
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 11268–11292
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

SHARE: An SLM-based Hierarchical Action CorREction Assistant for
Text-to-SQL

Ge Qu 1, Jinyang Li 1, Bowen Qin 2∗, Xiaolong Li 1, Nan Huo1,
Chenhao Ma 3, Reynold Cheng 1∗

1The University of Hong Kong, 2 BAAI
3The Chinese University of Hong Kong, Shenzhen

quge@connect.hku.hk, bwqin@baai.ac.cn, ckcheng@cs.hku.hk

Abstract

Current self-correction approaches in text-to-
SQL face two critical limitations: 1) Conven-
tional self-correction methods rely on recursive
self-calls of LLMs, resulting in multiplicative
computational overhead, and 2) LLMs strug-
gle to implement effective error detection and
correction for declarative SQL queries, as they
fail to demonstrate the underlying reasoning
path. In this work, we propose SHARE, an
SLM-based Hierarchical Action corREction
assistant that enables LLMs to perform more
precise error localization and efficient correc-
tion. SHARE orchestrates three specialized
Small Language Models (SLMs) in a sequen-
tial pipeline, where it first transforms declara-
tive SQL queries into stepwise action trajecto-
ries that reveal underlying reasoning, followed
by a two-phase granular refinement. We fur-
ther propose a novel hierarchical self-evolution
strategy for data-efficient training. Experi-
mental results demonstrate that SHARE ef-
fectively enhances self-correction capabilities
while proving robust across various LLMs. Fur-
thermore, our comprehensive analysis shows
that SHARE maintains strong performance
even in low-resource training settings, which
is particularly valuable for text-to-SQL appli-
cations with data privacy constraints. For re-
producibility, we release our code at https:
//github.com/quge2023/SHARE.

1 Introduction

Text-to-SQL, aimed at converting natural language
(NL) queries to executable SQL queries (Qin
et al., 2022), plays a crucial role in enabling non-
technical users to analyze and interact with data
in relational databases. In recent years, the ap-
plication of Large Language Models (LLMs) has
improved the performance of text-to-SQL to an-
other level of intelligence (Rajkumar et al., 2022;

∗ Corresponding authors are Bowen Qin and Reynold
Cheng.

Please list the diseases of the patients born after 1985/1/1 and have a normal
Rhuematoid Factor. Born after 1985/1/1 refers to YEAR(Birthday) > = 1985;
Normal Rhuematoid Factor refers to RA IN(‘-’, ‘+-’).

User Question:

Please list the diseases of the patients born after 1985/1/1 and have a normal
Rhuematoid Factor. Born after 1985/1/1 refers to YEAR(Birthday) > = 1985;
Normal Rhuematoid Factor refers to RA IN(‘-’, ‘+-’).

Initial SQL：

Execution Error --- No Such Function: YEAR
External Execution Feedback：

SELECT DISTINCT p.Diagnosis FROM Patient p JOIN Laboratory l ON p.ID =
l.ID WHERE p.Birthday >= ‘1985-01-01’ AND l.RA IN ('-', '+-')

Refined SQL：

A) Self-Debugging

Refinement Reasoning：
1. Query Analysis: Date filtering using YEAR() function may cause error
2. Function Refinement: Use direct date comparison
3. Schema Review: Patient.Birthday is formatted as YYYY-MM-DD

SELECT DISTINCT p.Diagnosis FROM Patient p JOIN Laboratory l ON p.ID =
l.ID WHERE p.Birthday >= ‘1985-01-01’ AND l.RA IN ('-', '+-')

Refined SQL：

B) Self-Correction

Figure 1: Illustrations of self-debugging and self-
correction for text-to-SQL.

Talaei et al., 2024; Pourreza et al., 2024; Zhang
et al., 2025). A critical component emerging from
these architectural developments is the automatic
error correction mechanism (Ouyang et al., 2022a;
Chen et al., 2023; Pan et al., 2024b), which sys-
tematically identifies and rectifies query errors to
improve response accuracy.

Contemporary automatic error correction ap-
proaches can be categorized along two primary
dimensions: self-debugging and self-correction.
Self-debugging represents an execution-guided
approach in which LLMs iteratively refine their
SQL queries based on database execution feed-
back (Zhong et al., 2023; Li and Xie, 2024; Xie
et al., 2024), as illustrated in Figure 1 (A). While
demonstrating promising results, this approach
faces several fundamental challenges. First, execu-
tion feedback from mainstream SQL dialects such
as SQLite tends to be concise but insufficiently
specific, impeding accurate error localization. This

11268

https://github.com/quge2023/SHARE
https://github.com/quge2023/SHARE

ambiguity may subsequently induce hallucinations
(Dziri et al., 2021; Ji et al., 2023) in the correction
process. Furthermore, the fundamental require-
ment for direct database execution access presents
significant operational constraints, particularly in
contexts where data privacy and security consid-
erations preclude such direct interaction with the
database system (Awan et al., 2023).

These issues have motivated the focus of au-
tomatic correction towards self-correcting mecha-
nisms (Liu and Tan, 2024; Askari et al., 2024),
where LLMs are prompted to revise their ini-
tial outputs through autonomous contextual re-
analysis, without relying on external execution
feedback. This decoupling from execution envi-
ronments proves particularly valuable in text-to-
SQL applications where database access is typi-
cally restricted by privacy constraints. However,
achieving effective self-correction often requires
multiple inference iterations through proprietary
LLM APIs like GPT-4 or Claude-3.5-Sonnet, lead-
ing to prohibitive computational costs that scale
exponentially. Furthermore, LLMs exhibit a ten-
dency towards self-enhancement bias (Huang et al.,
2024), leading them to overestimate the quality of
their initial outputs and struggle to effectively iden-
tify errors within their self-generated declarative
SQL queries. This inherent limitation undermines
the overall effectiveness of the correction process.

In this work, we propose an assistant-based
framework where generator LLMs create initial
outputs and implement self-correction guided by
assistants. Our primary contribution, SHARE
(SLM-based Hierarchical Action CorREction As-
sistant), orchestrates three specialized Small Lan-
guage Models (SLMs), each under 8B parameters,
in a sequential pipeline. Specifically, the Base
Action Model (BAM) transforms raw SQL queries
into action trajectories that capture reasoning paths;
the Schema Augmentation Model (SAM) and the
Logic Optimization Model (LOM) further perform
orchestrated inference to rectify schema-related
and logical errors, respectively, within action trajec-
tories. SHARE improves error detection precision
and correction efficacy while reducing computa-
tional overhead compared to conventional LLM
approaches. Additionally, we also incorporate a
novel hierarchical self-evolution strategy that en-
hances data efficiency during training.

Experimental results across 4 diverse text-to-
SQL benchmarks demonstrate the effectiveness,

efficiency, and generalizability of SHARE. By en-
abling SLMs to collaboratively guide LLMs in
SQL correction, SHARE achieves substantial ex-
ecution accuracy improvements over the GPT-4o
baseline, with relative gains of 14.80% on BIRD
and 11.41% on SPIDER within a single round
of correction, while significantly reducing com-
putational costs (Section 4.4). Beyond precision,
our framework exhibits strong robustness in vary-
ing query complexities, low-resource settings, and
various generator models, including both closed-
source and open-source LLMs (Section 4.2). No-
tably, SHARE’s learned debugging logic general-
izes effectively to previously unseen SQL dialects
without dialect-specific supervision (Section 4.5).
These findings position our method as a scalable
and cost-efficient paradigm for improving the rea-
soning reliability of LLMs in SQL auto-correction
for real-world applications.

2 Preliminaries

2.1 Task Definition

Text-to-SQL. Given a natural language question
qi ∈ Q, whereQ = {qi}ni=1 with its corresponding
database input 1 di ∈ D, where D = {di}ni=1, the
goal of text-to-SQL is to guide the generator model
G to generate the SQL query si by:

si = fG(di, qi), (1)

where fG (·) refers to the mapping function applied
by the generator model G.

Assistant-based Self-Correction. Given the di,
qi and the corresponding initial SQL queries s′i
generated by the generator model G, the goal of
assistant-based correction aims to utilize feedback
yi generated by the assistant T , which could be a
LLM or an agent mechanism, to guide the gener-
ator model G to refine its initial output effectively
by:

si = fG(di, qi, s′i, yi), (2)

where yi = fT (di, qi, s′i), and fT (·) is the map-
ping function applied by the assistant. The genera-
tor model G and assistant T engage in multiple it-
erative refinement cycles until a correct SQL query
is produced or the predefined maximum number of
turns is reached.

1Database input refers to the schema of a specific database
and its corresponding sampled value.

