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Abstract

With the continuous advancement in the per-
formance of open-source large language mod-
els (LLMs), their inference services have at-
tracted a substantial user base by offering qual-
ity comparable to closed-source models at a
significantly lower cost. However, it has also
given rise to trust issues regarding model con-
sistency between users and third-party service
providers. Specifically, service providers can
effortlessly degrade a model’s parameter scale
or precision for more margin profits, and al-
though users may perceptibly experience differ-
ences in text quality, they often lack a reliable
method for concrete monitoring. To address
this problem, we propose a paradigm for model
consistency monitoring on the user side. It con-
structs metrics based on the logits produced by
LLMs to differentiate sequences generated by
degraded models. Furthermore, by leveraging
model offloading techniques, we demonstrate
that the proposed method is implementable on
consumer-grade devices. Metric evaluations
conducted on three widely used LLMs series
(OPT, Llama 3.1 and Qwen 2.5) along with sys-
tem prototype efficiency tests on a consumer de-
vice (RTX 3080 TI) confirm both the effective-
ness and feasibility of the proposed approach.

1 Introduction

Recent advancements in pre-trained language mod-
els based on the Transformer architecture (Vaswani,
2017) have demonstrated remarkable capabilities
across various NLP tasks, including machine trans-
lation, question answering, creative writing, etc.,
which significantly boost operational efficiency in
industry and enhance everyday user experiences.
Consequently, LLMs inference services possess a
large and continuously growing user base.

Among the numerous LLMs series, while closed-
source powerful models like ChatGPT (OpenAI,
2025) and Claude (Anthropic, 2025) have gained
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Figure 1: The lack of model consistency monitoring not
only undermines the quality of LLM services for users
but may also give rise to unfair market competition.

significant attention, the rapid development of
open-source models has also yielded a number of
outstanding examples, such as the Llama (Dubey
et al., 2024), Qwen (Yang et al., 2024), and
DeepSeek (Guo et al., 2025) series, which demon-
strate remarkable performance across various do-
mains. Consequently, a growing number of third-
party service providers (OpenRouter, 2025; to-
gether.ai, 2025; Groq, 2025) are dedicated to offer-
ing inference services for these open-source mod-
els. These providers have garnered substantial user
preference due to their more accessible pricing
structures compared to their closed-source counter-
parts.

However, due to the lack of transparency of such
third-party inference services, an inevitable trust is-
sue arises between users and service providers. Ser-
vice providers may run a lower-precision quantized
version (Dettmers et al., 2022; Yao et al., 2022;
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Xiao et al., 2023; Dettmers et al., 2024) of the
model specified by the user, or a smaller-parameter
version within the same model series, thereby gain-
ing higher margin profits. This practice can persist
despite users’ potential awareness of quality degra-
dation, as they lack verifiable evidence to substan-
tiate their concerns, as shown in the upper part of
Figure 1. Furthermore, dishonest service providers
can exploit users’ inability to monitor model con-
sistency to gain a pricing advantage over honest
providers, thereby triggering unfair competition,
as shown in the lower part of Figure 1. Therefore,
from a user-centric standpoint, we emphasize that
monitoring the model consistency should also be an
important research direction in trustworthy LLMs
services, alongside optimizing the performance of
the service systems.

While substantial research has been conducted
in trusted AI inference services, existing meth-
ods inevitably incur significant additional costs,
including time and economic expenses. ZKML
(Chen et al., 2024) has been proposed to gener-
ate zero-knowledge proofs for computations dur-
ing model inference, enabling users to verify the
provenance of received results from designated
models. However, the prohibitively high computa-
tional overhead required for proof generation con-
fines this approach’s applicability exclusively to
minimal-scale models. OPML (Conway et al.,
2024) seeks to leverage blockchain technology,
where on-chain verifiers are required to re-execute
the service provider’s computations, with result dis-
putes arbitrated through smart contracts to ensure
output authenticity. However, the decentralized
protocol’s inherent characteristics dictate that re-
sult credibility grows with the number of verifiers,
while the user’s economic burden escalates com-
mensurately. Furthermore, the execution of smart
contracts introduces non-negligible latency as well.
As a result, the practical feasibility of these ap-
proaches is limited to small-scale models, making
them impractical for LLMs with billions of param-
eters.

