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Abstract

While data synthesis and distillation are promis-
ing strategies to enhance small language mod-
els, current approaches heavily rely on Large
Language Models (LLMs), which suffer from
high computational costs, environmental inef-
ficiency, and potential biases inherited from
monolithic architectures. In contrast, smaller
LMs are more accessible and sustainable, but
their individual capabilities often fall short in
generating high-quality, diverse, and reliable
data. Inspired by collaborative human pro-
cesses (e.g., peer review), we propose a multi-
ple small LMs involved framework, GRA, that
aggregates specialized roles across small LMs
to iterative refinement and quality control typ-
ically achieved by a single large LM. In this
collaborative framework, multiple small LMs
assume distinct roles—Generator, Reviewer,
and Adjudicator—to simulate a peer-review-
inspired data synthesis pipeline. The Genera-
tor proposes initial data samples, the Reviewer
critiques their quality and diversity, and the
Adjudicator resolves conflicts to finalize the
output. By decomposing the synthesis process
into specialized sub-tasks, collaborative small
LMs can achieve data-level parity with distil-
lation from large LMs. Through experiments
across multiple benchmarks, we demonstrate
that GRA-produced data matches or exceeds
the quality of single large LM outputs, e.g.,
Qwen-2.5-72B-Instruct. Our results challenge
the necessity of monolithic large models for
high-quality data synthesis, advocating instead
for strategic coordination of smaller agents.

1 Introduction

The advent of Large Language Models (LLMs)
with hundreds of billions of parameters has revolu-
tionized artificial intelligence (Dubey et al., 2024a;
Yang et al., 2024a; OpenAl et al., 2023; Liu et al.,
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Figure 1: Average performance across GRA, vanilla
seed dataset and large LMs distilled data with Qwen-
2.5-7B base model.

2024a), achieving state-of-the-art (SOTA) perfor-
mance across diverse domains such as natural lan-
guage understanding (Naveed et al., 2023), rea-
soning (Guo et al., 2025; OpenAl, 2024), math
problem solving (Ahn et al., 2024), and code gen-
eration (Jiang et al., 2024). Despite their remark-
able capabilities, these monolithic models demand
immense computational resources and energy, pos-
ing significant barriers to deployment in resource-
constrained scenarios like edge devices or latency-
sensitive applications (Zheng et al., 2024b). This
paradox has spurred growing interest in developing
smaller-scale LMs that balance efficiency and ef-
fectiveness, positioning compact yet capable mod-
els as a critical research frontier in sustainable
AI (Chen and Varoquaux, 2024).

To enhance small LMs performance, knowledge
distillation (Hinton, 2015)—transferring capabil-
ities from large models via data synthesis—has
emerged as a dominant paradigm (Xu et al., 2024b).
However, conventional distillation inherently de-
pends on the availability of powerful LLMs (Wang
et al., 2024a), which introduces practical limi-
tations: deploying large LMs for data genera-
tion incurs prohibitive costs, especially in privacy-
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sensitive or security-critical scenarios requiring lo-
cal execution (Hagos et al., 2024; Yao et al., 2024).
While small LMs offer computational accessibil-
ity, their individual capacities are inherently con-
strained, struggling to match the quality, diversity,
and reliability of data synthesized by their larger
counterparts. This raises a pivotal question: Can
we design a resource-efficient framework that en-
ables small models to collectively rival the distilla-
tion capabilities of monolithic LLMs?

To address this challenge, we propose GRA, a
collaborative framework inspired by human peer-
review mechanisms. Diverging from traditional
single-model distillation, GRA orchestrates mul-
tiple specialized small LMs into three synergistic
roles: (1) Generator, which proposes candidate
data samples; (2) Reviewer, which evaluates qual-
ity and diversity through iterative critiques; and
(3) Adjudicator, which resolves conflicts to final-
ize outputs. Notably, the synthetic data generated
by a single Generator will be evaluated by multi-
ple Reviewers, and the Adjudicator is to resolve
significant disagreements among the Reviewers by
reassessing the data. By decomposing the synthesis
pipeline into discrete sub-tasks and enabling role-
specific optimization, GRA mimics the refinement
processes typically concentrated within a single
large LM. This collaborative architecture not only
circumvents the resource-intensity of large models
but also amplifies small models’ collective intel-
ligence through task specialization and iterative
quality control—effectively operationalizing the
“wisdom of crowds” principle in model ensembles.

We validate GRA through extensive experi-
ments on multiple domains, including general ques-
tion answering, reasoning, mathematical and cod-
ing tasks. Remarkably, our framework achieves
data quality comparable to or exceeding outputs
from SOTA monolithic LLMs like Qwen-2.5-
72B-Instruct, while requiring orders-of-magnitude
fewer computational resources. These results em-
pirically demonstrate that strategically coordinated
small LMs can collectively surpass the distillation
performance of individual large LM.

2 Related Work

2.1 Data Synthesis

The rapid evolution of LLMs has increased the
demand for high-quality, diverse training data, cre-
ating a bottleneck in Al development (Zhao et al.,
2023). Synthetic data is a promising direction to

improve data. A dominant paradigm for synthetic
data leverages knowledge distillation from LLMs.
WizardLM (Xu et al., 2024a) iteratively enhances
seed data based on predefined evolutionary rules
and instructions. MAGPIE (Xu et al., 2025) uti-
lizes pre-defined query templates to directly prompt
the LLMs to synthesize data while not relying on
seed data. MuggleMath (Li et al., 2024a) employs
LLMs to rewrite and enhance seed datasets by gen-
erating new variations of problem statements and
corresponding answers.

In addition to single-LL.M-based approaches,
several works also employ multiple agents for data
generation (Mitra et al., 2024; Majumdar et al.,
2024). Agentlnstruct (Mitra et al., 2024) lever-
ages GPT-4 (OpenAl et al., 2023) to facilitate data
generation and curation through the use of multi-
ple agents. Similarly, Genetic Instruct (Majumdar
et al., 2024) defines three distinct roles—Instructor-
LLM, Coder-LLM, and Judge-LLM—to generate
code data. Unlike previous multi-agent frameworks
that rely on a single LLM like GPT-4 for repeated
deployment across different stages, GRA pioneers
a collaborative paradigm that coordinates diverse
types of small LMs through specialized role alloca-
tion to collectively rival the synthetic data quality
of single large LM.

2.2 Data Curation

The efficacy of synthetic data critically hinges
on post-synthesis curation (Long et al., 2024).
Early curation methodologies predominantly re-
lied on surface-level heuristics, such as repetition
counts (Salkar et al., 2022) and lexical diversity
metrics (Li et al., 2016; Zhu et al., 2018; Shu et al.,
2019), which inadequately captured semantic co-
herence and task-specific utility. Recent works shift
toward LLM-driven curation frameworks. Initial
efforts employed perplexity (PPL) and instruction
following difficulty score(IFD) (Li et al., 2024b)
to filter low-quality samples. The emergence of
“LLM-as-judge” paradigms further revolutionized
this domain, leveraging well-tuned LLMs for qual-
ity assessment (Gu et al., 2024). In contrast, while
sharing the “LLM-as-judge” basis, our GRA frame-
work differs by using multiple specialized small
LMs for diverse evaluations. Unlike single-LLM
approaches that risk bias, GRA employs a multi-
agent system and a two-tier adjudication to ensure
balanced and comprehensive data assessment.
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3 Methodology

Preliminary We first provide essential back-
ground and definitions for key components with the
rationale behind our design choices. Specifically,
we denote M as the pool of small LMs employed
in the framework, and data pool at iteration ¢ as
DO = {(xi,yi,d;, ki, 5;) },, where each sample
in D® consists of an instruction z;, a response
yi, a domain label d;, a 3-tuple of keywords k;,
and a summary s;. The domain label d; indicates
the task type of the sample, which is categorized
into seven domains: Coding, Math, Question and
Answering, Reasoning, Role Play, Language, and
Creation, which are designed to aim for covering
the most general domains. The 3-tuple keywords
k; are generated by small LMs to capture the core
concepts of each data sample. In addition, we in-
clude a summary s; to provide context and clarify
keyword relationships, enhancing the overall under-
standing of the data. More details such as domain
definitions and construction of D(9)-seed dataset
are shown in the Appendix A.