11269

Lora Fine-Tuning Hierarchical Self-Evolution

Base Action Model
(BAM)

Schema Augmentation
Model (SAM)

Logic Optimization
Model (LOM)

Ground Truth SQL !s
SELECT movie_yetitle FROM movies
WHERE movie_release_ar = 1945
ORDER BY movie_popularity
DESC LIMIT 1

df1 = df.where(element =
movies.movie_release_year, filter = 1945)

df2 = df1.orderby(by = movies.movie_poularity),
res = df2.select(movies.movie_title)

Invalid Action Trajectory

Trajectory Probing

Action Trajectory
With Error

df1 = df.where(element =
movies.movie_release_year, filter = 1945)

df2 = df1.orderby(by =
movies.movie_poularity, desc).limit(1)

res = df2.select(movies.movie_title)

Action Trajectory Without Error

df1 = df.where(element =
movies.movie_release_year, filter = 1945)

df2 = df1.orderby(by =
movies.movie_poularity, desc).limit(1)

res = df2.select(movies.movie_title,
movies.movie_release_year)

Perturbed Action Trajectory

Action Trajectory With Nature Error

Error
Perturbation

Question 𝒒
For all the set of cards that has Japanese translation, what is
the percentage of them are only available in non-foil?
Evidence 𝒆
In non-foil refers to isNonFoilOnly = 1;

Verified Action Trajectory !𝒕
df1 = df.where(element =

movies.movie_release_year, filter = 1945)
df2 = df1.orderby(by =

movies.movie_poularity, desc).limit(1)
res = df2.select(movies.movie_title)

df1 = df.where (element =
set_translations.language ,
filter = ‘Japanese’)

df2 = df1.where (element =
sets.isNonFoilOnly, filter = 1)

res = df.select (cast(df2.count(), real) * 100
/ df1.count())

Refined Reasoning Trajectory 𝒕:

Refined SQL Query 𝒔:

SELECT (CAST(SUM(CASE WHEN sets.isNonFoilOnly = 1 THEN 1 ELSE 0 END) AS
REAL) * 100 / COUNT(*)) FROM sets INNER JOIN set_translations ON sets.code =
set_translations.setCode WHERE set_translations.language = 'Japanese’

Initial SQL Query s′
SELECT (CAST(SUM(CASE WHEN isNonFoilOnly
= 1 AND language = ‘Japanese’ THEN 1 ELSE 0
END) AS REAL) * 100 / COUNT(*)) FROM sets

……

Database Schema 𝒅

set

• id
• block
• code
• isNonFoilOnly
• …
• type

FK

set_translations

• id
• language
• set_code
• translation

cards

• id
• artist
• colors
• boarderColor
• …
• watermark

df1 = df.where (element =
sets.language, filter = ‘Japanese’)

df2 = df1.where (element =
sets.isNonFoilOnly, filter = 1)

res = df.select (cast(df2.count(), real) * 100
/ df.count())

Reasoning Trajectory 𝒕′:

Intermediate Trajectory 𝒕𝒇′:

df1 = df.where (element =
sets_translations.language,
filter = ‘Japanese’)

df2 = df1.where (element =
sets.isNonFoilOnly, filter = 1)

res = df.select (cast(df2.count(), real) * 100
/ df.count())

df1 = df.where (element =
[MASK], filter = ‘Japanese’)

df2 = df1.where (element =
[MASK], filter = 1)

res = df.select (cast(df2.count(), real) * 100
/ df.count())

Schema-Masked Variant𝐦′:

Correct Initial SQL

Erroneous Initial SQL

A) Trajectory Data Construction

B) Training Stage of SHARE

C) Self-Synthesized
Data Augmentation

Erroneous
Action Trajectory

BAM

SAM SAM

LOM

D) Inference Stage

Figure 2: An illustration of SHARE. Figure (A)-(C) illustrate the training architecture of three specialized SLMs in
SHARE: the Base Action Model (BAM), Schema Augmentation Model (SAM), and Logic Optimization Model
(LOM). Figure D presents SHARE’s orchestration of these three models in a sequential pipeline for inference.

2.2 Action Model

An action model (Zhang et al., 2024) A is specifi-
cally architected to comprehend, plan, and generate
stepwise action trajectories ti, given the contextual
input xi by:

ti = {a1, a2, ..., an} = fA(xi;A), (3)

where fA (·;A) refers to the mapping function
applied by the action modelA with an action space
A inherently mastered by A, and ai ∈ A denotes
as the selected action. Unlike natural language,
actions manipulated by action models are typically
in the format of API or function calls. For
instance, a declarative SQL query "SELECT ..
FROM .. WHERE .." can be decomposed
by an action model into a sequence of functional
operations as [where(column = param_1,
value = param_2), select(table =
param_1, column = param_2)].

3 Methodology

3.1 Training Pipeline

The general training data used to develop SLMs
is often generated through knowledge distillation
pipelines, thereby reducing the need for costly hu-
man expert annotations (Xu et al., 2024b; Peng and
Zhang, 2024). In these pipelines, LLMs serve as
teacher models, providing annotations and gen-

erating new training instances to guide the learn-
ing process of SLMs as student models. We em-
ploy this approach to train a Base Action Model
(BAM), which transforms initially produced declar-
ative SQL queries into structured sequences of
actions within a predefined action space, captur-
ing the underlying reasoning steps. Building on
this foundation, two action models specialized for
two crucial aspects of text-to-SQL are further pre-
sented: the Schema-Augmentation Model (SAM)
and the Logic Optimization Model (LOM). SAM
concentrates on improving schema linking (Dou
et al., 2023), while LOM focuses on logical synthe-
sis (Yin and Neubig, 2017). All our models were
trained via Lora fine-tuning (Hu et al., 2022).

To train SAM and LOM efficiently, we propose
a novel continual learning technique: hierarchical
self-evolve strategy. Instead of repeatedly query-
ing a teacher LLM (e.g., GPT-4o) for each new
training instance, this strategy leverages BAM to
synthesize and augment task-specific training data,
targeting distinct aspects of text-to-SQL transla-
tion. This approach reduces annotation costs while
maintaining strong performance, as demonstrated
in Section 4.4. Formally, we begin with a seed
dataset C = {(di, qi, s̃i, s′i)}ni=1, where each tuple
(di, qi, s̃i) consists of a database input, a user ques-
tion, and the associated ground-truth SQL from the
BIRD and SPIDER training corpora. A detailed

11270

Type Definition Example

ADD Inserts an additional action into
the original action trajectory.
[a1, a2, ..., an] →
[a1, a2,anew, ..., an]

Before:
df1 = df.orderby(element = movie.likes, desc).limit(1)
res = df1.select(element = movie.director)
After:
df1 = df.groupby(element = movies.id)
df2 = df1.orderby(element = movie.likes, desc).limit(1)
res = df2.select(element = movie.director)

DELETE Removes an existing action from
the trajectory.
[a1,a2, a3, ..., an] →
[a1, a3, ..., an]

Before:
df1 = df.where(element = users.country_code,filter = 20)
df2 = df1.where(element = users.gender, filter = ’male’)
res = df2.select(users.user_id)
After:
df1 = df.where(element = users.country_code,filter = 20)
res = df1.select(users.user_id)

SUBSTITUTE Replaces an existing action with
a different action type or modifies
the parameters of the existing ac-
tion.
[a1,a2, a3, ..., an] →
[a1,a

′
2, a3, ..., an] →

Before:
df1 = df.where(element = reviews.Date, filter = ’2018-09-11’)
res = df1.select(district.district_id, district.city)
After:
df1 = df.where(element = reviews.Date, filter = ’2018-09-11’)
res = df1.select(district.city, district.district_id)

Table 1: Three error perturbation types utilized by Base Action Model (BAM) to implement data augmentation.

distribution of the training data is provided in Ap-
pendix A.1. The initial SQL s′i is generated by
GPT-4o using the baseline prompt implemented in
BIRD (Li et al., 2024a).

3.2 Base Action Model (BAM)

Training Target. BAM aims to generate the cor-
responding action trajectory t given an initial SQL
query s′. Following prior study (Qu et al., 2024),
we design actions in target trajectories as pandas-
like APIs (see Refined Reasoning Trajectory in
Figure 2 (D)) to present the reasoning process of
text-to-SQL transformations. The complete enu-
meration of actions used in the construction of
action trajectories within the SHARE framework
is detailed in the Appendix A.2.

Data Construction. Given that BAM is the most
important model and such reasoning derivations
are complex and highly demanding, we employ
GPT-4o as a strong teacher LLM to construct the
training data for BAM. As shown in Figure 2 (A),
GPT-4o is guided to convert each ground-truth (gt)
SQL s̃ to a verified action trajectory t̃ by few-shot
prompting. The prompt we use is detailed in Ap-
pendix D.3. To ensure high-quality training data
with fewer hallucinations during conversion, we
only contain (s̃, t̃) pairs in which t̃ can be success-
fully reverted back to s̃ (Berglund et al., 2024). We
ultimately collected 13k query-trajectory pairs as
the training data for BAM in this phase.

3.3 Schema Augmentation Model (SAM)

Training Target. Schema linking is a critical
step in identifying the relevant database tables and
columns needed to answer user queries (Lei et al.,
2020). However, the complexity and heterogene-
ity of database schemas, spanning from pre-trained
language models (PLMs) (Qiu et al., 2020; Li et al.,
2023) to large language models (LLMs) (Zhao
et al., 2024), often compromise accurate schema
linking, thereby introducing substantial burdens on
downstream SQL generation. To address this is-
sue, we propose the Schema Augmentation Model
(SAM), designed to specifically target and correct
schema-linking errors within the input action tra-
jectory. By focusing on schema-related compo-
nents, SAM aims to isolate and rectify errors be-
fore they propagate, ultimately leading to more
reliable SQL generation.

Data Construction. We begin with a corpus
of 13k action trajectories from BAM, each rep-
resented as (d, q, s′, t̃). For each verified trajectory
t̃, we generate a schema-masked variant m̃ by in-
serting mask symbols [MASK] to isolate schema-
specific elements. For each initial SQL s′, we
extract its referenced tables and columns as an
initial schema list l′. These paired forms, (t̃, m̃)
and (d, q, l′, m̃, t̃), form the backbone of SAM’s
two-phase training paradigm. In the first phase,
SAM is trained with (t̃, m̃) to identify and mask
schema-related elements accurately. In the second

11271

phase, SAM leverages (d, q, l′, m̃, t̃) to refine the
previously masked segments, seamlessly reinte-
grating the corrected schema links into the schema-
masked variant. By employing BAM in a few-shot
setting to prepare and orchestrate these training
steps, we ensure that SAM efficiently acquires the
specialized capabilities needed for robust schema
augmentation.

3.4 Logic Optimization Model (LOM)

Training Target. Given a more precise set of
schema-linked database tables or columns, the
reasoning logic expressed as an action trajectory
should align with both natural language descrip-
tions and valid SQL semantics. Formally, the
model takes d and q as input and outputs a refined
action trajectory t. This trajectory t captures the
correct chain of reasoning necessary to accurately
resolve the question q.

