et al., 2019;
Rebuffi et al., 2017; Li and Liang, 2021; Lester
et al., 2021; Hambardzumyan et al., 2021; Liu et al.,
2024b), Low-Rank Adaptation (LoRA) exploits
the low intrinsic dimensionality in weight matri-
ces and performs low-rank approximation with a
pair of projection-down and projection-up matri-
ces; LoRA uses significantly less trainable param-
eter and thus largely improves the computing and
storage efficiency (Hu et al., 2021). As a vari-
ant method, Vector-based Random Matrix Adapta-
tion (VeRA) freezes the two low-rank matrices via
randomization and introduces two trainable scal-
ing vectors, which again reduces the number of
trainable parameters (Kopiczko et al., 2023). As
a result of randomized frozen matrix initialization,
VeRA requires a higher rank for comparable per-
formance, which increases the computation com-
plexity. AFLoRA points out that any reduction in
VeRA’s rank causes a drop in fine-tuning perfor-
mance (Liu et al., 2024c).

Extending the state-of-the-art, we propose
Uniform Orthogonal Reinitialization Adaptation
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Figure 1: Overview of LoRA (left) and UORA (right). LoRA trains a pair of projection matrices, namely A and
B, with low rank r. The update to the pretrained weights is thus represented as ∆W = A×B. UORA adopts the
similar strategy as VeRA; both projection matrices are frozen and randomized. A pair of scaling vectors, d⃗ and
b⃗, is trained to adapt the frozen matrices. The key difference is that UORA applies interpolation reinitialization
mechanism to selectively and partially update A and B. Similar to all LoRA-based PEFT methods, the learned
weight update ∆W could be merged into W for zero inference latency.

(UORA), a PEFT method that uses substantially
few parameters than LoRA while showing close
performance on various fine-tuning tasks. Build-
ing upon VeRA, UORA also adopts a pair of ran-
domized frozen projection matrices and a pair of
scaling vectors d⃗ and b⃗ for adaptation. We in-
troduce an interpolation-based reparametrization
mechanism: during the training process, UORA
selectively reinitializes a part of the frozen matri-
ces. UORA achieves comparable or better perfor-
mance than VeRA with a much lower rank. With
this approach, there is no need to perform gra-
dient update on the projection matrices and the
only trainable parameters are the pair of adap-
tation vectors. UORA achieves state-of-the-art
in terms of the number of trainable parameters
and demonstrates efficient fine-tuning performance
across various benchmarks. Compared with LoRA,
UORA achieves competitive fine-tuning perfor-
mance while demanding 15x and 8x fewer parame-
ters in GLUE and E2E benchmarks respectively.

Our main contributions are as follows:

• We propose a novel parameter-efficient fine-
tuning1 method with no inference latency, Uni-
form Orthogonal Reinitialization Adaptation.
Extending the state-of-the-art PEFT methods,

1Code available at: https://github.com/zhaojinm/
UORA

UORA achieves performant results with much
less trainable parameters.

• We compare our approach with LoRA, VeRA and
other PEFT methods on natural language under-
standing (GLUE), and natural language genera-
tion (E2E) benchmarks, and compare instruction-
tuning and image classification tasks.

• We conduct ablation studies to gain insights on
various components of our approach and their
impact on performance and efficiency.

2 Related Work

2.1 Low-Rank Adaptation

The state-of-the-art LoRA explores the intrinsic
low dimension in language models, which involves
finding a pair of low-rank decomposition matri-
ces that capture the essential information of the
weight updates during the training process (Hu
et al., 2021). The decomposition contains a pair
of projection-down and projection-down matrices,
which significantly reduced the number of trainable
parameters, and thus it largely increases the train-
ing and storage efficiency. Additionally, these delta
weights could be merged into the original model
weights leading to zero inference latency.

A collection of methods extends the LoRA con-
cept. Dynamic LoRA (DyLoRA) allows for a range
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of training ranks, rather than a fixed one, to avoid
the exhaustive search for the optimal rank (Valipour
et al., 2022). Adaptive LoRA (AdaLoRA) adjusts
the rank adaptively across different layers within a
given budget (Zhang et al., 2023a).

Vector-Based Random Matrix Adaptation
(VeRA) freezes the pair of projection matrices
and introduces trainable scaling vectors for
adaptation (Kopiczko et al., 2023). AFLoRA
reduces the decomposition rank by adaptively
freezing the projection matrices at the beginning
and eventually uses scaling vectors as VeRA (Liu
et al., 2024c). Our approach falls under the LoRA
category and improves upon VeRA.

Some research streams explore matrices decom-
position into smaller chunks (Shen et al., 2024;
Ren et al., 2024), while others (Shi et al., 2024)
add residue modules. Dou et al. (2024); Zhang
et al. (2024) embed Mixture of Experts(MoE) ar-
chitecture into LoRA. There are also various LoRA-
based works (Tian et al., 2024; Ding et al., 2023;
Kim et al., 2024). Quantization techniques have
also been added to further decrease memory us-
age (Dettmers et al., 2023; Xu et al., 2024; Guo
et al., 2024).

2.2 Parameter-Efficient Fine-Tuning
PEFT refers to a series of methodologies that aim
to achieve comparable fine-tuning performance at
reduced costs in terms of time and storage require-
ments. Compared to full fine-tuning, PEFT demon-
strates advantages in low to medium resource se-
tups and could be outperformed by full fine-tuning
in high-resource setup (Naveed et al., 2023; Chen
et al., 2022). In other words, depending on the lo-
cation of the adaptation layers, PEFT methods are
roughly divided into two categories, non-weight-
based and weight-based.

