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Abstract

This work investigates sentence-level models
(i.e., models that operate at the sentence-level)
to study how sentence representations from
various encoders influence downstream task
performance, and which syntactic, semantic,
and discourse-level properties are essential for
strong performance. Our experiments encom-
pass encoders with diverse training regimes and
pretraining domains, as well as various pool-
ing strategies applied to multi-sentence input
tasks (including sentence ordering, sentiment
classification, and natural language inference)
requiring coarse-to-fine-grained reasoning. We
find that “less mature” representations (e.g.,
mean-pooled representations from BERT’s first
or last layer, or representations from encoders
with limited fine-tuning) exhibit greater gen-
eralizability and adaptability to downstream
tasks compared to representations from exten-
sively fine-tuned models (e.g.,, SBERT or Sim-
CSE). These findings are consistent across dif-
ferent pretraining seed initializations for BERT.
Our probing analysis reveals that syntactic and
discourse-level properties are stronger indica-
tors of downstream performance than MTEB
scores or decodability. Furthermore, the data
and time efficiency of sentence-level models,
often outperforming token-level models, under-
scores their potential for future research.

1 Introduction

Sentence representation learning is an extensively
researched area. Existing works either fine-tune en-
coders (such as BERT (Devlin et al., 2018)) using
Siamese networks (Conneau et al., 2017; Reimers
and Gurevych, 2019) or contrastive learning ap-
proaches (Gao et al., 2021) using Natural Language
Inference (NLI) datasets (Bowman et al., 2015;
Williams et al., 2018) or further pretraining en-
coders using conditional language modeling (Yang

*Work done during internship at Meta FAIR.
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Figure 1: Sentence-level Model: Sentence representa-
tions from a frozen encoder are used as input to a ran-
domly initialized BERT-like transformer model. This
model is trained to predict the position (regression for
sentence ordering) or category (for sequential sentence
classification) for each sentence. MSE denotes mean-
squared loss and CE denotes cross-entropy loss. For
NLI task, we prepend a CLS token to the input and use
the representation corresponding to this CLS token to
predict the output class for a (premise, hypothesis) pair.

et al., 2021) to incorporate discourse information
in the representations. Others use encoder-decoder
models for generating (Kiros et al., 2015) or pre-
dicting surrounding sentences (Logeswaran and
Lee, 2018) to learn monolingual sentence represen-
tations or train encoder-decoder models on machine
translation datasets (Conneau, 2019; Artetxe and
Schwenk, 2019; Duquenne et al., 2023) to learn
multilingual representations. Representations thus
obtained are evaluated based on their performance
on downstream tasks (Muennighoff et al., 2023)
such as clustering, paraphrasing, classification, and
retrieval. They are also evaluated on probing tasks
to assess various surface-level, syntactic, semantic,
and discourse properties encoded in them (Con-
neau et al., 2018; Conneau and Kiela, 2018; Chen
et al., 2019).

Apart from learning sentence representations, an-
other line of research has used these sentence repre-
sentations for causal language modeling or masked
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Model Pretraining
Dataset

Pooling Strategies Approach/Training objective

BERT
(Devlin et al., 2018) Wikipedia, Books.

Last layer: mean, CLS, CLS
before pooler, max.

First layer: mean, CLS before
pooler, max.

Language modeling + Next
sentence prediction.

SciBERT
(Beltagy et al., 2019)

Science and
Biomedical papers.

Last layer: mean, CLS, CLS
before pooler, max.

First layer: mean, CLS before
pooler, max

Language modeling + Next
sentence prediction (Uses BERT
architecture as the base model).

BERT-SimCSE
(Gao et al., 2021) SNLI + MNLI.

Last layer: mean, CLS, CLS
before pooler, max.

First layer: mean, CLS before
pooler, max

Fine-tunes BERT on NLI
datasets using contrastive
learning.

SBERT
(Reimers and Gurevych,
2019)

NLI + Paraphrasing
+ Question
Answering.

Mean
Fine-tunes BERT-based Siamese
network using contrastive
objective.

SBERT-NLI
(Reimers and Gurevych,
2019)

SNLI + MNLI. Mean
Fine-tunes BERT-based Siamese
network using 3-class
classification loss.

SciBERT-NLI1 SNLI + MNLI. Mean
Fine-tunes SciBERT-based
Siamese network using 3-class
classification loss.

CMLM
(Yang et al., 2021) Common Crawl. Mean

Further pre-train BERT using
Conditional Language
Modeling.