Data Construction. As shown in Figure 2 (C),
the erroneous action trajectories in the training
data for LOM come from two resources. First,
we collect the corresponding action trajectory of
erroneous initial SQLs. However, the scale of
this resource is limited. Therefore, we propose an
action-based perturbation strategy for data aug-
mentation. We apply three types of perturbation, as
illustrated in Table 1, on error-free action trajecto-
ries derived from correct initial SQL to reproduce
various logic errors in text-to-SQL conversions. Fi-
nally, 15k erroneous action trajectories along with
their corresponding verified action trajectories are
collected for LOM training. The detailed pseu-
docode of this process is provided in Appendix
A.3.

3.5 Orchestration Inference

During inference, as shown in Figure 2 (D),
SHARE operates in a sequential orchestration that
integrates three LoRa fine-tuned models, enabling
iterative refinement of action trajectories. Upon
receiving an initial SQL query s′, SHARE first in-
vokes the BAM to generate a corresponding action
trajectory t′. The SAM then refines t′ by apply-
ing schema-based adjustments derived from the
given database input d, producing the intermediate
trajectory t′f . Next, t′f , along with the user query
and the refined database content, is forwarded to
the LOM for logic-based corrections. The refined
trajectory t generated by LOM serves as SHARE’s
final output and is employed as feedback to guide

the underlying language model in self-correcting
s′ within a zero-shot setting. Ultimately, with these
refined action trajectories serving as self-correction
signals, the language model can regenerate more
accurate and contextually appropriate SQL queries.

4 Experiments

4.1 Experiment Settings

Datasets and Metrics. The experiments are con-
ducted on four challenging benchmarks for cross-
domain text-to-SQLs. 1) BIRD (Li et al., 2024a)
is the most challenging large-scale cross-domain
text-to-SQL benchmark, which introduces external
knowledge as an additional resource in complex
scenarios. In this paper, we use its development
set for evaluation, which contains 1,534 pairs of
text-to-SQL data and 11 complex databases. 2)
SPIDER(Yu et al., 2018) is a more standard cross-
domain text-to-SQL benchmark. It contains 1,034
examples, covering 20 databases across multiple
domains, in the development set. 3) DK (Gan
et al., 2021), extended from the SPIDER bench-
mark, requires text-to-SQL parsers equipped with
the ability of domain-knowledge reasoning. 4) RE-
ALISTIC removes and switches the obvious men-
tions of schema items in questions, making it closer
to the real scenarios. In this paper, we use widely
adopted Execution Accuracy (EX) to measure the
performance of our framework.

Compared Methods. We explore two open-
source SLMs, namely Llama-3.1-8B and Phi-
3-Mini-3.8B, as backbone models to construct
our SHARE. For all baseline and advanced self-
correction methods for comparison in Table 2, we
employ GPT-4o as the generator model and report
the results after a single refinement iteration. De-
tails of these methods are shown in Appendix B.1.

Implementation Details. We fine-tune all our
models using the LLaMa-Factory library (Zheng
et al., 2024) with LoRA (Hu et al., 2022). All our
experiments are conducted on 4×A100 GPU with
80GB memory. We detail the hyperparameters for
training and inference in Appendix B.2, and claim
the reproducibility of this work in Appendix E.

4.2 Overall Performance

Overall Results. Table 2 presents the perfor-
mance of GPT-4o on the BIRD and SPIDER bench-
marks, comparing approaches with baseline and

11272

Method BIRD SPIDER

Simple Moderate Challenging Total Easy Medium Hard Extra Hard Total

GPT-4o 63.35 44.18 45.52 55.87 89.10 83.00 68.40 52.40 77.10
Self Correction w/o Feedback

Self-Correction 62.70 43.75 44.83 55.28 88.30 82.70 66.10 49.40 75.90
Self-Consistency 65.75 49.04 45.21 58.75 92.30 87.90 75.10 58.60 81.80
Multiple-Prompt 66.38 48.06 44.83 58.80 91.10 87.20 74.70 59.00 81.50

Self Correction w/ Feedback
Self-Debugging ♣ 65.41 47.84 46.21 58.28 91.10 85.90 74.70 60.80 81.20
DIN-Correction 65.62 46.98 44.83 58.02 91.90 85.20 70.10 55.40 79.50
MAC-Refiner ♣ 66.27 47.41 46.90 58.74 93.10 85.00 73.00 56.60 80.40
MAGIC 66.75 49.46 45.79 59.53 - - - - 85.66
+SHARE-3.8B 68.00 51.29 46.21 60.89 92.70 88.30 78.70 65.10 84.00
+SHARE-8B 70.81 56.25 46.90 64.14 94.00 90.10 78.20 70.50 85.90

Table 2: Self-correction performance of GPT-4o in Execution Accuracy (EX) (%) on BIRD and SPIDER. ♣

means the model uses external execution results as feedback. Bold indicates best results, while underlines denote
second-best results.

advanced self-correction strategies. Three key ob-
servations emerge: 1) When GPT-4o attempts in-
trinsic Self-Correction, performance actually de-
creases (55.87%→ 55.28% on BIRD). This occurs
because the model lacks reliable mechanisms to
assess the correctness of its prior reasoning steps,
sometimes converting originally correct solutions
into incorrect ones (Huang et al., 2024). More-
over, improving prompts for self-correction strate-
gies can inadvertently introduce biases, leading
to suboptimal revisions. (Gou et al., 2024). Al-
though advanced methods with carefully crafted
designs, such as Multiple-Prompt and Magic, mit-
igate these biases, they rely heavily on exten-
sive human-engineered prompts and entail sig-
nificant computational overhead. 2) In contrast,
SHARE enables GPT-4o to perform effective self-
correction through a single interaction, resulting in
a relative improvement of 14.80% in EX on BIRD
and 11.41% on SPIDER with SHARE-8B. That
is because SHARE introduces a novel mechanism
for inferring and analyzing initial hidden reason-
ing paths, allowing the LLM to identify and rec-
tify errors more precisely. Notably, this process is
conducted automatically by SLMs, thereby reduc-
ing both the human effort and the computational
costs associated with high-level LLMs. 3) Signif-
icant performance improvements using SHARE-
3.8B and SHARE-8B, which are based on two
widely used SLMs (Phi-3-mini and Meta-Llama-
8B), demonstrate the generalization and robustness
of our training pipeline.

METHOD EASY MED. HARD EXTRA ALL
DK

GPT-4o 75.50 73.60 47.30 41.90 64.10
+SHARE-3.8B 84.90 73.80 48.90 56.20 69.20
+SHARE-8B 85.50 81.30 56.80 63.80 75.30

REALISTIC
GPT-4o 81.70 82.30 69.70 49.50 73.40
+SHARE-3.8B 88.10 86.70 68.70 57.70 78.00
+SHARE-8B 87.20 88.20 74.70 68.00 81.50

Table 3: Execution Accuracy (EX) of GPT-4o +
SHARE across queries of varying levels of difficulty on
DK and REALISTIC.

Results on Robust Testing. Table 3 presents
evaluation results in EX on the variant datasets
of SPIDER for robustness without any additional
training. SHARE-8B effectively enhances the per-
formance of the GPT-4o baseline by 11.20% and
8.10% on DK and REALISTIC, respectively, with
improvements across all difficulty levels. SHARE-
3.8B also facilitates significant performance gains,
achieving a relative increase of 7.96% on DK and
7.18% on REALISTIC.

Results on Various Generator Models. Al-
though the teacher LLMs we employ for data
generation during training are primarily based on
GPT-4o, the performance gains observed with our
trained SHARE-8B assistant extend well beyond
this single source, as evidenced in Table 4. Notably,
our approach significantly improves performance
for both proprietary closed-source models, such
as Claude-3.5-Sonnet (↑ 28.64% relatively), and
for open-source alternatives, such as Llama-3.1-
70B (↑ 14.88% relatively). This indicates that our

11273

MODEL SIM. MOD. CHALL. TOTAL
Closed-Source LLM

Claude-3.5-S 57.08 39.87 31.03 49.41
+SHARE-8B 68.86 57.11 50.34 63.56

GPT-4o-mini 55.03 41.59 35.17 49.09
+SHARE-8B 67.46 50.86 40.00 59.64

GPT-3.5-turbo 52.51 35.99 29.66 45.35
+SHARE-8B 57.51 38.36 31.03 49.22

Open-Source weaker LM
Llama-3.1-70B 60.54 44.61 41.38 53.91
+SHARE-8B 68.86 53.88 43.45 61.93

Qwen-Coder-32B 65.72 46.71 45.23 58.03
+SHARE-8B 67.78 54.31 46.90 61.73

Llama-3.1-8B 41.62 27.59 20.00 35.33
+SHARE-8B 47.68 35.13 28.97 42.11

DS-Coder-6.7B 41.30 26.94 23.45 34.57
+SHARE-8B 56.25 45.04 36.55 51.24

Table 4: Self-correction performance of various genera-
tor models assisted by SHARE on BIRD. For brevity,
we refer to some models using shorthand names and
provide their corresponding official model aliases in Ap-
pendix B.3. SIM., MOD., CHALL. represent the levels
of query difficulty and are the abbreviations of simple,
moderate, and challenging, respectively.

0 10 20 50 100
40

50

60

70

moderate challenging total

Ex
ec

ut
io

n
Ac

cu
ra

cy

simple moderate challenging total

Figure 3: The effect of training data scale on SHARE.

method is not limited to the model bias of error pat-
terns in text-to-SQL, but also general knowledge
of SQL correction.

Results on Low-resource Settings. To take a
closer look at the impact of the amount and qual-
ity of training data on self-correction assistance in
LLM, we conduct a low-resource training analy-
sis. Specifically, we sampled three subsets of the
training data—10%, 20%, and 50%—and repeated
each experiment three times to minimize variance.
The averaged results are illustrated in Figure 3.