3.1 Pipeline Overview

The overview of our GRA is shown in Figure 2.
GRA integrates domain-specific generation with
collaborative curation by orchestrating three spe-
cialized roles. First, the Generator produces ini-
tial samples using few-shot prompting tailored to
the domain. Next, multiple Reviewers collabo-
ratively assess the quality of these samples. Fi-
nally, an Adjudicator resolves any conflicting eval-
uations through consensus-driven arbitration. A
post-processing module further refines the results
by eliminating redundant outputs via embedding
deduplication and metadata enrichment. Moreover,
to prevent model specialization bias, GRA dynami-
cally assigns distinct model from M to each role
through random selection and during generation.

3.2 Data Generator

To enhance synthetic data diversity while maintain-
ing domain consistency, we carefully design the
generation process to systematically integrate con-
ceptual knowledge and contextual patterns. For
each instance, we randomly select one Model
Mg € M as the Generator. For a given domain,
the generation workflow comprises three coordi-
nated stages: First, Mg analyzes randomly select
keywords-summary pairs (k;, s;) from the current

domain corpus, synthesizing a novel 3-tuple key-
words k' by extracting and combining meaning-
ful semantic patterns and attributes from the input
data. Second, drawing inspiration from contextual
summaries of seed examples, M contextualizes
the synthesized keywords into an executable in-
struction z’. Last, M produces response 3 that
appropriately addresses the generated instruction

x'.

3.3 Data Reviewer

To ensure equitable data evaluation and mitigate
individual model biases, the Reviewer module per-
forms a rigorous multi-agent quality assessment
through coordinated evaluation protocols. We ran-
domly select N reviewers from M \ Mg to form
the review committee R = {Mp, } V5.

The review process includes two stages: instruc-
tion evaluation and response evaluation. During
the instruction evaluation phase, each Reviewer
independently verifies instruction z’ against three
binary criteria: “Reasonableness, Completeness,
and Clarity”. Immediate rejection occurs if any Re-
viewer Mp, flags any criterion failure. Approved
instructions then advance to the response evalua-
tion stage, where each Reviewer conducts a granu-
lar analysis of the generated response ' from six
dimensional metrics: “Correctness, Clarity, Com-
pleteness, Relevance, Coherence, and Ethicality™.
Then each Reviewer quantitatively assesses these
dimensions by assigning integer scores from 0 to
10 and the averaged score serves as the final score.
Additionally, each Reviewer provides detailed tex-
tual feedback that delineates both the strengths and
weaknesses of the generated response.

In the end, the committee R aggregates as-
sessments through calculating the mean compos-
ite score pp and assessing consensus reliability
through standard deviation og. After all, the com-
mittee R makes the final decision: (a) Rejection: If
ur < 7. (b) Acceptance: If ug > 7 with og < 6.
(c). Adjudication: If up > 7 but o > 9, where
7 and § are predefined thresholds.

3.4 Data Adjudicator

Adjudicator is designed for reassessing the disputed
samples. For each disputed sample, we randomly
select an Adjudicator M4 from M \ (Mg U R)
to perform consensus-driven arbitration. For each
disputed sample, based on consolidating Review-
ers’ feedback, M4 conducts a comprehensive re-
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Figure 2: Overview of GRA’s architecture, highlighting its four key modules: (a) The Generator creates domain-
specific samples, (b) followed by collaborative evaluation by Reviewers, (c) The Adjudicator resolves conflicts, and
(d) Post-Processing refines the results by removing redundancies.

assessment using the same evaluation criteria as
the Reviewers and gets the final composite score
54. Only samples with s4 > 7 proceed to the
subsequent post-processing module.

3.5 Post-Processing Module

The post-processing module ensures syntactic con-
sistency and enhances diversity for final dataset
integration. First, we generate embeddings for all
data using the all-MiniLM-L6-v2 encoder (Reimers
and Gurevych, 2019). Data are processed based on
their review score up in descending order. Each
sample, along with its embedding, undergoes se-
mantic redundancy verification against the target
data pool: if the maximum cosine similarity with
any item in the pool is below a specified similarity
threshold, the candidate is added to the pool. Other-
wise, it is rejected to prevent semantic duplication.
The deduplicated data then undergoes metadata en-
richment through random Model Mp € M to gen-
erate contextual summary s, supplemented with
the keywords from which it was derived, ensuring
format consistency with the existing data. This two-
stage filtration, embedding-based semantic dedu-
plication followed by summarization, ensures both
conceptual diversity and structural compatibility
for subsequent data synthesis workflows.

4 Experiment

4.1 Settings

GRA Data Generation. Our framework operates
on three established instruction-tuning datasets: Al-
paca (Taori et al., 2023), WizardLM (Xu et al.,
2024a), and the recent Condor (Cao et al., 2025),
which serve as seed datasets for data synthesis. As
for the small LMs, we use five diverse and repre-
sentative models within 7B-8B parameters: Llama-
3.1-8B-Instruct (Dubey et al., 2024b), Qwen2.5-
7B-Instruct (Yang et al., 2024b), InternLM3-8B-
Instruct (Cai et al., 2024), Mistral-7B-Instruct-
v0.3 (Jiang et al., 2023), and Tulu-3-8B (Lambert
et al., 2024). The synthesis process runs for five
iterations, and each iteration produces approx 10K
high-quality samples per round (51K in total) us-
ing vLLM (Kwon et al., 2023) toolkit. We set the
minimum score threshold 7 = 8 and the maximum
standard deviation 6 = 1.5 at review stage. For
deduplication, the maximum cosine similarity is
set to 0.9. More detailed generation settings are
shown in Appendix A.

Training. After data synthesis, we conduct full
parameter Supervised Fine-Tuning (SFT) on two
well-known base models for verification: Llama-
3.1-8B-Base (Dubey et al., 2024b) and Qwen2.5-
7B-Base (Yang et al., 2024b). The experiments uti-
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lize the Llama-Factory (Zheng et al., 2024a) toolkit.
We run five iterations, each accumulating synthetic
data from Rnd1l to Rnd5, representing data from
the first round up to all five rounds. In the main
experiment, we report the iteration with the best
average performance. Detailed training settings are
provided in Appendix B.

Evaluation. For evaluation, following (Xu et al.,
2024a; Cao et al., 2025), we select multiple bench-
marks on various domains-mathematics, coding,
reasoning, and general-to demonstrate the effec-
tiveness of our GRA framework, which include
GSMSK, MATH, HumanEval, MBPP, HellaSwag,
ARC-C, GPQA, IFEval, BBH and MMLU. We use
the opencompass (Contributors, 2023b) toolkit for
a fair evaluation. More detailed evaluation settings
are shown in Appendix C.

4.2 Main Results

The main results are presented in Table 1, where
we compare GRA against vanilla seed datasets and
also single large LM (Qwen2.5-32B/72B-Instruct)
distillation. From the table, we can draw following
observations:

Superiority Over Vanilla Seed Data. The GRA
method achieves significant improvements over
vanilla seed data, with average performance gains
of 6.18% (Llama-3.1-8B) and 11.81% (Qwen-2.5-
7B) across all benchmarks. These results demon-
strate the effectiveness of GRA. We attribute this
success to GRA’s ability to enhance data diversity
and quality through iterative data synthesis. Further
analysis is provided in Section 5.4.

Competitive Against Large LM Distillation.
GRA’s collaborative small LMs framework demon-
strates parity with or superiority to single large LM
distillation. Notably, comparing to Qwen-2.5-72B-
Instruct distilled data, it narrows the performance
gap to 0.59% for Llama-3.1-8B while surpassing
by 8.83% for Qwen-2.5-7B on average. This vali-
dates the viability of cost-effective multi-agent syn-
thesis as a scalable alternative to resource-intensive
large-model distillation.

Base Model Dependency. Performance varies
substantially with base model capability: Qwen-
based implementations consistently outperform
Llama counterparts by 9% under identical data
conditions. We attribute this discrepancy to Qwen’s
strong base model ability, as demonstrated by many
recent models (Yang et al., 2024b), which likely
enhance its ability to leverage synthesized data.
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Figure 3: Performance along data iterations with Qwen-
2.5-7B-Base model.