Adapter tuning injects one or more trainable lay-
ers into the transformer blocks sequentially or in
parallel (He et al., 2021; Houlsby et al., 2019; Wang
et al., 2022; Fang et al., 2023); an adapter layer
usually consists of downscaling, non-linearity and
upscaling. The bottleneck with adapter tuning is
that it introduces latency during inference and may
reduce the parallelism in GPU computing opera-
tions.

Prompt tuning concatenates trainable prompt pa-
rameters withel embeddings for downstream tasks,
and its derivatives address limitations in training
instability and forgetting (Liu et al., 2024b; Lester
et al., 2021; Liu et al., 2021; Jin et al., 2024).

Prefix tuning places a set of trainable vectors
in the frozen transformer layers (Li and Liang,
2021; Zhang et al., 2023b). Prefix tuning shows
non-linearity in performance against the number of
trainable parameters.

Bias tuning, specifically BitFit, focuses on train-
ing the bias, a subset of the total trainable param-
eters in the model; however, it may appear lim-
ited when the training data are large (Zaken et al.,
2021).

There are some other efficient techniques such as
data/token selection (Dong et al., 2024b; Hu et al.,
2024; Sun et al., 2025), knowledge editing (Deng
et al., 2025; Feng et al., 2025), model prun-
ing/compression (Yu et al., 2024; Zhou et al., 2023),
distillation (Feng et al., 2024; Jia, 2024; Wang
et al., 2023), Linear Representation-Steering (Bi
et al., 2025a),chunk-wise gradient computation (Li
et al., 2025a) and fine-tune partial layers of the
model (Fan et al., 2025).

2.3 Parameter Modeling

It has been widely studied to model the param-
eter distribution using randomized matrices for
efficiency. Given the model sparsity, randomly
initialized weight matrices in neural networks ap-
pears to contain high performance sub-networks
that requires less or even no training (Frankle and
Carbin, 2018; Ramanujan et al., 2020). It is empir-
ically demonstrated that language models indeed
possess low intrinsic dimension and it is efficient
to employ randomized projection matrices (Agha-
janyan et al., 2020). Meanwhile, there is a thread
of research studying how information is distributed
within LMs, and some works suggest that different
neurons store different types of information (Niu
et al., 2022, 2024).

3 Methodology

In this section, we present Uniform Orthogo-
nal Reinitialization Adaptation (UORA), a novel
parameter-efficient fine-tuning approach inspired
by state-of-the-art PEFT methods.

3.1 Method Formulation

LoRA exploits the low-intrinsic dimensionality in
weight matrices and reparameterizes the weight
update in fine-tuning with a pair of low-rank pro-
jection matrices. Formally, for a pretrained weight
matrix W0 ∈ Rd×k, the weight updates after fine-
tuning are decomposed by ∆W = BA, where
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LoRA VeRA / UORA
Models Rank # Trainable Required # Trainable Required

Parameters Bytes Parameters Bytes

RoBbase 1 36.8K 144KB 18.4K 72KB
16 589.8K 2MB 18.8K 74KB

256 9437.1K 36MB 24.5K 96KB

RoBlarge 1 98.3K 384KB 49.2K 192KB
16 1572.8K 6MB 49.5K 195KB

256 25165.8K 96MB 61.4K 240KB

GPT-3 1 4.7M 18MB 2.4M 9.1MB
16 75.5M 288MB 2.8M 10.5MB

256 1207.9M 4.6GB 7M 33MB

Table 1: Theoretical memory required to store trained LoRA, VeRA, and UORA weights for RoBERTa Base
(RoBbase), and Large (RoBlarge), and GPT-3 models. We assume that all methods are applied on query and key layers
of individual attention modules. Although UORA shares the same number of parameter for a given rank, UORA
requires a lower rank by orders of magnitudes than VeRA in almost all scenarios.

B ∈ Rd×r, A ∈ Rr×k, r ≪ min(d, k). The for-
ward pass is then modeled as:

h = W0x+∆Wx = W0x+BAx, (1)

To improve parameter efficiency, VeRA freezes
the projection matrices A and B using random-
ized initialization, and introduces trainable, scaling
vectors d⃗ and b⃗:

h = W0x+∆Wx = W0x+ ΛbBΛdAx, (2)

Λd and Λb are the scaling vectors; they effectively
scale or disable rows and columns in frozen ma-
trices A and B. Although the number of trainable
parameters decreases, a higher rank is usually re-
quired for on-par fine-tuning performance.

UORA adopts the weight update formula from
Equation 2 in VeRA. However, it introduces a
weight reinitialization mechanism, which has been
shown to be highly efficient in neural network train-
ing (Zaidi et al., 2023). After each iteration, we
examine each entry in the scaling vector. If its
magnitude falls below a threshold τ for a consec-
utive count of k times, the corresponding column
in matrix A and the corresponding row in matrix
B are updated. To smooth the training process and
avoid inconsistent performance drops, linear inter-
polation (LERP) with a factor α is applied between
the old and new values. The interpolation-based
reinitialization is achieved through the following
formula. :

vrand = Random(vold) (3)

vnew = αvold + (1− α)vrand (4)

3.2 Details

Figure 1 right panel illustrates the pipeline of
UoRA.

Orthogonal Uniform Initialization. The impact
of initialization methods is studied in VeRA. The
initialization method preserves matrix expressivity
while maintaining a well-conditioned weight space
for parameter modeling. However, in our work, we
choose to use orthogonal initialization, based on
its ability to improve gradient flow, ensure stability
in deep networks, and accelerate convergence by
preserving variance across layers (Hu et al., 2020;
Huang et al., 2021).