Table 1: BERT-based encoders: Pretraining datasets, pooling strategies (first and last layers), and training objectives.
All models use 768-dimensional representations. See respective papers for details

language modeling to build sentence-level models
resulting in improved storyline generation (Ippolito
et al., 2020) and document embeddings (Czinczoll
et al., 2024). Such sentence-level models represent
a sequence of sentences by a sequence of sentence
representations (one per sentence) as opposed to
standard token-level models which take in a se-
quence of token representations. There also ex-
ists works that use sentence-level modeling for the
task of sentence ordering (Cui et al., 2018; Basu
Roy Chowdhury et al., 2021; Kumar et al., 2020;
Golestani et al., 2021; Bin et al., 2023), sentence
infilling (Huang et al., 2020; Mori et al., 2020),
or sequential sentence classification (Cohan et al.,
2019; Hillebrand et al., 2024).

However, limited research has been done in as-
sessing: (RQ1) how does a representation learning
approach (such as fine-tuning, contrastive learn-
ing, conditional language modeling, etc.) impact
the performance of a downstream sentence-level
modeling task? (RQ2) what properties must be

encoded in sentence representations to enable sen-
tence-level modeling tasks? And (RQ3) what are
the advantages of sentence-level models over stan-
dard token-level models?

We experiment with several sentence represen-
tations, obtained from a variety of sentence en-
coders, to build sentence-level models for address-
ing (RQ1). We use existing sentence representation
evaluation benchmarks (Conneau et al., 2018; Con-
neau and Kiela, 2018; Muennighoff et al., 2023;
Chen et al., 2019) to assess the surface-level, syn-
tactic, semantic, and discourse-level properties en-
coded in embeddings. We correlate these properties
with their downstream task performance to answer
(RQ2) in Section 4. We then compare the down-
stream task performance of a token-level model
with that of sentence-level model in Section 4 to
investigate (RQ3).

Additionally, we thoroughly study the impact of
using different pooling strategies on downstream
performance, investigate the robustness of our find-
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Task Description Domain Datasets

SO
Sentence Ordering
(coarse-grained)

Input: shuffled sequence of sentences
Output: relative position of each
sentence
Task Formulation: Sentence-level
regression

General

ROCStories (Mostafazadeh et al., 2016) –
human written five sentence commonsense
stories capturing causal and temporal rela-
tions between everyday life events.
SIND (Huang et al., 2016) – humans write
five sentence stories for a sequence of pho-
tos from Flickr album.

Scientific

NIPS (Logeswaran et al., 2016)- abstracts
from NIPS papers from 2005-2015.
AAN (Radev et al., 2016) - abstracts from
ACL anthology until 2013.

SSC
Sequential Sentence
Classification
(coarse-grained)

Input: sequence of sentences in a
paragraph
Output: role of each sentence
Task Formulation: Sentence-level
classification

Scientific

CSAbstruct (Cohan et al., 2019) – manually
annotated sentences from computer science
abstracts (obtained from semantic scholar)
for background, method, result, objective,
and other.

NLI
Paragraph-level Natural
Language Inference
(fine-grained)

Input: Multi-sentence premise and a
hypothesis
Output: Whether premise entails,
contradicts, or is neutral with
respect to the hypothesis
Task Formulation: Paragraph-level
classification

General

ANLI (Nie et al., 2020) – adversarial col-
lected NLI dataset via human-and-machine
in the loop. Premise (multi-sentence pas-
sages from Wikipedia) and target label (one
of entailment, contradiction or neutral) are
provided to humans to write a hypothesis.

Table 2: Three multi-sentence input tasks, their description, and datasets used in our study. We cover tasks requiring
coarse-to-fine-grained reasoning spanning two domains.

ings across multiple pretraining seed initializations
of encoders, and assess if the ability to decode a
sentence from its representation is indicative of the
downstream task performance of the sentence-level
model in Section 4.

2 What is a sentence-level model?

A sentence-level model (Figure 1) takes in sen-
tence representations as input as opposed to tokens
that are used in standard token-level models (such
as BERT). We consider an encoder-only Trans-
former architecture for the sentence-level model.
The sentence-level model takes in a sequence of
sentence representations from an encoder that is
kept frozen during sentence-level model training.
Note that for the task of sentence ordering, we re-
move positional embeddings since the input is a
shuffled sequence of sentences. We provide details
on the encoders, tasks, and datasets used in the
following sections.