In summary, our goal is to enable trustworthy
monitoring of model consistency for LLM inference
services without imposing significant time or eco-
nomic burden on users. Fortunately, the characteris-
tics of LLMs generation paradigm, combined with
memory-efficient model deployment techniques,
present an opportunity to address this challenge.
Based on this, we propose a new paradigm for
model consistency monitoring at the user end, in

Figure 2: Time taken for sequence generation and a
single forward pass of Llama-3.1-8B on an A40.

which all additional computations are performed
on the user’s consumer-grade device, which pro-
vides not only acceptable extra time and economic
costs but also fully trustworthy results.

First, the autoregressive decoding paradigm for
LLMs generation provides an opportunity on the
computation side. An LLM computes the proba-
bility distribution for the next token in a sequence
through a single forward pass, followed by em-
ploying different sampling methods to select the
subsequent token. Consequently, the time cost for
sequence generation roughly exhibits linear propor-
tionality to the resultant token length. However,
when presented with a generated sequence, the
LLM can compute all next-token probability dis-
tributions within the sequence through merely one
forward propagation, which actually provides suffi-
cient information to monitor the model consistency.
Leveraging the massively parallel architecture of
modern GPUs, the time cost of the latter procedure
is much lower than that of the former as shown in
Figure 2.

Second, model offloading (Aminabadi et al.,
2022; Sheng et al., 2023) provides another oppor-
tunity on the memory side. It’s a well-established
technique for mitigating device memory constraints
in LLMs deployment, operating through strate-
gic parameter storage in CPU and disk resources
when model parameters exceed GPU memory ca-
pacity. While fundamentally constrained by I/O
bottlenecks that induce significant latency penal-
ties, Sheng et al. (2023) demonstrate remarkable
throughput scalability when processing batched in-
puts through efficient computation scheduling to
overlap the parameter loading procedure. It implies
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that GPU memory constraints are noncritical for
latency-insensitive applications, which crucially in-
clude the model consistency monitoring we mainly
discuss in this paper.

Based on the proposed user-side monitoring
paradigm, the first focus of this work is to design a
metric that can distinguish between sequences gen-
erated by the user-specified model and those from
other models. The primary challenge stems from
cross-platform floating-point computation inconsis-
tency. Specifically, differences in the hardware and
software environments between users and service
providers can lead to variations in the scheduling
order of floating-point operations, ultimately caus-
ing discrepancies in final results. It is crucial for
us to differentiate between result variations caused
purely by floating-point errors and those arising
from model degradation.

Considering the sequential nature of the LLMs
generation procedure, we intuitively hypothesize
that any potential model degrading behaviors by
service providers could lead to cumulative errors
across the generated sequence. Consequently, we
design a novel metric based on the model’s out-
put probabilities to the generated sequence, termed
token confidence. The metric can perform aggre-
gation on subsequences of arbitrary length, and
therefore, it can distinguish errors resulting from
model degrading from those arising purely from
cross-platform floating-point computation incon-
sistency. Extensive experiments were conducted
across three LLMs series and two different hard-
ware architectures, and the results substantiate the
broad effectiveness of the proposed metric.

Next, we implemented a prototype for comput-
ing the proposed metrics on the user side, based
on the state-of-the-art offloading system FlexGen
(Sheng et al., 2023), and performance tests on a
consumer-grade RTX 3080 TI device confirmed
the feasibility of user-side model consistency mon-
itoring for LLMs services.

The contributions of this work can be summa-
rized as follows:

• We propose a novel paradigm for verify-
ing LLMs services that leverages users’ own
consumer-grade devices, which ensures fully
trustworthy results while not introducing sub-
stantial extra costs compared to previous
paradigms.

• We design a metric, termed token confidence,
to distinguish low-quality outputs generated

by potential model degrading behaviors. Ex-
tensive experiments demonstrate the broad ef-
fectiveness of this metric.

• We implement a prototype for computing to-
ken confidence on consumer-grade devices.
Performance tests conducted on an RTX
3080Ti confirm the feasibility of user-side
model consistency monitoring.