Dimension Pruning. Although the number of
trainable parameters drastically reduces, VeRA
heavily replies on the randomly initialized frozen
matrices for reparameterization; thus it must adopt
higher ranks for competitive performance in most
cases. Rank 1024 in VeRA is commonly seen as
oppose to rank 32 in LoRA. Higher ranks punish
not only the computation efficiency due to larger
matrix multiplications but also storage efficiency.

The magnitude of scaling vectors indicates how
important of the corresponding column or row in
the frozen matrix A and B (Sun et al., 2024). Given
a dimension in d⃗ whose magnitude is insignificant
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(|d⃗| below threshold τ towards 0), then this di-
mension contributes less or even negligible to the
weight update ∆W . Thus, a lower rank could be
used for efficient reparameterization.

Interpolation-based Reinitialization. To en-
hance stability and prevent newly generated
weights from becoming excessively large, we
applied linear interpolation. This interpolation
smooths the frozen weight updates, ensuring that
the new weights do not deviate too far from the old
ones; thus avoiding extreme values that could neg-
atively impact training progress and consequently
model performance. Linear interpolation is also
widely used in machine learning (Eysenbach et al.,
2024) and can be used to control the magnitude of
parameter updates and prevent instability during
training (Iyer et al., 2024; Berrada et al., 2020).

3.3 Parameters
Following the naming convention in the prior work,
the number of trainable parameters in UORA is
then

Ltuned × (dmodel + r). (5)

where r denotes the rank, dmodel denotes the di-
mension of a given layer and Ltuned denotes the
number of fine-tuned layers. VeRA share the same
equation despite that its rank r is typically larger
the UORA’s in most cases. The number of train-
able parameters in LoRA is computed as

2× Ltuned × dmodel × r (6)

Benefied from the interpolation-based reinitializa-
tion mechanism, UORA can adopt a rank r close
to LoRA and much lower than VeRA; Table 1 com-
pares the parameter efficiency in RoBERTa and
GPT-3 models.

4 Experiments

In this section, we perform evaluations of UORA
in the diverse domains, covering natural language
understanding (NLU), natural language generation
(NLG), instruction-tuning, and computer vision
(CV). At last, we present an ablation study that
sheds light on the effect of each component in our
method.

Baselines. We compare UORA method with
the state-of-the-art parameter-efficient fine-tuning
methods. For fair, comprehensive comparison, we
extend the experiment settings from prior works as
much as we could. Baselines include:

• Full fine-tuning (FFT) - All pretrained param-
eters in the model subjects to gradient updates
for a downstream task; it offers the maximum
flexibility but requires considerable resources.

• Adapter tuning - Following the naming convin-
tion, AdapterH injects adapters, with two fully
connected layers and activation functions, be-
tween the attention module, multi-layer percep-
tron (MLP) module and the following residual
connection (Houlsby et al., 2019). AdapterL re-
duces the number of parameters by injecting only
after MLP module and layer normalization op-
eration (Lin et al., 2020). Similarly, AdapterP

(Adapterfusion) injects the adapter layer after the
feed-forward network (FFN) module (Pfeiffer
et al., 2020). AdapterD, also known as Adapter-
Drop, selectively drops adapter layers for param-
eter efficiency (Rücklé et al., 2020).

• Bitfit - Bias tuning focuses on training bias vec-
tors while freezing the rest of pretrained param-
eters in the model. It may appear less efficient
when training data is large (Zaken et al., 2021).

• LoRA - The state-of-the-art PEFT method that
reparameterize the weight updates in form of
∆W = BA, where B ∈ Rd×r, A ∈ Rr×k and
rank r is much smaller than model dimension for
better paramter efficiency (Hu et al., 2021).

• AdaLoRA - Adaptive Low-Rank Adaptation lift
the need to search for the rank r via budget al-
location strategy by employing singular value
decomposition (SVD) adaptation (Zhang et al.,
2023a).

• VeRA - Vector-based Random Matrix Adaptation
further reduces the number of trainable param-
eters by freezing the projection matrices. It in-
troduces a pair of trainable vectors, b and d for
adaptation (Kopiczko et al., 2023).

• Red - Representation EDiting directly operates
on representations at some layers via scaling and
biasing operations (Wu et al., 2024).

4.1 Natural Language Understanding
We evaluate UORA method on the General Lan-
guage Understanding Evaluation (GLUE) (Liu,
2019) benchmark, a collection of natural language
understanding (NLU) tasks. Typical tasks cov-
ers grammar, semantics, inference, and paraphras-
ing (Wang, 2018).

Experiment Details. We employ RoBERTa Base
(RoBbase) and RoBERTa Large (RoBlarge) for the
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Model & Method # Trainable
Parameters

SST-2
(Acc.)

MRPC
(Acc.)

CoLA
(MCC)

QNLI
(Acc.)

RTE
(Acc.)

STS-B
(PCC) Avg.