2.1 Sentence Encoders

We experiment with sentence representations ob-
tained from several BERT-based monolingual en-
coders (vanilla BERT, BERT-SimCSE, SBERT,
etc.) spanning different training regimes, pretrain-
ing dataset domain, and pooling strategies. We

Task Dataset Max/Mean Dataset split

Train Dev Test

SO

NIPS 15/6 2448 409 402
AAN 12/5 8569 962 2626
SIND 5/5 40155 4990 5055
RocStories 5/5 78529 9816 9817

SSC CSAbstruct 10/7 1668 295 226

NLI ANLI 18/4 162865 3200 3200

Table 3: Sentence-level dataset statistics. Max/Mean
are computed over the number of input sentences.

chose BERT-based encoders to facilitate controlled
experiments and minimize confounding factors that
can impact our findings. For a detailed list of en-
coders, see Table 1.

2.2 Downstream Tasks

We consider several multi-sentence input tasks re-
quiring coarse-to-fine-grained reasoning from two
domains, scientific and general. We select a variety
of tasks to study the generalizability of the findings.
We provide details on the tasks, datasets, and task
formulation in Table 2.

2.3 Experimental Details

We provide details on the training objectives for
each task, and evaluation measures below. Dataset
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statistics for each task are shown in Table 3.

Training objectives For the sentence ordering
task, we utilize the final layer representations of
each sentence to predict its relative position (as
per the original sequence) within a shuffled se-
quence. Specifically, for a given shuffled sequence
of sentences ([1,3,2,5,4]), we aim to predict the
relative position of each sentence in the shuf-
fled sequence (i.e., [0.2=1/5, 0.6=3/5, 0.4=2/5,
1.0=5/5, 0.8=4/5]). This sentence-level model is
trained using mean-squared error (MSE) loss. In
the sequence sentence classification task, we again
use the final layer representations to predict the cat-
egory of each sentence, training with cross-entropy
loss. For NLI task, we employ the final layer rep-
resentation of the [CLS] token (prepended to the
input) to predict the relationship (entailment, con-
tradiction, or neutrality) between the hypothesis
and premise. This NLI model is also trained using
cross-entropy loss.

Evaluation For each task, we report the follow-
ing metrics averaged over 4 runs:
Sentence Ordering: Accuracy of correctly predict-
ing a sentence’s position in the original sequence.
Sequence Classification: Accuracy of correctly pre-
dicting the category of each sentence in a sequence.
NLI: Accuracy of predicting the entailment label.

To provide context for these results, we also in-
clude scores from a random baseline for each task
as a lower bound performance. For the sentence
ordering task, we additionally report the current
state-of-the-art score (Robin et al., 2023) to estab-
lish an upper bound for performance. Please refer
to Appendix A for implementation and datasets
related details.

3 Main Findings

3.1 Less supervised training signals for better
generalization - How BERT’s mean
pooling rivals specialized sentence
representations.

While specialized sentence representation encoders
are known to top the MTEB benchmark (Muen-
nighoff et al., 2023) (which is a widely used bench-
mark for evaluating text representations on 8 types
of tasks), Figure 2 demonstrates that mean-pooled
BERT representations achieve performance compa-
rable to CMLM and surpass specialized sentence
representations like SBERT and BERT-SimCSE.

While SBERT representations result in the low-
est downstream task accuracy for the scientific do-
main, their performance is relatively closer to other
encoders (BERT, BERT-SimCSE, and CMLM) in
the general domain. This difference may be at-
tributed to SBERT’s fine-tuning on a variety of
general domain datasets. Although BERT-SimCSE
is also trained on the same NLI datasets as SBERT-
NLI, representations from BERT-SimCSE are more
robust to the domain of downstream datasets as
indicated by higher accuracy for the sequence clas-
sification task. This suggests that training using
contrastive learning (BERT-SimCSE) is better than
fine-tuning (SBERT-NLI) using cross-entropy loss.

While both BERT-SimCSE and SBERT use con-
trastive learning and SBERT has been fine-tuned
on significantly larger amounts of data than BERT-
SimCSE, representations from SBERT result in
lower performance on scientific domain datasets
than those from BERT-SimCSE. This shows that
representations from less fine-tuned encoders are
more generalizable and adaptable.