Diminishing Returns in Teacher Scaling. De-
spite doubling parameter counts (Qwen-2.5-32B-
Instruct—Qwen-2.5-72B-Instruct), teacher model
scaling yields marginal quality gains. This suggests
a potential saturation point in knowledge transfer
efficiency for standard distillation methods, empha-
sizing the need for more advanced distillation proto-
cols rather than naive distillation from larger mod-
els. These insights collectively highlight GRA’s
practical value for efficient, high-quality data gen-
eration while delineating fundamental boundaries
in LLM knowledge transfer.

4.3 Ablation

Performance along Data Iteration. To investi-
gate the impact of iterative data synthesis rounds
on model performance, we conduct five sequential
iterations of data generation using GRA, with ap-
prox 10K synthetic samples produced per iteration.
We train the models incrementally on cumulative
datasets: 10K (1st iteration), 20K (1st-2nd), 30K
(1st=3rd), 40K (1st—4th), and 50K (1st-5th). Re-
sults are illustrated in Figure 3. Experiments across
three distinct seed datasets consistently demon-
strate a positive correlation between iteration count
and model performance. Besides, we observe that
performance gains are rapid in early iterations, but
gradually plateaued in later iterations, suggesting
diminishing yet meaningful returns. This trend
aligns with the hypothesis that initial cycles resolve
critical data scarcity, whereas subsequent rounds
exhaust exploitable synthetic data diversity.

Effect of GRA Data Reviewer. We conduct ab-
lation experiments to evaluate the effectiveness of
GRA’s multi-model review mechanism by compar-
ing against two baselines: no Reviewer, Llama3.1-
8B-Instruct Reviewer. As shown in Figure 4, GRA

11556



Math Coding Reasoning General
Dataset GSMS8K MATH Humaneval MBPP HellaSwag ARC-C GPQA BBH MMLU IFEval AVG
* Qwen-2.5-7B Base Model
Alpaca 60.12 27.00 32.32 61.20 72.51 65.76 23.74  60.42 45.19 44.95 49.32
Qwen-2.5-7B-GRA 70.28 33.82 76.83 64.80 80.23 7424 2424  60.57 6542  53.16 60.36
Qwen-2.5-32B-Instruct-Distilled 63.23 56.26 76.22 65.40 72.02 56.61  20.71 42.04 49.05  53.71 55.36
Qwen-2.5-72B-Instruct-Distilled 50.64 55.80 74.39 64.40 74.70 5695 2374 3875 3737 5333 53.03
WizardLM 64.37 31.94 50.61 64.20 65.89 40.68 21.72 3934 31.18 47.12 45.71
Qwen-2.5-7B-GRA 58.98 47.84 76.83 64.60 81.58 79.66 2879 63.99 6523  54.15 62.17
Qwen-2.5-32B-Instruct-Distilled 59.36 54.96 72.56 66.20 54.22 5458 2121 37.63 46.99  53.96 52.33
Qwen-2.5-72B-Instruct-Distilled 69.83 56.30 79.88 65.20 57.85 56.61 16.67 37.02 3502 5396 52.93
Condor 57.16 48.60 51.83 64.60 55.74 66.10 2475  39.96 47.48 49.86 50.61
Qwen-2.5-7B-GRA 64.75 42.82 76.22 65.60 79.90 75.59 2626 61.49 64.59 54.02 61.12
Qwen-2.5-32B-Instruct-Distilled 71.34 56.00 68.90 66.40 63.93 61.02  18.69 37.53 5456 5295 54.93
Qwen-2.5-72B-Instruct-Distilled 62.22 54.46 75.61 65.40 61.99 52.88 14.14 32.18 39.61 52.41 51.21
A Llama-3.1-8B Base Model
Alpaca 51.71 11.32 43.29 45.20 53.25 75.25 2121 61.86 52.65 43.06 45.88
Llama-3.1-8B-GRA 65.58 17.20 52.44 48.60 66.30 7153  29.80 64.50 4858  56.80 52.13
Qwen-2.5-32B-Instruct Distilled 64.44 23.32 48.17 49.20 69.14 69.49 2677 65.07 4578  55.73 51.71
Qwen-2.5-72B-Instruct Distilled 67.40 23.82 48.78 50.60 63.95 74.24 26.77 64.77 48.09 58.39 52.68
WizardLM 63.84 16.78 45.73 47.00 67.16 63.05 9.60  62.98 40.89 48.90 46.59
Llama-3.1-8B-GRA 65.88 18.98 51.22 47.00 66.54 72.88 2677 63.28 43.10 5352 50.92
Qwen-2.5-32B-Instruct Distilled 64.97 23.50 51.83 48.00 67.66 65.08  23.74 65.03 4331 5451 51.10
Qwen-2.5-72B-Instruct Distilled 66.64 24.12 51.83 48.60 63.76 69.15 2677 63.60 46.98  56.28 52.18
Condor 61.49 22.12 38.41 48.40 47.24 51.53 15.66  65.28 2791 52.35 43.04
Llama-3.1-8B-GRA 65.58 15.82 50.61 48.80 69.22 7254 2677 63.48 4522 5354 51.60
Qwen-2.5-32B-Instruct Distilled 64.94 23.00 54.88 49.80 71.04 65.08 2424 66.12 4437  52.64 51.81
Qwen-2.5-72B-Instruct Distilled 69.14 23.30 53.05 50.20 67.40 68.14  21.72  63.71 45.02  53.94 51.56

Table 1: Main Comparison between our proposed method, the vanilla seed datasets, and the data distilled from
large-scale LLMs (Qwen-2.5-32B-Instruct and Qwen-2.5-72B-Instruct). Colored values represent the best results.
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Figure 4: Comparison across different setting of re-
viewer and adjudicator, with alpaca as seed dataset and
Llama-3.1-8B as base model.

outperforms all baselines, confirming the necessity
of collaborative curation. Notably, single-model re-
views show negligible gains over no review, imply-
ing either (a) limited quality-assessment capacity
in small LMs or (b) data quality from GRA’s gener-
ation phase being sufficiently robust for standalone
use. These results validate that GRA’s multi-agent
framework uniquely synthesizes complementary
curation strengths, avoiding the pitfalls of isolated
or capacity-constrained reviewers. Comparisons
wiht large LM reviwer are shown in Section 5.4.

Effect of GRA Data Adjudicator. To validate
the necessity of the Adjudicator module in GRA,

we conduct ablation experiments without the Ad-
judicator, where conflicting reviews are resolved
via majority voting. Using Llama-3.1-8B as the
base model and Alpaca as the seed dataset, the
Adjudicator-enhanced version achieves a 0.73%
improvement in synthetic data quality, demonstrat-
ing its effectiveness, as shown in Figure 4.

S Analysis

5.1 Effect of Small LMs’ Role

We are interested in the specific role played in
the GRA framework, therefore we conduct experi-
ments of three role assignment strategies for GRA
pipeline with Qwen-2.5-7B-Base as the training
model: (1) Single-Model: all roles assigned to
a single LM (Llama3.1-8B-Instruct); (2) Fixed-
assignment strategy: five distinct LMs assigned
to roles in fixed permutations; (3) Our GRA setting
with random roles. The results are as follows: when
we simply use one model to play all roles (Setting
1), the average accuracy is 52.07, while Setting 2,
which assigns fixed roles to five dedicated mod-
els, results in a lower accuracy of 48.59. Lastly,
our GRA based training achieves 59.52 accuracy.
Lastly, our GRA based training achieves 59.52 ac-
curacy. From the above results, we can find that

11557



GRA Data Adjudication Case

# Data:

## Instruction:

Given a set of numbers from 1 to 100, find the sum
of all numbers that are divisible by both 3 and 5.
Express the sum in LaTeX format.

## Response:

The sum of all numbers from 1 to 100 that are
divisible by both 3 and 5 can be found by calculating
the sum of the arithmetic series where the first term
is (3 x 5 = 15) and the last term is (100)... the sum
of all numbers from 1 to 100 that are divisible by
both 3 and 5 is 90. In LaTeX format, this is written
as: [sumi2 (3 x 5)% = 90]

# Data Review

##Reviewer 1

detail scores : [9,10,10,10,10,10]. review comment:
NO MISSTATEMENT, ALL INFO PRESENT.
##Reviewer 2

detail scores : [9,9,10,10,10,10]. review comment:
Accurate and well-structured response, clear and
correct explanation, irrelevant information avoided,
perfect coherence and suitable LaTeX expression
##Review 3

detail scores : [6,4,5,4,5,3]. review comment:
Incorrect arithmetic series calculation and LaTeX
format error

##Review Result

average score of 8 meets the threshold. score std of
2.4758 exceeds the threshold.