2 Related Works

Trusted AI service. Previous research in trusted
AI services mainly focuses on employing cryptog-
raphy or blockchain technologies to ensure ser-
vice providers execute inference tasks using user-
specified models. ZKML (Chen et al., 2024) re-
quires providers to generate zero-knowledge proofs
alongside model outputs, enabling users to ver-
ify computational integrity through proof valida-
tion. OPML (Conway et al., 2024) leverages
blockchain technology with third-party verifica-
tion nodes, where verifiers re-execute model com-
putations after the service provider submitting re-
sults. Discrepancies trigger arbitration via smart
contracts, establishing trustworthiness under the
assumption that at least one honest node exists
among the submitter and verifiers. Opp/ai (So et al.,
2024) hybridizes the above two approaches to trade-
off between efficiency and privacy. Collectively,
these frameworks introduce substantial time and
economic overheads, rendering them impractical
for LLMs services.

A common challenge in trusted AI services lies
in cross-platform floating-point computation er-
rors, which implies that the result discrepancy be-
tween service providers and verifiers may stem
not only from model inconsistencies but also from
hardware/software heterogeneity. Previous work
(Zheng et al., 2021; Conway et al., 2024; Srivas-
tava et al., 2024) has attempted to eliminate cross-
platform floating-point computation errors through
methods such as replacing floating-point operations
with integer-based operations or specifically de-
veloping consistent floating-point computation li-
braries. However, these methods not only probably
degrade model performance but also impose addi-
tional deployment costs on service providers.

Logits-based metrics. In transformer-based
LLMs, a single forward pass generates a vector
called logits for each token in the input sequence,
where the vector length corresponds to the number
of tokens in the vocabulary. During autoregressive
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generation, applying a softmax operation to the
logits produces the probability distribution for the
next token. Beyond the widely-used application
of sequence generation, the logits of tokens in a
complete sequence intuitively reflect the model’s
confidence in that sequence. Consequently, a large
body of research has focused on designing logits-
based metrics for tasks such as self-evaluation of
language models (Lin et al., 2024; Ren et al., 2023)
and detecting machine-generated text (Gehrmann
et al., 2019; Solaiman et al., 2019; Ippolito et al.,
2019; Mitchell et al., 2023).

It is important to note that these tasks differ
fundamentally from the problem mainly discussed
in this work: distinguishing sequences generated
by degraded models from those generated by the
specified model. This fundamental difference ren-
ders the metrics designed in prior work unsuitable
for our problem. Detailed discussions and corre-
sponding experimental results are available in Ap-
pendix A.

Model offloading. Model offloading is a tech-
nique that leverages CPU and disk resources to
enable model inference when GPU memory is in-
sufficient to load the entire model. In GPU-centric
offloading (Aminabadi et al., 2022; Sheng et al.,
2023), CPU and disk are used solely for storing
model parameters, which are dynamically loaded
into the GPU as needed for computation, with all
computations performed on the GPU. Meanwhile,
hybrid offloading (Gerganov, 2025; Song et al.,
2024) assigns computational tasks to the CPU as
well, reducing the overhead of transferring data to
the GPU.

However, in the hybrid offloading mode, if the
model size exceeds the combined memory capacity
of the GPU and CPU, the operating system’s vir-
tual memory mechanism results in frequent swap-
ping between CPU memory and disk. This often
leads to crashes. Therefore, this work adopts Flex-
Gen (Sheng et al., 2023), the state-of-the-art GPU-
centric offloading method, to implement our system
prototype. Although frequent parameter transfers
to the GPU result in higher latency for a single se-
quence, FlexGen achieves considerable throughput
when handling multiple sequences through efficient
computation scheduling.

3 Methods

In this section, we first present the high-level ar-
chitecture and workflow of user-side model con-

Figure 3: The high-level architecture of user-side model
consistency monitoring.

sistency monitoring (Section 3.1). Subsequently,
we introduce token confidence as the key metric in
the monitoring process (Section 3.2). Finally, we
demonstrate how this metric is used to monitor the
model consistency of LLMs services (Section 3.3).

3.1 System Architecture
The high-level architecture of user-side model con-
sistency monitoring is demonstrated in Figure 3.
The left hand side is an offloading-based LLM
monitor running on users’ consumer-grade devices,
while the right hand side shows potential LLMs
implementations by service providers for sequence
generation. Honest providers strictly employ the
user-specified LLM, whereas strategic providers
might substitute with degraded models.