CMLM’s best performance across all the tasks
(except for sentence ordering in the scientific
domain) indicates that continued pretraining of
BERT using conditional language modeling (semi-
supervised) results in more generalized representa-
tions as compared to contrastive learning (BERT-
SimCSE, SBERT) or fine-tuning (SBERT-NLI).

As expected, representations from SciBERT out-
perform those from BERT for scientific domain
datasets and perform lower than BERT for the gen-
eral domain. Similar trends are observed between
SBERT-NLI and SciBERT-NLI which is a scien-
tific domain variant of SBERT-NLI. SciBERT-NLI
which is a specifically fine-tuned (from SciBERT)
Scientific analogue of SBERT-NLI also performs
lower than SciBERT across all the tasks however
it performs better on MTEB tasks (see Figure 10).
Further analysis in Section 4 suggests that better
performance of an encoder over another is due to
having more syntactic and discourse-level proper-
ties encoded in their representations. All of these
findings suggest that less mature representations
are more adaptable to learning downstream task-
specific properties than those that have already
been tuned to strongly encode the semantics.

3.2 CLS token representations right before
the pooling layer are surprisingly better.

We study the impact of using different pooling
strategies to obtain the representations from en-
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Figure 2: Sentence-level model accuracy using representations from encoders with varying training regimes and
pretraining domains. Mean pooling is used for all encoders except BERT-SimCSE (CLS pooling). Variance shown
is across sentence ordering datasets.
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Figure 4: Sentence-level model accuracy: Comparing
first/last layer pooling for BERT against SBERT and
SBERT-NLI. Variance across sentence ordering datasets
is shown.

coders on downstream sentence-level modeling
task performance. We experiment with BERT,
BERT-SimCSE, and SciBERT encoders, using rep-
resentations pooled from the final layer. Specifi-
cally, we compare representations derived from the
CLS token before the pooling layer (CLS-BP) with
those derived after the pooling layer (CLS)2.

Figure 3 shows that using CLS-BP yields sur-
prisingly better downstream task accuracies than

2The standard CLS representation from a BERT encoder
uses an additional pooling layer during pretraining.

using CLS. However, the performance difference
between CLS and CLS-BP is smaller for BERT-
SimCSE than for other models, possibly because
BERT-SimCSE uses the CLS representation during
fine-tuning with contrastive learning.

CLS-BP also results in improved downstream
task performance over mean pooled representations
in the scientific domain. However, in the general
domain, the performance is comparable. These ob-
servations align with our previous finding that less
mature representations have more capacity to adapt
and learn properties required for the downstream
task. Further analysis in Section 4 reveals that
CLS-BP encodes higher syntactic, semantic, and
discourse-level properties than CLS, which leads
to its improved downstream task performance.

3.3 First-layer representations can be more
effective than representations from
specifically trained encoders.

Given that less mature representations are generally
more adaptable and that representations from the
last layer are more task-specific than those from
the first layer (Rogers et al., 2020), we investigated
whether similar results are observed when pooling
representations from the first layer. Focusing on
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the sentence ordering task, we report results for the
BERT encoder in Figure 4, with results for BERT-
SimCSE and SciBERT provided in the appendix
(Figure 15). For the scientific domain datasets,
mean-pooled representations from the first layer of
BERT outperform SBERT. However, the reverse
is true for the general domain, potentially due to
SBERT’s fine-tuning on general domain datasets.
Across both domains, mean representations from
the first layer are either better than or comparable
to CLS representations from the last layer of BERT.
This is likely because the first-layer representations
encode higher syntactic, semantic, and discourse-
level properties (see Figure 11).

4 Analysis and Discussion

4.1 Robustness of Findings Across BERT
Initializations.

To ensure the robustness of our findings across
different pretraining seed initializations of BERT
encoder, we rerun all the sentence ordering experi-
ments for BERT and BERT-SimCSE3. Using five
randomly chosen off-the-shelf multiBERT mod-
els (Sellam et al., 2021), we train different ver-
sions of BERT-SimCSE starting from these models

3We only compare performance for these encoders as we
were unable to reproduce SBERT results and CMLM code is
not publicly available

SO (Gen) NLI (Gen) SO (Sci) SSC (Sci)
Downstream Tasks

DiscoEval

SentEval

MTEB

P
ro

bi
ng

 T
as

ks

0.35 0.51 0.39 0.60

0.14 0.13 0.59 0.62

0.17 0.22 -0.53 -0.17
0.4

0.2

0.0

0.2

0.4

0.6

Figure 6: Correlations between probing and downstream
task performance for encoders with different training
regimes and domains. Gen: General, Sci: Scientific.

using the official implementation4. We then ob-
tain representations from these trained encoders to
train sentence-level models, reporting the results
in Figure 5. The similar performance trends ob-
served for BERT and BERT-SimCSE indicate the
robustness of our findings. Similar trends were
also observed for multiBERT models using differ-
ent pooling strategies (see Figure 14 in appendix).