Our findings reveal a strong positive correlation
between the amount of training data and model
performance, thereby confirming the overall high
quality of the training set. In particular, GPT-4o
+ SHARE-8B with only 50% training data outper-
forms the state-of-the-art MAGIC baseline, achiev-

METHOD SIM. MOD. CHALL. TOTAL

SHARE-8B 70.81 56.25 46.90 64.14

(a) w/o Schema Aug 67.14 50.22 46.00 60.02 (↓ 4.08)
(b) w/o Logic Opt 64.86 46.77 39.31 56.98 (↓ 7.16)

(c) w/o Hierarchy 68.34 49.89 45.02 60.55 (↓ 3.59)
(d) w/o Error Pert 68.08 52.79 46.20 61.38 (↓ 2.76)

Table 5: Ablation study of SHARE. w/o Schema Aug
and w/o Logic Opt denote removing the SAM and
LOM, respectively. w/o Hierarchy denotes training
specialized models sequentially instead of employing
the hierarchical evolution strategy. w/o Error Pert
denotes the removal of action-based error perturbation.

ing 60.71% versus MAGIC’s 59.53% in EX in the
BIRD data set.

However, this positive trend does not fully hold
for more challenging instances. From 0% to 20%
of the training data, improvements remain unclear
and at 10% there is even a slight decline in perfor-
mance. Only when the dataset exceeds 20% of the
full training set we do observe a clear performance
increase. This suggests that performance improve-
ments for harder instances often remain erratic
or limited until the dataset size exceeds a certain
point, particularly for tasks involving nuanced or
rare examples, as demonstrated by (Kaplan et al.,
2020).

4.3 Ablation Study
Table 5 presents the results of our ablation study.
The removal of either the schema or logic refine-
ment module (Table 5 (a–b)) results in substantial
performance drops, underscoring the importance of
the two-stage refinement architecture for disentan-
gling schema linking from logical reasoning (Lei
et al., 2020). Replacing the hierarchical evolution
strategy with conventional sequential training (Ta-
ble 5 (c)) leads to a 3.59% decline, indicating the
advantage of the hierarchical approach in prevent-
ing error accumulation and bias transfer across
stages (Liu et al., 2021). Furthermore, the exclu-
sion of action-based error perturbation (Table 5
(d)) leads to a 2.76% reduction, demonstrating the
effectiveness of this lightweight augmentation tech-
nique. More detailed analysis is provided in Ap-
pendix C.1.

4.4 Computational Cost Analysis of SHARE
Table 6 presents the computational cost analysis of
SHARE. To the best of our knowledge, our work
is the first effort in the text-to-SQL domain to im-
plement correction through collaboration between

11274

METHOD LLM INTOKS LLM OUTTOKS ↓ SLM INTOKS ↓ SLM OUTTOKS ↓ COST / 1K ↓ EX ↑
Inference Stage

MAC-Refiner 7126.74 236.58 - - $20.18 58.74
Multiple-Prompt 21128.65 1004.55 - - $62.86 58.80
MAGIC 8245.16 1737.98 - - $37.99 59.53
GPT-4o + SHARE-8B 716.30 68.32 1731.23 132.16 $2.57 64.14

Training Stage
MAGIC 4838.63 2085.22 - - $32.94 59.53
GPT-4o + SHARE-8B 1623.28 66.87 2308.75 83.04 $4.85 64.14

Table 6: Token usage and computational cost of various self-correction methods on BIRD. In(Out)Toks refers to
the average input (output) token length per instance. Cost / 1K refers to the average cost per 1000 instances.

simple moderate moderatesimplechallenging challengingtotal total
0 0

2020

40 40

60 60

Ex
ec
ut
io
n
Ac
cu
ra
cy 60.14

69.59

42.00
46.00

26.47
33.33

44.20
50.40

53.38

64.19

36.00

44.80

21.57
28.43

38.20

47.20

Ex
ec
ut
io
n
Ac
cu
ra
cy

GPT-4o
+ SHARE-8B

GPT-4o
+ SHARE-8B

MySQL PostgreSQL

Figure 4: The performance of SHARE on BIRD across
various SQL dialects, specifically MySQL (left) and
PostgreSQL (right).

small and large LMs. This paradigm effectively
reduces the inference overhead of SHARE and
incurs only one-tenth the cost of the most econom-
ical baseline. Notably, SHARE remains highly
cost-efficient during the training data construction
stage. Compared to the In-Context-Learning-based
(ICL-based) training method adopted in MAGIC,
which is the strongest self-correction method, our
self-evolution strategy significantly reduces the re-
liance on LLMs during the construction of training
data, resulting in substantial cost savings in the
overall process. Other relevant details of the cost
computation are shown in Appendix C.2.

4.5 Generalization for Different SQL Dialects

Mainstream text-to-SQL benchmarks predomi-
nantly use SQLite as their target SQL dialect, pri-
marily for its accessibility and ease of data collec-
tion. However, due to the heightened privacy re-
quirements in data management, MySQL and Post-
greSQL, characterized by licensing restrictions and
proprietary attributes, are more commonly adopted
dialects in real-world implementation scenarios.
As demonstrated in Figure 4, SHARE also exhibits
effective performance on MySQL and PostgreSQL
dialects even without additional training. This can
be attributed to SHARE’s focus on learning low-
level reasoning path corrections, enabling it to gen-
eralize across various high-level SQL dialects.

MODEL SIM. MOD. CHALL. TOTAL
GPT-4o 63.35 44.18 45.52 55.87
+SHARE-gpt 70.81 56.25 46.90 64.14
+SHARE-llama 71.57 57.54 48.97 65.19

Claude-3.5-S 57.08 39.87 31.03 49.41
+SHARE-gpt 68.86 57.11 50.34 63.56
+SHARE-llama 67.68 52.59 44.83 60.95

Llama-3.1-70B 60.54 44.61 41.38 53.91
+SHARE-gpt 68.86 53.88 43.45 61.93
+SHARE-llama 69.08 56.90 46.90 63.30

Llama-3.1-8B 41.62 27.59 20.00 35.33
+SHARE-gpt 47.68 35.13 28.97 42.11
+SHARE-llama 53.08 35.56 30.34 45.63

Table 7: Performance comparison across different
teacher models on BIRD.

4.6 Open-source Teacher Models
During the construction of SHARE, as introduced
in Section 3.2, GPT-4o acts as the teacher model
for automated data synthesis within the Base Ac-
tion Model (BAM). To strengthen the flexibil-
ity and generalization of our workflow, we fur-
ther investigate the use of open-source teacher
models. Specifically, we replace GPT-4o with
Llama-3.1-70B to generate training data for the
BAM and retrain SHARE-8B accordingly. To clar-
ify the distinction, we refer to the original ver-
sion of the SHARE-8B model trained with GPT-
4o as SHARE-gpt, and the SHARE-8B model
trained with Llama-3.1-70B as the teacher model
as SHARE-llama. Table 7 shows the performance
of various generator models assisted by SHARE-
gpt and SHARE-llama on the BIRD dev set. It
demonstrates that SHARE continues to deliver
strong performance even when using an open-
source model as the teacher model, and it still
works well with a variety of generator models. This
suggests that our approach is not restricted by the
error patterns of any one model in text-to-SQL,
but rather leverages broader knowledge of SQL
correction.

11275

Value Misrepresentation

Schema Contradiction Attribute Overanalysis

Mathematical Delusion

Join Redundancy Clause Abuse

GPT-4o GPT-4o + SHARE-8B

A) Schema-based Errors

B) Logic-based Errors

Figure 5: The correction performance across fine-
grained error categories on BIRD.

4.7 Quantitative Analysis of SQL Error
Corrections

To quantify the effectiveness of SHARE in error
correction, we analyze the SQL queries generated
by the GPT-4o baseline. Following TA-SQL (Qu
et al., 2024), we categorize the observed errors
into two primary types: schema-based errors and
logic-based errors. Each category is further sub-
divided into three specific subtypes. For detailed
definitions and examples of these error types, we
refer the reader to TA-SQL.

Table 5 presents the correction performance
across fine-grained error categories on the BIRD
dev set. The results indicate that SHARE is
effective in mitigating both schema-based and
logic-based errors, showing substantial reductions
in Attribute Overanalysis (↓ 18.61%),
Schema Contradiction (↓ 7.24%), and
Clause Abuse (↓ 7.54%). However, SHARE
demonstrates limited effectiveness in correcting
instances of Mathematical Delusion (↓
1.63%), which may be attributed to the restricted
mathematical reasoning capability of the underly-
ing generator model (Mirzadeh et al., 2025). To
further elucidate SHARE’s correction behavior, we
conduct qualitative case studies and present a rep-
resentative example in Appendix C.6

5 Related Work

LLMs for Text-to-SQL. In recent years, large
language models (LLMs) (Ouyang et al., 2022b;
Anthropic, 2024; Team et al., 2024) have attracted
considerable attention due to their robust reasoning
and domain generalization capabilities. The appli-
cation of LLMs has improved the performance of
text-to-SQL to another level of intelligence. Early
research leverages in-context learning capabilities
of LLMs to develop text-to-SQL systems through
meticulously crafted prompt engineering method-
ologies (Rajkumar et al., 2022; Pourreza and Rafiei,
2024; Gao et al., 2024; Qu et al., 2024). With
the emergence of language agents (Deng et al.,
2024; Gu et al., 2024) as a promising paradigm,
recent works (Wang et al., 2024; Talaei et al., 2024;
Pourreza et al., 2024) leverage multi-agent archi-
tectures to construct more reliable and compre-
hensive frameworks for text-to-SQL conversion,
yielding substantial improvements in empirical per-
formance.

Self-correction in Text-to-SQL. Self-correction
(Pan et al., 2024b), where LLMs evaluate and re-
fine their initial output, has emerged as a crucial
technology to enhance the reliability and accuracy
of automated code generation tasks (Gu, 2023; Li
et al., 2024b). Self-correction has been widely ap-
plied in text-to-SQL tasks. Some studies (Lee et al.,
2024; Gao et al., 2024) leverage carefully designed
prompts to guide LLMs in utilizing their intrin-
sic reasoning capabilities for more effective self-
correction. Additionally, using feedback to effec-
tively guide the self-correction process of LLMs is
another promising approach. The sources of feed-
back are diverse, ranging from human annotations
(Pourreza and Rafiei, 2024), external execution en-
vironments (Chen et al., 2024a; Wang et al., 2024)
to iterative exploration conducted by the LLM it-
self (Askari et al., 2024; Xia et al., 2024).