First, users send their prompts to service
providers, who subsequently return generated se-
quences. Upon accumulating sufficient sequences,
the offloading-based LLM monitor starts batch pro-
cessing. Specifically, the user-specified LLM is
loaded to perform a single forward propagation on
generated sequences. Then, token confidences are
computed for each token in a sequence, quantify-
ing its likelihood of being generated by the user-
specified model. Finally, aggregating confidence-
based metrics across all sequences will construct a
distribution, which indicates the model consistency
of the service provider.

3.2 Token Confidence
In the remaining part of this section, we introduce
the proposed method based on the greedy sampling
scenario. Specifically, the user requests the ser-
vice provider to select the token with the highest
probability as the next token in the sequence at
each iteration. After that, in Section 5, we demon-
strate that our approach can be easily extended to
the stochastic sampling scenario while maintaining
equivalent effectiveness.

We first denote a sequence generated by the ser-
vice provider as x, where a token in the sequence is
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Figure 4: In consecutive subsequences, the aggregate
token confidence differentiates the sequence generated
by the degraded model from merely floating-point com-
putation errors (W = 3).

represented as xi ∈ x. Let the logits produced by
the user-specified model θ for the sequence prefix
pi = x1x2 · · ·xi−1 be denoted as logitsθ(v | pi),
where v ∈ V and V is the vocabulary. Since the
model’s expected behavior is to select the token
with the highest probability (i.e., the token with the
largest logits), we define the logits difference of xi
as follows to measure the deviation of the model’s
selection of xi from its expected behavior:

diffi = logitsθ(xi | pi)−max
v∈V

logitsθ(v | pi). (1)

If the sequence was indeed generated by the user-
specified model, the logits difference will solely re-
sult from floating-point computation errors caused
by hardware and software differences between the
user and the service provider. We reasonably as-
sume that such errors are numerically much smaller
than those caused by model degrading1.

Next, we apply an exponential operation to logits
difference to constrain its range between 0 and 1,
thereby introducing the token confidence:

confidencei = exp
diffi

max(ki, 1)
. (2)

Positional correction. Since cross-platform
floating-point computation errors accumulate as
the sequence length increases, we introduce the
term max(ki, 1) in Equation 2 to mitigate this ef-
fect, where k > 0 is a hyperparameter.

3.3 Model Consistency Monitoring

Token confidence can evaluate how the service
provider’s model deviates from expected behavior

1If the errors caused by model degrading are of the same
magnitude as cross-platform floating-point computation errors,
then the degraded model is already sufficiently strong.

Algorithm 1 Model Consistency Monitoring

Input: User-specified LLM θ, sequence set S
from a service provider

Output: Sequence confidence distribution C
1: C ← ∅
2: for x ∈ S do
3: logitsθ(x)← call LLM θ with input x
4: c← compute confidence for x by Eq. 4
5: C ← C ∪ {c}
6: end for
7: return C

at the token level. Nevertheless, a key observa-
tion is that a powerful small model can generate
short sequences that are nearly indistinguishable
from those generated by a large model (Miao et al.,
2024). Therefore, we consider computing the prod-
uct of token confidence values over consecutive
subsequences to obtain subsequence confidence:

confidencei,i+W =
∏

i≤j<i+W

confidencei, (3)

where W > 0 is a hyperparameter representing
the subsequence window size. It is reasonable to
assume that a sufficiently large W can reveal the
degraded capability of a small model.

Then, we use the minimum value to aggregate
subsequence confidence into sequence confidence,
which indicates the model’s consistency at the se-
quence level:

confidence = min
1≤i≤L−W+1

confidencei,i+W , (4)

where L denotes the sequence length in tokens.
An intuitive example of how the aforementioned
metrics work is illustrated in Figure 4.

Finally, we can monitor the model consistency
of a service provider by Algorithm 1. For each
sequence generated, we first call the user-specified
LLM on it to get the logits of each token. Then
we compute the sequence confidence by Equa-
tion 4. The resulting sequence confidence distribu-
tions among all generated sequences can be easily
visualized and compared across different service
providers, as will be demonstrated in Section 4.