4.2 Syntactic and Discourse Properties Drive
Downstream Performance, Not MTEB.

As established in Section 3, even mean-pooled rep-
resentations from vanilla BERT encoder achieve
comparable or better performance than represen-
tations from specifically trained encoders. To un-
derstand why this occurs and identify the proper-
ties crucial for strong performance on sentence-
level tasks, we evaluate the syntactic, semantic,
and discourse-level properties encoded in the rep-
resentations using SentEval (Conneau et al., 2018)
and DiscoEval (Chen et al., 2019) probing tasks5.
We also investigate whether high performance on
MTEB (Muennighoff et al., 2023), a widely used
representation evaluation benchmark, correlates
with high downstream performance. Figure 6
shows the Spearman’s correlation between perfor-
mance on the evaluation benchmarks and the down-
stream tasks. Our findings indicate that syntactic
and discourse-level properties are more strongly
associated with downstream task success. Surpris-
ingly, higher MTEB performance does not guar-
antee better downstream performance. In fact, we
even observe a negative correlation for the sen-

4https://github.com/princeton-nlp/SimCSE
5We focused on the probing tasks available in these bench-

marks, as the downstream tasks are also included in MTEB.
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tence ordering task. Further analysis of individual
encoder scores (see Figure 10 in appendix) reveals
that BERT representations exhibit the strongest
discourse-level properties and comparable syntac-
tic properties, contributing to their strong down-
stream performance. A potential explanation is
that less mature representations, having undergone
less task-specific fine-tuning, retain greater flexi-
bility to adapt to the specific requirements of the
downstream task.

A similar analysis for different pooling strate-
gies across BERT, BERT-SimCSE, and SciBERT
yielded similar results (Figure 7) . However, in
this case, MTEB performance showed a stronger
correlation with downstream performance, suggest-
ing that semantic properties become more influen-
tial when the base encoder is held constant. Fur-
ther analysis (see Figures 11 to 13 in appendix)
indicates that CLS-BP outperforms CLS across all
probing benchmarks, explaining its superior down-
stream performance.

4.3 Decodability Does not Always Equal
Downstream Success.

We hypothesize that if, for a given sentence en-
coder, sentences can be decoded with high fidelity

Task Dataset Accuracy

Token Sentence

SO

NIPS 36.31∗ 54.29
AAN 48.55∗ 63.98
SIND 48.30 48.33
RocStories 61.15 68.30

SSC CSAbstruct 73.76 74.06

NLI ANLI 47.38 43.78

Table 4: Accuracy (%) for different tasks from a token-
level and corresponding sentence-level model. ∗ denotes
that the model was trained with 8 permutations per train-
ing example.

from their encoded representations, then this en-
coder will have strong downstream task perfor-
mance in a sentence-level modeling paradigm. This
hypothesis is based on recent findings that sentence
representations are a bottleneck for sentence-level
models (Kamath et al., 2023). To test this hypoth-
esis, we train a T5 decoder (Raffel et al., 2020)
for each encoder to reconstruct 2 million training
instances from the BookCorpus dataset (Zhu et al.,
2015). The decoder is conditioned on the fixed-size
representation yielded by the encoder i.e., a single
vector input to T5’s cross-attention mechanism.

Using beam search decoding (beam size = 4),
we reconstruct sentences from the representations
produced by each encoder. We then calculate
the Spearman’s correlation coefficient between
decodability (measured using BLEU (Papineni
et al., 2002) ROUGE (Lin and Hovy, 2003), and
BERTScore (Zhang et al., 2019)) and downstream
task accuracy across the encoders. Results are
shown in Figure 8. The strong correlation ob-
served for NLI and SSC tasks, as measured by
BERTScore, supports our hypothesis. However,
the weak to moderate correlation observed for the
sentence ordering task suggests that higher decod-
ability does not always translate to improved down-
stream performance.

For completeness, the individual BLEU,
ROUGE, and BERTScore metrics for each encoder
are available in the appendix (Figure 9).