6 Conclusion

In this research, we propose SHARE, an SLM-
based hierarchical action correction assistant de-
signed to enable more precise error localization
and effective self-correction for LLMs. We further
propose a novel hierarchical evolution strategy for
data-efficient training. Experimental results show
the effectiveness and robustness of our method,
even in low-source settings, unlocking the potential
of SLMs in self-correction for text-to-SQL tasks.

11276

7 Limitation

In this paper, we demonstrate the effectiveness of
SHARE by presenting the performance of SHARE-
assisted self-correction in the one-turn setting,
where the generator model receives feedback gen-
erated by SHARE and performs a single-revision
iteration. We leave investigating the performance
of our framework in multi-turn interactive self-
correction scenarios, where the correction process
undergoes multiple refinement cycles, as our future
work. Furthermore, our current work exclusively
focuses on the text-to-SQL domain. Expanding
SHARE to broader code generation tasks repre-
sents another key direction for future research.

8 Acknowledgement

We thank all constructive comments from anony-
mous reviewers. Reynold Cheng, Ge Qu,
Jinyang Li, and Nan Huo are supported by the
Hong Kong Jockey Club Charities Trust (Project
260920140), the University of Hong Kong (Project
2409100399), the HKU Outstanding Research Stu-
dent Supervisor Award 2022-23, and the HKU
Faculty Exchange Award 2024 (Faculty of Engi-
neering). Bowen Qin was supported by National
Science and Technology Major Project (Project
2022ZD0116306). Chenhao Ma was partially
supported by NSFC under Grant 62302421, Ba-
sic and Applied Basic Research Fund in Guang-
dong Province under Grant 2023A1515011280,
2025A1515010439, Ant Group through CCF-Ant
Research Fund, Shenzhen Research Institute of Big
Data under grant SIF20240004, and the Guang-
dong Provincial Key Laboratory of Big Data Com-
puting, The Chinese University of Hong Kong,
Shenzhen. Ge Qu and Jinyang Li were supported
by HKU Presidential PhD Scholar Programme. Ge
Qu was also funded by Hong Kong PhD Fellow-
ship Scheme.

9 Ethical Statement

All datasets employed in this work are publicly
accessible. We will also release our models and
source code after the review process, ensuring the
transparency and reproducibility of our findings.
Furthermore, the output generated by our investiga-
tions is structured as SQL queries—a programming
language format—rather than natural language text,
which could potentially involve harmful or biased
content. Our team meticulously examines each

output to confirm the absence of politically sen-
sitive or biased material. Finally, it is notewor-
thy that we utilize parameter-efficient LoRA fine-
tuning to train our models, which demonstrates
superior environmental sustainability compared to
full-parameter fine-tuning.

11277

References
Anthropic. 2024. Claude 3 haiku: our fastest model

yet.

Arian Askari, Christian Poelitz, and Xinye Tang. 2024.
Magic: Generating self-correction guideline for in-
context text-to-sql.

Kamran Ahmad Awan, Ikram Ud Din, Ahmad Almo-
gren, and Joel J. P. C. Rodrigues. 2023. Privacy-
preserving big data security for iot with federated
learning and cryptography. IEEE Access.

Lukas Berglund, Meg Tong, Maximilian Kaufmann,
Mikita Balesni, Asa Cooper Stickland, Tomasz Ko-
rbak, and Owain Evans. 2024. The reversal curse:
Llms trained on "a is b" fail to learn "b is a". In
The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2023.
Codet: Code generation with generated tests. In
The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2024a. Teaching large language mod-
els to self-debug. In The Twelfth International Con-
ference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2024b. Teaching large language mod-
els to self-debug. In The Twelfth International Con-
ference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2024.
Mind2web: Towards a generalist agent for the web.
Advances in Neural Information Processing Systems.

Longxu Dou, Yan Gao, Mingyang Pan, Dingzirui Wang,
Wanxiang Che, Jian-Guang Lou, and Dechen Zhan.
2023. Unisar: a unified structure-aware autoregres-
sive language model for text-to-sql semantic parsing.
Int. J. Mach. Learn. Cybern.

Nouha Dziri, Andrea Madotto, Osmar Zaïane, and
Avishek Joey Bose. 2021. Neural path hunter: Re-
ducing hallucination in dialogue systems via path
grounding. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2021, Virtual Event / Punta Cana, Do-
minican Republic, 7-11 November, 2021.

Yujian Gan, Xinyun Chen, and Matthew Purver. 2021.
Exploring underexplored limitations of cross-domain
text-to-sql generalization. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021, Virtual Event
/ Punta Cana, Dominican Republic, 7-11 November,
2021.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024.
Text-to-sql empowered by large language models: A
benchmark evaluation. Proc. VLDB Endow.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,
Yujiu Yang, Nan Duan, and Weizhu Chen. 2024.
CRITIC: large language models can self-correct with
tool-interactive critiquing. In The Twelfth Inter-
national Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024.

Qiuhan Gu. 2023. Llm-based code generation method
for golang compiler testing. In Proceedings of the
31st ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Soft-
ware Engineering, ESEC/FSE 2023, San Francisco,
CA, USA, December 3-9, 2023.

Yu Gu, Yiheng Shu, Hao Yu, Xiao Liu, Yuxiao Dong,
Jie Tang, Jayanth Srinivasa, Hugo Latapie, and Yu Su.
2024. Middleware for llms: Tools are instrumental
for language agents in complex environments. arXiv
preprint arXiv:2402.14672.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2024. Large language
models cannot self-correct reasoning yet. In The
Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu,
Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput.
Surv.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models.

Dongjun Lee, Choongwon Park, Jaehyuk Kim, and
Heesoo Park. 2024. Mcs-sql: Leveraging multiple
prompts and multiple-choice selection for text-to-sql
generation.

Wenqiang Lei, Weixin Wang, Zhixin Ma, Tian Gan,
Wei Lu, Min-Yen Kan, and Tat-Seng Chua. 2020.
Re-examining the role of schema linking in text-to-
SQL. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin,
Chenhao Ma, Nan Huo, Fei Huang, Wenyu Du, Luo

11278

https://www.anthropic.com/news/claude-3-haiku
https://www.anthropic.com/news/claude-3-haiku
http://arxiv.org/abs/2406.12692
http://arxiv.org/abs/2406.12692
http://arxiv.org/abs/2405.07467
http://arxiv.org/abs/2405.07467
http://arxiv.org/abs/2405.07467

Si, and Yongbin Li. 2023. Graphix-t5: Mixing pre-
trained transformers with graph-aware layers for text-
to-sql parsing. In Thirty-Seventh AAAI Conference
on Artificial Intelligence, AAAI 2023, Thirty-Fifth
Conference on Innovative Applications of Artificial
Intelligence, IAAI 2023, Thirteenth Symposium on
Educational Advances in Artificial Intelligence, EAAI
2023, Washington, DC, USA, February 7-14, 2023.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. 2024a. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems.

Jinyang Li, Nan Huo, Yan Gao, Jiayi Shi, Yingxiu
Zhao, Ge Qu, Yurong Wu, Chenhao Ma, Jian-Guang
Lou, and Reynold Cheng. 2024b. Tapilot-crossing:
Benchmarking and evolving llms towards interactive
data analysis agents.

Zhenwen Li and Tao Xie. 2024. Using llm to select the
right sql query from candidates.

Huihui Liu, Yiding Yang, and Xinchao Wang. 2021.
Overcoming catastrophic forgetting in graph neu-
ral networks. In Thirty-Fifth AAAI Conference on
Artificial Intelligence, AAAI 2021, Thirty-Third Con-
ference on Innovative Applications of Artificial In-
telligence, IAAI 2021, The Eleventh Symposium on
Educational Advances in Artificial Intelligence, EAAI
2021, Virtual Event, February 2-9, 2021.

Xiping Liu and Zhao Tan. 2024. Epi-sql: Enhancing
text-to-sql translation with error-prevention instruc-
tions.

Seyed-Iman Mirzadeh, Keivan Alizadeh, Hooman
Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. 2025. Gsm-symbolic: Understanding
the limitations of mathematical reasoning in large
language models. In The Thirteenth International
Conference on Learning Representations, ICLR 2025,
Singapore, April 24-28, 2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022a. Training language models to follow instruc-
tions with human feedback.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022b. Training language models to follow instruc-
tions with human feedback. In Advances in Neural
Information Processing Systems 35: Annual Con-
ference on Neural Information Processing Systems

2022, NeurIPS 2022, New Orleans, LA, USA, Novem-
ber 28 - December 9, 2022.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak
Nathani, Xinyi Wang, and William Yang Wang.
2024a. Automatically correcting large language
models: Surveying the Landscape of Diverse Auto-
mated Correction Strategies. Trans. Assoc. Comput.
Linguistics.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak
Nathani, Xinyi Wang, and William Yang Wang.
2024b. Automatically correcting large language
models: Surveying the landscape of diverse auto-
mated correction strategies. Transactions of the As-
sociation for Computational Linguistics.

Tianyu Peng and Jiajun Zhang. 2024. Enhancing knowl-
edge distillation of large language models through
efficient multi-modal distribution alignment.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and
Sercan O. Arik. 2024. Chase-sql: Multi-path reason-
ing and preference optimized candidate selection in
text-to-sql.

Mohammadreza Pourreza and Davood Rafiei. 2024.
Din-sql: Decomposed in-context learning of text-
to-sql with self-correction. Advances in Neural In-
formation Processing Systems.

Bowen Qin, Lihan Wang, Binyuan Hui, Bowen Li, Xi-
angpeng Wei, Binhua Li, Fei Huang, Luo Si, Min
Yang, and Yongbin Li. 2022. SUN: exploring intrin-
sic uncertainties in text-to-sql parsers. In Proceed-
ings of the 29th International Conference on Compu-
tational Linguistics, COLING 2022, Gyeongju, Re-
public of Korea, October 12-17, 2022.