#Data Adjudicator

detail scores : [4,2,5,5,5,1,5]. average score of 4.5
below threshold.

##Adjudication Result

Discard unqualified data.

Case 1: A case analysis of inconsistent data.

the advantages of our randomized role assignment
in our GRA is clear and significant, compared to
both other settings. Besides, interestingly, fixed as-
signments of different models performs worse than
single role model, which means that self-evolve
is better than fixed role assignment among differ-
ent models, further demonstrating that multi-agent
corporation is curial.

5.2 Inconsistent Data Analysis

We show a Case 1 to further illustrate the effec-
tiveness of Adjudicator. For a wrong math
problem, two of three reviewers incorrectly as-
sign high scores, while one correctly flags the er-
ror. Although the average score (8/10) initially
meets the retention threshold, the high score vari-
ance (2.48) triggers adjudication. The Adjudica-
tor synthesizes all reviews and evaluation criteria,
overriding the majority’s misjudgment to assign a
low score (4.5/10), thereby filtering out the flawed
data. This highlights how the Adjudicator miti-

GRA
Vanilla

t-SNE Dimension 2
. )

~100 75 50 75 100

+-SNE Dimension 1
Figure 5: Data coverage comparison between vanilla
seed dataset and GRA synthetic data.

GRA
Large LLMs

t-SNE Dimension 2
)

~100 -7 50 7 100

£'SNE Dimension 1
Figure 6: Data coverage comparison between large LM
distilled data and GRA synthetic data.

gates limitations of simple voting or averaging by
dynamically reconciling disagreements and enforc-
ing rigorous quality standards.

5.3 Data Diversity

To assess the diversity of synthesized data, we com-
pare three sources: GRA-generated data, data dis-
tilled from a single large LM, and the vanilla seed
dataset. We visualize the instruction embeddings
with t-SNE (Van der Maaten and Hinton, 2008).

Diversity Analysis. As shown in Figure 5. GRA-
generated data exhibits a broader distribution than
the vanilla seed dataset, particularly covering under-
represented regions in the seed data’s embedding
space. This suggests that GRA complementing the
seed dataset by expanding its coverage. Besides,
Figure 6 reveals that GRA surpasses the single
large LM in distribution diversity, implying that
collaborative small LMs can mitigate the inher-
ent limits and biases of single model. Notably,
while the seed dataset demonstrates comparable in-
struction diversity, its inferior performance in main
experiments-Table 1 highlights critical deficiencies
in response quality rather than instruction coverage.

Seed Data Enhancement via GRA. We further
apply GRA’s generator to rewrite responses in the
vanilla seed dataset, followed by curation using
GRA'’s reviewer and adjudicator. As shown in Ta-
ble 2, the refined dataset achieves performance
parity with GRA-generated data. Moreover, com-
bining GRA-synthesized data with enhanced seed
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Figure 7: Data quality score comparison between GRA
and single Large LM(Qwen-2.5-72B-Instruct).

data yields synergistic effects, outperforming ei-
ther dataset alone in certain settings. This under-
scores GRA’s dual utility: (a) generating novel
high-quality data and (b) upgrading existing data
through systematic rewriting and quality control.

Data / Seed Dataset Alpaca WizardLM Condor

Llama-3.1-8B-Base

Vanilla Seed Data 45.88 46.59 43.04

GRA Refined Seed Data  50.39 52.81 47.68

GRA Synthetic Data 52.14 50.74 51.16

GRA Integrated Data 51.93 52.35 52.22
Qwen-2.5-7B-Base

Vanilla Seed Data 49.32 45.71 50.61

GRA Refined Seed Data  59.97 58.34 45.50

GRA Synthetic Data 59.52 62.17 61.13

GRA Integrated Data 61.19 59.00 62.10

Table 2: Comparison across Vanilla Seed Data, GRA
Refined Seed Data, GRA Synthetic Data and GRA Inte-
grated Data.

5.4 Data Quality

To evaluate the data quality, we utilize Qwen-2.5-
72B-Instruct to assess the synthetic data and com-
pare its score with our Reviewers’ score. From
Figure 7, we find that the GRA method exhibits
finer granularity and a more balanced scoring dis-
tribution compared to the coarser-grained scores
from the large LM, indicating its ability to capture
nuanced quality variations. Second, over 87.3%
of GRA-curated data (scores > 8) align with high
scores from the large LM, while 12.7% receive
lower scores (< 8) from the latter. Notably, the
large LM assigns even higher scores to a larger sub-
set of data, further validating the reliability of GRA
in generating high-quality data. These results sug-
gest that GRA enhances scoring resolution without
compromising assessment consistency with large
LMs.

1.2

1.0

I

0.8

fa)
L 0.6

7
i i

0.0

WizardLM Qwen-2.5-72B-Instruct GRA
Figure 8: The IFD score cgriiltf)lggison between the data
generated by GRA, the vanilla seed dataset WizardLM,
and single large LM (Qwen-2.5-72B-Instruct) distilled
data.
5.5 Data Difficulty
To evaluate the complexity and knowledge density
of synthesized data, we compute the Instruction-
Following Difficulty (IFD) score (Li et al., 2024b)
for the three datasets. From the results depicted
in Figure 8, two key observations emerge: First,
GRA-generated data achieves a significantly higher
IFD than the seed dataset (+14.58%), indicating
its enhanced difficulty and richer knowledge cov-
erage. This aligns with empirical training results,
where models trained on GRA data exhibit superior
performance. Second, despite using smaller LMs,
GRA attains comparable difficulty to the Qwen-
72B-distilled data (75.82% v.s. 75.49%). This
suggests that collaborative small LMs in GRA mit-
igate individual capability limitations, effectively
emulating large LMs in generating challenging ex-
amples. These results validate GRA’s ability to
synthesize high-quality, difficulty-controllable data
without relying on large LMs, addressing both scal-
ability and performance trade-offs in data synthesis
pipelines.
6 Conclusion
In this paper, we introduce GRA (Generator-
Reviewer-Adjudicator), a novel framework that
leverages the collaborative capabilities of multi-
ple small LMs to achieve data synthesis quality
comparable to that of single monolithic LLM. Our
approach addresses the significant computational
and environmental concerns associated with large
LMs while mitigating the biases inherent in their
centralized architectures. The experimental results
across diverse benchmarks validate the efficacy of
GRA. GRA underscores the potential of role spe-
cialization in enhancing data synthesis quality, chal-
lenging the prevailing notion that larger models are
inherently superior for such tasks, paving the way
for more sustainable and equitable data synthesis.

11559



Limitations

Despite the promising performance of the GRA
framework, several aspects warrant further explo-
ration. Current role allocation mechanism—based
on randomized assignment—may yield suboptimal
collaboration patterns. This stochastic approach
lacks explicit optimization for task-specific syner-
gies, suggesting the need for intelligent role con-
figuration strategies (e.g., performance-aware dy-
namic allocation or metric-driven reinforcement
learning) to systematically maximize agent com-
plementarity. Furthermore, while GRA is primarily
designed for textual reasoning tasks, extending its
paradigm to multimodal scenarios presents a com-
pelling direction.

Acknowledgements

This work is supported by the National Key R&D
Program of China (2022ZD0160201).

References

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui
Zhang, and Wenpeng Yin. 2024. Large language
models for mathematical reasoning: Progresses and
challenges. In EACL (Student Research Workshop),
pages 225-237. Association for Computational Lin-
guistics.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen,
Keyu Chen, Xin Chen, Xun Chen, Zehui Chen,
Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan,
Qi Fan, Zhaoye Fei, Yang Gao, Jiaye Ge, Chenya
Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo,
Conghui He, Yingfan Hu, Ting Huang, Tao Jiang,
Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li,
Jingwen Li, Linyang Li, Shuaibin Li, Wei Li, Yin-
ing Li, Hongwei Liu, Jiangning Liu, Jiawei Hong,
Kaiwen Liu, Kuikun Liu, Xiaoran Liu, Chengqi Lv,
Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma,
Wenchang Ning, Linke Ouyang, Jiantao Qiu, Yuan
Qu, Fukai Shang, Yunfan Shao, Demin Song, Zi-
fan Song, Zhihao Sui, Peng Sun, Yu Sun, Huanze
Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Ji-
ayu Wang, Rui Wang, Yudong Wang, Ziyi Wang,
Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong
Xiong, Chao Xu, Ruiliang Xu, Hang Yan, Yirong
Yan, Xiaogui Yang, Haochen Ye, Huaiyuan Ying, Jia
Yu, Jing Yu, Yuhang Zang, Chuyu Zhang, Li Zhang,
Pan Zhang, Peng Zhang, Ruijie Zhang, Shuo Zhang,
Songyang Zhang, Wenjian Zhang, Wenwei Zhang,
Xingcheng Zhang, Xinyue Zhang, Hui Zhao, Qian

Zhao, Xiaomeng Zhao, Fengzhe Zhou, Zaida Zhou,
Jingming Zhuo, Yicheng Zou, Xipeng Qiu, Yu Qiao,
and Dahua Lin. 2024. Internlm2 technical report.
Preprint, arXiv:2403.17297.