4 Evaluation

4.1 Algorithm Effectiveness
We evaluate the effectiveness of Algorithm 1 from
three perspectives: cross-platform robustness, size
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Group Monitoring Config Generation Config
Model Precision GPU Model Precision GPU

Cross-platform
Robustness

OPT-66B FP16 A100
OPT-66B FP16 A100
OPT-66B FP16 H100

Llama-3.1-70B FP16 A100
Llama-3.1-70B FP16 A100
Llama-3.1-70B FP16 H100

Qwen-2.5-72B FP16 A100
Qwen-2.5-72B FP16 A100
Qwen-2.5-72B FP16 H100

Size Degrading

OPT-66B FP16 A100
OPT-30B FP16 A100
OPT-13B FP16 A100

Llama-3.1-70B FP16 A100 Llama-3.1-8B FP16 A100

Qwen-2.5-72B FP16 A100
Qwen-2.5-32B FP16 A100
Qwen-2.5-14B FP16 A100

Precision Degrading

OPT-66B FP16 A100
OPT-66B INT8 A100
OPT-66B NF4 A100

Llama-3.1-70B FP16 A100
Llama-3.1-70B INT8 A100
Llama-3.1-70B NF4 A100

Qwen-2.5-72B FP16 A100
Qwen-2.5-72B INT8 A100
Qwen-2.5-72B NF4 A100

Table 1: Settings for evaluating algorithm effectiveness.

Figure 5: Sequence confidence distributions of the cross-platform robustness group.

sensitivity, and precision sensitivity. Our experi-
ments are conducted on three widely used open-
source LLMs series, OPT (Zhang et al., 2022),
Llama 3.1 (Dubey et al., 2024), and Qwen 2.5
(Yang et al., 2024), as well as on GPUs from two
hardware architectures: A100 80GB (Ampere ar-
chitecture) and H100 80GB (Hopper architecture).

Settings. As shown in Table 1, each row rep-
resents a single user-server pair of model consis-
tency monitoring. First, we apply the Generation
Config to generate 1,000 sequences2 using 1,000
prompts extracted from the Alpaca dataset (Taori
et al., 2023) as input. Then, we apply the Moni-
toring Config to execute Algorithm 1 on generated
sequences and obtain the Sequence Confidence Dis-
tribution. The hyperparameters in Algorithm 1 are
set as follows3: W = 10, k = 0.05. The INT8 and

2Maximum tokens in a sequence is set to 1024.
3The majority of the computational overhead arises from

NF4 quantization of model parameters follow the
methods described in (Dettmers et al., 2022) and
(Dettmers et al., 2024), respectively. The number
of GPUs used for running the LLMs is minimized
to the smallest number required.

Cross-platform robustness. In this group of
experiments, we aim to evaluate the impact of
floating-point computation errors caused by dif-
ferences in computing platforms on sequence con-
fidence. The results, as shown in Figure 5, indicate
that for the three LLMs, an honest service provider,
even when using GPUs with different architectures
from the user’s, produces logits differences within
a relatively small range. Consequently, the resul-

invoking the user-specified LLM to generate logits. So the two
hyperparameters in the algorithm (consecutive subsequence
window size W and coefficient of the positional correction
term k) can both be efficiently adjusted in practice. There-
fore, we defer the detailed study of these hyperparameters to
Appendix B
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Figure 6: Sequence confidence distributions of the size degrading group.

Figure 7: Sequence confidence distributions of the precision degrading group.

tant sequence confidence remains very close to 1.
Specifically, for the OPT-66B, sequence confidence
is the least sensitive to cross-platform differences,
with almost all sequences achieving a confidence
score higher than 0.99. For Llama-3.1-70B4 and
Qwen-2.5-72B, approximately 70% of sequences
have confidence scores higher than 0.99, and nearly
all sequences have that higher than 0.9.

It is worth noting that even when the service
provider and the user use the same hardware archi-
tecture, floating-point computation errors can still
occur due to differences in the instruction schedul-
ing between the autoregressive generation and the
parallel forward propagation on GPUs. As ob-
served, this factor has a more significant impact
on sequence confidence compared to differences in
hardware architectures. Therefore, in the next two
sets of experiments involving degraded models, we
use the same GPUs for sequence generation and
monitoring to reduce the redundant workload.