4.4 The Efficiency Advantage of
Sentence-Level Models.

We hypothesize that token-level models excel at
fine-grained downstream tasks, while sentence-
level models are better suited for coarse-grained
tasks We define fine-grained tasks as those requir-
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ing detailed analysis of individual words or phrases
(e.g., Named Entity Recognition or NLI), while
coarse-grained tasks operate at the sentence or doc-
ument level (e.g., Sentence Ordering, Sentiment
Classification). Token-level models can access all
token representations across sentences in the input,
potentially capturing more fine-grained semantic
and discourse information.

To test this, we fine-tune a standard pretrained
BERT model for all the tasks (see Appendix B
in appendix) and compare its accuracy to that of
corresponding sentence-level models trained using
mean-pooled representations from the BERT en-
coder. For the coarse-grained tasks (SO and SSC),
sentence-level models achieve comparable or better
accuracy than token-level models (Table 4). Con-
versely, token-level models outperform sentence-
level models on the fine-grained NLI task.

For the NIPS and AAN datasets, where the
number of sentences per input is significantly
higher than in other datasets, sentence-level mod-
els achieved 65− 75% higher accuracy than token-
level models, despite using eight times fewer train-
ing examples. This suggests that sentence-level
models are more effective at handling longer con-
texts. as opposed to a limit of 512 tokens in the
token-level models. Furthermore, the sentence-
level models converged faster (10 epochs) than
the token-level models (15 epochs), demonstrat-
ing their training-time efficiency.

5 Related Work

Sentence representations for language model-
ing. Sentence-level modeling has been applied
to various tasks, including sentence ordering (Cui
et al., 2018; Basu Roy Chowdhury et al., 2021;
Kumar et al., 2020; Golestani et al., 2021; Bin
et al., 2023), sentence infilling (Huang et al., 2020;
Mori et al., 2020), sequential sentence classifica-
tion (Cohan et al., 2019; Hillebrand et al., 2024)
and story continuation (Ippolito et al., 2020). More
recently, sentence-level (or concept-level) model-
ing has been explored to model language at a higher
abstraction level (LCM team et al., 2024). Re-
lated to our work, Czinczoll et al. (2024) predicts
representations of masked chunks instead of to-
kens. They show that the base encoder effective-
ness doesn’t always translate to chunk-level per-
formance. However, their work doesn’t explore
the diverse encoders, training regimes, and pooling
strategies that are the focus of our work.

Probing sentence representations Probing sen-
tence representations is a common technique to
assess how linguistic properties are captured in
learned representations (Ettinger et al., 2016; Veld-
hoen et al., 2016; Adi et al., 2016; Conneau et al.,
2018; Hupkes et al., 2018; Conneau and Kiela,
2018; Chen et al., 2019). Shi et al. (2016) study
syntactic knowledge in machine translation, and
Vanmassenhove et al. (2017) investigate aspects of
machine translation systems, showing that tense
information can be extracted but is often lost dur-
ing decoding. Conneau et al. (2018) introduces
probing tasks to examine surface-level, syntactic,
and semantic properties and correlate them with
downstream tasks such as NLI and MT. Hupkes
et al. (2018) train diagnostic classifiers to extract
information from a sequence of hidden represen-
tations, hypothesizing that high classifier accuracy
indicates the network’s ability to track specific in-
formation. Giulianelli (2018), on the other hand,
use these classifiers to predict numbers from the in-
ternal states of a language model. Kim et al. (2019)
study what different NLP tasks teach models about
function word comprehension. See Belinkov and
Glass (2019) for a survey of related work.

SemEval (Agirre et al., 2012) is a common
benchmark for evaluating sentence representations.
Conneau and Kiela (2018) aggregate multiple STS
datasets to address the limited expressivity of indi-
vidual SemEval datasets and focus on fine-tuning
classifiers on top of representations. However, it
lacks retrieval or clustering tasks where representa-
tions could be directly compared without additional
classifiers. MTEB Muennighoff et al. (2023) uni-
fies datasets from different representation tasks into
one evaluation framework to provide a holistic per-
formance review of sentence encoders. While these
benchmarks focus on task-specific and linguistic
properties, Chen et al. (2019) (DiscoEval) propose
tasks to assess the discourse-level information.