Maosong Cao, Taolin Zhang, Mo Li, Chuyu Zhang,
Yunxin Liu, Haodong Duan, Songyang Zhang, and
Kai Chen. 2025. Condor: Enhance llm alignment
with knowledge-driven data synthesis and refinement.
arXiv preprint arXiv:2501.12273.

Lihu Chen and Gaél Varoquaux. 2024. What is the
role of small models in the 1lm era: A survey. arXiv
preprint arXiv:2409.06857.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

LMDeploy Contributors. 2023a. Lmdeploy: A toolkit
for compressing, deploying, and serving llm. https:
//github.com/InternLM/1mdeploy.

OpenCompass Contributors. 2023b. Opencompass:
A universal evaluation platform for foundation
models. https://github.com/open-compass/
opencompass.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024a. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024b. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan,
Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
Shengjie Ma, Honghao Liu, et al. 2024. A survey on
Ilm-as-a-judge. arXiv preprint arXiv:2411.15594.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

11560


https://arxiv.org/abs/2403.17297
https://github.com/InternLM/lmdeploy
https://github.com/InternLM/lmdeploy
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass

Desta Haileselassie Hagos, Rick Battle, and Danda B
Rawat. 2024. Recent advances in generative ai and
large language models: Current status, challenges,
and perspectives. IEEE Transactions on Artificial
Intelligence.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. In Proceed-
ings of the Neural Information Processing Systems
Track on Datasets and Benchmarks, volume 1.

Geoffrey Hinton. 2015. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,
and Sunghun Kim. 2024. A survey on large lan-
guage models for code generation. arXiv preprint
arXiv:2406.00515.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611-626.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin,
Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri,
Shane Lyu, et al. 2024. T\" ulu 3: Pushing frontiers
in open language model post-training. arXiv preprint
arXiv:2411.15124.

Chengpeng Li, Zheng Yuan, Hongyi Yuan, Guanting
Dong, Keming Lu, Jiancan Wu, Chuangi Tan, Xi-
ang Wang, and Chang Zhou. 2024a. Mugglemath:
Assessing the impact of query and response augmen-
tation on math reasoning. In ACL (1), pages 10230-
10258. Association for Computational Linguistics.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting ob-
jective function for neural conversation models. In
HLT-NAACL, pages 110-119. The Association for
Computational Linguistics.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang
Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou, and
Jing Xiao. 2024b. From quantity to quality: Boosting
LLM performance with self-guided data selection
for instruction tuning. In NAACL-HLT, pages 7602—
7635. Association for Computational Linguistics.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Omer
Levy, Luke Zettlemoyer, Jason Weston, and Mike
Lewis. 2023. Self-alignment with instruction back-
translation. arXiv preprint arXiv:2308.06259.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024a.
Deepseek-v3 technical report.  arXiv preprint
arXiv:2412.19437.

Yi Liu, Junzhe Yu, Huijia Sun, Ling Shi, Gelei Deng,
Yuqi Chen, and Yang Liu. 2024b. Efficient detection
of toxic prompts in large language models. In Pro-
ceedings of the 39th IEEE/ACM International Con-
ference on Automated Software Engineering, pages
455-467.

Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao
Ding, Gang Chen, and Haobo Wang. 2024. On Illms-
driven synthetic data generation, curation, and eval-
uation: A survey. In ACL (Findings), pages 11065—
11082. Association for Computational Linguistics.

Somshubra Majumdar, Vahid Noroozi, Sean Narenthi-
ran, Aleksander Ficek, Jagadeesh Balam, and Boris
Ginsburg. 2024. Genetic instruct: Scaling up syn-
thetic generation of coding instructions for large lan-
guage models. arXiv preprint arXiv:2407.21077.

Arindam Mitra, Luciano Del Corro, Guoqing Zheng,
Shweti Mahajan, Dany Rouhana, Andres Codas,
Yadong Lu, Wei-ge Chen, Olga Vrousgos, Corby
Rosset, et al. 2024. Agentinstruct: Toward gener-
ative teaching with agentic flows. arXiv preprint
arXiv:2407.03502.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad
Saqib, Saeed Anwar, Muhammad Usman, Naveed
Akhtar, Nick Barnes, and Ajmal Mian. 2023. A
comprehensive overview of large language models.
arXiv preprint arXiv:2307.06435.

OpenAl. 2024. Learning to reason with 1lms.

Josh OpenAl, Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Chansung Park, Juyong Jiang, Fan Wang, Sayak Paul,
and Jing Tang. 2024. Llamaduo: Llmops pipeline for
seamless migration from service llms to small-scale
local llms. arXiv preprint arXiv:2408.13467.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R Bowman. 2023. Gpga: A
graduate-level google-proof q&a benchmark. arXiv
preprint arXiv:2311.12022.

11561


https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper-round2.pdf
https://openai.com/index/learning-to-reason-with-llms
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084

Nikita Salkar, Thomas A. Trikalinos, Byron C. Wallace,
and Ani Nenkova. 2022. Self-repetition in abstractive
neural summarizers. In AACL/IJCNLP (2), pages
341-350. Association for Computational Linguistics.

Raphael Shu, Hideki Nakayama, and Kyunghyun Cho.
2019. Generating diverse translations with sentence
codes. In ACL (1), pages 1823—1827. Association for
Computational Linguistics.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, et al. 2022. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv
preprint arXiv:2210.09261.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Ke Wang, Jiahui Zhu, Minjie Ren, Zeming Liu, Shi-
wei Li, Zongye Zhang, Chenkai Zhang, Xiaoyu Wu,
Qiqi Zhan, Qingjie Liu, et al. 2024a. A survey on
data synthesis and augmentation for large language
models. arXiv preprint arXiv:2410.12896.

Zifeng Wang, Chun-Liang Li, Vincent Perot, Long T
Le, Jin Miao, Zizhao Zhang, Chen-Yu Lee, and
Tomas Pfister. 2024b. Codeclm: Aligning language
models with tailored synthetic data. arXiv preprint
arXiv:2404.05875.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024a. Wizardlm: Empow-
ering large pre-trained language models to follow
complex instructions. In /CLR. OpenReview.net.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen,
Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao,
and Tianyi Zhou. 2024b. A survey on knowledge
distillation of large language models. arXiv preprint
arXiv:2402.13116.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yun-
tian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. 2025. Magpie: Alignment data
synthesis from scratch by prompting aligned LLMs
with nothing. In The Thirteenth International Con-
ference on Learning Representations.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024a. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024b. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115.

Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo
Sun, and Yue Zhang. 2024. A survey on large lan-
guage model (1lm) security and privacy: The good,
the bad, and the ugly. High-Confidence Computing,
page 100211.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yinggian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yan-
han Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang
Ma. 2024a. Llamafactory: Unified efficient fine-
tuning of 100+ language models. arXiv preprint
arXiv:2403.13372.

Yue Zheng, Yuhao Chen, Bin Qian, Xiufang Shi, Yuan-
chao Shu, and Jiming Chen. 2024b. A review on
edge large language models: Design, execution, and
applications. arXiv preprint arXiv:2410.11845.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Sid-
dhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. 2023. Instruction-following evalu-
ation for large language models. arXiv preprint
arXiv:2311.07911.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan
Zhang, Jun Wang, and Yong Yu. 2018. Texygen: A
benchmarking platform for text generation models.
In SIGIR, pages 1097-1100. ACM.