XiPeng Qiu, TianXiang Sun, YiGe Xu, YunFan Shao,
Ning Dai, and XuanJing Huang. 2020. Pre-trained
models for natural language processing: A survey.
Science China Technological Sciences.

Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo,
Chenhao Ma, and Reynold Cheng. 2024. Before
generation, align it! A novel and effective strategy
for mitigating hallucinations in text-to-sql generation.
Association for Computational Linguistics.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D. Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-
danau. 2022. Evaluating the text-to-sql capabilities
of large language models.

11279

http://arxiv.org/abs/2404.14453
http://arxiv.org/abs/2404.14453
http://arxiv.org/abs/2404.14453
http://arxiv.org/abs/2409.12545
http://arxiv.org/abs/2409.12545
http://arxiv.org/abs/2409.12545

Sithursan Sivasubramaniam, Cedric Osei-Akoto,
Yi Zhang, Kurt Stockinger, and Jonathan Fuerst.
2024. Sm3-text-to-query: Synthetic multi-model
medical text-to-query benchmark.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen
Chang, Azalia Mirhoseini, and Amin Saberi. 2024.
Chess: Contextual harnessing for efficient sql syn-
thesis.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, and Andrew M. 2024. Gemini: A family
of highly capable multimodal models.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-
aqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen Zhang,
Di Yin, Xing Sun, and Zhoujun Li. 2024. Mac-sql: A
multi-agent collaborative framework for text-to-sql.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023. Self-consistency
improves chain of thought reasoning in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023.

Hanchen Xia, Feng Jiang, Naihao Deng, Cunxiang
Wang, Guojiang Zhao, Rada Mihalcea, and Yue
Zhang. 2024. r3: "this is my sql, are you with me?"
a consensus-based multi-agent system for text-to-sql
tasks.

Yuanzhen Xie, Xinzhou Jin, Tao Xie, Matrixmxlin Ma-
trixmxlin, Liang Chen, Chenyun Yu, Cheng Lei,
Chengxiang Zhuo, Bo Hu, and Zang Li. 2024. De-
composition for enhancing attention: Improving llm-
based text-to-sql through workflow paradigm. In
Findings of the Association for Computational Lin-
guistics, ACL 2024, Bangkok, Thailand and virtual
meeting, August 11-16, 2024.

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin
Liu, Zhiyu Mei, Guangju Wang, Chao Yu, and Yi Wu.
2024a. Is dpo superior to ppo for llm alignment? a
comprehensive study. In Proceedings of the 41st
International Conference on Machine Learning.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen,
Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao,
and Tianyi Zhou. 2024b. A survey on knowledge
distillation of large language models.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2017,
Vancouver, Canada, July 30 - August 4, Volume 1:
Long Papers.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang, and
Dragomir R. Radev. 2018. Spider: A large-scale

human-labeled dataset for complex and cross-domain
semantic parsing and text-to-sql task. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai
Hoang, Shirley Kokane, Weiran Yao, Juntao Tan,
Akshara Prabhakar, Haolin Chen, Zhiwei Liu, Yihao
Feng, Tulika Awalgaonkar, Rithesh Murthy, Eric Hu,
Zeyuan Chen, Ran Xu, Juan Carlos Niebles, Shelby
Heinecke, Huan Wang, Silvio Savarese, and Caiming
Xiong. 2024. xlam: A family of large action models
to empower ai agent systems.

Xuanliang Zhang, Dingzirui Wang, Longxu Dou,
Qingfu Zhu, and Wanxiang Che. 2025. A survey
of table reasoning with large language models. Fron-
tiers Comput. Sci.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen
Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu,
Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2024. A
survey of large language models.

Xuanle Zhao, Xianzhen Luo, Qi Shi, Chi Chen, Shuo
Wang, Wanxiang Che, Zhiyuan Liu, and Maosong
Sun. 2025. Chartcoder: Advancing multimodal large
language model for chart-to-code generation.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, and Zheyan Luo. 2024. LlamaFactory: Unified
efficient fine-tuning of 100+ language models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 3:
System Demonstrations). Association for Computa-
tional Linguistics.

Ruiqi Zhong, Charlie Snell, Dan Klein, and Jason Eis-
ner. 2023. Non-programmers can label programs
indirectly via active examples: A case study with
text-to-sql. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 5126–5152.

11280

http://arxiv.org/abs/2312.11242
http://arxiv.org/abs/2312.11242
http://arxiv.org/abs/2409.03215
http://arxiv.org/abs/2409.03215

MODEL #INPUT #OUTPUT

Base Action Model 196.23 25.71
Schema Augmentation Model 621.46 30.24
Logic Optimation Model 683.69 29.80

Table 8: The average length of input and output tokens
in the training corpus for each model.

SHORTHAND NAME OFFICIAL MODEL ALIAS

Llama-3.1-70B Llama-3.1-70B-Instruct
Qwen-Coder-32B Qwen2.5-Coder-32B-Instruct
Llama-3.1-8B Llama-3.1-8B-Instruct
DS-Coder-6.7B deepseek-coder-6.7b-instruct

Table 9: Shorthand model names used throughout the
paper and their corresponding official model aliases.

A SHARE Recipe

A.1 Training Data Distribution

In this work, we utilize the training set of two main-
stream cross-domain text-to-SQL benchmarks as
the seed data to construct our own training data. 1)
BIRD: The training set of BIRD contains 9,428
pairs of text-to-SQL data and 69 big databases
across 37 professional domains. 2) SPIDER: SPI-
DER is a more standard text-to-SQL benchmark
that contains 8659 training examples across more
than 20 domains. Table 8 displays the detailed
average length of the input and output tokens for
each model in our own training data. Our approach
achieved superior performance with notably few
training tokens, validating the data-efficient nature
of SHARE.

A.2 Action Space of SHARE

As discussed in Section 3.2, we design actions in
target trajectories as pandas-like APIs and employ
GPT-4o to convert each ground truth SQL to a ver-
ified action trajectory by few-shot prompting for
the training data construction. All logically mean-
ingful and validated actions generated by GPT-4o
in this process are collected as the action space
of SHARE. We further categorize these actions
into four types, including clause, dataframe, ag-
gregation, and operator types. Specific actions are
presented in Table 11 and 12.

APPROACH SIMPLE MODERATE CHALLENGING TOTAL

DPO 65.08 48.06 42.76 57.82
LoRA 70.81 56.25 46.90 64.14

Table 10: The performance of SHARE trained via dif-
ferent fine-tuning approaches on BIRD dev.

A.3 Erroneous Trajectory Collection

As introduced in Section 3.4, the erroneous ac-
tion trajectories in the training data for LOM come
from two resources: 1) initial erroneous SQLs, and
2) verified action trajectories that are perturbed by
our action-based perturbation strategy. To better
clarify the data augmentation through error pertur-
bations, we present the pseudocode of this process
in Pseudocode 1.

Algorithm 1 Data Augmentation

1: Inputs:
2: verified_corrs ▷ A collection of

verified correct trajectories verified_corr_1,
verified_corr_2, . . .

3: SLM ▷ Small Language Model
4: K ▷ Number of error perturbations per

ground truth
5: Output:
6: data_pairs ▷ A set of (erroneous trajectory,

verified correct trajectory) pairs

7: Initialize:
8: Initialize data_pairs as an empty set.

9: for verified_corr_i in verified_corrs do
10: for p = 1 to K do
11: er_p ←

ErrorPerturb(verified_corr_i, SLM) ▷
Use the smaller model to inject errors into the
verified correct trajectory verified_corr_i.

12: Add the pair (er_p, verified_corr_i)
to data_pairs ▷ No additional
verification is needed, since verified_corr_i
is correct by definition.

13: end for
14: end for
15: return data_pairs

B Experiment Setup

B.1 Baseline Methods

Table 2 presents all the baseline methods we use
for comparison. In this work, we consider Self-
Correction (Huang et al., 2024), Self-Consistency
(Wang et al., 2023), Multiple-Prompt (Lee et al.,
2024) as feedback-independent self-correction
baselines. These methods leverage the intrinsic
capabilities of the LLM through prompt engineer-
ing to enable its self-correction. For feedback-

11281

dependent self-correction baselines, we imple-
ment Self-Debugging (Chen et al., 2024a), DIN-
Correction (Pourreza and Rafiei, 2024), MAC-
Refiner (Wang et al., 2024), and MAGIC (Askari
et al., 2024), where the Large Language Model
(LLM) refines its initial output under the guidance
of feedback. Feedback utilized in these approaches
is derived from three primary sources: human an-
notations, external execution environments, and
through LLMs iteratively exploring contextual en-
vironments.

The details of these methods are as follows: 1)
Self-Correction is a naive method in which the
LLM reconsiders and refines its outputs through
vanilla Chain-of-Thought (CoT) prompting. 2)
Self-Consistency (Wang et al., 2023) is a method
that refines the initial output by exploring a broader
search space and selecting the most consistent one.
We generate five SQL queries using the baseline
SQL generation prompt implemented in BIRD (Li
et al., 2024a) and consider an instance to be cor-
rectly solved if at least one of the generated SQL
queries produces the correct result. 3) Multiple-
Prompt generates diverse queries by systemati-
cally reordering candidate tables within the prompt.
Following the implementation of (Lee et al., 2024),
we generate up to five combinations of prompts
for each instance and employ the same evaluation
mechanism as self-consistency to determine the
results. 4) Self-Debugging (Chen et al., 2024b)
generates the feedback by investing the execution
results and explaining the generated SQL in natu-
ral language. The feedback further serves as guid-
ance to instruct the LLM to self-correct. 5) DIN-
Correction utilizes the human-annotated guide-
line from DIN-SQL (Pourreza and Rafiei, 2024)
for self-correction. 6) MAC-Refiner, which is a
sub-agent of MAC-SQL (Wang et al., 2024), imple-
ments the self-correction process based on multi-
dimensional error feedback information by ana-
lyzing the execution results, including syntactic
correctness, execution feasibility, and retrieval of
non-empty results. 7) Magic (Askari et al., 2024)
collaborates on the failure experiences and auto-
matically distills correction guidelines, employing
a crafted LLM-based multi-agent framework for
self-correction.