RoBbase(FF) 125M 94.8 90.2 63.6 92.8 78.7 91.2 85.2
RoBbase(BitFit) 0.1M 93.7 92.7 62.0 91.8 81.5 90.8 85.4
RoBbase(AdptD) 0.3M 94.2±0.1 88.5±1.1 60.8±0.4 93.1±0.1 71.5±2.7 89.7±0.3 83.0
RoBbase(AdptD) 0.9M 94.7±0.3 88.4±0.7 62.6±0.6 93.0±0.2 75.9±2.2 90.3±0.4 84.2
RoBbase(LoRA) 0.3M 95.1±0.2 89.7±0.7 63.4±1.2 93.3±0.3 86.6±0.7 91.5±0.2 85.2
RoBbase(AdaLoRA) 0.3M 94.5±0.2 88.7±0.6 62.0±0.4 93.1±0.2 81.0±0.6 90.5±0.2 85.0
RoBbase(VeRA) 0.043M 94.6±0.1 89.5±0.5 65.6±0.8 91.8±0.2 78.7±0.7 90.7±0.2 85.2
RoBbase(RED) 0.02M 93.9±0.3 89.2±1.0 61.0±3.0 90.7±0.4 78.0±2.1 90.4±0.3 83.9
RoBbase(UORA) 0.019M 94.2±0.5 90.4±0.5 65.4±0.5 91.2±0.2 87.1±0.8 90.6±0.2 86.5

RoBlarge(FF) 356M 96.4 90.9 68.0 94.7 86.6 92.4 88.2
RoBlarge(AdptP) 3M 96.1±0.3 90.2±0.7 68.3±1.0 94.8±0.2 83.8±2.9 91.9±0.4 87.6
RoBlarge(AdptP) 0.8M 96.6±0.2 89.7±1.2 67.8±2.5 94.8±0.3 80.1±2.9 91.9±0.4 86.8
RoBlarge(AdptH) 6M 96.2±0.3 88.7±2.9 66.5±4.4 94.7±0.2 83.4±1.1 91.9±0.7 86.9
RoBlarge(AdptH) 0.8M 96.3±0.2 87.7±1.7 66.3±2.7 94.8±0.3 72.9±2.9 91.7±0.4 84.9
RoBlarge(LoRA) 0.8M 96.2±0.5 90.0±1.0 68.2±1.9 94.8±0.3 85.2±1.2 92.3±0.5 87.8
RoBlarge(VeRA) 0.061M 96.1±0.1 90.9±0.7 68.0±0.8 94.4±0.2 85.9±0.7 91.7±0.8 87.8
RoBlarge(UORA) 0.049M 96.1±0.2 92.2±0.5 69.3±0.5 94.5±0.5 87.0±1.5 91.7±0.5 88.5

Table 2: GLUE benchmark performance on RoBERTa Base (RoBbase) and RoBERTa Large (RoBlarge). We report
Matthew’s correction coefficient (MCC) for CoLA, Pearson correlation coefficient (PCC) for STS-B, and accuracy
(Acc.) for the rest tasks. Results for prior works are taken from Gao et al. (2024), Kopiczko et al. (2023) and Wu
et al. (2024).

GLUE benchmark. With the aforementioned
interpolation-based reinitialization methodology,
UORA now can employ a much smaller rank r
than VeRA. For instance, UORA adopts a rank of
16 for MRPC task while VeRA requires a rank of
1024. Detailed rank for individual tasks can be
found in Appendix A. We use orthogonal uniform
initialization for both projection matrices A and B
and we initialize the vector d⃗ and b⃗ with 0.1 and 0
respectively.

Following prior work, UORA is applied to query
and value projection matrices in the transformer
blocks. Similar to VeRA, we use separate learning
rate for the head and UORA layers to mitigate the
additional scaling hyperparameter introduced in
LoRA. Refer to Table 6 in Appendix A for detailed
hyperparameter settings.

We omit MNLI and QQP tasks in GLUE bench-
mark due to budget limitations. We report the aver-
age of 5 runs with the best epoch evaluation result
using randoms seeds in Appendix A.

Results. Table 2 shows the results of UORA
and baselines on GLUE benchmark. UORA
demonstrates competitive performance compared
to LoRA while using approximately 15x less pa-
rameters. With an interpolation-based reinitializa-
tion mechanism, UORA is able to improve the per-

formance on most of tasks compared to VeRA.

4.2 E2E Benchmark

The E2E NLG benchmark, released by Novikova
et al. (2017), is an English dataset verbalized a
set of 2-9 key-value attribute pairs in the restau-
rant domain, with more than 51K combinations of
dialogues.

Experiment Details. For natural language gen-
eration task, we evaluate UORA and other
PEFT methods following the setup described in
LoRA (Hu et al., 2021). We fine-tune GPT-2
Medium and Large models (Radford et al., 2019)
on the E2E benchmark dataset. We adopt a rank of
32 for LoRA and UORA, 1024 for VeRA; the rest
baselines are extended from prior work. We apply
hyparameter tuning and details are depicted in the
Appendix A.

Results. As we can see from Table 3, UORA
shows competitive performance compared to LoRA
and VeRA, whose number of trainable parameters
are 8x and 2x more. Using similar number of pa-
rameters, UORA shows dominating performance
in all tasks compared to RED.
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Model Method # Trainable
Parameters BLEU NIST METEOR ROUGE-L CIDEr

FF* 354.92M 65.95 8.52 45.95 69.13 2.35
AdptH* 0.9M 64.31 8.29 44.91 67.72 2.28

GPT2 AdptP* 0.8M 64.41 8.30 44.74 67.53 2.29
Medium LoRA 0.4M 67.14 8.65 46.05 69.50 2.41

VeRA 0.098M 66.34 8.52 45.84 69.39 2.39
RED 0.050M 64.62 8.33 45.14 67.46 2.25

UORA 0.051M 66.67 8.62 45.37 68.82 2.35

FT* 774.03M 65.56 8.50 45.40 68.38 2.27
AdptH* 1.8M 65.94 8.46 45.78 68.65 2.23

GPT2 AdptP* 1.5M 65.53 8.41 45.65 68.46 2.33
Large LoRA 0.77M 68.07 8.74 46.28 69.92 2.43

VeRA 0.18M 66.97 8.59 46.07 69.37 2.41
RED 0.09M 65.22 8.40 45.59 68.14 2.34

UORA 0.14M 67.77 8.60 46.17 69.05 2.40

Table 3: Performance of our methods on E2E test set via GPT2-medium and GPT2-large. Results with ∗ are taken
from Wu et al. (2024), rest are replicated by ourselves.