11562


https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://openreview.net/forum?id=Pnk7vMbznK
https://openreview.net/forum?id=Pnk7vMbznK
https://openreview.net/forum?id=Pnk7vMbznK

A Generation

When generating data, we deploy models using
VLLM and LMDeploy (Contributors, 2023a) on 8
NVIDIA A100 GPUs. For setting the model gen-
eration parameters, we use the default settings of
the deployment tools, except for temperature=0.2,
top_p=0.9, max_token=4096. The number of ex-
amples used in few-shot ranges from 2 to 4. We set
the minimum score threshold 7 = 8 and the max-
imum standard deviation § = 1.5 at review stage.
For deduplication, the maximum cosine similarity
is set to 0.9. Here we provide detailed criteria for
data domain classification:

* Coding: Involves understanding, generating,
debugging, and fixing code.

* Math: Entails performing mathematical oper-
ations, applying formulas, and solving prob-
lems.

* QA: Focuses on providing specialized and
accurate answers to questions within a specific
domain or field.

» Language: Involves accurately understanding
and analyzing text, performing tasks such as
translation, summarization, and classification.

* Role Play: Engages in simulated conversa-
tions or behaviors by assuming different roles
to explore various perspectives or scenarios.

* Reasoning: Involves complex causal reason-
ing and logical judgment, solving multi-level
problems through inference and analysis.

* Creation: Emphasizes originality and creativ-
ity, creating content according to requirements
and adapting to different styles and themes.

Before initiating the GRA data synthesis, we em-
ploy all available small LMs to extract keywords
and summaries from the seed dataset using a ran-
domized rotation approach.

B Training

We employ LLaMA-Factory (Zheng et al., 2024a)
for model fine-tuning. All models, including our
reproduced baselines, are fine-tuned over 1 epochs
with a batch size of 256 using 8 NVIDIA A100
GPUs. The peak learning rate is set to 5e-6, fea-
turing a linear warm-up during the initial 3% of

training steps, followed by a cosine decay. The
maximum sequence length is configured to 4096.

C Evaluation

We compare GRA with baselines on the following
10 benchmarks:

* The GSMS8K dataset (Cobbe et al., 2021)
contains 8,500 grade school-level math word
problems.focus on real-world scenarios, test-
ing a model’s ability to parse natural language,
extract relevant information, and perform ac-
curate calculations.

* The MATH dataset (Hendrycks et al., 2021)
evaluates mathematical reasoning with prob-
lems spanning arithmetic, algebra, calculus,
and geometry, and 5 levels of difficulty.

e The HumanEval dataset (Chen et al., 2021) is
designed to evaluate the functional correctness
of code generation models. It consists of 164
hand-written programming problems, each re-
quiring the generation of a Python function
to solve a specific task. The dataset assesses
the ability of models to produce syntactically
correct and logically accurate code.

e The MBPP dataset (Austin et al., 2021) con-
tains around 1,000 Python programming tasks,
focusing on fundamental programming con-
cepts. It is split into training and test sets,
with tasks ranging from simple operations to
more complex algorithmic challenges, mak-
ing it suitable for evaluating code generation
and understanding.

* The Hellaswag dataset (Zellers et al., 2019)
is a commonsense reasoning benchmark that
includes 70,000 multiple-choice questions de-
rived from everyday scenarios. It tests a
model’s ability to predict the most plausible
continuation of a given context, emphasizing
natural language understanding and reason-
ing.

* The ARC-C dataset (Clark et al., 2018) is a
collection of science exam questions designed
to evaluate advanced reasoning capabilities. It
includes 2,590 questions across various sci-
ence topics, requiring multi-step reasoning
and knowledge application to solve.

11563



¢ The GPQA datase (Rein et al., 2023)t is a
high-quality benchmark for evaluating general
knowledge and reasoning. It consists of di-
verse questions spanning multiple domains, in-
cluding science, history, and culture, designed
to test the breadth and depth of a model’s un-
derstanding.

* The IFEval dataset (Zhou et al., 2023) focuses
on evaluating instruction-following capabili-
ties in language models. It includes a variety
of tasks that require models to follow complex
instructions accurately, testing their ability to
understand and execute multi-step directives.

* The MMLU dataset (Hendrycks et al., 2020)
is a comprehensive benchmark covering 57
tasks across diverse domains, including hu-
manities, STEM, and social sciences. It evalu-
ates a model’s ability to perform well across a
wide range of subjects and tasks.

* The BBH dataset (Suzgun et al., 2022) is a
subset of the Big-Bench benchmark, consist-
ing of 23 challenging tasks that are partic-
ularly difficult for language models. These
tasks require advanced reasoning, knowledge,
and problem-solving skills, making them a
robust test of model capabilities.

In our testing, we employ the default metrics of
opencompass (Contributors, 2023b) corresponding
to each benchmark.

D Cases

A comprehensive data synthesis case is detailed in
Case 2.

E Prompts

The prompts we used, including domain identifi-
cation, summary generation, key word extraction,
key word generation, instruction generation, in-
struction evaluation,response generation, response
evaluation and data adjudication are shown in
Prompt 1, 2, 3,4,6,7,8,9.

F Further Ablation
F.1 Hyperparameters Analys

We further present a supplementary analysis on
the sensitivity of key hyperparameters used in our

method. While manual hyperparameter tuning is a
common and accepted practice in the field (Wang
et al., 2024b; Park et al., 2024; Liu et al., 2024b; Li
et al., 2023), we emphasize that our default settings
are guided by empirical intuition and preliminary
experiments, rather than arbitrary selection. Specif-
ically, we investigate robustness with respect to two
critical hyperparameters, review score threshold 7
and standard deviation threshold §. As summa-
rized in Table 3, our approach consistently outper-
forms baseline models in all configurations tested.
The observed minor performance variations sug-
gest that GRA remains stable under a range of rea-
sonable hyperparameter settings, demonstrating its
robustness without the need for fine-grained tuning.

F.2 Further Data Iteration Analysis

In this subsection, we provide more complete and
detailed experimental results on data iteration as
shown in Table 4.

G Applicability of GRA to Smaller SLM

We further study the applicability of GRA to
smaller SLM, particularly those in the 1.5B-3B
parameter range. Although the main experiments
in GRA validation on model parameters 7B-8B
with strong empirical performance on multiple
benchmarks, applying the same synthesis proce-
dure to smaller models revealed significant limita-
tions. Specifically, we observe that models below
3B parameters exhibit limited instruction-following
ability and a reduced knowledge base, which lead
to a substantially lower proportion of valid sam-
ples during data synthesis-approximately 0.1% per
round. As a result, the data generation process
becomes highly inefficient and contradicts the orig-
inal intention of our work. These findings motivate
future exploration into adapting GRA for much
smaller language models. We anticipate that com-
bining GRA with complementary techniques could
further improve its applicability in low-capacity
settings, which we leave as a promising direction
for future work.
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GRA Data Synthesis Case

# Sample Data:

## Instruction]:

You are Cleopatra, the last active ruler of the Ptolemaic Kingdom of Egypt. Reflect on your complex relationships with
Julius Caesar and Mark Antony, and explain how these alliances influenced your rule and the fate of Egypt. Discuss the
political and emotional aspects of these relationships, and what you would consider to be the most significant outcomes.
## Responsel:

As Cleopatra, the last Pharaoh of ancient Egypt, my life was a tapestry woven with threads of power, passion, and
ambition. My relationships with Julius Caesar and Mark Antony were not only pivotal to my personal story but also
crucial to the fate of my kingdom...

## Instruction2:

Please use the identity of an old Guangzhou resident and use a humorous and exaggerated tone to talk about your views
on the changes in Guangzhou cuisine. In your answer, please use at least three metaphors or personifications, and make
sure that each sentence is no less than 20 words, and must be separated by colons or semicolons.

## Response2:

Oh, talking about the changes in Guangzhou’s food, it’s like a magic trick in the Xiguan Mansion, with surprises hidden
behind every door; the Diandude on Shamian Island was like a happy fruit for the neighbors. Although there are some
young competitors now, it is still going strong and exudes a unique charm...