Size degrading. In this group of experiments,
we aim to evaluate whether the sequence confi-
dence distribution can effectively distinguish se-
quences generated by smaller-parameter models
within the same series from those generated by
the user-specified model. The results, shown in
Figure 6, present the distributions for each LLM

4Due to hardware limitations, we selected the 70B version
instead of the 405B version as the largest-parameter model in
the Llama 3.1 series.

series in separate subplots. As observed, sequences
generated by smaller-parameter models within the
same series tend to have confidence values either
uniformly distributed between 0 and 1 or partly
concentrated in the range close to 0. In contrast, se-
quences from the user-specified model exhibit a dis-
tinct distribution, with the majority of confidence
values concentrated between 0.9 and 1, which cre-
ates a clear differentiation.

Precision degrading. In this group of experi-
ments, we aim to evaluate whether the sequence
confidence distribution can effectively distinguish
sequences generated by lower-precision versions
of the same model from those generated by the
user-specified model. The results, shown in Fig-
ure 7, present the distributions for each LLM series
in separate subplots. As observed, a significant
portion of the sequence confidence produced by
lower-precision models is still concentrated near
1. This indicates that parameter quantization tech-
niques have a relatively limited impact on LLMs
generation.

Nevertheless, there are still noticeable dif-
ferences between the full-precision and lower-
precision models in terms of the proportion of se-
quences with extremely high confidence (greater
than 0.99) and the magnitude of the lower quan-
tiles. These differences further demonstrate the
effectiveness of the proposed algorithm.

In addition, the results of this experiment empiri-
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Device Model Memory
GPU NVIDIA RTX 3080 Ti 12GB
CPU Intel Xeon @ 2.10GHz 376GB
Disk Samsung SSD (NVMe) 960GB

Table 2: Hardware specs in system efficiency evaluation.

cally reveal several insights. First, the impact of the
same quantization method varies across different
models. For instance, the Llama-3.1-70B model
is significantly more affected by reduced precision
compared to the other two models. Interestingly,
and somewhat counterintuitively, NF4 quantization
on Llama-3.1-70B achieves results closer to the
original precision than INT8 quantization. Another
practical insight relates to model deployment un-
der limited resource budgets: with similar memory
requirements, lower-precision versions of larger
models can achieve results closer to the original
model compared to full-precision smaller models
within the same series.

4.2 System Efficiency

We build a prototype model consistency monitor-
ing system based on FlexGen (Sheng et al., 2023),
enabling it to run on consumer-grade devices. We
test its amortized sequence processing speed to
demonstrate the feasibility of monitoring model
consistency on the user side.

Settings. The LLM running on the system is
OPT-66B (FP16) (Zhang et al., 2022), and the hard-
ware specifications of the device used for running
the prototype are shown in Table 2. The SSD has
a read bandwidth of about 3.0 GB/s and a write
bandwidth of about 1.2 GB/s.

It is important to note that, even though our CPU
memory is sufficient to store the LLM used, we
actually place the whole models on disk to better
simulate real-world user devices. Model parame-
ters are only loaded into the GPU when required for
computation. Furthermore, to account for the vary-
ing memory capacities of consumer-grade GPUs,
we limit the GPU memory available to the system
by PyTorch command. For each set of experiments,
we randomly generated 100 sequences, each with
a length of 1024 tokens. Multiple sequences were
processed simultaneously according to the maxi-
mum batch size we can apply corresponding to the
specific memory limit, and we recorded the total
time required to process all sequences. The ratio of
this time to the total number of sequences was used

GPU Maximum Speed
Memory Limit Batch Size (seconds/seq)

4GB 2 9.64
6GB 8 4.08
8GB 12 3.63

10GB 16 3.69
12GB 20 3.65

Table 3: Speed performance under different GPU mem-
ory limits and the corresponding maximum batch size.

as an efficiency metric for the system (measured in
seconds per sequence).

Results analysis. The results are shown in Table
3. As observed, even with a memory usage limit
of just 4 GB, it is possible to perform consistency
monitoring for a model with up to 66B parameters
at a relatively slow speed. As the memory limit
increases, the maximum batch size also increases,
resulting in improved efficiency. The efficiency
saturates when the batch size reaches 12, with a
memory usage of only 8 GB.