4.3 Instruction Tuning

Pretrained models possess latent capabilities,
which fine-tuning can unlock for specific down-
stream tasks. Building upon fine-tuning, instruc-
tion tuning introduces an additional instruction
component into the training data, enabling mod-
els to better follow task-specific directives. As a
result, the instruction-tuned models become more
robust and versatile in addressing prompt questions
even with better reasoning capability. To demon-
strate UORA’s generalization across various mod-
els and its effectiveness on more complex tasks,
we conduct evaluation on Arithmetic Reasoning
benchmarks.

The evaluation dataset covers a wide range of
arithmetic reasoning problems in various formats:
1) the AddSub dataset contains simple math word
problems on addition and subtraction, typically in-
volving one-step arithmetic reasoning (Hosseini
et al., 2014); 2) the MultiArith dataset is a collec-
tion arithmetic word problems that require multiple
operation steps like addition, subtraction, multi-
plication, and division to reach the solution (Roy
and Roth, 2015); 3) the SVAMP dataset consists
of arithmetic word problems up to grade 4 level,
which is obtained by modifying existing datasets
to reduce annotation artifacts (Patel et al., 2021); 4)
the SingleEq dataset covers problems that are solv-
able using a single linear equation, emphasizing
the translation from natural language to algebraic

expressions (Koncel-Kedziorski et al., 2015).

Experiment Details. We select LLaMA 7B and
LLaMA 3-8B as the representative pre-trained mod-
els for instruction tuning. For reproducibility pur-
poses, we extend the experiment setting from pre-
vious work (Hu et al., 2023); models are fine-tuned
on the high-quality Math10K dataset, obtained
by selecting examples from arithmetic reasoning
datasets and adding step-by-step rationales. The
fine-tuned models are then evaluated on AddSub,
MultiArith, SVAMP, and SingleEq dataset.

All methods, LoRA, VeRA and UORA,
are applied to all attention layers (namely
WQ,WK ,WV ,Wo). A rank of 8 for LoRA is used,
a rank 1024 for VeRA and rank 32 for UORA.
Detailed hyperparameter settings are disclosed in
Appendix A.

Results. Table 4 shows similar pattern observed
in previous experiments. We find that UORA main-
tains competitive performance in arithmetic reason-
ing in both LLaMA 7B and LLaMA 3-8B, despite
using a minimal number of parameters shown in the
column # Trainable Parameters. The UORA’s ex-
treme parameter efficiency could facilitate resource-
constrained scenarios.

LoRA, with the most number of parameters and
maximum flexibility, shows strong performance
and sets the baseline for the rest methods. De-
spite using orders of magnitude fewer parame-
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Model Method # Trainable
Parameters AddSub MultiArith SVAMP SingleEq

LoRA 8.4M 0.8051 0.9383 0.4286 0.7715
LLaMA 7B VeRA 0.59M 0.8069 0.9300 0.3944 0.7303

UORA 0.50M 0.8095 0.9133 0.4210 0.7047
LoRA 8.4M 0.8962 0.9633 0.7539 0.9665

LLaMA 3-8B VeRA 0.59M 0.8886 0.9383 0.7027 0.9409
UORA 0.50M 0.8911 0.9750 0.7100 0.9688

Table 4: Instruction tuning performance on arithmetic reasoning tasks using LLaMA 7B and LLaMA 3-8B models.

ters, UORA closely follows LoRA in performance
(e.g., in AddSub, LoRA scores 89.62% and UORA
closely follows with 89.11% on LLaMA3-8B).

We are inspired by VeRA, which serves as our
most immediate baseline; VeRA’s scaling vectors
are solely used to enable entries in frozen matri-
ces. UORA, in contrast, could potentially offer bet-
ter performance, because the interpolation-based
reinitialization enhances the expressiveness of the
frozen matrices. This not only reduces the number
of trainable parameters but also offers improved
fine-tuning performance as shown in Table 4.

4.4 Image Classification

PEFT methods are as efficient in fine-tuning for
image classification tasks. Vision Transformer
(ViT) (Dosovitskiy et al., 2021) successfully ex-
tends the attention mechanism to address image
classification tasks. In this section, we evaluate our
method in ViT on common datasets.

Experiment Details. For evaluation, we
adopt both ViT base and large models, pre-
trained on ImageNet-21K, on a wide range
of datasets, including RESIS45 (Cheng
et al., 2017), CIFAR100 (Krizhevsky et al.,
2009), FOOD101 (Bossard et al., 2014),
FLOWER102 (Nilsback and Zisserman, 2008).

We include full fine-tuning and training classi-
fication head only as baselines, as well as LoRA
and VeRA. Specifically, we apply all methods on
the query and value layers in ViT models. We
followed the convention to use rank 8 for LoRA,
256 for VeRA and 32 for UORA. Each run has 10
epochs, and detailed hyperparameter settings are
listed in Appendix A.