# Generate Key words:
Fantasy = Adventure Quest

# Reference Summary:
1. Cleopatra’s alliances with Caesar and Antony shaped Egypt’s fate.
2. Humorous Guangzhou local describes food evolution

# Generate Data:

##Instruction:

Embark on a quest through the mystical realm of Eldoria, where you must navigate through enchanted forests, solve
ancient riddles, and face fearsome dragons to retrieve the legendary Crystal of Aether. In this role-play, you are an
aspiring hero, a seeker of truth, and a guardian of balance. Your adventure begins in the quaint village of Everlight,
where whispers of the Crystal’s whereabouts have begun to stir. What will you do first on your journey?

##Response:

As an aspiring hero on this quest to find the legendary Crystal of Aether, I would first consult the village elders of
Everlight. They are likely to have valuable insights or clues about the whereabouts of the Crystal and the nature of the
quest. My approach would be to: 1. Seek out the village elders and listen to their stories and advice. 2. Offer to help
with any local tasks or problems as a gesture of goodwill and to build relationships.3. Inquire about the ancient riddles
and the lore surrounding the Crystal of Aether. 4. Ask if there are any artifacts or maps in the village that could assist on
the journey. 5. Formulate a plan of action based on the information gathered, considering the potential routes through
the enchanted forests and the locations of the fearsome dragons. This initial step is crucial for gathering intelligence and
preparing for the challenges ahead.

#Data Review:

##Evaluation:

The average score of 8.2 meets the criteria, but the standard deviation of 1.6 does not, therefore it is sent to the Data
Adjudicator for evaluation.

#Data Adjudicator:

##Comment:

1. Clear plan, relevant steps, and coherent structure. Minor redundancy noted.

2. Response offers a thorough and strategic approach to consulting the village elders, ensuring a well-informed and
well-prepared adventure.

3. The response provides a clear and structured plan to gather information, build relationships, and prepare for the
journey. However, some minor verbalizations are present in the points, but are well approached despite a bit of excess
wording in some areas.

##Score:

The average score of 8.1 meets the criteria.

#Generate Data Summary:
Navigate enchanted forests, solve riddles, face dragons to retrieve Crystal of Aether.

Case 2: A comprehensive data synthesis case of GRA.
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Domain Identification

## role
- You are an expert in identifying the domain of SFT instructions.

## goal
- Determine the domain of the provided instructions using the specified classification criteria.

## classification criteria

- **Math**: Involves performing mathematical operations, applying formulas, and solving problems.

- **Coding**: Encompasses understanding, generating, debugging, and fixing code.

- **QA**: Provide specialized and accurate answers to questions within a specific domain or field..

- **Language**: Accurately understand and analyze the given text, and then perform tasks including translation,
summarization, classification, etc.

- **Role Play**: Engage in simulated conversations or behaviors by assuming different roles to explore various
perspectives or scenarios.

- **Reasoning**: Carry out complex causal reasoning and logical judgment, and solve multi-level complex problems
through reasonable inference and analysis.

- **Creation**: Emphasize originality and creativity, create content according to requirements, and flexibly adapt to
different styles and themes.

## output format

- Assign each data to one ‘domain‘ category mentioned above only.

- The output ‘domain‘ must be in English rather than Chinese.

- Use ‘<boa>‘ and ‘<eoa>‘ to encapsulate the domain, e.g., ‘<bod>"domain":"the domain"<eod>".

Prompt 1: Prompt used in domain identification.

Summary Generation

## role

- You are an expert in concise summarization.

## goal

- Analyze the provided ‘instruction‘, summarize and generate a brief, accurate ‘summary*.
## requirement

- Limit the ‘summary‘ to no more than 30 words.

- Ensure clarity and precision in capturing the essence of the instruction.

- - Symbolic representations involving mathematical data must be in LaTeX format.

## output_format

- The output ‘summary‘ must be in English rather than Chinese.

- Use ‘<bod>‘ and ‘<eod>‘ to encapsulate the ‘summary°, e.g., ‘<bod>"summary":"the summary"<eod>".
- Output only the generated ‘summary‘, nothing else.

Prompt 2: Prompt used in summary generation.

Key Word Extraction

#i# role

- You are an expert at distilling key information from SFT instructions.
## goal

- Extracts the ‘keywords* from the given instructions.

## output_format

- The number of ‘keywords* must not exceed three.

- The output ‘keywords‘ must be in English rather than Chinese.

- Directly and Only output the data ‘keywords®.

- Use ‘<bok>‘ and ‘<eok>‘ to encapsulate the ‘keywords‘, e.g.,‘<bok>"keywords":["the keywords"]<eok>".

Prompt 3: Prompt used in key word extraction.
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Key Word Generation

## role

- You are a creative language model specializing in innovative ‘keyword* generation and ‘domain‘ synthesis.

## goal

- Generate a unique set of ‘keywords* and ‘domain‘ that aligned with the provided examples and introducing novel
concepts within the same domain.

## requirement

- Maintain a single domain with no more than three keywords.

- Must only create one new data abstract.

- The keywords must be novel, different to the provided examples.

## output_format

- The output must be in English rather than Chinese.

- Use ‘<boa>‘ and ‘<eoa>‘ to encapsulate the domain and keywords, e.g., ‘<boa>"domain":"the do-
main","keywords":["the keywords"]<eoa>".

- Directly output and only output the data abstract, nothing else.

Prompt 4: Prompt used in key word generation.

Instruction Generation

## role

- You are an expert in data generation.

## goal

- Generate a high-quality ‘domain‘ related prompt, which related to key words like keywords.

## requirement

- The generated prompt must be high-quality, accurately reflecting the domain and keywords.

- The generated prompt must be semantically complete and contain the notation and terminology specifications of the
corresponding field.

- The generated prompt must specify the task the user wants the model to complete, answer a question, or perform an
action.

- Symbolic representations involving mathematical data must be in LaTeX format.

## output_format

- Please ensure that the prompt generated are not overly verbose while maintaining quality and compliance.

- Output directly and only the prompt you generate, nothing else.

- The ‘generated prompt‘ must be wrapped with <boi> and <eoi>, e.g., ‘<boi>this is the generated prompt<eoi>".
<begin of reference>

summaries

<end of reference>

Prompt 5: Prompt used in instruction generation.
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Instruction Evaluation

## role

You are a rigorous reviewer who is responsible for evaluating the quality of the ‘instruction‘ in an instruction-response
pair.

## goal

- For the given ‘instruction‘, You need to evaluate it according to the several evaluation dimensions specified in the
‘rule’.

## rule

- **Reasonable**: ‘instruction‘ must be clear and executable to ensure that they can be effectively responded to and
handled.

- **Completeness**: ‘instruction‘ must provide all necessary information and context required to perform the task,
ensuring there are no missing elements that could hinder understanding or execution.

- **Clarity**: ‘instruction‘ must be clear in language, accurate in wording, concise in syntactic structure, avoid vague
expressions, clearly convey expected results, and eliminate ambiguity.

## constraint

- **Reasonable**: if the instruction meets the criteria, score 1; otherwise, score 0.

- **Completeness**: if the instruction meets the criteria, score 1; otherwise, score 0.

- #*Clarity**: if the instruction meets the criteria, score 1; otherwise, score 0.

## output_format

1. Use ‘<bos>‘ and ‘<eos>‘to encapsulate the scores for each category as the list in python, e.g., ‘<bos>[1,1,0]<eos>".
2. Directly output and only output the scores, nothing else.

Prompt 6: Prompt used in instruction evaluation.

Response Generation

## role

You are a professional language model assistant that aims to strictly generate high-quality ‘response‘ based on the
‘instruction‘.

## goal

- You need to generate a correct, complete, and sufficient ‘response‘ based on the ‘instruction’, strictly following the the
‘instruction‘.

## output_format

- Symbolic representations involving mathematical data must be in LaTeX format.

- Please output directly and only output ‘response‘, nothing else.

Prompt 7: Prompt used in response generation.
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Response Evaluation

## role

- You are a rigorous reviewer who is responsible for evaluating the quality of the Response in an Instruction-Response
pair.

## goal

- For the ‘given response‘, You need to strictly score and evaluate each Response according to the several evaluation
dimensions specified in the ‘rule°.

## rule

- Correctness: The response should accurately fulfill the instruction’s requirements with correct information and logic.
- Clarity: The response must be expressed in clear, understandable language, avoiding ambiguity.

- Completeness: The response should include all necessary details and explanations to fully address the instruction.

- Relevance: The response must stay focused on instruction and exclude irrelevant information.

- Coherence: The response should be logically structured and flow smoothly from one point to the next.

- Ethicality: The response must be safe, unbiased, and free from harmful or inappropriate content.

## constraint

- For each evaluation dimension in ‘rule‘, give an score from 1 to 10, and form a ‘score_list*.

- In addition to the scores, you also need to provide specific ‘review* for the scores.

- The ‘review* must be brief, under 30 words and focusing on the key points.

## output_format

- Use ‘<bos>‘ and ‘<eos>‘ to encapsulate the ‘score_list‘, e.g., ‘<bos>[8,4,6]<eos>".

- Use ‘<boc>* and ‘<eoc>‘ to encapsulate the ‘review’, e.g., ‘<boc>THE CONTENT OF review<eoc>*.

- Please output directly and only the ‘score_list‘ and ‘review* in the specified output format, nothing else.

- **Note: Be particularly critical in your evaluation to ensure only responses of the highest quality receive high scores.**

Prompt 8: Prompt used in response evaluation.

Data Adjudication

## role

- You are a rigorous reviewer who is responsible for evaluating the quality of the Response in an Instruction-Response
pair.

## goal

- For the ‘given response*, you need to strictly score and evaluate each Response according to the evaluation dimensions
specified in the ‘rule‘, while integrating insights from the ‘prior evaluation‘.

## rule

- Correctness: The response should accurately fulfill the instruction’s requirements with correct information and logic.
- Clarity: The response must be expressed in clear, understandable language, avoiding ambiguity.

- Completeness: The response should include all necessary details and explanations to fully address the instruction.

- Relevance: The response must stay focused on instruction and exclude irrelevant information.

- Coherence: The response should be logically structured and flow smoothly from one point to the next.

- Ethicality: The response must be safe, unbiased, and free from harmful or inappropriate content.

## constraint

- Must analyze the requirements of ‘instruction’, the quality of ‘response‘, and the ‘prior evaluation® in detail.

- For each evaluation dimension in ‘rule‘, give an score from 1 to 10, and form a ‘score_list*.

- In addition to the scores, you also need to provide specific ‘review* for the scores.

- The ‘review* must be brief, under 30 words and focusing on the key points.

## output_format

- Use ‘<bos>‘ and ‘<eos>‘ to encapsulate the ‘score_list‘, e.g., ‘<bos>[8,4,6]<eos>*.

- Use ‘<boc>* and ‘<eoc>‘ to encapsulate the ‘review’, e.g., ‘<boc>THE CONTENT OF review<eoc>.*

- Please output directly and only the ‘score_list‘ and ‘review* in the specified output format, nothing else.

- **Note: Be particularly critical in your evaluation to ensure only responses of the highest quality receive high scores.**
## prior evaluation

review

<begin of Instruction-Response pair>

## instruction

instruction

## response

response

<end of Instruction-Response pair>

Prompt 9: Prompt used in data adjudication.
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Math Coding Reasoning General

T o  #Samples AVG
GSM8K MATH Humaneval MBPP HellaSwag ARC-C GPQA BBH MMLU IFEval
75 1.0 50K 64.97 41.14 77.44 65.40 81.51 77.63 2424 61.89 64.83  53.17 61.22
75 1.5 50K 68.46 47.48 78.66 65.20 77.48 70.17 24775 49.99 59.29  54.03 59.55
75 20 50K 73.24 33.30 77.44 64.80 80.62 7831 2626 57.17 63.79 5520 61.01
8.0 1.0 50K 61.94 33.24 76.22 63.80 78.35 7492 24775 49.94 61.37  54.66 57.92
80 1.5 50K 70.28 33.82 76.83 64.80 80.23 7424 2424 60.57 6542  53.16 60.36
8.0 2.0 50K 51.74 35.90 76.83 64.20 79.47 7593 2525 60.23 63.09  54.86 58.75
85 1.0 50K 45.87 46.00 78.05 63.40 79.64 78.64 25776 62.61 64.38  55.17 59.95
85 15 50K 64.75 31.94 78.66 64.20 80.20 76.95 2374 60.85 64.13  53.54 59.90
85 20 50K 54.66 27.50 76.22 65.40 80.25 7898 2929 61.56 64.09  53.10 59.11

Table 3: Comparison across different threshold values of standard deviation threshold and review score threshold
with seed dataset of Alapca and base model of Qwen-2.5-7B.

Math Coding Reasoning General
SIZE GSM8K MATH Humaneval MBPP HellaSwag ARC-C GPQA BBH MMLU [IFEval AVG
LLama3.1 8B
Condor
10K  GRAI 64.90 11.26 48.78 46.60 59.10 69.49 2475 64.46 39.55 43.17 47.21
20K GRA2  65.88 16.22 51.83 47.40 65.83 70.51  28.79 63.28 4489  48.40 50.31
30K GRA3  67.10 15.38 51.83 48.40 61.82 69.15 25.25 63.13 45.60  48.03 49.57
40K GRA4  65.88 14.64 51.83 47.40 66.07 7220 2727 64.75 4290 5449 50.75
50K  GRAS  65.58 15.82 50.61 48.80 69.22 72.54 26777 63.48 4522 5354 51.60
Alpaca
10K  GRAI 63.91 10.22 48.17 47.20 61.57 69.83  29.80 63.80 35.15  46.08 47.58
20K GRA2  65.66 14.86 53.66 47.00 64.41 71.19 27778 64.62 45.05 50.16 50.44
30K GRA3  65.13 11.02 53.66 48.00 62.11 70.17 2677 6291 45.35 53.41 49.86
40K GRA4  66.41 15.16 50.61 49.20 65.32 73.56 29.29 64.78 45.63 55.31 51.53
50K  GRAS  65.58 17.2 52.44 48.60 66.30 7153  29.80 64.50 48.58  56.80 52.14
WizardLM
10K  GRAI 63.68 10.08 49.39 47.80 61.67 68.47  29.80 63.35 42.87 4847 48.56
20K  GRA2 6596 16.98 50.61 47.20 65.25 7254 2677 6497 44.07 5144 50.58
30K GRA3  68.16 14.50 52.44 50.00 64.49 69.15 28.28  63.13 4493 5228 50.74
40K GRA4  65.88 18.98 51.22 47.00 66.54 72.88 2677 63.28 43.10 5352 50.92
50K  GRAS  65.66 14.14 47.56 48.20 65.54 7322 2828 6425 42.14  55.27 50.43
Qwen2.5 7B
Condor
10K GRAI 49.36 20.10 72.56 64.40 62.69 62.37 19.70  41.18 5470  50.13 49.72
20K  GRA2  60.88 42.10 75.00 66.40 73.56 7424 26,77 5195 63.70  50.97 58.56
30K GRA3  65.88 34.30 78.05 66.00 77.74 73.90  26.77 57.26 64.08  53.52 59.75
40K GRA4  67.25 39.04 79.27 66.60 74.23 7322 2626 51.11 63.12  52.86 59.30
50K  GRAS 64.75 42.82 76.22 65.60 79.90 75.59 2626 61.49 64.59  54.02 61.13
Alpaca
10K GRAI 52.08 20.42 71.34 65.60 70.68 70.17 19.19  45.00 5743 50.37 52.23
20K GRA2  63.68 33.50 73.17 65.80 71.59 71.19 2424 4549 58.66 4991 55.72
30K GRA3  70.28 33.82 76.83 64.80 80.23 7424 2424 60.57 6542  53.16 60.36
40K GRA4 7278 46.48 75.00 65.80 76.99 71.19 2424 45.27 61.86  55.53 59.52
50K GRAS 51.71 44.62 74.39 64.60 81.62 77.63  20.71 62.97 65.06  54.58 59.79
WizardLM
10K GRAI 53.98 23.20 73.17 65.20 73.66 70.51 22.73  48.30 5942  51.08 54.13
20K GRA2 59.74 31.02 73.17 65.80 76.44 7322 20.71 53.02 63.12  50.59 56.69
30K GRA3  66.72 27.70 75.61 64.80 78.47 7424 2374 53.38 64.60 51.17 58.04
40K GRA4  70.89 38.58 76.22 64.60 79.02 77.63 19.19  59.29 65.10  53.55 60.41
50K  GRAS 5898 47.84 76.83 64.60 81.58 79.66  28.79 63.99 6523  54.15 62.17

Table 4: Detail Results of effect of the data iteration . Bold underlined values represent the best results.
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