6 Conclusion

This work provides a comprehensive analysis of
sentence encoders for sentence-level modeling, es-
tablishing the importance of representation matu-
rity, the crucial role of syntactic and discourse-
level properties, and the efficiency of sentence-level
models. Our findings challenge views regarding the
benefits of extensive fine-tuning and highlight the
potential of less mature representations for greater
adaptability (e.g., exploring architectural modifi-
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cations to preserve representation flexibility). The
observation that syntactic and discourse-level prop-
erties are key drivers of downstream performance
suggests fruitful avenues for future research such
as, developing novel pretraining objectives that ex-
plicitly target these properties and move beyond
MTEB evaluation. Further, the data and time effi-
ciency of sentence-level models coupled with their
competitive performance, makes them a promis-
ing direction for future work in language modeling.
We believe these insights will contribute to the de-
velopment of more effective and efficient sentence
representation learning techniques.

Limitations

We acknowledge that our findings are limited to
classification and regression tasks. Future works
may consider extending this study to downstream
generation tasks. Our study focused on encoder-
only BERT-based sentence encoders in English to
ensure a controlled setting. However, further in-
vestigation is required to determine whether our
findings are generalizable to multilingual encoders.
While we show that a sentence-level model is better
or comparable to a token-level model, a promis-
ing future direction is to consider a hierarchical
model that first operates on token-level followed
by a sentence-level model to investigate if it re-
sults in a best-of-both-worlds model wherein both
fine-grained and discourse-level information could
be learned by the model for performing any down-
stream tasks. We acknowledge that ‘maturity’ in
this work encompasses two key aspects (1) how ad-
vanced we are in the finetuning stage as well as (2)
the location of the features in the network (early vs.
late layer) and the primary focus of this work was
on identifying a common thread between them and
examining the high-level relationship with down-
stream performance and property probes, such as
syntactic and discourse properties. However, future
research may aim to disentangle these two factors
and provide formal definitions.
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A Implmentation Details

Experimental Settings Each model has
85, 664, 257 parameters and is trained for 10
epochs. For each task, we use hyperparame-
ters (batch size ∈ {4, 8, 16, 32, 64}, learning
rate ∈ {1e − 5, 2e − 5, 3e − 5}, warmup ra-
tio ∈ {0.06, 0.03, 0.3, 0.6}) that give the best
validation accuracy.

Dataset We use the datasets made available pub-
licly by the respective authors. We use all three
rounds of data for ANLI dataset.

B Token-level Model Details

We fine-tune a vanilla BERT-base model on the
three tasks as follows: (1) for the sentence ordering
task, we prepend each sentence with a [SEP] token
and use the final layer representation correspond-
ing to this token to train the model on the regres-
sion task of predicting the relative position of each
sentence using mean-squared loss; (2) for the se-
quence classifications task, we take the representa-
tions corresponding to the [SEP] token and train on
a 5-class classification task using the cross-entropy
loss; and (3) for the NLI task, we take the repre-
sentation corresponding to the [CLS] token to train
the model on the 3-class classification task using
cross-entropy loss. Each model has 108, 929, 281
parameters and is trained for 15 epochs. For
AAN and NIPS datasets, the model was trained
using 1 transformer layer (30, 962, 689 parame-
ters) to avoid underfitting. For each task, we use
hyperparameters (batch size ∈ {4, 8, 16, 32, 64},
learning rate ∈ {1e−5, 2e−5, 3e−5}, warmup ratio
∈ {0.06, 0.03, 0.3, 0.6}) that give the best valida-
tion accuracy.

C Decoder Training Details and Results

We train the decoder of T5-large (Raffel et al.,
2020) conditioned on a fixed sentence represen-
tation obtained from each encoder we study in this
work. To match the dimension of the representa-
tions from each encoder and the T5-large decoder,
we add a linear layer followed by layer normal-
ization. We keep the sentence encoder frozen and
train the decoder for 1 epoch on randomly sampled
2M examples from the Bookcorpus dataset (Zhu
et al., 2015) available on huggingface6. Sentences
in this dataset are 14± 9 words long and the model

6https://huggingface.co/datasets/bookcorpus/
bookcorpus

has 436, 416, 000 parameters which took 19hrs to
train on 1 Tesla V100-SXM2-32GB GPU. We use
a batch size of 32, Adam optimizer with default
parameters, and a learning rate of 1e−5. Decoding
results are shown in Figure 9.