B.2 Hyper-Parameters

We set the low-rank dimensions as 8, the learning
rate as 5e−5, and the batch size as 8. We train 5

epochs for the Base Action Model (BAM) and train
3 epochs for the Schema Augmentation Model
(SAM) and the Logic Optimization Model (LOM).
During inference, we set the temperature as 0.1,
the top p as 0.95, and the maximum sample length
as 1024. We report the experimental results as the
average of five repeated trials.

B.3 Model Reference Mapping

We list in Table 9 the shorthand model names used
throughout the paper alongside their corresponding
official model aliases.

C Further Anaylsis

C.1 Ablation Study

Table 5 presents the results of our ablation study,
aimed at isolating and evaluating contributions of
each component of SHARE. As shown in Table
5(a)-(b), the substantial performance degradation
resulting from the removal of either refinement
action model underscores the importance of our
two-stage refinement design. This two-stage ap-
proach, which separately handles schema linking
and logical reasoning, proves to be essential for
effective text-to-SQL correction (Lei et al., 2020).

To further examine the benefits of the hierarchi-
cal evolution strategy in SHARE, we compare it
against a sequential training pipeline reminiscent
of classical continual learning. When trained se-
quentially, performance declines by 3.59% (Table
5(c)), suggesting that later models may be dispro-
portionately influenced by biases or errors carried
over from earlier training stages (Liu et al., 2021).
In contrast, SHARE employs hierarchical evolu-
tion during training and strategically integrates
knowledge at inference time, mitigating these limi-
tations and achieving superior results.

Finally, Table 5(d) highlights the effectiveness
of action-based error perturbation as a data aug-
mentation strategy. Although simple, it yields a
2.76% improvement in performance, reinforcing
its value as a straightforward yet potent enhance-
ment to SHARE’s overall text-to-SQL reasoning
capability.

C.2 Computational Cost of SHARE

As illustrated in Section 4.4, we compare the aver-
age token usage per instance and average computa-
tional cost per 1000 instances during the inference
and training stages for GPT-4o assisted by SHARE,

11282

versus other strong LLM-based text-to-SQL cor-
rection approaches on the BIRD development set.
We present the usage of input and output tokens
separately since they have different prices. We take
the same price for the calculation as in the previous
work (Sivasubramaniam et al., 2024) 2.

Notably, SHARE remains highly cost-efficient
during the training data construction stage. As
introduced in Section 3.2, SHARE just uses GPT-
4o to generate and verify the training data for the
Base Action Model (BAM). Afterward, BAM it-
self creates the training data for all other models,
enabling a self-evolution process without further
reliance on GPT-4o. To more clearly demonstrate
SHARE’s cost-efficiency in training, we compare
it against the strongest self-correction method,
MAGIC. While MAGIC does not undergo a direct
fine-tuning step, it adopts an ICL-based training
approach, which follows a training-like procedure
where the LLM explores the training set, produces
a correction guideline for each instance, and mem-
orizes successful corrections as task knowledge for
inference. As shown in Table 6, the sharp reduc-
tion in token usage directly translates to significant
computational savings, underscoring SHARE’s su-
perior cost-efficiency in the training stage.

C.3 Independent Inference of SHARE

While SHARE shows clear improvements among
various generator LLMs, a key question is how
well it performs independently, without any exter-
nal LLM grounding. This question is especially im-
portant for privacy-sensitive scenarios, such as text-
to-SQL tasks on confidential relational databases.

To address this, we evaluate SHARE’s stan-
dalone capabilities, using the same orchestra-
tion prompting strategy as for Llama-3.1-8B
Orchestration. As shown in Figure 6,
SHARE-8B achieves robust performance on
its own, surpassing both Llama-3.1-8B and
Llama-3.1-8B Orchestration, and ap-
proaching the quality of strong proprietary models
like GPT-35-Turbo, Claude-3.5-Sonnet, and GPT-
4o-mini.

This improvement results from our parameter-
efficient LoRa fine-tuning approach, which aug-
ments the model’s capabilities without altering its
original parameters. By optimizing only a small
set of new parameters, we enhance the underlying

2Pricing of GPT-4o API: https://openai.com/api/pricing/.
Price of Llama-3.1 8B usage: https://groq.com/pricing/

simple
10

20

40

60

moderate challenging total

Ex
ec
ut
io
n
Ac
cu
ra
cy

Llama-3.1-8B SHARE-8B

moderate challenging total

30

50

Llama-3.1-8B Orchestration

Figure 6: Independent inference performance of
SHARE on BIRD.

SLM’s text-to-SQL performance without compro-
mising its existing strengths. Moreover, this effi-
cient design supports secure on-device deployment
that does not require exposing sensitive database
content, relying solely on an 8B-scale SLM and a
modest set of additional parameters.

C.4 Analysis of Overcorrections

Overcorrection (Pan et al., 2024a), which refers to
the modification of initially correct SQL queries
into incorrect ones, is a notorious challenge in self-
correction. To mitigate this issue, we tailored the
training data for the Logic Optimization Model
(LOM). Specifically, we consider pairs of (erro-
neous trajectory, verified trajectory) as positive
samples and, at a 4:1 ratio, introduce (verified tra-
jectory, verified trajectory) pairs as negative sam-
ples.

Analysis of the final correction results shows
that, compared to the current leading self-
correction method, MAGIC, SHARE reduced the
overcorrection rate from 15.52% to 11.20%. This
demonstrates that our design mitigates overfitting
in the correction process in a simple but effective
way, preventing the SLMs from treating all trajec-
tories as erroneous and unnecessarily fixing them.

C.5 Fine-tuning Approach Exploration

Apart from LoRA, we also explored training the
SLMs in SHARE using Direct Preference Opti-
mization (DPO) (Rafailov et al., 2023) during our
initial attempt. In the data construction stage, veri-
fied action trajectories are considered as the chosen
responses. We employ the action-based perturba-
tion strategy introduced in Section 3.4 and provide
5-shot examples to guide GPT-4o to generate re-
jected responses based on chosen responses.

As shown in Table 10, compared to SHARE-

11283

https://openai.com/api/pricing/
https://groq.com/pricing/

8B trained via LoRA, the performance gains of
the DPO-trained version showed a consistent de-
cline across all difficulty levels. We observe that
the DPO model outputs many meaningless trajec-
tories, such as invalid pandas output format. We
speculate that the suboptimal performance of DPO-
based training arises from its limited suitability for
low-resource settings. Furthermore, for data sci-
ence code generation tasks (Zhao et al., 2025) that
require complex reasoning, DPO relies on high-
quality data and requires crafted rejected responses
by human annotation (Xu et al., 2024a). In contrast,
LoRA can effectively leverage automatically gener-
ated data, making it more efficient under these con-
straints. Consequently, we adopted LoRA as our
primary fine-tuning method, given its lightweight
design and effectiveness.

C.6 Case Study

In order to provide deeper insights into SHARE’s
effectiveness, we conducted case studies on its
correction outputs. Table 13 presents an illustra-
tive case randomly selected from the BIRD de-
velopment set. By decomposing the declarative
SQL query into an action trajectory and leverag-
ing the multi-SLM orchestration during inference,
SHARE achieves more granular corrections. Con-
sequently, it produces a correct query that effec-
tively addresses both schema and logic issues. We
additionally offer an output log that contains the
output of each model during SHARE inference for
reference.

D Implement Prompts

D.1 Data Construction for BAM

Figure 7 illustrates the prompts employed in our
data construction process for BAM. Specifically,
we utilize seven examples to guide GPT-4o in gen-
erating corresponding action trajectories for SQL
queries. The figure presents two representative
examples, while the remaining examples can be
found in our code.

D.2 Error Perturbation Prompt

Figure 8 illustrates the prompts we use to imple-
ment error perturbations during the data construc-
tion process of LOM. Specifically, we utilize four
examples to guide BAM to generate perturbed ac-
tion trajectories. The figure presents a representa-
tive example, while the remaining examples can
be found in our code.

D.3 Inference Prompts
In this section, we present prompts that we use in
the inference process of SHARE. During inference,
we prompt BAM to convert the initial SQL using
the prompt in Figure 9. Subsequently, the gener-
ated trajectory is forwarded to SAM. The SAM
first masks the schema using the prompt in Figure
10 and then generates the schema-refined trajec-
tory using the prompt in Figure 11. The LOM then
takes this trajectory as input and refines it as the
final output of SHARE using the prompt in Figure
12. Finally, the SHARE-produced trajectory serves
as feedback to facilitate the self-correction of LLM,
as shown in Figure 13. All the prompts are in the
zero-shot setting.

E Reproducebility

We fine-tune and infer open-source models,
including Llama-3.1-8b-Instruct
and Phi-3-mini-4K-instruct
(3.8B) via LlamaFactory3. The
Llama-3.1-70B-Instruct model is in-
ferred using vllm4. To accelerate its inference
process, we also implemented deepspeed5.
All open-source models are accessed via
huggingface6.

We will open-source the source code along with
the training data, model checkpoints, and prompts
in each stage after the anonymous review phase.

3https://github.com/hiyouga/LLaMA-Factory
4https://github.com/vllm-project/vllm
5https://github.com/microsoft/DeepSpeed
6https://huggingface.co/models

11284

Category Action Expression Explanation

Clause
SELECT select(elements) Select data from the database.

Parameters:
elements - the selected elements. Valid elements include
qualified column names in the format of table.column,
aggregate functions, or any valid SQL-syntax selectable en-
tity. Multiple elements are separated by commas.

WHERE where(element, filter) Filter rows by conditions.
Parameters:
elements - The qualified column, or expression to be filtered.
filter - The condition that determines which values from the
element are included.