Results. As seen in Table 5, UORA is able to
outperform VeRA and achieve comparable perfor-
mance to LoRA with fewer parameters. For ex-
ample, on CIFAR100, UORA reaches 96.08% ac-

curacy with ViT-B and 95.72% with ViT-L, out-
performing VeRA in both cases and approaching
LoRA’s performance, despite the number of train-
able parameters is only 19.2K and 50.7K respec-
tively. This demonstrates the efficiency and gener-
alization of UORA as a PEFT method for vision
tasks.

4.5 Ablation Study
4.5.1 Scalability

Figure 2: Performance vs. number parameters of LoRA
and UORA on MPRC in GLUE benchmark.

We model the relation between fine-tune per-
formance and the number of trainable parameters
using RoBERTa Large model on MRPC in GLUE
benchmark. We adopt rank r = {1, 2, 4, 16, 64}
for LoRA and r = {1, 4, 16, 32, 256} for UORA.
As shown in Figure 2, UORA demonstrates su-
perior parameter efficiency, achieving comparable
performance to LoRA while requiring fewer train-
able parameters. In higher ranks, both UORA and
LoRA show performance slight degradation, which
could be a sign for excessive amount of parameters.

4.5.2 Impact of Initialization Method
As aforementioned, we employ orthogonal uni-
form initialization for frozen projection matrices
A and B, as opposed to the Kaiming initializa-
tion in VeRA. The randomized projection matrices
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Model Method # Trainable
Parameters CIFAR100 Food101 Flowers102 RESISC45

Head – 79.02 70.85 56.86 40.84
Full 85.8M 95.00 85.25 98.05 93.28

ViT-B LoRA 294.9K 96.78 86.49 99.09 94.29
VeRA 24.6K 95.38 84.78 98.03 92.01
UORA 19.2K 96.08 83.84 99.02 92.43

Head – 82.22 72.63 63.26 50.47
Full 303.3M 95.44 88.64 99.02 95.23

ViT-L LoRA 786.4K 96.56 85.38 99.00 94.60
VeRA 61.4K 95.78 85.08 98.04 93.54
UORA 50.7K 95.72 84.07 98.04 93.75

Table 5: Vision transformer results on image classification datasets with ViT Base (Vit-B) and Large (ViT-L). We
report accuracy (%) after 10 epochs.

are shared across all target layers. The scaling
vector d⃗ is initialized to 0.1 for efficient training
as proved in VeRA, and and b⃗ is set to 0 such
that the first forward pass is not affected, e.g.,
∆W = ΛbBΛdAx = 0.

We conducted experiment to investigate the im-
pact of initialization methods. We implement dif-
ferent matrix initialization methods on top of VeRA
(equivalent to UORA with reinitialization disabled)
and test the performance for MRPC task in GLUE
bench mark. Table 10 shows that both xavier and
orthogonal uniform initialization shows slightly
better performance than Kaiming uniform; random
uniform intialization appears to be less effective
in parameter modeling given its inefficacy in per-
formance, which aligns with the observation in the
VeRA paper.

4.5.3 Impact of Threshold τ , Count k, and
Interpolation Factor α

The frequency of interpolation-based reinitializa-
tion depends on the threshold τ and the count k.
The extent of reinitialization depends on the inter-
polation factor α. After empirical study, we found
that even though (τ, k, α) are correlated, the hy-
perparameter tuning can be simplified; we depict
practical tuning strategy in A.1. We conduct de-
tailed ablation study in Appendix B.

5 Conclusion

In this paper, we introduce UORA, a novel PEFT
method achieving both fine-tuning performance
and parameter efficiency. We extend VeRA and
propose a simple yet effective interpolation-based

reinitialization mechanism to improve the reparam-
eterization efficiency. Our evaluation validates that
UORA is applicable to various domains including
NLP and CV tasks. Compared to the state-of-the-
art LoRA, UORA demands 15x and 8x fewer pa-
rameters while demonstrating competitive perfor-
mance in GLUE and E2E benchmarks respectively.

6 Limitations

We demonstrate the performance of our methods
on various application domains. There are many
directions for future explorations. While UORA
updates the frozen matrices for improved perfor-
mance, more research could be done for more ef-
fective parameter modeling (e.g., guided by fine-
grained heuristics). Altough UORA demonstrates
competitive performance, there are remaining po-
tentials to fuse with other PEFT methods (e.g., al-
leviating the search of rank with singular value
decomposition). Applying PEFT methods on ex-
tremely large language models, especially multi-
modal model, remains an open challenge.
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A Hyperparameters

We record hyperparameters below for reproducibil-
ity: Table 6 for GLUE benchmark, Table 7 for E2E
dataset, Table 8 for instruction turning, and Table 9
for image classification using ViT.

A.1 Tuning Strategy
Hyperparameter tuning directly relates to the fine-
tuning performance, and it can be tricky. A good
tuning strategy often saves users time during de-
ployment. The hyperparameter tuning process for
UORA is relatively straightforward as follows.

Rank r We find rank 16 is most likely suffi-
cient for smaller models like RoBERTa and GPT-2.
If computation resource allows, rank 32 often re-
quires less tuning effort, and provides competitive
performance out of box.

For large language models like llama and llama3,
a minimum of rank 32 is needed. We observe that
a rank < 32 could lead to zero interpolation occur-
rences. Higher ranks (e.g., r > 256) could cause
overparameterization and instability.

Learning rate lr UORA benefits from a learn-
ing rate similar to VeRA’s, typically higher than
LoRA’s. Given the small amount of trainable pa-
rameters, we find that 4e-2 is usually a good start-
ing point.

Interpolation Factor α Alpha = 0.7 provides a
balanced trade-off. A lower alpha < 0.5 introduces
more noticeable turbulence in the training process
(as the learned scaling vectors takes longer to adapt
to the largely varied frozen matrices).

Threshold τ and Count k Threshold τ and
count k together determine the number of reini-
tialization occurrences at a given index. The goal
is to control the number of reinitializations within
an optimal range. Too few reinitializations leads
to similar performance as VeRA with a small rank;
too many reinitializations may disrupt the orthogo-
nality of frozen matrices and training stability.

We start with k = 1 and tune τ first. We adjust
the Tau value to avoid overly frequent reinitializa-
tions. If tuning τ alone is insufficient to balance
the number of reinitialized indices and total reini-
tializations, we then consider k >= 2, especially
under noisier training regimes.
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Model Hyperparameter SST-2 MRPC CoLA QNLI RTE STS-B

Optimizer AdamW
Warmup Ratio 0.06
LR Schedule Linear
Initialization Orthogonal uniform
Initial Value of d 0.1
Interpolation α 0.7
Count k 1
Seed (0 42 88)

# GPUs 1
Rank rq = rv 16 16 16 16 16 16
Threshold τ 1e-5 1e-5 1e-5 1e-5 8e-6 8e-6

RoBERTa Epochs 60 60 80 25 160 40
base Learning Rate (Head) 4E-3 1E-2 1E-2 4E-3 1E-2 1E-2

Learning Rate (UORA) 4E-3 1E-2 1E-2 1E-2 4E-3 1E-2
Max Seq. Len. 512
Batch Size 32

# GPUs 4
Rank rq = rv 32 32 32 32 32 32
Threshold τ 1e-5 1e-5 1e-5 8e-6 8e-6 8e-6

RoBERTa Epochs 10 40 40 20 40 20
large Learning Rate (Head) 4E-3 1E-2 6E-3 2E-4 2E-3 5E-3

Learning Rate (UORA) 1E-2 1E-2 1E-2 1E-2 2E-2 1E-2
Max Seq. Len. 128
Batch Size Per GPU 32

Table 6: Hyperparameters for GLUE benchmark.

Model Hyperparameter LoRA VeRA RED UORA

Optimizer AdamW
Warmup Steps 500
Epochs 5
Label Smooth 0.0
Batch Size 8
LR Schedule Linear
Seed (42 43 44)
# GPUs 1
Initial Value of d - 0.1 - 0.1
Initialization - Kaiming - Orthogonal

uniform - uniform
Threshold - - - 1

GPT-2 Rank r 8 1024 - 32
Medium Learning Rate 6E-2 2E-2 6E-2 1E-2

GPT-2 Rank r 8 1024 - 32
Large Learning Rate 4E-3 6E-3 2E-2 2E-2

Table 7: Hyperparameters for E2E benchmark.
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LoRA VeRA UORA

#GPU 1
Optimizer AdamW
Warmup Ratio 0.03
Batch Size 4
Gradient Accumulation Steps 4
Epochs 3
LR Scheduler Cosine
Weight Decay 0.0
Cutoff Length 256
Rank r 8 1024 32
Learning Rate 3e-4 4e-2 4e-2

Table 8: Hyperparameter setup for Instruction Tuning. LoRA alpha = 16. UORA τ = 5e-5; k = 1.

Model Hyperparameter CIFAR100 Food101 Flowers102 RESISC45

Weight Decay 0.0
Optimizer AdamW
LR Schedule Linear
Rank r 32
epoch 10
Seed (42,43,44)

Base

LR-head (Head only) 5e-5 5e-5 5e-5 5e-5
LR (Full) 5e-5 5e-5 5e-5 5e-5
LR-head (LoRA) 4e-3 4e-3 4e-3 4e-3
LR (LoRA) 4e-3 4e-3 4e-3 4e-3
LR-head (VeRA) 4e-3 4e-3 4e-3 4e-3
LR (VeRA) 4e-2 4e-2 4e-2 4e-2
LR-head (UORA) 4e-3 4e-3 4e-3 4e-3
LR (UORA) 4e-2 4e-2 4e-2 4e-2

Large

LR-head (Head only) 5e-5 5e-5 5e-5 5e-5
LR (Full) 5e-5 5e-5 5e-5 5e-5
LR-head (LoRA) 4e-3 4e-3 4e-3 4e-3
LR (LoRA) 4e-3 4e-3 4e-3 4e-3
LR-head (VeRA) 4e-3 4e-3 4e-3 4e-3
LR (VeRA) 4e-2 4e-2 4e-2 4e-2
LR-head (UORA) 4e-3 4e-3 4e-3 4e-3
LR (UORA) 4e-2 4e-2 4e-2 4e-2

Table 9: Hyperparameter setup for ViT on the image classification benchmarks.

B Ablation Study

This section depicts the initialization comparison
and sensitivity analysis of UORA-specific hyperpa-
rameters (τ, k, α).

Threshold τ . τ controls the magnitude threshold
to trigger reinitialization. If a dimension in d⃗ be-
comes lower than τ , it is considered as less efficient

in modeling the weight distribution of target layers.
We conducted a focused experiment on LLaMA 7B
on the AddSub dataset to evaluate the impact of the
threshold τ .

As shown in Table 11, a higher value of τ leads
to more frequent reinitialziation; excessive occur-
rences could introduce performance degradation.
τ = 1e-4 provides the best performance in this ex-
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Initialization MRPC

Xavier Uniform 88.72
Orthogonal Uniform 88.72

Kaiming Uniform 87.99
Random Uniform 72.05

Table 10: Impact of Matrix Initialization

periment. As τ decreases further, the performance
begins to drop, which highlights the importance of
a balanced reinitialization frequency.