D Probing Results

We perform the probing results using the offi-
cial implementation for SentEval7, DiscoEval 8,
and MTEB 9 tasks. We only use the English
language tasks in the MTEB benchmark exclud-
ing 15 tasks for which we got a significant (<
0.8 Spearman’s correlation) correlation between
performance for encoders trained using different
pretraining initialization seeds. These tasks in-
clude: FEVER, ArxivClusteringP2P, ImdbClassi-
fication, SICK-R, MedrxivClusteringS2S, STS13,
ToxicConversationsClassification, RedditCluster-
ingP2P, ArguAna, Touche2020, MedrxivCluster-
ingP2P, BIOSSES, STS22, SummEval, Biorxiv-
ClusteringP2P.

We present the results related to specific scores
for each encoder on the probing tasks in Fig-
ures 10, 11, 12, and 13.

E Additional Results

We provide additional pooling layer results in Fig-
ure 15 for SciBERT, where representations from
the last layer are better than the first layer for the
scientific domain indicating that pretraining dataset
domain is more important than other factors. How-
ever, for general domain datasets, mean representa-
tions from the first layer perform better than CLS
representations from the last layer and SciBERT-
NLI or comparable to Max representations from
the last layer.

We provide results (Figure 14) for different pool-
ing strategies when encoders with different pertain-
ing initialization seeds were used.

7https://github.com/facebookresearch/SentEval
8https://github.com/ZeweiChu/DiscoEval
9https://github.com/embeddings-benchmark/mteb
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Figure 9: Metric scores for sentences decoded given their representations obtained from encoders with different
training regimes (left), and using different pooling strategies from BERT (middle) and BERT-SimCSE (right)
encoders.
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(c) DiscoEval

Figure 10: Probing task scores for encoders with differ-
ent training regimes. SentEval, Average (MTEB), and
DiscoEval show the averaged scores across all the tasks
in these evaluation benchmarks.
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Figure 11: Probing task scores for BERT encoder
with different pooling strategies. SentEval, Average
(MTEB), and DiscoEval show the averaged scores
across all the tasks in these evaluation benchmarks.
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Figure 12: Probing task scores for BERT-SimCSE en-
coder with different pooling strategies. SentEval, Aver-
age (MTEB), and DiscoEval show the averaged scores
across all the tasks in these evaluation benchmarks.

Le
ng

th
W

or
dC

on
te

nt
De

pt
h

To
pC

on
st

itu
en

ts
Bi

gr
am

Sh
ift

Te
ns

e

Su
bj

Nu
m

be
r

O
bj

Nu
m

be
r

O
dd

M
an

O
ut

Co
or

di
na

tio
nI

nv
er

sio
n

Su
rfa

ce

Sy
nt

ax

Se
m

an
tic

s
Se

nt
Ev

al

0.0

0.2

0.4

0.6

0.8

1.0

S
co

re

Pooling
Last-Mean
Last-CLS

Last-CLS-BP
Last-Max

First-Mean
First-Max

First-CLS-BP

(a) SentEval

Classification Clustering Pair Classification Retrieval STS Average
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
co

re

Pooling
Last-Mean
Last-CLS

Last-CLS-BP
Last-Max

First-Mean
First-Max

First-CLS-BP

(b) MTEB

SP
ar

xiv
SP

ro
c

SP
wi

ki
DC

ch
at

DC
wi

ki
BS

O
ar

xiv
BS

O
ro

c
BS

O
wi

ki
SS

Pa
bs

PD
TB

-E
PD

TB
-I

RS
T SP DC BS
O

PD
TB

Di
sc

oE
va

l

0.0

0.2

0.4

0.6

0.8

S
co

re

Pooling
Last-Mean
Last-CLS

Last-CLS-BP
Last-Max

First-Mean
First-Max

First-CLS-BP

(c) DiscoEval

Figure 13: Probing task scores for SciBERT encoder
with different pooling strategies. SentEval, Average
(MTEB), and DiscoEval show the averaged scores
across all the tasks in these evaluation benchmarks.
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Figure 14: Accuracy for sentence-level models trained using representations (with different pooling strategies) from
BERT encoders using different pretraining initialization seeds. Default denotes the scores obtained with default
encoders available on huggingface. Variance is across datasets for the sentence ordering task.
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(a) Different poolings from BERT-SimCSE encoder
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(b) Different poolings from SciBERT encoder

Figure 15: Accuracy for sentence-level models trained
using representations obtained by pooling from first
and last layers of BERT-SimCSE (a) and SciBERT (b)
encoders, and compared to other encoders. Variance is
across datasets for the sentence ordering task.
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