These results demonstrate that, with offloading
techniques, consumer-grade GPUs are fully capa-
ble of monitoring consistency of models that far
exceed their GPU memory capacity.

5 Discussion and Future Work

In this section, we discuss how to extend the pro-
posed method in Section 3.2 to the stochastic sam-
pling scenario.

The first approach requires the user to provide
a deterministic sampling rule. For instance, at
each token position i, the rule specifies select-
ing the token with the ki-th highest probability.
This sampling rule can be randomly generated at
first and supplemented with a minimum probability
threshold to prevent the selection of tokens with
extremely low probabilities. When computing the
logits difference, the maximum logits term in Equa-
tion 1 is replaced with the ki-th highest logits. This
approach is formally equivalent to the method used
for greedy sampling, and thus it should exhibit the
same effectiveness.

A more practical approach allows the user to
define the sampling parameters (e.g., top-k, top-
p, temperature, etc.) in the usual manner. In this
case, the service provider performs stochastic sam-
pling based on these parameters while concurrently
recording the token with the highest sampling prob-
ability at each iteration. The sequence formed by
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these tokens is termed the greedy sequence, and the
service provider ultimately returns both the sam-
pled sequence and the corresponding greedy se-
quence to the user. The user then computes the log-
its from the sampled sequence and uses the greedy
sequence to calculate the logits difference in Equa-
tion 1. Given that the time cost of the sampling
phase is negligible relative to the overall generation
process, this approach imposes minimal additional
burden on the service provider. Moreover, because
our method monitors that the greedy sequence orig-
inates from the user-specified model, there is no
incentive to additionally use a degraded model for
generating the sampled sequence.

Additionally, most service providers support re-
turning the log probability for each generated to-
ken, which is derived from the logits. Based on this,
it would be interesting to explore further feasible
methods and perform empirical validations of the
above approaches.

6 Conclusion

To address the trust issue between users and open-
source LLM inference service providers, we pro-
pose a paradigm for monitoring model consistency
on the user side. To this end, we designed a logits-
based metric to differentiate sequences generated
by degraded models. In addition, we implement an
offloading-based system prototype to demonstrate
the feasibility of the proposed paradigm.

7 Limitations

More general methods for stochastic sampling.
Even though Section 5 discusses several ways for
extending the proposed method to the stochastic
sampling scenario, each of these methods requires
additional information provided by either the user
or the service provider. Considering the need for
easy deployment, more general approaches should
rely solely on the user’s stochastic sampling pa-
rameters and the sequence returned by the service
provider. This represents a challenging direction
for future research because stochastic sampling in-
herently involves a trade-off between text quality
and diversity, and the generated sequence will be in-
creasingly difficult to distinguish from a sequence
produced by a strong degraded model.

Model Degrading Approaches. In this work,
we only discuss the two most straightforward
model degrading approaches: size degrading and
precision degrading. Other degrading strategies,

such as knowledge distillation (Xu et al., 2024)
for relatively small models using user-specified
models, and structured pruning (Wang et al., 2021;
Hubara et al., 2021; Frantar and Alistarh, 2023)
of user-specified models, could also effectively in-
crease the service provider’s margin profits.

Implementation. The prototype system imple-
mented in this work currently supports only the
OPT model series. Although this is sufficient for
testing system efficiency, further implementation
for more LLMs series is necessary before the sys-
tem can be deployed in real-world applications.
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A Discussions and results on Previous
Logits-based Metrics

In this section, we review previously proposed met-
rics that rely on the logits outputs of sequences
from language models, and we discuss why these
metrics are not suitable for the problem in this pa-
per, accompanied by experimental results.

First, we discuss metrics related to the self-
evaluation of language models (Lin et al., 2024;
Ren et al., 2023). In this task, the goal is to as-
sess the “confidence” of a language model in its
own generated sequences, thereby allowing users
to roughly gauge how "proficient" the model is at
the current generation task, rather than being mis-
led by outputs that lack credibility. Consequently,
metrics for self-evaluation are highly dependent on
the prompt provided by the user, making them nat-
urally unsuitable for monitoring model consistency.
We believe that further experimental validation on
this point is unnecessary.