GROUP
BY

groupby(elements) Groups rows that have the same values into summary rows.
Parameters:
elements - Qualified columns, or expressions used to group
the data. Multiple elements are separated by commas.

HAVEING having(element, filter) Filter groups of data with aggregate functions.
Parameters:
elements - Qualified columns, or expressions used to filter
data. Multiple elements are separated by commas.
filter - The condition that determines which values from the
element are included.

ORDER
BY

orderby(by, order) Sort the result set based on a qualified column or expression.
Parameters:
by - The qualified column or expression used to sort the data.
order - The sorted order. It should be DESC or ASC.

LIMIT limit(num) Restrict the number of rows returned.
Parameters:
num - The num is a flexible input that specifies the type
of limitation to apply. For instance, limit(1) denotes
limiting the number of rows to 1. limit(2,9) denotes
specifying a range of columns to return, which is columns 2
through 9.

DISTINCT distinct(element) Remove duplicate rows from the result set.
Parameters:
element - The qualified column to be processed.

Dataframe
UNION df1.union(df2) Union the result set of two dataframes.

INTERSECT df1.intersect(df2) Intersect the result set of two dataframes.

EXCEPT df1.except(df2) Subtract the result of df2 from the result of df1.

Aggregation
SUM sum(element) Sum all non-null values of the element or expression.

Parameters:
element - The target qualified column or expression.

AVG average(element) Calculate the average of all non-null values for the element
or expression.
Parameters:
element - The target qualified column or expression.

COUNT count(element) Returns the total number of the element or expression.
Parameters:
element - The target qualified column or expression.

MIN min(element) Minimum value in the element or expression except for
nULL.
Parameters:
element - The target qualified column or expression.

MAX max(element) Maximum value in the element or expression except for
nULL.
Parameters:
element - The target qualified column or expression.

Table 11: Actions categorized as clause, dataframe, and aggregation types employed in the construction of action
trajectories within SHARE. Actions categorized as operator types are shown in Table 12.

11285

Category Action Expression Explanation

Operator
CAST cast(element, type) Convert the element or expression to the target data type.

Parameters:
element - The qualified column or expression to convert.
type - The target data type.

CALCU-
LATION

+, -, *, / Implement corresponding calculations for two expressions.

SUBSTR substr(element,
piv, len)

Extract a substring, starting from a specified position and
optionally for a specified length
Parameters:
element - The qualified column to extract.
piv - The start point.
len - The extracted length.

Table 12: Actions categorized as operator actions employed in the construction of action trajectories within SHARE.
Actions categorized as other types are shown in Table 11.

A Detailed Case

Question Which county reported the most number of school closures in the 1980s with school ownership code
belonging to Youth Authority Facilities (CEA)?

Evidence Youth Authority Facilities (CEA) refers to SOC = 11; 1980s = years between 1980 and 1989.
Gold SELECT County FROM schools WHERE strftime(’%Y’, ClosedDate) BETWEEN ’1980’ AND ’1989’

AND SOC = 11 GROUP BY County ORDER BY COUNT(ClosedDate) DESC LIMIT 1
Initial SQL SELECT County, COUNT(*) AS YearCount FROM schools WHERE Year BETWEEN ’1980-01-01’

AND ’1989-12-31’ AND SOC = 11 GROUP BY County ORDER BY YearCount DESC LIMIT 1;
MAGIC SELECT County, COUNT(*) as ClosureCount FROM schools WHERE ClosedDate BETWEEN ’1980-01-01’

AND ’1989-12-31’ AND SOC = 11 GROUP BY County ORDER BY ClosureCount DESC LIMIT 1;
SHARE SELECT schools.County FROM schools WHERE schools.SOC = 11 AND schools.ClosedDate BETWEEN ’1980-01-01’

AND ’1989-12-31’ GROUP BY schools.County ORDER BY COUNT(schools.ClosedDate) DESC LIMIT 1;

Output Log

Initial SQL SELECT County, COUNT(*) AS YearCount FROM schools WHERE Year BETWEEN ’1980-01-01’
AND ’1989-12-31’ AND SOC = 11 GROUP BY County ORDER BY YearCount DESC LIMIT 1;

BAM: df1 = df.where(element = schools.Year, filter = ’between 1980-01-01 and 1989-12-31’))
df2 = df1.where(element = schools.SOC, filter = 11)
df3 = df2.groupby(schools.County).count(schools.Year)
df4 = df3.orderby(by = count(schools.Year), desc).limit(1)
res = df4.select(schools.County, count(schools.Year))

SAM: df1 = df.where(element = schools.ClosedDate, filter = ’between 1980-01-01 and 1989-12-31’))
df2 = df1.where(element = schools.SOC, filter = 11)
df3 = df2.groupby(schools.County).count(schools.ClosedDate)
df4 = df3.orderby(by = count(schools.ClosedDate), desc).limit(1)
res = df4.select(schools.County, count(schools.ClosedDate))

LOM: df1 = df.where(element = schools.ClosedDate, filter = ’between 1980-01-01 and 1989-12-31’))
df2 = df1.where(element = schools.SOC, filter = 11)
df3 = df2.groupby(schools.County).count(schools.ClosedDate)
df4 = df3.orderby(by = count(schools.ClosedDate), desc).limit(1)
res = df4.select(schools.County)

Final Output SELECT schools.County FROM schools WHERE schools.SOC = 11 AND schools.ClosedDate BETWEEN ’1980-01-01’
AND ’1989-12-31’ GROUP BY schools.County ORDER BY COUNT(schools.ClosedDate) DESC LIMIT 1;

Table 13: Case study: an illustrative case from BIRD dev.

11286

You are a text-to-SQL expert. Action Trajectory (AT) is a piece of stepwise action-based code to show the underlying reasoning of
text-to-SQL conversion. Actions utilized in the trajectory are pandas-like functions.
Given the database schema, question, evidence and SQL, your task is to convert the SQL to AT which reflect the accurate logic in
the SQL. I'll provide several example to you to help you understand the syntax of the AT and the conversion logic. AT ignore 'join'
action. Do not generate 'join' action.

```Examples
{example_shots}
```
Now convert the following SQL to valid AT based on the database schema, question and evidence.

question = “{question}”
schema = “{schema}”
evidence = “{evidence}”
SQL = “{sql}”

``` AT
{at}
``

Data Construction prompt for BAM

Examples: A Partial Showcase

#Example 1
question = "How many movies directed by Francis Ford Coppola have a popularity of more than 1,000? Please also show the critic 

of these movies. "
schema = [movies.movie_title, ratings.critic, movies.director_name, movies.movie_popularity, ratings.movie_id,

movies.movie_id’]
evidence = "Francis Ford Coppola refers to director_name; popularity of more than 1,000 refers to movie_popularity >1000" 
SQL = "SELECT T2.movie_title, T1.critic FROM ratings AS T1 INNER JOIN movies AS T2 ON T1.movie_id = T2.movie_id WHERE

T2.director_name = 'Francis Ford Coppola' AND T2.movie_popularity > 1000 "
```AT
df1 = df.where(element = movies.director_name, filter = 'Francis Ford Coppola')
df2 = df1.where(element = movies.movie_popularity, filter = '> 1000')
res = df2.select(movies.movie_title, ratings.critic)"
```

#Example 2
question = "Among the professors who have more than 3 research assistants, how many of them are male? "
schema = [prof.gender, RA.student_id, RA.prof_id, prof.prof_id]
evidence = "research assistant refers to the student who serves for research where the abbreviation is RA; more than 3 research

assistant refers to COUNT(student_id) > 3;"
SQL = "SELECT COUNT(*) FROM ( SELECT T2.prof_id FROM RA AS T1 INNER JOIN prof AS T2 ON T1.prof_id = T2.prof_id WHERE

T2.gender = 'Male' GROUP BY T1.prof_id HAVING COUNT(T1.student_id) > 3 )"

```AT
df1 = df.groupby(prof.prof_id).having(element = count(RA.student_id), filter = '> 3')
df2 = df1.where(element = 'prof.gender', filter = 'Male')
res = df2.count()
```

…
…

Figure 7: The prompt for the data construction process of BAM.

11287



}

You are a text-to-SQL expert. Action Trajectory (AT) is a piece of stepwise action-based code to show the underlying reasoning of
text-to-SQL conversion. Actions utilized in the trajectory are pandas-like functions.
I will provide you:
1. Schema: A python list and each element is a `table_name`.`column_name` string. It indicates the table and column you could 
use in the AT.
2. Column description: For each column in the schema, a column description is given to describe the column meaning, column 
type and example values in this column.
3. Question: the natural language answer you need to answer in the text-to-SQL process
4. Evidence: the oracle knowledge to help you understand the AT
5. AT: The AT that show the correct logic of the text-to-SQL process in the context of the schema, question and evidence. 

Your task is to modify the AT and imitate reasonable errors that might occur in text-to-SQL, generating an erroneous AT. It can be 
implemented by one or several types of error perturbation.
The type of error perturbation as references:
1. Add: Inserts an additional action into the original action trajectory. 
2. Delete: Removes an existing action from the trajectory.
3. Substitute: Replaces an existing action with a different action type or modifies the parameters of the existing action.

I'll also provide you some examples:
{example_shots}

Now generating the AT that contains error for the following text-to-SQL instances:
schema = {schema}
```column description
{column_description}
```
question = "{question}"
evidence = "{evidence}"
```input AT
{at}
``

Fill in the following template using your answer.
```erroneous AT
[Your Answer]
```

Error perturbation prompt for BAM

Examples: A Partial Showcase

#Example 1
schema = ['movie_crew.job', 'movie.movie_id‘, 'movie.revenue', 'person.person_name']
```column description
# movie_crew.job: The 'job' column in the 'movie_crew' table (db id: movies_4) stores text descriptions of various crew members' 
roles within a movie production, acknowledging that multiple individuals can share the same job title. Example roles include 
'Stand In', 'Consulting Producer', and 'