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Abstract
In the pursuit of enhancing domain-specific
Large Language Models (LLMs), Retrieval-
Augmented Generation (RAG) emerges as a
promising solution to mitigate issues such as
hallucinations, outdated knowledge, and lim-
ited expertise in highly specialized queries.
However, existing approaches to RAG fall short
by neglecting system state variables, which are
crucial for ensuring adaptive control, retrieval
halting, and system convergence. In this paper,
we introduce the Turing– Complete–RAG (TC–
RAG) through rigorous proof, a novel frame-
work that addresses these challenges by incor-
porating a Turing Complete System to man-
age state variables, thereby enabling more ef-
ficient and accurate knowledge retrieval. By
leveraging a memory stack system with adap-
tive retrieval, reasoning, and planning capabili-
ties, TC–RAG not only ensures the controlled
halting of retrieval processes but also mitigates
the accumulation of erroneous knowledge via
Push and Pop actions. In the case study of the
medical and general domain, our extensive ex-
periments on seven real-world healthcare and
general-domain datasets demonstrate the supe-
riority of TC–RAG over existing methods in
accuracy by over 7.20%. Our code, datasets
and RAG resources have been available at
https://github.com/Artessay/TC-RAG .

1 Introduction
Large Language Models (LLMs), such as Chat-
GPT (OpenAI, 2022) and GPT-4 (OpenAI, 2023), have
achieved remarkable strides in pivotal areas, demon-
strated exceptional performance across a variety of
downstream tasks (Kaplan et al., 2020; Vu et al., 2024;
Ma et al., 2025, 2024). In the medical domain—those

*Xinke, Yue and Rihong are equal contribution.
†Corresponding author.

medical LLMs (Wang et al., 2023a; Zhang et al., 2023;
Yang et al., 2023; Zhu et al., 2023; Pal and Sankara-
subbu, 2023)—exhibit great promise in the health-
care field, where accountability and trustworthiness are
paramount (Ji et al., 2023a; Song et al., 2024). By incor-
porating comprehensive medical knowledge through
pre-training (Kaplan et al., 2020), they can support
physicians in making accurate diagnoses and formu-
lating treatment plans (Jiang et al., 2023a), as well as
enhance medical resource allocation (Wang et al.; Xu
et al.; Liu et al., 2024). Despite medical LLMs’ advance-
ments, significant conundrums still remain, including
the difficulty in avoiding factual inaccuracies (i.e., hal-
lucinations) (Ji et al., 2023a; Cao et al., 2020; Ji et al.,
2023b; Jiang et al., 2024b), outdated knowledge (He
et al., 2022), and a lack of highly specialized exper-
tise (Kandpal et al., 2023). Consequently, Retrieval-
Augmented Generation (RAG) (Edge et al., 2024; Asai
et al., 2024; Yang et al., 2024b; Xu et al., 2025b; Jiang
et al., 2024a), which uses the external knowledge base
to provide medical knowledge as contextual information
to enhance content generation, combined with medical-
LLMs with their massive parameterized knowledge can
be likened to the expertise of doctors, is deemed as a
promising and necessary solution to the aforementioned
difficulties.

However, while current approaches in enhancing
LLMs with external knowledge through RAG show
promise (Su et al., 2024; Asai et al., 2024; Jiang et al.,
2023c), they have consistently overlooked the introduc-
tion of system state variables—an essential component
for ensuring adaptive control, retrieval halting, and
system convergence. Moreover, these existing RAG
methods are not Turing Complete, lacking the ability
to dynamically manage and monitor the retrieval pro-
cess in a way that guarantees convergence to a reliable
conclusion. In complex medical scenarios, where deci-
sions often require intricate, multi-step reasoning and
adaptive responses (Mustafa et al., 2023), the absence of
Turing Completeness (Turing, 1936) significantly limits
a system’s effectiveness and reliability. This gap moti-
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vates our approach: to construct a Turing Complete
RAG System that effectively manages state variables,
using a finite logical framework to enhance the RAG
process. However, how to effectively construct a Turing
Complete RAG system remains unexplored and faces
substantial challenges:
❶ C1. How to design a Turing Complete RAG Sys-
tem with the monitored state variable. Designing a
Turing Complete RAG system requires the integration
of monitored state variables that dynamically track and
control the retrieval process—something that existing
RAG methods lack. Current approaches (Jeong et al.,
2024; Su et al., 2024) do not have an explicit mecha-
nism to assess whether the system has converged to a
reliable conclusion, which is a critical gap. A significant
challenge lies in leveraging the forward propagation
of the large model to accurately compute these state
variables in real-time. This involves ensuring that the
state variables effectively reflect the system’s evolving
context, guiding crucial decisions on whether to con-
tinue, halt, or refine the retrieval process. Managing
these variables within the model’s forward pass, while
maintaining adaptability to complex and varied med-
ical queries, is essential for achieving both efficiency
and accuracy, ensuring that the retrieval process finally
reliably converges to an optimal conclusion.
❷ C2. Whether to, What to, and How to plan retrieval
for efficient and accurate knowledge to maintain op-
timal state. With the ability to assess the state, how
to dynamically manage it to achieve the expected state
is significant. For the real-life consultation case, doc-
tors will decide whether to perform and what to search
based on their state of mastery of this problem (Cox
et al., 2021), instead of the regardless search–which can
lead to redundant information that the model already
possesses, potentially causing confusion or even mis-
leading the LLMs. Moreover, an experienced doctor
can systematically analyze and plan further steps with
access to a vast medical knowledge base, while a layper-
son might struggle in a dilemma as to choose where to
start or which tools to use (Yao et al., 2022a; Zhu et al.,
2024). The medical LLM is analogous to a medical
expert (DIS, 2023), and the challenge lies in effectively
utilizing the LLM’s internal parameterized knowledge
to retrieve to maintain an optimal state.
❸ C3. How to avoid irrelevant noise affecting system
state during RAG. Since the traditional RAG’s retrieval
process is typically driven by query keywords (Soman
et al., 2023b,a; Sen et al., 2023; Kim et al., 2023) rather
than the model’s specific needs, it may introduce ex-
tensive irrelevant and noisy context. And the erroneous
knowledge will continue to accumulate with the retrieval
and reasoning process (Yao et al., 2022a; Shinn et al.,
2024), which can cause to waste token resources (Jiang
et al., 2024b), accumulate invalid memories, and en-
counter the “lost in the middle” (Liu et al., 2023) prob-
lems. Therefore, how to effectively remove erroneous
knowledge is crucial for maintaining system state.

To address these challenges, we propose Turing

Complete-RAG (TC–RAG), a Turing Complete Sys-
tem for domain-specific LLMs to provide reliable and
trustworthy medical analysis. ❶ For C1, we designed
a Turing Complete RAG system with a memory stack
that monitors intermediate states, ensuring the retrieval
process reliably converges to an optimal conclusion. ❷
For C2, we extensively collected medical data and pre-
trained a medical LLM, elevating its understanding from
layperson to expert level, thus enhancing its reasoning
and planning abilities. The model’s reasoning ability is
leveraged to decide whether and what to retrieve adap-
tively, and its planning capacity guides tool usage and
action planning, akin to how medical professionals solve
complex problems. ❸ For C3, TC–RAG incorporates
a memory stack system with backtrack and summary
operations to timely remove errors and condense redun-
dant knowledge, mitigating accumulation of erroneous
information and noise. In summary, our contributions
are as follows:
• To the best of our knowledge, TC–RAG is the first

RAG framework to introduce the system state vari-
able and the Turing Completeness mechanism, which
could make the retrieval process controllable and halt.

• By introducing state variable, we theoretically prove
the Turing Completeness of our white-box approach.

• TC–RAG establishes a stack memory system, capable
of adaptive retrieval, incorporating composed actions
to effectively manage memory, particularly in han-
dling harmful or noisy knowledge.

• We open-source a meticulously curated Chinese med-
ical pretraining dataset, along with extensive medical
documents and a comprehensive knowledge graph.

• Our thorough experimental evaluation on seven real-
world Medical and general Q&A datasets demon-
strates the superior performance of TC–RAG over
existing baselines, underscoring its accuracy and ex-
plainability. Furthermore, TC–RAG has been de-
ployed on the online hospital platform (anonymous).

2 Related Work
2.1 Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG), introduced
by (Lewis et al., 2020), enhances LLM performance on
knowledge-intensive tasks by integrating relevant infor-
mation from external knowledge bases through prompt
engineering. RAG not only mitigates hallucination is-
sues during LLM inference but also provides up-to-
date, task-specific knowledge, significantly boosting
both interpretability and performance on downstream
tasks (Izacard et al., 2022; Asai et al., 2023b,a). In the
biomedical field, RAG has been widely used to improve
LLMs’ reasoning and analytical capabilities by leverag-
ing external medical knowledge from sources such as
medical papers, textbooks, Wikipedia (Jin et al., 2023;
Lála et al., 2023; Zakka et al., 2024; Wang et al., 2023c;
Xiong et al., 2024), and knowledge graphs (Soman et al.,
2023b; Matsumoto et al., 2024).

Naive & Advanced RAG. Naive RAG typically
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follows a simple retrieve-and-read approach, where
relevant information is retrieved based on the initial
user query, and the answer is generated using that con-
tent (Soman et al., 2023b,a; Sen et al., 2023; Khandelwal
et al., 2020; Borgeaud et al., 2022; Ram et al., 2023).
Advanced RAG, however, incorporates more sophisti-
cated components such as retrievers (Qu et al., 2021; Ma
et al., 2023a), rerankers (Cheng et al., 2021; Yu et al.,
2022), filters (Jiang et al., 2024b), and readers (Yoran
et al., 2024; Fang et al., 2024), to improve the quality
of both retrieval and generation. However, neither naive
nor advanced RAG considers whether the LLM already
possesses the necessary knowledge. This often leads to
the retrieval of excessive, redundant information, which
can mislead the model and cause a “lost in the middle”
dilemma (Liu et al., 2023). Our method addresses this
by determining whether to retrieve and what to retrieve
based on the model’s internal parameterized knowledge,
resulting in more efficient and accurate retrieval.

Adaptive RAG. Recent research has focused on de-
veloping adaptive RAG strategies, enabling LLMs to
determine whether and when to retrieve and to select the
most appropriate retrieval tools from huge knowledge
base. FLARE (Jiang et al., 2023d) predicts the next sen-
tence and uses the generated low-confidence tokens as
query to re-retrieve relevant documents. DRAGIN (Su
et al., 2024) leverages the LLM’s uncertainty in its gen-
erated content to decide when to trigger retrieval based
on the internal self-attention weights and corresponding
keywords. Adaptive-RAG (Jeong et al., 2024) uses a
smaller LLM as a classifier to query complexity and
subsequently selects the most appropriate retrieval strat-
egy—ranging from simple to advanced. However, these
existing adaptive RAG methods are not Turing Com-
plete, lacking the ability to dynamically manage and
monitor the retrieval process in a way that guarantees
convergence to a reliable conclusion. Moreover, they
have yet to fully harness the step-by-step planning and
tool-use abilities of LLMs in conjunction with RAG.
Our approach addresses these limitations by integrating
a Turing Complete framework that optimizes retrieval
through advanced planning and tool-use strategies, en-
suring more reliable and accurate outcomes.

2.2 Reasoning and Planning Capabilities
Recent advancements have focused on enhancing the
reasoning and planning capabilities of LLMs (Zhu et al.,
2024; Yao et al., 2022a; Shinn et al., 2024; Koh et al.,
2024). One notable approach is Chain-of-Thought
(CoT) (Wei et al., 2022; Xia et al., 2024), which demon-
strates how LLMs can construct structured "thought pro-
cesses" to solve complex problems. ReAct(Yao et al.,
2022b) integrates reasoning traces with task-specific ac-
tions, enabling LLMs to plan, adjust actions, and man-
age exceptions while gathering information from exter-
nal sources such as knowledge bases. Reflexion (Shinn
et al., 2024) further improves LLMs by using linguis-
tic feedback, allowing them to reflect on and store task
feedback, enhancing decision-making in future trials.

Despite these advancements, the reasoning and planning
processes of LLMs often lead to the accumulation of
errors and redundant information. While these methods
introduce new decision trials, they frequently fall short
in managing previous memory—particularly in remov-
ing ineffective decisions or refining historical records.
To address these challenges, TC–RAG incorporates a
memory stack system with backtrack and summary op-
erations, allowing for timely error correction and con-
densation of redundant knowledge. This ensures that
the model’s reasoning process remains efficient and ac-
curate, leading to more reliable outcomes.

3 Prelinmary
Definition 1. (Stack of Memory). In TC–RAG,
the Memory of LLMs is conceptualized as a White
Box Turing Machine (Turing, 1936), with the rigor-
ous theoretical proof in Appendix 8.2. Let TC =
(S,A,M, δ, s0,F , σ) represent the stack memory of
the LLMs, where:
• S denotes the set of possible states the LLMs occupy.

Specifically, we use numerical values like perplex-
ity (Jelinek et al., 1977) & uncertainty (Peng et al.,
2024) to define system’s state.

• A represents the set of actions that the LLMs can
perform. Following stack theory, we define the fun-
damental meta-actions: push and pop. Additionally,
we have composite actions composed of the two meta-
actions: “Thought”, “Tool_Observation”, “Plan”,
“Backtrack”, “Summary”, and “Conclusion”.

• M is the infinite stack memory, which includes the
set of actionsA and potentially other symbols may be
used in stack operations, such as the initiation state
“User_Query”.

• δ : S×M→ S×A×M×(0,+∞) is the state tran-
sition function. It defines how the LLM transitions to
a new state, selects an action, updates the stack mem-
ory, and calculates a new system state value based on
the current state and stack memory. The transition
involves selecting an action a ∈ A (which includes
push and pop operations), leading to a new stack top
and an updated system state value s ∈ S within the
range (0, $Large_Value$). δ is decided by LLMs and
state calculation function.

• s0 ∈ S is the initial state, with its initial and upper
bound value defined as s0 = $Large_Value$ (where
a lower value indicates a more desirable system state).

• F ⊆ S is the set of final states. The state f ∈ F
is deemed final if the current action is “Conclusion”
and the current state value f is less than the threshold
σ. Otherwise, the system will either reset the state
value to the threshold σ or change the action from
“Conclusion” to “Thought” for further analysis.

• σ ∈ (0,+∞) is the hyper-threshold for the final state.

Definition 2. (Meta-Actions). In this part, we define
the meta-actions in TC–RAG as follows:
• Push: When the medical-LLM processes new infor-

mation or obtains tool observations, a new action is
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determined and pushed onto the stackM:

(st+1, at+1)← δ(st,Mt),Mt+1 ← push(Mt, at+1),

where st+1 represents LLM’s next system state value,
at+1 is the next action to be pushed onto stackM.

• Pop: If an error or inconsistency is detected, the LLM
needs to revert to the previous state by popping the
top element from the stack:

(st+1, at+1)← δ(st,Mt), Mt+1 ← pop(Mt).

Task Definition. Given the parameterized knowl-
edge Θ embedded within LLM, and non-parameterized
knowledge base D which comprises diverse types of
knowledge, the objective is to generate a reliable medi-
cal Response given the natural language User_Query:

Response← Θ(User_Query,D | P), (1)

where P is the task-specific prompt, i.e. CoT’s (Wei
et al., 2023), ReACT’s (Yao et al., 2022a), Trigger
Prompt’s (Xu et al., 2025a), etc.

Reasons for Stack Memory. The stack design in TC–
RAG offers several advantages: ❶ ensures the purity
of historical information by removing irrelevant knowl-
edge via pop; ❷ provides O(1) access efficiency for fast
retrieval of past information; ❸ memorizes both param-
eterized and external knowledge, enhancing reasoning
capabilities; ❹ allows dynamic control of the reasoning
process with options for backtracking and summarizing;
❺ and mimics human-like reasoning, where informa-
tion is accumulated and conclusions are adjusted as new
evidence arises. (cf Appendix 8.1 for details).

4 TURING-COMPLETE
We define a stack-based memory system incorporating
a system state variable and prove its equivalence to a
universal Turing machine T through a series of formal
definitions, lemmas, and a main theorem in 5 steps. The
detailed proofs are provided in Appendix 8.2, 8.3. We
prove this by showing that for any Turing machine T ,
there exists TC that can simulate T .

Step ❶: Construct Turing System For a Turing ma-
chine T = (ST ,AT ,MT , δT , st0, staccept, streject),
we interpret TC = (S,A,M, δ, s0,F , σ) with the fol-
lowing components:
1. S = ST ∪ f , where f /∈ ST is the end state.
2. A = AT ,M =MT ∪ A, s0 = st0, F = {f}, σ is

the hyper-threshold to decide accept or reject.
3. The transition function δ is defined as:

δ(s, a) =





(s′, push, s ≥ σ) if δT (st, a) = (st′, a, R)

(s′, pop, s ≥ σ) if δT (st, a) = (st′, a, L)

(f, no_op, a, s < σ) if st ∈ {staccept, streject}

where a is the executing action for T or TC. The
operations push and pop are corresponding to the right
(R) and left (L) movements in T . Transition function
δ(·, ·) is for TC and δT (·, ·) is for T . no_op indicates
no operation is performed when the system is halting.

Step ❷: Configuration Mapping Next, we define a
bijective mapping function h that maps each configura-
tion of T to TC. We now define configuration c of T as
c = (st, w1aw2), w1, w2 represents the sequence of ac-
tions to the left / right of the tape head, where st ∈ ST ,
a ∈ AT is the tape head/action. Configuration of TC
cTC is composed of the tuple as (system state, remaining
actions, stack memory actions, whether to halt) as:

h(st, w1aw2) = (s, w2, w
R
1 a, s ≥ σ) = cTC

where wR
1 is the reverse of w1, which is necessary due

to Last-In-First-Out (LIFO) principle ofM.

Step ❸: Simulation of Computation Steps We prove
that TC can simulate each step of T (Lemma 3):

Lemma 1 If c1 ⊢T c2 in T , then h(c1) ⊢∗TC h(c2) in
TC, where ∗ denotes one or multiple steps of deriva-
tion, ⊢ is the action shift operator.

Proof 4.1 Let c1 = (st1, w1a1w2) and c2 =
(st2, w

′
1a2w

′
2) be configurations of T with at = {L,R}.

We prove Lemma 3 by considering the two cases push
and pop corresponding to the possible directions of tape
head movement in T .
• Case 1: If δT (st1, a1) = (st2, a2, R), then:

h(c1) = (st1, w2, w
R
1 a1, st1 ≥ σ)

⊢TC (s2, w
′
2, w

R
1 a1a2, s2 ≥ σ) (push a2)

= h(st2, w1a1a2w
′
2) = h(st2, w

′
1a2w

′
2)

= h(c2)

• Case 2: If δT (st1, a1) = (st2, a2, L), then:

h(c1) = (st1, w2, w
R
1 a1, st1 ≥ σ)

⊢TC (s2, w2, w
R
1 , s2 ≥ σ) (pop a1)

⊢TC (s2, w
′
2, w

′R
1 a2, s2 ≥ σ)

(push a2, if a2 ̸= null)

= h(st2, w
′
1a2w

′
2) = h(c2)

It’s noted that the two cases correspond to meta opera-
tions of push (Case 1) and pop (Case 2) in TC–RAG.

Step ❹: Preservation of Acceptance and Rejection
Lemma 2 T accepts (rejects) whole input w
if and only if TC reaches a configuration
(f,NULL,M, f < σ) from the initial configuration
(s0, w,NULL, s0 ≥ σ).

Proof 4.2 We prove the consistency of reaching the ter-
mination state from both T → TC and TC → T per-
spectives.

(Forward ⇒) Assume T accepts (rejects) input w.
Then: ∃t ∈ N such that after t steps, T enters state
staccept (or streject). Then, Let (stt, wt) be the config-
uration of T at step t, where stt ∈ {staccept, streject}.
By our construction of δ, ∀a ∈ A, for ∀st ∈
{staccept, streject} we have:

δ(s, a) = (f, no_op, a, f < σ)
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Therefore, if h(stt, wt) = (st, w2, w
R
1 a, st ≥ σ) is the

corresponding configuration in TC, then:

(st, w2, w
R
1 a, st ≥ σ) ⊢tTC (f,NULL,M, f < σ)

Thus, TC achieves f with state value lower than σ.
(Backward ⇐) Assume TC reaches configuration

(f,NULL,M, f < σ) from (s0, w,NULL, s0 ≥ σ).
Then: ∃t ∈ N such that:

(s0, w,NULL, s0 ≥ σ) ⊢tTC (f,NULL,M, f < σ).

Let (st−1, w2, w
R
1 a, st−1 ≥ σ) be the configuration of

TC at step t − 1. Then, by the construction of δ, the
only way to reach f is if st−1 ∈ {staccept, streject}.
Therefore, the corresponding configuration of T at
step t − 1 must be (stt−1, w1aw2), where stt−1 ∈
{staccept, streject}. Thus, T must have entered staccept
or streject, implying that T accepts or rejects w.

From both the Forward and Backward proofs, T ac-
cepts (or rejects) the input w if and only if TC reaches
a configuration (f,NULL,M, f < σ) from the initial
configuration (s0, w,NULL, s0 ≥ σ).

Step ❺: Convergence of the State Value to σ As
detailed in Appendix 8.3, under the Action Validity As-
sumption, we have shown that the Lyapunov function
V (stj) = max(0, stj − σ) satisfies the following key
properties: V (stj+1) − V (stj) ≤ −ϵ, ϵ > 0, which
ensures that the system state st decreases monotonically.
As a result, the system state will eventually reach the
threshold σ, satisfying stT < σ for some finite T . This
guarantees finite-time convergence. And the conver-
gence time T satisfies the following bound with approx-
imate log(δ/V (st0 ))

log(1−β) . Thus, the system halts reliably after
a finite number of steps.

By the above lemmas, we show that: ❶ TC can sim-
ulate every move of T . ❷ TC halts if and only if T
achieve acceptance or rejection behavior. Thus, TC can
simulate any computation of any Turing machine
T , which by definition makes TC Turing complete.
Theoretically, TC can be considered a Tape Model, how-
ever, considering the issue of accumulated erroneous
and disordered context, in implementation, we allow the
observation to the entire memory stack S (not just the
top), but restrict LLMs to modify any position of S.

5 Memory Stack and State Monitor
In this section, we present our innovative framework,
TC–RAG, as illustrated in Figure 1. Traditional meth-
ods, such as those based on thought chain (Yu et al.,
2023; Li et al., 2023a; Ma et al., 2023a; Wei et al., 2023)
and reasoning and acting approaches (Yao et al., 2022a;
Shinn et al., 2024; Zhu et al., 2024), often suffer from
lack of state management, retrieval halting, accumulated
erroneous knowledge, token inefficiency, and the issue
of being “lost in the middle”. To address these chal-
lenges, we introduce a stack-based memory system that
leverages push and pop actions for efficient memory

management for C1, C3. Additionally, to further im-
prove the LLMs’ knowledge comprehension and adapt-
ability, we incorporate an expert knowledge pre-training
module based on the general LLM, which enhances the
LLMs’ understanding and reasoning capabilities (as de-
tailed in Appendix 8.5) for C2. Next, in subsection 5.1,
we define the stack memory structure and the compos-
ite actions such as “Thought”, “Tool_Observation”,
“Plan”, “Backtrack”, “Summary”, and “Conclusion”.
We then outline the stack states—initiation, intermedi-
ate, and final—and provide specific state calculations
in subsection 5.2. In Appendix 8.6, we describe the
prompting strategy and the full algorithm.

5.1 Stack Memory and Composed Actions

In managing memory for LLMs, memory can be con-
ceptualized as a stack structure adhering to the “last-in,
first-out” (LIFO) principle. Unlike Markov processes
where future actions depend solely on the current ac-
tions, in TC–RAG, each new memory entry builds upon
the accumulated memory (Pimentel and Silva, 2018;
Miller and Chomsky, 2003). To maintain the order-
liness and consistency of the memory, erroneous en-
tries are ejected sequentially from the top of the stack.
This approach prevents “contamination” and confusion
that might arise from directly removing intermediate
memories, thereby mitigating unreasonable interference
during the reasoning process.

Consequently, as outlined in Definition 1, we leverage
the stack M to simulate the LLM’s memory. Based
on meta stack operations of push & pop in Section 4,
the following composite actions have been devised to
enhance reasoning and planning capabilities of LLMs:

• Thought: This action represents LLM’s analytical
process. Once the model has processed and generated
an insight, this analysis is pushed onto stackM.

• Tool_Observation: When the LLM interacts with
external tools to gather additional data or insights, the
result of this interaction is captured as an observation.
Both the tool’s name and the resulting observation are
then pushed onto the stackM.

• Plan: Triggered when the LLM identifies a relevant
or helpful task, this action occurs when the model
makes a decision to outline subsequent actions or
strategies. The model pushed a new element to the
stack M, representing a planned step, decision, or
strategy that will guide the next phase of the task.

• Backtrack: Triggered by the LLM’s reflection mech-
anism, this action occurs when the top of the stack
is found to be irrelevant or harmful to the ongoing
task. The model pops the top element off the stack
M, removing the irrelevant or harmful memory.

• Summary: When the content at the top of the stack
M becomes too lengthy or cluttered with irrelevant
information, the LLM initiates a summarizing process.
The content is first popped off the stack, and then
the concise summary is pushed back onto the M,
ensuring that the stack remains focused on the most
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Figure 1: Overall framework of TC–RAG.

pertinent information.
• Conclusion: This action occurs when the LLM be-

lieves it has reached a final conclusion or solution
in a black-box manner. However, if the current state
does not satisfy the necessary stopping conditions, the
Conclusion action is replaced with Thought, allow-
ing the model to continue refining its reasoning.

5.2 Stack Status and Memory Management

5.2.1 Pipeline
We will systematically describe the changes in the mem-
ory stack and system status.
• Stack and State Initialization: Initially, the over-

all system state value is assigned a large constant
as $Large_Value$. The memory stack, M, begins
with only the “User_Query” action. This entry is
immutable, meaning it cannot be popped and perma-
nently resides at the bottom of the stack.

• State Value Evaluation: During analytical pro-
cess, outputs tagged with actions “Conclusion” and
“Thought” are monitored. For each output, a system
state value is computed and carried forward in subse-
quent iterations. This value can be determined using
metrics like conditional perplexity and uncertainty,
with lower values indicating higher confidence.

• Conclusion Validation: If the LLMs output a
Conclusion, the system evaluates whether the associ-
ated state value meets predefined stopping conditions.
If not, action Conclusion is reclassified as Thought,
signaling the need for further analysis.

• State Restoration: If a Thought is popped from the
stack (e.g., via Backtrack action), the system restores
the system state value to its previous level before the
addition of that Thought. This management strategy
ensures the system remains dynamic and responsive to
memory, allowing for iterative refinement of LLM’s
outputs. By continuously evaluating and adjusting
based on system state value, LLMs can effectively
navigate toward accurate and reliable conclusions.

5.2.2 System Value Calculation
To ensure that the system is progressing toward a reli-
able conclusion, a system state value is calculated by
comparing the content generated by the LLMs at the
top of the stack (from either a Thought or Conclusion)
with the bottom “User_Query”. This comparison, based
on metrics such as conditional perplexity and uncer-
tainty, quantifies how closely the system’s current rea-
soning aligns with the original intent of the task:

• Conditional Perplexity: Conditional Perplexity is a
metric used to evaluate the predictability of a language
model given prior context (Jelinek et al., 1977). For
the sequence of textMtop at the top of theM, and
the original query at the bottom (denoted asMbottom),
the conditional perplexity cppl is calculated as:

cppl(Mtop | Mbottom) = exp
(
− 1

N

N∑

i=1

log

P (wi | w1, . . . , wi−1,Mbottom)
)
,

(2)

where N is the number of tokens inMtop and P (wi |
w1, . . . , wi−1,Mbottom) represents the probability of
the i-th token wi inMtop given the preceding tokens
and the contextMbottom.

• Uncertainty: uct measures the confidence (Jiang
et al., 2023b) in the contextMtop and is derived from
the entropy of the output probability distribution:

uct(Mtop) = −
N∑

i=1

P (wi | w1, . . . , wi−1)

× logP (wi | w1, . . . , wi−1),

(3)

where higher entropy indicates greater uncertainty
and less reliability.

The system will then select either cppl or uct as the
system state value st at step t. If st < σ, it suggests
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that the LLM’s output is both predictable and confident,
indicating alignment with the original query. Vice versa,
a high-value signal that the output may not be reliable or
relevant, necessitating further refinement. The system
will continuously update st during reasoning process,
using it to guide decisions on whether to finalize or
continue refining the output.

5.3 Acceleration Strategy

To mitigate the time overhead associated with multi-turn
interactions with LLMs, we employ two acceleration
strategies: ❶ Retrieval and Interaction in the Decoder
Stage. As multi-turn interactions accumulate more con-
textual information, the increasing length of the context
results in repeated encoding of historical context (Key
and Value matrices) during the decoding process leading
to significant inefficiencies. To address this, we incor-
porate a retrieval and interaction mechanism during the
decoder stage, which interrupts the decoding process
after each action is generated by LLMs (Jain et al., 2024;
Asai et al., 2024). ❷ Token Speculative Sampling. The
decoding stage in LLMs is computationally intensive
due to the token-by-token generation process. To alle-
viate this, we fine-tune a smaller language model (with
only 1.5B parameters) as a draft model and employ spec-
ulative sampling to predict the next token (Leviathan
et al., 2023; Chen et al., 2023).

6 Experiments

In this section, we conduct a series of experiments on
three medical datasets to answer the following research
questions:

• RQ1 (Section 6.2, Appendix 8.8.1): Does TC–
RAG outperform SOTA RAG methods under the same
database source?

• RQ2 (Section 6.3, 6.4): Is the stack framework we de-
signed effective? What impact does each component
have on the overall performance?

• RQ3 (Appendix 8.8.2, 8.8.3): Can TC–RAG really
pop up erroneous execution memory and noise injec-
tion and achieve memory management?

Moreover, we also anonymously rank TC–RAG on the
largest Chinese medical CMB Leaderboard, which in-
cludes detailed medical scores for each subcategory (c.f.
Appendix 8.10)1.

6.1 Experimental Setup

❶ Datasets. Our experiments are conducted on two
multi-task medical datasets MMCU-Medical (Zeng,
2023) and CMB-Exam (Wang et al., 2023b), and one
open-domain Q&A medical dataset CMB-Clin (Wang
et al., 2023b). ❷ RAG Tools. We incorporate var-
ious RAG tools including knowledge graph search,

1https://cmedbenchmark.llmzoo.com/static/leaderboard.html

document search, web and pedia search, and elec-
tronic medical record database. ❸ LLM Turbo. The
general-domain LLM Qwen-32B (Yang et al., 2024a)
was selected as the base model, which we further pre-
trained for the medical domain.❹ Baselines. To as-
sess the effectiveness of our approach, we compare
TC–RAG with twelve baselines. (1) Without RAG:
Base and CoT (Wei et al., 2023). (2) Naive RAG: SR-
RAG (Soman et al., 2023b), FL-RAG (Khandelwal
et al., 2020) and FS-RAG (Trivedi et al., 2023). (3)
Advanced RAG: CoK (Li et al., 2023b), SuRe (Kim
et al., 2024), HyKGE (Jiang et al., 2024b). (4) Adap-
tive RAG: ReACT (Yao et al., 2022a), Self-RAG (Asai
et al., 2024), FLARE (Jiang et al., 2023c) and DRA-
GIN (Su et al., 2024). ❺ Evaluation Metrics. We use
EM (Zhu et al., 2021; Karpukhin et al., 2020) metric
for multi-task medical choice questions and ROUGE-
R (Xu, 2023) and BLEU-1, BLEU-4 (Xu, 2023) for
open-domain Q&A tasks. Detailed experimental set-
tings are in Appendix 8.7.

6.2 Main Result Analysis (RQ1)

To answer RQ1, we conduct experiments and report
results of the accuracy on the MMCU-Medical, CMB-
Exam and CMB-Clin datasets with two LLMs in Table1.
From the reported accuracy, we can find the following
observations:

Comparison of RAG methods and Base LLMs.
Given the complexity of patient queries, we observe
that the performance of the Naive RAG methods shows
little to no improvement compared to the No RAG
baselines. In contrast, the effectiveness of Adaptive
RAG is significantly higher than that of Advanced RAG
and substantially outperforms other approaches. This
underscores the necessity of employing more sophisti-
cated submodules for advanced and adaptive retrieval
in domain-specific scenarios.

Comparison of TC–RAG and other RAG meth-
ods. Our model, TC–RAG, clearly outperforms the
baselines across all datasets, with an average perfor-
mance gain of all metrics of up to 7.20%. For instance,
the EM and BLEU-4 scores improve by approximately
2.60%-5.62% and 8.23%-13.72%, respectively. These
results highlight the effectiveness of our modules in sys-
tem state & memory management, as well as adaptive
retrieval. Additionally, it is worth noting that domain-
specific LLMs significantly outperform general LLMs,
further demonstrating the importance of pre-training a
medical LLM to support TC–RAG, in line with C2.

Strong Generalization Ability. Table 4 summarizes
the experimental results. TC–RAG demonstrated supe-
rior performance compared to the baseline methods in
the general domain. These findings reinforce TC–RAG’s
strong generalization ability across diverse domains,
tasks, languages, model sizes, and model types, mak-
ing it a robust framework for RAG tasks.
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Table 1: Performance comparison (%) on CMB, MMCU and CMB-Clin datasets.

Method
LLM Turbo Qwen-32B Pretrained Qwen-32B

Type Dataset CMB MMCU CMB-Clin CMB MMCU CMB-Clin
Metric EM EM BLEU-1 BLEU-4 ROUGE EM EM BLEU-1 BLEU-4 ROUGE

Baselines

Without RAG
Base 67.33 80.92 06.84 10.82 24.10 68.34 80.70 06.93 11.24 23.75
CoT 70.88 80.53 07.23 11.64 24.30 69.94 80.06 07.37 11.67 23.54

Naive RAG
SR-RAG 66.73 80.31 09.48 14.18 22.23 68.54 83.15 11.56 16.72 22.38
FL-RAG 67.94 75.17 10.67 15.32 22.96 69.48 78.61 10.95 16.20 23.13
FS-RAG 64.65 71.62 05.12 08.63 20.29 67.20 75.20 05.76 09.20 21.34

Advanced RAG
CoK 76.25 79.04 13.96 25.33 31.49 79.18 81.31 14.92 27.84 46.90
SuRe 76.96 83.08 14.88 27.90 31.06 78.55 85.56 15.26 28.01 44.38

HyKGE 82.17 86.45 19.02 41.84 38.92 84.58 87.09 22.85 43.79 50.23

Adaptive RAG

ReACT 82.20 87.34 19.15 48.55 41.22 84.08 88.19 22.37 49.96 50.45
Self-RAG 81.88 85.78 18.23 46.82 44.70 84.32 86.77 20.06 47.12 48.90
FLARE 82.89 87.26 19.85 49.19 51.15 85.14 87.37 20.91 50.38 52.96

DRAGIN 82.78 85.28 19.48 44.18 45.23 84.80 85.46 19.56 46.72 47.38

Ours Adaptive RAG
TC–RAG-cppl 84.90 89.61 20.86 53.04 53.29 87.33 92.80 24.65 56.94 57.46
TC–RAG-uct 85.63 89.46 21.03 53.24 54.98 87.95 93.15 25.89 57.29 56.59

Ablations Adaptive-RAG
w/o Backtrack 83.44 88.61 20.04 51.38 52.40 86.24 90.67 22.06 52.92 53.88
w/o Summary 84.82 89.00 20.72 52.11 53.07 84.79 88.47 24.48 54.39 54.72

w/o State Monitor 83.75 88.79 19.82 49.44 51.07 85.27 89.04 21.40 48.42 51.86

6.3 Ablation Study (RQ2)

We perform ablation studies to evaluate the impact of
each component within TC–RAG, as detailed in Table 1,
with three variants: (1) TC–RAG without Backtrack
action (denoted as w/o Backtrack), (2) TC–RAG with-
out Summary action (denoted as w/o Summary), (3) TC–
RAG without State Monitor, relying solely on the LLM’s
’Final Answer’ action to determine termination, trans-
forming into a black-box system (denoted as w/o State
Monitor).

The results reveal that each component contributes
positively to the overall performance of TC–RAG. The
exclusion of any component leads to a noticeable reduc-
tion in effectiveness. Particularly, the absence of the
State Monitor results in significant performance degra-
dation, highlighting the critical importance of the sys-
tem state variable in monitoring the process, in line with
C1, which is essential for preventing overconfidence
and ensuring appropriate termination, thereby avoid-
ing excessive or inadequate retrieval. Moreover, the
removal of the Backtrack and Summary actions under-
scores the necessity of effective memory management.
These actions are crucial for mitigating irrelevant noise
and maintaining an optimal system state, aligning with
the challenges outlined in C3.

6.4 Effiency Study (RQ2)

To illustrate the effectiveness of our TC–RAG, we con-
ducted a comparative analysis of the time and token
overhead between TC–RAG and other RAG approaches
based on the Qwen-32B and CMB-Exam datasets, as
presented in Table 2.

Our findings reveal that except for models like the
Base, which do not require RAG, and those requiring
only 1-2 interactions such as CoT and HyKGE, most
iterative RAG methods exhibit long average interaction
times. Notably, CoK, which lacks adaptive capabilities,

Table 2: Analysis Comparison of RAG methods. The
average duration is computed based on Qwen-32B for
the CMB-Exam Dataset.

Method Avg. Interactions Avg. Retrievers Avg. Time (s) Avg. Token
Base 1 0 7.29 128.89

CoT 1 1 14.37 196.68

HyKGE 2 1 19.76 120.37

CoK 4.31 4.31 125.84 753.02

ReACT 6.84 5.72 130.87 874.29

Self-RAG 5.84 4.22 61.09 567.98

FLARE 4.96 4.96 126.74 785.46

DRAGIN 6.12 6.12 167.95 998.64

TC–RAG 4.78 3.37 50.91 458.82

is particularly hindered by unrestricted interactions and
retrievals, negatively impacting their efficiency. In con-
trast, methods like ReACT, Self-RAG, FLARE, DRA-
GIN, and TC–RAG show significantly shorter overheads.
For TC–RAG, the combination of Retrieval and Inter-
action in the Decoder Stage and the Token Specula-
tive Sampling strategy results in much lower overhead
compared to other adaptive RAG models. This reduced
overhead is particularly important, as excessive waiting
times can prove to be considerably restrictive, espe-
cially in real-world medical Q&A scenarios where time
is a critical factor. Therefore, achieving a balance be-
tween time overhead and model accuracy is crucial. In
this regard, TC–RAG emerges as the most efficient and
high-performing framework. In summary, since RAG
involves a process of continuous trial and error (Barnett
et al., 2024), we experimented with numerous strategies
and ultimately arrived at TC–RAG.

7 Conclusions and Future Works
We introduce the first Turing-Complete RAG system
for medical LLMs, named TC–RAG. By incorporat-
ing a monitored state variable, we have developed a
stack memory framework that enables more dynamic
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and adaptive retrieval processes, effectively addressing
the endless and inaccurate retrieval challenges. The TC–
RAG framework, with its memory stack system for back-
tracking and summarizing, effectively reduces the accu-
mulation of erroneous knowledge and irrelevant noise.
Our experiments suggest that TC–RAG outperforms
existing baselines across multiple real-world medical
datasets, showing potential improvements in accuracy
and reliability. Furthermore, the successful deployment
of TC–RAG on an online platform also highlights its
practical value in real-world applications. Future efforts
will focus on incorporating more complex composed
actions, enabling multi-LLM interactions, and exploring
its application in other specialized domains.

Limitations
Despite the promising results, our framework does
have some limitations that need to be addressed. First,
the computational overhead introduced by the memory
stack system and dynamic retrieval processes can be
relatively high. While these components are essential
for managing complex queries and minimizing error
accumulation, they do contribute to increased compu-
tational costs. In large-scale or real-time applications,
this could present challenges related to processing speed
and efficiency. Although we have proposed solutions
like speculative sampling to alleviate some of this over-
head, further optimization is still needed to enhance
performance and scalability in time-sensitive environ-
ments. Another limitation is that the current framework
is primarily optimized for general medical applications.
While it performs well across a variety of tasks, there
remains significant potential for improvement in more
specialized medical domains. Future work will focus on
integrating more complex composed actions, enabling
multi-LLM interactions, and expanding the framework’s
capabilities to accommodate a broader range of special-
ized medical subfields. This will further enhance its
adaptability and performance in these targeted areas.
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8 Appendix

8.1 The Reasons of Choosing Stack Memory

The stack design in TC–RAG has the following five key
advantages:

• Ensuring the Purity of Historical Information: The
stack uses the pop operation to eliminate incorrect or
irrelevant knowledge, ensuring that each reasoning
step is based on accurate information, preventing the
accumulation of erroneous data. This way, the stack
remains pure, guaranteeing the reliability and consis-
tency of the reasoning process.

• Efficient Access: The stack provides O(1) access effi-
ciency, meaning that accessing historical information
is done in constant time. In complex query processing,
the stack can quickly provide the most recent context
or reasoning step, ensuring that the reasoning process
is not delayed by information retrieval.

• Storing Multiple Types of Knowledge: The stack
can store both the model’s parameterized knowl-
edge via Thought or Conclusion and external non-
parameterized knowledge via Tool_Observation or
Summary (Farahani and Johansson, 2024). This design
makes the stack a flexible, multi-level storage struc-
ture that integrates multiple sources of knowledge,
enhancing the model’s reasoning capabilities.

• Flexible Reasoning Control: The stack dynamically
manages the reasoning process. The model decides
whether to continue reasoning or conclude based on
the state of the information in the stack. By control-
ling the stack, the model can backtrack, summarize,
or terminate reasoning when necessary, improving
the flexibility and controllability of the reasoning pro-
cess and avoiding over-reasoning or premature con-
clusions.

• Human-like Reasoning: The stack’s "Last In, First
Out" (LIFO) nature effectively simulates the way hu-
man experts (i.e. doctors) reason during medical di-
agnoses or decision-making. Experts typically ac-
cumulate information step by step and adjust their
conclusions when new evidence arises. This design of
the stack makes the model’s reasoning process more
aligned with real-world decision-making, enabling it
to handle multi-step reasoning and complex decisions
more effectively.

8.2 Full Proof of Turing-Complete

We prove this by showing that for any Turing machine
T , there exists our TC that can simulate T :

Let N denote the set of natural numbers, and R the
set of real numbers. We consider computations over
finite alphabets and prove the Turing completeness of
our proposed model.

Definition 1. (Standard Turing Machine). A stan-
dard Turing Machine is a 7-tuple Turing machine T =
(ST ,AT ,MT , δT , st0, staccept, streject) where:

• ST is a finite set of states.

• AT ⊂MT is the input alphabet.

• MT is the tape alphabet, with ⊔ ∈ MT \ AT as
the blank symbol.

• δT : ST ×MT → ST ×MT × {L,R} is the
transition function.

• st0 ∈ ST is the initial state, and its initial value
and upper bound is $Large_Value$.

• staccept, streject ∈ ST are the accept and reject
states, respectively.

Definition 2. (T Configuration). A configuration of
T is a tuple cT = (st, w1aw2), where:

• st ∈ ST is the current system state value,

• w1, w2 represents the sequence of actions a ∈ AT to
the left / right of the tape head.

Definition 3. (TC Configuration). A configuration of
TC is a tuple cTC = (s, w,M, {halt || continue}) ∈
S ×A×M× {halt, continue}, where:

• s ∈ S is the current system state value, and its initial
value and upper bound is $Large_Value$.

• w is the remaining input actions,

• M is the current stack content,

• {halt || continue} is the conditions that determine
whether the system will continue or halt.

Definition 4. (Computation Step). For configura-
tions of TC at step t ct = (st, wt,Mt, st ≥ σ) and
ct+1 = (st+1, wt+1,Mt+1, ·), we say ct ⊢TC ct+1 if
and only if:

1. wt = awt+1 for some a ∈ A ∪ {ε}

2. δ(st, a) = (s2, op, b)

3. Mt+1 =

{
push(Mt, b) if op = push

pop(Mt) if op = pop

4. The computation terminates if st+1 < σ

where top(M) returns the top element of the stackM.
Next, we will break down this proof process into the

following steps:
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Step 1: Construction of the Turing Sys-
tem. Given a Turing machine T =
(ST ,AT ,MT , δT , st0, staccept, streject), we in-
terpret TC = (S,A,M, δ, s0,F , σ) with the following
components:
1. S = ST ∪ f , where f /∈ ST is the end state.
2. A = AT ,M =MT ∪ A, s0 = st0, F = {f}, σ is

the hyper-threshold to decide accept or reject.
3. The transition function δ is defined as:

δ(s, a) =





(s′, push, s ≥ σ) if δT (st, a) = (st′, a, R)

(s′, pop, s ≥ σ) if δT (st, a) = (st′, a, L)

(f, no_op, a, s < σ) if st ∈ {staccept, streject}

where a is the executing action for T or TC. The
operations push and pop are corresponding to the right
(R) and left (L) movements in T . Transition function
δ(·, ·) is for TC and δT (·, ·) is for T . The operation
no_op indicates no operation is performed when the
system is halting. This δ(·, ·) decides the next state
value and action (R, L, no_op).

Step 2: Configuration Mapping Next, we define a
bijective mapping function h that maps each configura-
tion of T to TC. We now define the configuration c of
T as c = (st, w1aw2), w1, w2 represents the sequence
of actions to the left / right of the tape head, where
st ∈ ST , a ∈ AT is the tape head/action. The config-
uration of TC cTC is composed of the tuple as (system
state, remaining actions, stack memory actions, whether
to halt) as:

h(st, w1aw2) = (s, w2, w
R
1 a, s ≥ σ) = cTC

where wR
1 is the reverse of w1, which is necessary due

to Last-In-First-Out (LIFO) principle ofM.

Step 3: Simulation of Computation Steps We now
prove that TC can simulate each step of T as in
Lemma 3:
Lemma 3 If c1 ⊢T c2 in T , then h(c1) ⊢∗TC h(c2) in
TC, where ∗ denotes one or multiple steps of derivation,
⊢ is the action shift operator.

Proof 8.1 Let c1 = (st1, w1a1w2) and c2 =
(st2, w

′
1a2w

′
2) be configurations of T with at = {L,R}.

We prove Lemma 3 by considering the two cases push
and pop corresponding to the possible directions of tape
head movement in T .
• Case 1: If δT (st1, a1) = (st2, a2, R), then:

h(c1) = (st1, w2, w
R
1 a1, st1 ≥ σ)

⊢TC (s2, w
′
2, w

R
1 a1a2, s2 ≥ σ) (push a2)

= h(st2, w1a1a2w
′
2) = h(st2, w

′
1a2w

′
2) = h(c2)

• Case 2: If δT (st1, a1) = (st2, a2, L), then:

h(c1) = (st1, w2, w
R
1 a1, st1 ≥ σ)

⊢TC (s2, w2, w
R
1 , s2 ≥ σ) (pop a1)

⊢TC (s2, w
′
2, w

′R
1 a2, s2 ≥ σ) (push a2, if a2 ̸= null)

= h(st2, w
′
1a2w

′
2) = h(c2)

It is noted that the two cases correspond to the meta
operations of push (Case 1) and pop (Case 2) in TC–
RAG.

Step 4: Preservation of Acceptance and Rejection
Lemma 4 T accepts (rejects) the whole input w if and
only if TC reaches a configuration (f,NULL,M, f <
σ) from the initial configuration (s0, w,NULL, s0 ≥
σ).
Proof 8.2 We prove the consistency of reaching the ter-
mination state from both T → TC and TC → T per-
spectives.

(Forward ⇒) Assume T accepts (rejects) input w.
Then: ∃t ∈ N such that after t steps, T enters state
staccept (or streject). Then, Let (stt, wt) be the config-
uration of T at step t, where stt ∈ {staccept, streject}.
By our construction of δ, ∀a ∈ A, for ∀st ∈
{staccept, streject} we have:

δ(s, a) = (f, no_op, a, f < σ)

Therefore, if h(stt, wt) = (st, w2, w
R
1 a, st ≥ σ) is the

corresponding configuration in TC, then:

(st, w2, w
R
1 a, st ≥ σ) ⊢tTC (f,NULL,M, f < σ)

Thus, TC achieve f with system state value lower than
σ.

(Backward ⇐) Assume TC reaches configuration
(f,NULL,M, f < σ) from (s0, w,NULL, s0 ≥ σ).
Then: ∃t ∈ N such that:

(s0, w,NULL, s0 ≥ σ) ⊢tTC (f,NULL,M, f < σ).

Let (st−1, w2, w
R
1 a, st−1 ≥ σ) be the configuration of

TC at step t − 1. Then, by the construction of δ, the
only way to reach f is if st−1 ∈ {staccept, streject}.
Therefore, the corresponding configuration of T at
step t − 1 must be (stt−1, w1aw2), where stt−1 ∈
{staccept, streject}. Thus, T must have entered staccept
or streject, implying that T accepts or rejects w.

From both the Forward and Backward proof, T ac-
cepts (rejects) input w if and only if TC reaches a con-
figuration (f,NULL,M, f < σ) from the initial con-
figuration (s0, w,NULL, s0 ≥ σ).

By the above lemmas, we have shown that: (1)
TC can simulate every move of T . (2) TC halts if
and only if T achieve acceptance or rejection behav-
ior. Thus, TC can simulate any computation of any
Turing machine T , which by definition makes TC
Turing complete, which is consistent with the LLM’s
backbone——transformers are Turing-Complete (Pérez
et al., 2021).

8.3 Convergence Analysis of State Value
In this section, we rigorously analyze the convergence
behavior of the TC–RAG model. We focus on two key
aspects: the role of information gain in reducing uncer-
tainty and the application of Lyapunov stability theory to
establish finite-time convergence. To rigorously prove
the finite-time convergence of the TC–RAG process, we
analyze its dynamics using Lyapunov stability theory.
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Definition of the Lyapunov Function We define a
Lyapunov function that quantifies the deviation of the
system state stt from a convergence threshold σ:

V (stj) = max(0, stj − σ), (4)

where σ is a predefined threshold indicating sufficient
certainty about the final answer Y . When stj ≤ σ, the
system is considered to have converged.

Properties of the Lyapunov Function The function
V (stj) possesses the following properties:

1. Non-negativity: By definition, V (stj) ≥ 0 for all
j ≥ 0, and V (stj) = 0 if and only if stj ≤ σ.

2. Monotonic Decrease: Our objective is to prove
that V (stj) decreases over time, i.e.,

V (stj+1)− V (stj) ≤ 0. (5)

Next, first we will provide the Action Validity Assump-
tion, and then we will prove these two properties respec-
tively.

8.3.1 Assumption of Action Validity
Assumption 1 (Action Validity): Leveraging the robust
task comprehension capabilities of LLMs (Ton et al.,
2025), we assume that every correctly executed ac-
tion—such as push and pop operations—yields mean-
ingful information gain. This gain enhances the system’s
ability to accurately predict the final answer. In contrast,
when an incorrect action occurs, the system employs
a pop operation to discard the erroneous information.
This mechanism ensures that only relevant and accurate
content is retained throughout the retrieval-augmented
and reasoning processes.

8.3.2 Uncertainty Reduction
To formalize the reduction in uncertainty over time,
we analyze the system’s behavior through the lens of
mutual information. Let Y denote the final answer and
stj represent the memory state at step j. The mutual
information between Y and stj is defined as:

I(Y ; stj) = Ep(y,stj)

[
log

p(y, stj)

p(y)p(stj)

]
. (6)

Our goal is to show that after each action at, the
uncertainty regarding Y is reduced. More precisely, we
aim to demonstrate:

E [log p(Y | stj)]− E [log p(Y | stj−1)] (7)
= I(Y ; stj | stj−1). (8)

The expectation E [log p(Y | stj)] measures how well
the model fits the true labels given the state stj , repre-
senting the expected log-likelihood. This value reflects
the information gain of the content at step j with respect
to Y . If we can show that this value at step j is higher
than at step j − 1, it would indicate that the model’s

inference is progressively approaching the true distribu-
tion. Thus, we assume that the state transitions follow a
Markov process, where stj depends only on stj−1 and
the previous state could be observed p(stj−1|stj) = 1.
This Markov structure also implies that the observation
Y is conditionally independent of the previous state
stj−1 given the current state stj , expressed formally as
Y ⊥ stj−1 | stj . This leads to the following:

Proof:

E [log p(Y | stj)]− E [log p(Y | stj−1)] (9)

= E
[
log

p(Y | stj)
p(Y | stj−1)

]

= E
[
log

p(Y, stj | stj−1)

p(Y | stj−1) p(stj | stj−1)

]

= I(Y ; stj | stj−1). (10)

In summary, the behavior of the conditional mutual
information after each action at is as follows:

I(Y ; stj | stj−1) =




> 0, if at = push,

≥ 0, if at = pop.
(11)

Thus, with every action, mutual information either
increases or remains non-decreasing, ensuring a pro-
gressive reduction in uncertainty. Specifically, push
operations incorporate task-relevant knowledge, while
pop operations remove noisy or irrelevant information.

8.3.3 Lyapunov Stability and Finite-Time
Convergence of TC–RAG

Impact of Actions on the Lyapunov Function Each
action at (whether push or pop) influences the system’s
uncertainty, and consequently, the Lyapunov function,
which implies that the Lyapunov function satisfies:

V (stj+1)− V (stj) (12)
= max(0, stj+1 − σ)−max(0, stj − σ) (13)
≤ stj+1 − stj ≤ 0. (14)

Thus, the Lyapunov function is non-increasing, en-
suring that the system state progressively approaches
the convergence threshold.

Proof of Finite-Time Convergence To establish
finite-time convergence, we assume that the decrease in
V (stj) after each action is bounded below by a positive
constant. That is, there exists an ϵ > 0 such that for all
t:

V (stj+1)− V (stt) ≤ −ϵ. (15)

Theorem 1 (Finite-Time Convergence). There ex-
ists a finite time T such that: V (stT ) = 0.

Proof. (By contradiction) Suppose that V (stj) > 0
for all t. Then, due to the bounded decrease, for any
n ∈ N,

V (stn) ≤ V (st0)− nϵ. (16)

Choosing n > V (st0)
ϵ yields: V (stn) < 0, which con-

tradicts the non-negativity of V (stj). Hence, there must
exist a finite T such that V (stj) = 0.

11417



Convergence Time Bound The convergence time T
satisfies:

T ≤
⌈
V (st0)

ϵ

⌉
. (17)

Alternatively, if the decrease is proportional, i.e.,
V (stj+1

) ≤ (1−β)V (stj ), for some β > 0, then by re-
peated application we obtain V (stj ) ≤ V (st0)(1−β)T .
To guarantee that V (stj ) ≤ δ for a small threshold δ, it
is necessary that

T ≥ log(δ/V (st0))

log(1− β)
.

However, experimental observations indicate that the
behavior of V (st) actually unfolds in two stages. Ini-
tially, the decay is exponential in nature, which can
be modeled as V (st) = V (st0)e

−λt, so that ensuring
V (st) ≤ δ requires

T ≥ ln(V (st0)/δ)

λ
.

After this initial phase, the decay tends to become nearly
linear. Therefore, the overall time cost T is estimated to
be composed of these two parts: an initial exponential
decay phase followed by a subsequent nearly linear
decay phase.

Conclusion By defining the Lyapunov function
V (stj) = max(0, stj − σ) and carefully analyzing the
effects of both push and pop operations, we have demon-
strated that the uncertainty in the TC–RAG process de-
creases over time. Moreover, under the assumption of
a bounded decrease per step, the system is guaranteed
to converge to the target state within a finite number of
steps. This theoretical framework underscores the ro-
bustness of the TC–RAG and highlights the importance
of effectively managing information gain to achieve
both efficiency and accuracy.

8.4 Review of LLMs
Definition (Large Language Models). Generative
LLMs are powerful language models capable of gener-
ating coherent and contextually relevant text. Through
pretraining on large-scale text corpora and alignment
fine-tuning to follow human instructions, they can gen-
erate human-like text based on given prompts or inputs.
Typically, LLMs Θ model the probability of a sentence
(i.e., a sequence of word tokens) l = (w1, w2, . . . , wn)
as P (s; Θ) =

∏n
i P (wi | w<i; Θ), where wi denotes

the i-th token wi of the sentence l and w<i denotes the
partial word token sequence before the i-th step.

8.5 Model Pretrain
8.5.1 Pretrain LLMs
The high-quality pre-training corpus can greatly im-
prove the performance of LLM and even break the scal-
ing laws to some extent (Gunasekar et al., 2023; Ding
et al., 2024). Among them, continuous pre-training is
a crucial phase where the language model undergoes

extensive training on vast and diverse unlabeled datasets.
This process spans multiple iterations, each aimed at
refining the model’s language understanding capabil-
ities (Luo et al., 2024). Initially, the LLM is initial-
ized with the pre-trained weights of basic LLMs and
learns to predict missing words or segments within sen-
tences using self-supervised learning objectives such as
masked language modeling (MLM) and next-sentence
prediction (NSP). Through exposure to a wide variety
of textual data sources, the model gradually acquires a
rich domain understanding of language structure, seman-
tics, and context in the medical domain. Additionally,
techniques like attention mechanisms and multi-layer ar-
chitectures are employed to capture complex linguistic
patterns and dependencies.

It should be noted that we did not use supervised fine-
tuning because it would lead to overconfidence in the
large model, resulting in the large model often receiving
diagnostic results directly without planning and calling
professional medical knowledge retrieval tools.

Table 3: Medical pre-train data statistics

Type Dataset Size

Dialogues
RealHospital-QA 2318 MB

Web-QA 567 MB

Knowledge graphs Medical-KG 379 MB

Exams Medical-Exam 443 MB

Textbooks
Chinese-Textbook 52 MB
English-Textbook 212 MB

Guidelines Med-Guidelines 878 MB

Encyclopedia Med-Encyclopedia 798 MB

Total 5647 MB

8.5.2 Data Preparement
To build a diverse medical corpus, we compiled data
from multiple sources, ensuring broad coverage across
various medical domains.

• Dialogues: The RealHospital-QA dataset in-
cludes real-world clinical conversations, while
Web-QA provides Q&A pairs from online health
forums, capturing common public inquiries.

• Knowledge Graphs: Medical-KG organizes med-
ical knowledge into entities and relationships, in-
tegrating data from clinical guidelines, research
papers, and textbooks.

• Exams: The Medical-Exam dataset consists of
questions from medical exams, aiding the model
in handling complex diagnostic scenarios.

• Textbooks: We included Chinese-Textbook and
English-Textbook datasets to provide founda-
tional knowledge in both languages.
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• Guidelines: Med-Guidelines comprises official
medical guidelines, essential for evidence-based
practice.

• Encyclopedia: The Med-Encyclopedia offers
concise explanations of medical terms and con-
ditions.

These datasets span multiple specialties, giving
the model a comprehensive understanding of medical
knowledge. The total corpus size is 5647 MB, as shown
in Table 3.

8.5.3 Pretrain Loss Function
The pertaining loss function is defined as follows:

Lpretrain =
∑

t∈masked

logP (wt | l\t; Θ), (18)

where l\t represents the remaining part of the sequence
l after masking the t-th word.

8.5.4 Training Setup
We performed the continuous pre-training on Qwen1.5-
32B-Chat using the aforementioned medical datasets.
The pre-training was conducted on eight H100 GPUs
for one epoch with a learning rate of 1e-4, and the en-
tire training process spanned 4 days. This configuration
was chosen to balance computational efficiency with
the need for thorough learning, allowing the model to
effectively internalize the extensive medical knowledge
embedded in the training data. Through this process,
we aimed to enhance the model’s reasoning and plan-
ning capabilities, ensuring it can provide accurate and
reliable medical analysis in real-world applications.

8.6 Prompt and Algorithm
8.6.1 Prompt Format.
In this module, we will provide a detailed introduction
to the Prompt used in our entire model in the following
Prompt:

8.6.2 TC–RAG Algotithm.
Algorithm 1 describes the reasoning loop of TC–
RAG for generating a final answer based on user query
using a pre-trained Medical LLM. The process begins
by initializing the stack memory and the initial state
(Lines 1-2). The user query is then pushed into the stack
memory (Line 3).

Within the loop, which continues until the action
limit is reached or the system state value drops below
the threshold σ, the model generates an action based on
the current memory stack (Lines 5-6). If the action type
is identified as a Conclusion, the system state is recal-
culated; if it remains within acceptable bounds, the final
answer is confirmed and pushed into the stack, terminat-
ing the loop (Lines 7-11). Otherwise, the final answer
is reclassified as a Thought, and processing continues
(Lines 12-14).

If the action type is a Thought, the system state is
updated, and the thought result is pushed into the stack

(Lines 15-17). For Tool_Use, the model retrieves rele-
vant observations using specified tools or a knowledge
base, which are then pushed into the stack (Lines 18-
20). When the action type is Backtrack, the top of the
stack is popped, and the previous system state is restored
(Lines 21-23). If the action is a Summary, the stack is
adjusted by popping irrelevant content, summarizing it,
and pushing the summary back onto the stack (Lines
24-26).

Finally, after exiting the loop, the top of the stack is
returned as the final answer (Lines 27-28).

Algorithm 1 TC–RAG Inference Algorithm
Require: User_Query, pretrained Medical LLM Θ, knowl-

edge base D, system value threshold σ, TC–RAG Prompt
P

Ensure: Conclusion
1: Initialize stack memoryM, state s← $Large_Value$
2: Push User_Query intoM
3: actions_taken← 0
4: while actions_taken < max_loop and s ≥ σ do
5: Action← Θ(M | P)
6: if Action is Conclusion then
7: f ← calculate_state(User_Query,Action)
8: if f < σ then
9: Push Action intoM

10: Break
11: else
12: action_type← Thought, s← f
13: Push Action intoM
14: end if
15: else if Action is Thought then
16: s← calculate_state(User_Query,Action)
17: If s < σ Then s← σ
18: Push Action intoM
19: else if Action is Plan then
20: Push Action intoM
21: else if Action is Tool_Use then
22: observation← call(tool_type) & search D
23: Push observation intoM
24: else if Action is Backtrack then
25: old_action = Pop fromM
26: If old_action is Thought then reset s to the pre-

vious state
27: else if Action is Summary then
28: Pop fromM
29: Push Action intoM
30: end if
31: actions_taken← actions_taken+ 1
32: end while
33: Return Conclusion← top(M)
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TC–RAG Prompt

Answer the following questions as best you can.
You have access to the following tools:

[Insert tool_descriptions here]
i.e. DOC_RAG: You can obtain medical
knowledge from authoritative documents via
this tool to help you reply.

Please think strictly according to the pro-
vided way of thinking without omission, and
use the following format:

[Actions Pipeline Format]
User_Query: User’s questions or observed in-
formation,
Thought: You should think about what to do,
whether to answer questions based on the results
of the tool or decide which tool to use.
Tool_Use: The tool to be used must be one of
[tool_name], do not add any extra characters
or symbols! Only the name of the tool can be
output!
Tool_Observation: The answer provided by
the tool (not generated by you)
Plan: Make decisions to outline subsequent ac-
tions or strategies.
Summary: When the previous action outputs a
large amount of vocabulary and you need to
summarize it, please output a detailed summary
based on your knowledge.
Backtrack: When the result of the previous
action is meaningless to your task and you need
to re-execute it, apply this.
...(Thought/Tool_Use/Summary/Backtrack
here can be repeated zero or more times)
Thought: I now know the final answer.
Conclusion: the final answer to the original
input question.

[Start Conversation]
Begin!
User_Query:...

8.7 Detailed Experimental Setup

8.7.1 Dataset.
Our experiments are conducted on two open-source
query sets: MMCU-Medical (Zeng, 2023) and CMB-
Exam (Wang et al., 2023b) datasets, which are designed
for multi-task Q&A and encompass single and multiple-
choice questions in the medical field, and one open-
domain Q&A dataset CMB-Clin (Wang et al., 2023b)
which is the inaugural multi-round question-answering
dataset based on real, complex medical diagnosis and
treatment records. For MMCU-Medical, the questions
are from the university medical professional examina-
tion, covering the three basic medical sciences, pharma-

cology, nursing, pathology, clinical medicine, infectious
diseases, surgery, anatomy, etc., with a total of 2,819
questions. The CMB-Exam dataset utilizes qualifying
exams as a data source in the four clinical medicine
specialties of physicians, nurses, medical technicians,
and pharmacists, with a total of 269,359 questions. The
CMB-Clin dataset contains 74 high-quality, complex,
and real patient cases with 208 medical questions.

8.7.2 RAG Tools.
We have involved several types of RAG tools:

(1) Knowledge Graph Search. CMeKG (Clini-
cal Medicine Knowledge Graph)23 (BYAMBASUREN
et al., 2020), CPubMed-KG (Large-scale Chinese Open
Medical Knowledge Graph) 4 and Disease-KG (Chinese
disease Knowledge Graph)5 are open-source medical
KGs, which integrates extensive medical text data, in-
cluding diseases, medications, symptoms and diagnostic
treatment technologies. The fused KG has 1,288,721
entities and 3,569,427 relations. However, due to the
lack of medical entity descriptions in its entities, we col-
lect relevant entity knowledge from Wikipedia6, Baidu
Baike7, and Medical Baike8, and store them as entity
descriptions. As mentioned by HyKGE (Jiang et al.,
2024b) and GraphRAG (Edge et al., 2024), we choose
the reasoning chains and knowledge communities as
knowledge carriers.

(2) Documents Search. We have collected over 2
million medical documents of 3B size from drug instruc-
tions, medical textbooks, medical encyclopedias, clini-
cal diagnosis and treatment guidelines, medical papers,
and medical electronic medical records. To be specific,
we utilize the GTE embedding model (Li et al., 2023c)
“gte_sentence-embedding”9 to obtain the embedding for
each document, which is currently the top-performing
model for text vector embedding in the retrieval field.
We set the document chunk size to 128 with overlap size
50.

(3) Web and Pedia Search. In order to support
the implementation of online retrieval, we also sup-
port searching on encyclopedias such as Wikipedia and
MedNet (for this purpose, we pre-trained a W2NER
model (Li et al., 2021) for medicine to extract medical
entities). In addition, we also use search engines such
as Bing and Google for web retrieval.

(4) Electronic Medical Record Database Search.
In order to support the retrieval of similar patient infor-
mation, we also apply MIMIC-III (Johnson et al., 2016),
MIMIC-IV (Johnson et al., 2023), and eICU (Pollard
et al., 2018) datasets, following the code translation

2https://cmekg.pcl.ac.cn/
3https://github.com/king-yyf/CMeKG_tools
4https://cpubmed.openi.org.cn/graph/wiki
5https://github.com/nuolade/disease-kb
6https://www.wikipedia.org/
7https://baike.baidu.com/
8https://www.yixue.com/
9https://www.modelscope.cn/models/damo/nlp_gte_sen

tence-embedding
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“ICD9-CM” (Ma et al., 2023b; Xu et al., 2024) principle
to support the retrieval of similar patients.

8.7.3 LLM Turbo.
To fairly verify whether TC–RAG can effectively en-
hance LLMs, we selected the general-domain large
model and the medical-domain large model as the base
models and explored the gains brought by TC–RAG:
Qwen-1.5-32B-chat. In the general domain, we select
Llama3.2-1B-Instruct, Llama3.1-8B-Instruct, Qwen2.5-
7B-Instruct and Qwen2.5-14B-Instruct for comparison.å

8.7.4 Compared Methods.
In order to explore the advantages of the TC–RAG, we
compare the TC–RAG results against twelve other mod-
els: (1) Base Model (Base) servers as the model without
any external knowledge, used to check the improve-
ment effect of different RAG methods. We use Qwen
and pre-trained ones as base models. (2) CHAIN-OF-
THOUGHT (CoT) (Wei et al., 2023) generates a series
of intermediate reasoning steps to perform complex rea-
soning. (3) Single Round-RAG (SR-RAG) is selected
with the combination of KGRAG (Soman et al., 2023b,a;
Sen et al., 2023), embedding-based Document RAG and
web search based on the initial question. (4) Fix Length
RAG (FL-RAG) (Khandelwal et al., 2020; Borgeaud
et al., 2022; Ram et al., 2023) triggers the retrieval
module every n tokens and the tokens generated in the
previous token window are utilized as the query. (5)
Fix Sentence RAG (FS-RAG) (Trivedi et al., 2023):
Similar to FL-RAG, we retrieves based on every sen-
tence. (6) CHAIN-OF-NOTE (CoK) (Li et al., 2023b)
generates sequential thoughts after retrieved knowledge,
enabling a thorough evaluation of their relevance to the
given question and integrating these thoughts to for-
mulate the final answer. (7) Summarizing Retrievals
(SuRe) (Kim et al., 2024) constructs summaries of the
retrieved passages for each of the multiple answer can-
didates and confirms the most plausible answer from the
candidate set by evaluating the validity and ranking of
the generated summaries. (8) Hypothesis Knowledge
Graph Enhanced Framework (HyKGE) (Jiang et al.,
2024b) leverages the hypothesis output and knowledge
graph to enhance model inference. (9) Reasoning And
Acting (ReACT) (Yao et al., 2022a) overcomes is-
sues of hallucination and error propagation prevalent
in chain-of-thought reasoning ahd actions. (10) Self-
Reflective RAG (Self-RAG) (Asai et al., 2024) en-
hances an LM’s quality and factuality through API re-
trieval and self-reflection. (11) Forward-Looking Ac-
tive RAG (FLARE) (Jiang et al., 2023c) iteratively
uses a prediction of the upcoming sentence to antici-
pate future content and retrieve relevant documents to
regenerate the sentence if it contains low-confidence to-
kens. (12) Dynamic Retrieval Augmented Generation
based on the Information Needs (DRAGIN) (Su et al.,
2024) is designed to make decisions on when and what
to retrieve based on real-time information needs. Note
that we strictly follow the prompts for the baselines as

stated.

8.7.5 Evaluation Metrics.
To evaluate the performance of LLMs on multi-task
medical choice questions, we instruct the models to
provide only the correct answer and adopt the widely-
used metric, Exact Match (EM), as recommended by
prior work (Zhu et al., 2021; Karpukhin et al., 2020).
An answer is deemed correct under the EM metric if its
form exactly matches all the correct answers listed in
the ground truth. The EM score is computed as follows:

EM =
Number of Correct Answers
Total Number of Answers

× 100%.

For open-domain medical Q&A tasks, we employ
ROUGE-R (Xu, 2023; Jiang et al., 2024b) and Bilin-
gual Evaluation Understudy (BLEU) to assess the
quality of the LLMs’ responses.

Specifically, for BLEU, BLEU-1 is used to measure
answer precision, and BLEU-4 evaluates answer fluency
by considering higher-order n-gram consistency. BLEU
evaluates the similarity of generated responses to the
ground truth using the following formula:

BLEU-N = BP · exp
(

1

N

N∑

n=1

log pn

)
,

where pn is the precision of n-grams, BP is the Brevity
Penalty, calculated as:

BP =

{
1, if c > r

exp
(
1− r

c

)
, if c ≤ r

.

Here c is the length of the generated response, and r is
the length of the reference response.

ROUGE-R quantifies the recall of retrieved knowl-
edge in the LLMs’ responses, emphasizing their ability
to comprehensively cover the information relevant to
the query. For a generated response R and a reference
G, ROUGE-R is computed as:

ROUGE-R =
|R ∩G|
|G| ,

where |R ∩ G| denotes the number of overlapping n-
grams between the generated response and the reference,
and |G| is the total number of n-grams in the reference.

8.7.6 Experimental Implementation.
In TC–RAG, σ = 10 for cppl and 20 for uct. Moreover,
for all the baselines and TC–RAG, we set the maximum
number of returned tokens for LLMs to 500 and the
temperature to 0.6. For a fair comparison, we apply
the same W2NER, GTE (Li et al., 2023c) models for
all baselines. Moreover, the parameters of W2NER are
optimized with Adam optimizer (Kingma and Ba, 2015)
with L2 regularization and dropout on high-quality med-
ical dataset (Zhang et al., 2022; Hongying et al., 2020),
the learning rate is set to 1e-3, the hidden unit is set to
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1024 and weight decay is 1e-4. Implementations are
done using the PyTorch 1.9.0 framework (Paszke et al.,
2019) in Python 3.9, on an Ubuntu server equipped with
8 A100 GPU and an Intel(R) Xeon(R) CPU.

8.8 Additional Experiments

8.8.1 Generalization Experiments (RQ1)
To evaluate the generalization ability of TC–RAG, we
conducted additional experiments on two MultihopQA
datasets 2WikiMultihopQA (Ho et al., 2020) and Hot-
potQA (Yang et al., 2018) that require multihop rea-
soning, a reading comprehension dataset IIRC (Fer-
guson et al., 2020) and a commonsense reasoning
dataset StrategyQA (Geva et al., 2021) in the gen-
eral domain. All experiments utilized a unified Wiki-
based knowledge repository as the RAG tool. Specif-
ically, we employed the following LLMs: Llama3.2-
1B-Instruct, LLaMA3.1-8B-Instruct (Grattafiori et al.,
2024), Qwen2.5-7B-Instruct and Qwen2.5-14B-Instruct.
For the two MultihopQA datasets and reading com-
prehension dataset, we use Exact Match at the answer
level, along with token-level measurements of F1-Score,
to assess the quality of responses. For the commonsense
reasoning dataset, which consists of true-false questions,
EM was employed as the primary evaluation metric.

8.8.2 Noise Poisoning Attack (RQ3)
To assess the robustness of TC–RAG against noise poi-
soning attacks, we conducted two distinct types of at-
tacks: Partial Attack and Structural Attack. These
attacks simulate scenarios involving excessive redun-
dant information or situations where retrieval mecha-
nisms fail, leaving no effective information. Addition-
ally, we introduced two categories of noise—Irrelevant
Retrieval Noise & Relevant Retrieval Noise (Yoran
et al., 2024; Cuconasu et al., 2024; Fang et al., 2024;
Zhang et al., 2024)—to evaluate the effectiveness of the
Backtrack and Summary actions.

In terms of implementation, we artificially con-
structed 100 pieces of noise based on CMB-Exam for
each type of noise. It is worth noting that for partial
attacks, we directly concatenate the noise knowledge
after the retrieved results. For structural attacks, we
replace the retrieved knowledge instead. We conduct
the poison attack during the first function call:

Impact of Structural Attack and Partial Attack In
the context of Structural Attack, the influence of Par-
tial Attack is particularly pronounced. Since this type
of noise is directly embedded within the sentence, it
exerts a greater interference on TC–RAG. The exper-
imental results indicate that under Partial Attack, (1)
TC–RAG is more likely to trigger the Summary action,
attempting to condense and process the excess informa-
tion. This suggests that the model tends to utilize sum-
marization as a means to handle noise in such scenarios.
(2) Nevertheless, TC–RAG still triggers the Backtrack
action in some cases, though with a lower probabil-
ity compared to Structural Attack. (3) More notably,

due to the greater impact of this embedded noise, the
model’s EM score significantly decreases, indicating
that Partial Missing noise has the most substantial im-
pact on TC–RAG during Structural Attack.

Comparison of Noise Types (1) In contrast, the im-
pact of Relevant Noise is even more severe, particularly
in the context of Partial Attack. Since Relevant Noise
is highly related to the task, TC–RAG struggles to de-
termine whether the noise contains the required answer,
leading to a significantly lower EM compared to when
dealing with Irrelevant Noise. (2) Relevant Noise is
more likely to trigger the Summary action, indicating
that when faced with task-related noise, the model may
prefer summarizing the information rather than directly
identifying and discarding irrelevant content. (3) In con-
trast, Irrelevant Noise is more easily detected by TC–
RAG and effectively removed through the Backtrack
action. The model handles it more efficiently, with the
Backtrack execution probability reaching as high as
94%. (4) The results for Mixed Noise fall between the
two, but since it contains Irrelevant Noise, which is
easier for the model to detect, its performance is closer
to that of Irrelevant Noise.

Overall Robustness under Attack Overall, under the
attacks, TC–RAG demonstrates strong robustness, with
the execution probabilities of Summary and Backtrack
remaining above 81%, and sometimes reaching as high
as 95%. This clearly illustrates the effectiveness of
TC–RAG in managing the memory stack, effectively
preventing the introduction of erroneous knowledge and
irrelevant information, thereby maintaining the purity
of the memory stack, in line with C3.

8.8.3 Case Study (RQ3)

In this case study, we examine the effectiveness of
two RAG systems: one without memory and state
management–ReACT, and TC–RAG. We evaluate how
each system impacts the state management, retrieval,
and reasoning process, particularly when dealing with
irrelevant or incorrect noise.

The results indicate that the ReACT-based approach
struggles with accumulating irrelevant noise, leading
to overconfidence and inaccurate conclusions, simply
due to the unit conversion in Figure 2. In contrast,
TC–RAG effectively manages its memory and utilizes
Summary & Backtrack actions to prune incorrect re-
trievals, resulting in more concise and accurate conclu-
sions, which underscores TC–RAG’s superiority in han-
dling complex tasks (for C3). Furthermore, we found
that the ReACT-based approach tends to prematurely
settle on answers when the system state value is high,
due to the lack of state management. On the other hand,
TC–RAG dynamically monitors the RAG process, en-
suring that the system state value meets the termination
condition, which highlights the necessity of constructing
a system state, in line with C1.
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Table 4: The general experimental results of TC–RAG and other baselines on four benchmarks. The best results are
in bold and the second runner are underlined.

2WikiMultihopQA HotpotQA StrategyQA IIRC

LLM RAG Method EM F1 EM F1 EM EM F1

Llama3.2-1B-Instruct

wo-RAG 0.128 0.1958 0.067 0.1255 0.571 0.056 0.0728
SR-RAG 0.138 0.2052 0.122 0.2004 0.582 0.085 0.0922
FS-RAG 0.143 0.2094 0.120 0.1951 0.589 0.074 0.0891
FL-RAG 0.134 0.1951 0.105 0.1892 0.548 0.072 0.0882
FLARE 0.136 0.1883 0.091 0.1575 0.572 0.050 0.0621

DRAGIN 0.126 0.1824 0.084 0.1334 0.570 0.051 0.0673
TC–RAG 0.153 0.2146 0.134 0.2164 0.591 0.066 0.0804

Llama3.1-8B-Instruct

wo-RAG 0.260 0.3427 0.233 0.3223 0.747 0.190 0.2212
SR-RAG 0.339 0.4394 0.246 0.3550 0.726 0.221 0.2811
FS-RAG 0.370 0.4489 0.316 0.4298 0.745 0.218 0.2790
FL-RAG 0.336 0.4250 0.253 0.3618 0.722 0.233 0.2917
FLARE 0.286 0.3571 0.173 0.2710 0.745 0.197 0.2304

DRAGIN 0.260 0.3390 0.223 0.3167 0.750 0.176 0.2168
TC–RAG 0.379 0.4654 0.340 0.4724 0.782 0.240 0.3132

Qwen2.5-7B-Instruct

wo-RAG 0.141 0.2297 0.002 0.0662 0.583 0.068 0.1002
SR-RAG 0.157 0.2646 0.012 0.1039 0.581 0.156 0.2084
FS-RAG 0.222 0.3284 0.047 0.1575 0.678 0.158 0.2063
FL-RAG 0.182 0.2856 0.021 0.1360 0.628 0.138 0.1836
FLARE 0.126 0.2194 0.020 0.0970 0.618 0.095 0.1373

DRAGIN 0.195 0.2817 0.053 0.1339 0.679 0.088 0.1241
TC–RAG 0.240 0.3478 0.049 0.1533 0.690 0.170 0.2307

Qwen2.5-14B-Instruct

wo-RAG 0.037 0.1496 0.025 0.0595 0.780 0.048 0.0774
SR-RAG 0.073 0.1985 0.016 0.1310 0.731 0.105 0.1440
FS-RAG 0.148 0.2978 0.117 0.2412 0.777 0.213 0.2556
FL-RAG 0.080 0.2347 0.040 0.1702 0.780 0.140 0.2580
FLARE 0.254 0.3621 0.025 0.1208 0.721 0.071 0.1019

DRAGIN 0.220 0.3231 0.100 0.2168 0.700 0.120 0.1624
TC–RAG 0.370 0.4397 0.180 0.2604 0.780 0.200 0.2915

Table 5: Results for Structural and Partial Attacks

Noise Type Summary Prob. Backtrack Prob. EM

Structural Attack

Irrelevant Retrieval Noise 01.00% 94.00% 91.00
Relevant Retrieval Noise 12.00% 76.00% 84.00
Mixed Retrieval Noise 04.00% 91.00% 89.00

Partial Attack

Irrelevant Retrieval Noise 37.00% 49.00% 85.00
Relevant Retrieval Noise 52.00% 29.00% 79.00
Mixed Retrieval Noise 41.00% 47.00% 81.00

8.8.4 In-Depth Analysis of the Trajectories of
TC–RAG with Baselines

We expand the analysis with an additional case study on
the user query:

User Query: “My CVP indicator is 9 cmH2O, is this
normal?”

For this, we provide and compare the complete rea-
soning trajectories of multiple baselines, including Base,
CoT, FLARE, and DRAGIN, in addition to TC–RAG.

Base: Answer: "normal" is True, but the CVP normal
range is False.

Central Venous Pressure (CVP) is a measure of the

pressure in the thoracic vena cava, near the right atrium
of the heart. It is an important indicator of fluid status
and right heart function. The normal range for CVP is
typically between 2 to 6 cmH2O, although some sources
may extend this range slightly to 0 to 8 cmH2O. A CVP
of 9 cmH2O is slightly above the typical normal range.

FLARE: Answer: "normal" is True, the CVP normal
range is True.

Sentence 1: Central Venous Pressure (CVP)
is a measure of the pressure in the thoracic
vena cava, near the right atrium of the heart.
(search not triggered)

Sentence 2: It is an important indicator of
fluid status and right heart function. The nor-
mal range for CVP is typically between 2 to
6 cmH2O. (search triggered)

Search: normal range for CVP

Observation: normal range of CVP is between
5-12 cmH2O.

Sentence 2: It is an important indicator of
fluid status and right heart function. The nor-
mal range for CVP is typically between 5 to
12 cmH2O. (search not triggered)
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Table 6: Performance of Various Approaches on CMB Leaderboard

Method Average Medical Nursing Pharmacist Medical Professional Medical
Score Qualification Exam Exam Technician Knowledge Postgraduate

TC–RAG 87.95 89.50 92.63 88.00 86.75 83.56 87.25
HuatuoGPTII-34B 76.80 75.65 82.31 76.81 76.17 74.38 75.56
Qwen-72B-Chat 74.38 78.55 83.56 79.78 77.92 68.25 58.19
Yi-34B-Chat 69.17 71.10 77.56 73.16 73.67 66.56 52.94
Yi-6B-Chat 65.87 67.25 76.38 68.50 67.83 61.75 53.50
GPT-4 59.46 59.90 69.31 52.19 61.50 59.69 54.19
Qwen-14B-Chat 57.64 60.40 65.63 60.94 58.83 54.50 45.56
Baichuan2-13B-chat 39.88 40.04 45.65 40.60 39.25 39.25 34.45
ChatGLM2-6B 38.51 40.25 47.56 36.06 36.58 35.56 35.06
Baichuan-13B-chat 38.20 37.70 44.75 41.22 34.67 37.94 32.94
HuatuoGPT 29.49 29.90 34.00 29.06 30.92 27.38 25.69
ChatMed-Consult 20.23 19.40 21.69 20.00 22.83 18.88 18.56

Pulse pressure refers to the difference between 
systolic and diastolic blood pressure. 
The normal range is 20-60 mmHg, and the 
average pulse pressure in adults is around 40 
mmHg.

normal range of CVP

Graph retrieval path:

CVP  ->  normal value  -> 5~12 cmH2O
CVP  ->  measurement methods -> Insert a 
central venous catheter...

normal range of CVP

push push

Tool_Obser va t io
n :  I  am not  sure 
what  CVP is ,  so 
execute [Function: 
w e b  s e a r c h ]  t o 
f i n d    [ Q u e r y : 
C V P  r e l a t e d 
information] first

Backtrack:  
n o r m a l 
r a n g e  o f 
C V P  w a s 
no t  found , 
abandoned
web search 

Tool_Obser va t io
n : Try to execute 
[ F u n c t i o n : 
knowledge gr aph 
retr ieval ] [Query: 
n or m a l r a n ge of 
CVP ]

push push
push

Summar y: 
According 
t o  g r a p h 
re t r ieva l  , 
the normal 
v a l u e  o f 
CVP i s  5 -
12 cmH2O

pop

1. pop

2. push

T h o u g h t : 
Based on the 
summary,  I 
think I have 
solved.

push
C o n c l u s i o n : 
According to the 
r e s u l t s ,  t h e 
normal value of 
C V P  i s  5 ~ 1 2 
cmH2O, so the 
C V P  i n d e x  o f 
9 c m H 2 O  i s 
normal.

User_Query: 
M y  C V P 
indicator  is 
9cmH2O, is 
this normal?

User_Query: 
M y  C V P 
ind ica to r  i s 
9cmH2O,  i s 
this normal?

push push

T ool_O b ser va t ion : I 
am not sure what CVP is, 
first perform [Function: 
web  sea r ch ]  to  f ind 
[Quer y:  CVP r ela ted 
information]

T ool_O b se r va t ion : 
CVP refers to central 
venous pressure. I want 
t o  f i n d  [  Q u e r y : 
normal range of CVP ] 
th rough  [F u n c t ion : 
document retr ieval ] 

T h o u g h t :  T h e 
range  o f  cen t r a l 
venous pressure is 
about 40mmHg, the 
search results give 
the answer, I think I 
have solved.

C o n c l u s i o n :  T h e 
normal value of pulse 
pressure is 40mmHg 
and 54cmH2O after 
c o n v e r s i o n ,  s o 
9cmH20 is abnormal.

M M MM M M

M M M M

[Web Search] [Document Retr ieval] [Knowledge Graph Retr ieval]

ReACT

TC-RAG

    s :  Large_Value                                                            s : 57.34                                  f : 32.93 

s :  Large_Value                                                            s : 12.14                    f : 8.79 
 

Central Venous Pressure (CVP) is the pressure 
on the upper and lower vena cava to enter the 
right atrium, depending on the relationship 
between the ejection capacity of the heart and the 
volume of venous blood returning to the heart.

What does CVP mean clinically

[Web Search]

Figure 2: Case Study of ReACT-based and TC–RAG.

Sentence 3: Therefore, having a CVP of 9
cmH2O is normal. (search not triggered,
ended)

DRAGIN: Answer: "normal" is True, the CVP nor-
mal range is True.

Sentence 1: Central Venous Pressure (CVP)
is a measure of the pressure in the thoracic
vena cava, near the right atrium of the heart.
(search not triggered)

Sentence 2: It is an important indicator of
fluid status and right heart function. The nor-
mal range for CVP is typically between 2 to
6 cmH2O. (search triggered)

Search: normal range for Central Venous Pres-
sure

Observation: normal range of CVP is between
5-12 cmH2O.

Sentence 2: Therefore, having a CVP of 9
cmH2O is normal. (search not triggered,
ended)

ReACT: Answer: "normal" is False, the CVP normal
range is False.

Step 1: Tool Observation: I am not sure what
CVP is. First perform [Function: web search]
to find [Query: CVP related information].

Step 2: Tool Observation: CVP refers to cen-
tral venous pressure. I want to find [Query:
normal range of CVP] through [Function:
document retrieval].
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Step 3: Thought: The range of central venous
pressure is about 40mmHg, the search results
give the answer, I think I have solved.

Step 4: Conclusion: The normal value of
pulse pressure is 40mmHg and 54cmH2O af-
ter conversion, so 9cmH2O is abnormal.

TC–RAG : Answer: "normal" is True, the CVP nor-
mal range is True.

Step 1 – push: Tool Observation: I am not
sure what CVP is, so execute [Function: web
search] to find [Query: CVP related informa-
tion] first.

Step 2 – pop: Backtrack: normal range of
CVP was not found, abandoned web search.

Step 3 – push: Tool Observation: Try to ex-
ecute [Function: knowledge graph retrieval]
[Query: normal range of CVP].

Step 4 – pop & push: Summary: According
to graph retrieval, the normal value of CVP is
5-12 cmH2O.

Step 5 – push: Thought: Based on the sum-
mary, I think I have solved.

Step 6 – push: Conclusion: According to
the results, the normal value of CVP is 5-
12 cmH2O, so the CVP index of 9cmH2O is
normal.

The comparative results reveal that:

• The ReACT approach tends to accumulate irrele-
vant information across steps, leading to a noisy
context, inflated confidence, and ultimately incor-
rect conclusions. In the original case, even a simple
unit mismatch introduces confusion that remains
uncorrected due to the lack of memory revision
mechanisms.

• FLARE and DRAGIN demonstrate adaptive in-
formation retrieval capabilities, which reduces the
probability of acquiring noisy information when
LLM’s internal knowledge suffices to solve the
problem. However, if irrelevant or harmful infor-
mation is inadvertently included in the memory,
these models cannot eliminate the impact of such
noise.

• In contrast, TC–RAG effectively leverages its
stack-based memory, employing Summary and
Backtrack actions to eliminate erroneous informa-
tion and maintain a coherent and accurate reason-
ing trace, resulting in a more precise conclusion.

8.8.5 The Ability of Backtracking
1. Noise Prevention Through Pre-Insertion Reason-
ing TC–RAG is based on a simple yet practical as-
sumption: if each piece of knowledge is carefully evalu-
ated before being added to memory, the risk of accumu-
lating noisy or irrelevant information deep in the stack is

substantially reduced. This preemptive filtering ensures
that only relevant and reliable information is retained,
meaning any potential noise typically appears near the
top of the stack. As a result, local backtracking is gen-
erally sufficient in practice. This assumption underlies
our choice of a stack-based memory structure, which
enables efficient O(1) access to recent reasoning steps,
thereby optimizing both accuracy and computational
efficiency.

2. Maintaining Reasoning Consistency Through Se-
quential Memory Allowing arbitrary modifications
to deep memory entries would disrupt the sequential
and causal continuity of the reasoning process. As dis-
cussed in Section 5 (Lines 433–437), once information
is committed to the memory stack, it becomes part of
the model’s reasoning trajectory, where each new mem-
ory is conditioned on the previous ones. Direct edits
to earlier entries may introduce inconsistencies or logi-
cal contradictions, particularly in domains that demand
high levels of traceability and safety. Therefore, TC–
RAG deliberately restricts memory modifications to
the top of the stack in order to preserve the integrity,
coherence, and interpretability of the reasoning flow.

3. Iterative Backtracking as a Practical Fallback In
cases where outdated or incorrect information is later
found to reside deeper in the stack, TC–RAG supports
progressive correction through (1) multiple successive
backtracking steps, or (2) higher-level action, such as
defining a root-cause tracing action, that internally per-
forms a sequence of pop (> 1) operations. This mecha-
nism enables the system to rewind its reasoning trajec-
tory larger when necessary, without compromising the
temporal structure of the memory or the continuity of
the decision process.

Here, we do also add a real case example from our
log in the CMB dataset in which pop action appears
more than once.

Query (push): A patient with a history of
type 2 diabetes for 8 years is taking Met-
formin 1000mg bid and Dapagliflozin 10mg
qd. Recently, he has experienced worsening
fatigue, frequent nocturia, and foot numbness.
The eGFR is 58 ml/min. What’s the problem?
Thought (push): The patient’s symptoms
may be related to diabetes. Let me check
it.
Search (push): Symptoms of diabetes
Observation (push): Common symptoms
of diabetes include frequent urination, exces-
sive thirst, unexplained weight loss, fatigue...
(omitted)
=====> [Backtrack (pop):] diabetes symp-
toms information is not helpful.
=====> [Backtrack (pop):] I should change
my search question.
Thought (push): The medicine may be rele-
vant to the patient’s symptoms.

11425



Search (push): metformin and dapagliflozin
Observation (push): ... When eGFR <
60ml/min, Dapagliflozin needs to be reduced
to 5mg qd ... (omitted)
Thought (push): The eGFR of the patient is
58ml/min. I think I found the reason.
Final Answer (push): The patient’s eGFR
suggests possible renal injury, and the symp-
toms are due to excessive Dapagliflozin
dosage, requiring dose reduction.

It can be observed that when an unrelated message
resides deeper within the memory stack, the model will
expunge irrelevant memories via sequential popping
operations upon detection.

In summary, TC–RAG adopts a cautious and princi-
pled approach that balances efficiency, interpretability,
and reasoning stability.

8.9 How Does the System Handle Instructions
Failing or Formatting Errors

Similar to other multi-step reasoning agent frameworks
such as ReAct (Yao et al., 2022a), LangChain, Lang-
Graph, and AutoGPT (aut), the probabilistic nature of
LLMs can occasionally lead to outputs that deviate from
the specified format or fail to fully comply with instruc-
tions. We refer to the methods in (Yao et al., 2022a; aut)
for handling exceptions:

1. When the LLM generates an output that does not
strictly adhere to the required format, we first employ
string manipulation techniques (e.g., regex matching,
template-based extraction) to identify and isolate
valid components within the response. This allows us
to salvage usable information even when the overall
structure is imperfect.

2. If parsing still fails after multiple attempts, we lever-
age a retry mechanism to improve the likelihood of
generating a parsable response. The system uses a
while loop and try-catch blocks to force the LLM to
re-generate output in the required format. Only when
it generates parsable output or reaches a predefined
maximum limit can the system stop.

8.10 CMB Leaderboard
Here, we compared the specific testing results of our
model on CMB with the publicly available rankings on
CMB Leaderboard with open-source baselines in Ta-
ble 6. The experimental results show that TC–RAG has
surpassed baselines in all medical indicators.
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