However, another popular topic, detection of
machine-generated text, appears at first glance to be
quite similar to the problem in this paper, and there
have been many logits-based methods proposed in
that field (Gehrmann et al., 2019; Solaiman et al.,
2019; Ippolito et al., 2019; Mitchell et al., 2023).
Thus, it is necessary to experiment with these met-
rics in the context of model consistency monitoring.

Figure 8: Four metrics’ distributions of OPT-66B and
its degraded models.

Figure 9: Four metrics’ distributions of Llama-3.1-70B
and its degraded models.

Figure 10: Four metrics’ distributions of Qwen-2.5-72B
and its degraded models.

We selected four representative metrics: log
probability (logprob), log token ranks (logrank),
predictive entropy (entropy), and discrepancy be-
tween samples (discrepancy). Using the user-
specified model as the reference model, we con-
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Figure 11: The correlation coefficients between se-
quence length and sequence confidence under three
LLMs as k varies.

ducted experiments under model degradation set-
tings as described in Section 4.1 on A100 80GB
GPUs. The experimental results for three LLMs se-
ries are shown in Figure 8, Figure 9, and Figure 10.
In each figure, a subplot presents the distributions
of a particular metric computed on sequences gen-
erated by the reference model on its own and those
generated by its degraded versions; each subplot
corresponds to one metric.

It is evident that these metrics do not clearly
distinguish between the outputs of the reference
model and the degraded models. We offer the fol-
lowing explanation: the key to detecting machine-
generated text lies in identifying the differences be-
tween human-authored and model-generated texts,
rather than the differences between outputs from
different models. In fact, in the detection task, it
is actually preferable for the metric distributions
across different models to be consistent, as this
indicates that the proposed method only requires
a sufficiently strong reference model to detect se-
quences generated by various models. This also
leads to the observation that the focal points of the
detection problem and the issue discussed in this
work are fundamentally different.

B Hyperparameter Study

In this section, we discuss the impact of the two
hyperparameters introduced in Algorithm 1 on the
resulted sequence confidence distributions and their
appropriate values. All experiments in this section
were conducted on A100 80GB GPUs.

First, we investigate the appropriate value for the
coefficient of the positional correction term (k) in

Equation 2. The purpose of introducing this term
is to mitigate the impact of floating-point compu-
tation errors that accumulate with increasing se-
quence length. To this end, we only use the user-
specified models to generate sequences and analyze
the confidence distribution of itself. We then calcu-
late the Pearson correlation coefficient between the
confidence of all sequences and their token lengths
and observe how this correlation changes with dif-
ferent values of k.

The results for the three LLMs (OPT-66B,
LLaMA-3.1-70B, and Qwen2.5-72B) are shown
in Figure 11. As observed, the actual value of
correlation coefficients varies across models, likely
due to intrinsic structural differences between them.
However, a general trend can be obtained: once the
value of k reaches a certain threshold, the corre-
lation coefficient stabilizes near a relatively small
value, and further increases in k have minimal im-
pact on the correlation. Based on the observation,
we select k = 0.05 as the value used in Section 4.1.

Then, we investigated the effect of varying the
length of the consecutive subsequence window (W )
on the sequence confidence distribution. Results
for three LLMs series are shown in Figure 12, Fig-
ure 13, and Figure 14. For each user-specified
model (the FP16 versions of OPT-66B, LLaMA-
3.1-70B, and Qwen2.5-72B), we compared the se-
quence confidence distributions of itself and all its
degraded versions discussed in Section 4.1. These
distributions are visualized in individual subplots,
each applying a different value of W : focusing on
individual tokens (W = 1), shorter subsequences
(W = 10), and longer subsequences (W = 100).

The results reveal that, across all three LLMs
series, the difference in sequence confidence dis-
tributions between the user-specified model and
the degraded models becomes more obvious as
W increases. However, the differences are less
pronounced for shorter subsequence sizes. Consid-
ering the generalizability to sequence lengths, we
selected a shorter subsequence size (W = 10) for
the experiments in Section 4.1.
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Figure 12: Sequence confidence distributions of OPT-66B and its degraded models under three sizes of consecutive
subsequence windows.

Figure 13: Sequence confidence distributions of Llama-3.1-70B and its degraded models under three sizes of
consecutive subsequence windows.

Figure 14: Sequence confidence distributions of Qwen-2.5-72B and its degraded models under three length of
consecutive subsequence windows.
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