Threshold τ AddSub
5e-4 0.6759
1e-4 0.8095
5e-5 0.7620
1e-5 0.7063

Table 11: Impact of Threshold τ

Count k. Count k controls the number of training
steps where a dimension is below τ before reinitial-
ization triggers. A higher k reduces the frequency
of reinitialization and makes UORA conservative
about the current frozen matrices. Special values
like k = 0 disables UORA reinitialization mecha-
nism; another case is that when k is large enough
that the consecutive count is never reached. We
conduct empirical study to make sense of the ap-
propriate range for k. We observe that given a
tuned threshold τ , k ∈ {1, 2, 3} shows promising
performance.

Count k MRPC

0 89.95
1 90.44
2 89.99
3 89.95
4 89.95

Table 12: Impact of Count k

Interpolation Factor α. α controls the magni-
tude of change when modifying a frozen matrix
during reinitialization. A higher α leads to more
stabilized training process at a cost of inefficient
parameter modeling. When α = 1, UORA can be
viewed a close variant of VeRA where the initializa-
tion method adopts orthogonal uniform. Table 13
shows the impact of interpolation factor α on the

E2E dataset. We observe that α = 0.7 provides the
best trade-off between performance and stability
as it preserves a better approximate orthogonality
than smaller α’s.

α 0.3 0.5 0.7 1

BLEU 63.90 63.75 66.67 65.78
NIST 8.35 8.25 8.61 8.49

METEOR 44.96 45.20 45.37 45.58
ROUGE_L 67.64 68.51 68.82 69.01

CIDEr 2.30 2.32 2.35 2.32

Table 13: Sensitivity analysis of interpolation factor α.
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C Instruction Tuning Examples

Table 14 shows an example of the multi-turn ques-
tions in MT-Bench. Table 15 shows the LoRA
answers and UORA for the same question.
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Q1 Extract the following information from the presented texts: The name of the book,
the author, the main character, the year of publication. Output in the format of “main
character, book, author, year of publication”, one book per line. a) In the realm
of wizarding literature, a true standout is the work of J.K. Rowling. One of her
books that left an indelible mark is ‘Harry Potter and the Philosopher’s Stone’. This
iconic tale, published in 1997, tells the story of Harry, a young orphan who discovers
his magical abilities on his 11th birthday. Soon, he finds himself at the Hogwarts
School of Witchcraft and Wizardry, a place teeming with magic and adventure,
located somewhere in Scotland. b) The magic of Middle-earth has entranced readers
worldwide, thanks to the brilliance of J.R.R. Tolkien. In one of his seminal works,
‘The Lord of the Rings: The Fellowship of the Ring’, published in 1954, we meet
Frodo Baggins, a brave hobbit tasked with the perilous quest of destroying the One
Ring. The epic journey takes him from the peaceful Shire to the tumultuous regions
of Middle-earth. c) In a galaxy far, far away, the imagination of L.E. Starlighter gives
us ‘The Prism Galaxy Chronicles: The Awakening of the Starcaster’. Published
in 2028, the story is about Zylo, a humble spaceship mechanic, who unexpectedly
discovers he’s a Starcaster - a rare individual with the power to manipulate stardust.
Set against the backdrop of an interstellar empire in turmoil, Zylo’s destiny unfolds
on numerous alien worlds, each with its unique cosmic charm.

Q2 Reformulate your earlier reply, output it in JSON format and only include books
published after 1980.

Table 14: No. 131 question in MT-Bench
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LoRA UORA
Q1 The name of the book is ’Harry Potter and

the Philosopher’s Stone’, the author is J.K.
Rowling, the main character is Harry Pot-
ter, and the year of publication is 1997.

Here are the answers to your question:
a) The main character is Harry Potter, the
book is ’Harry Potter and the Philoso-
pher’s Stone’, the author is J.K. Rowling,
and the year of publication is 1997.
b) The main character is Frodo Baggins,
the book is ’The Lord of the Rings: The
Fellowship of the Ring’, the author is
J.R.R. Tolkien, and the year of publica-
tion is 1954.
c) The main character is Zylo, the book is
’The Prism Galaxy Chronicles: The Awak-
ening of the Starcaster’, the author is L.E.
Starlighter, and the year of publication is
2028.

Q2 { "books": [
{
"name": "Harry Potter and the Philoso-
pher’s Stone",
"author": "J.K. Rowling",
"main_character": "Harry Potter",
"year_of_publication": 1997
},
{
"name": "The Lord of the Rings: The Fel-
lowship of the Ring",
"author": "J.R.R. Tolkien",
"main_character": "Frodo Baggins",
"year_of_publication": 1954
},
{
"name": "The Prism Galaxy Chronicles:
The Awakening of the Starcaster",
"author": "L.E. Starlighter",
"main_character": "Zylo",
"year_of_publication": 2028
}
] }

Here is the reformulated answer:
a) { "main character": "Harry Potter",
"book": "Harry Potter and the Philoso-
pher’s Stone", "author": "J.K. Rowling",
"year of publication": "1997" }
b) { "main character": "Frodo Baggins",
"book": "The Lord of the Rings: The Fel-
lowship of the Ring", "author": "J.R.R.
Tolkien", "year of publication": "1954" }
c) { "main character": "Zylo", "book":
"The Prism Galaxy Chronicles: The Awak-
ening of the Starcaster", "author": "L.E.
Starlighter", "year of publication": "2028"
}

Table 15: Example answers to MT-Bench questions. Answers formatted according to newline character in the model
output.
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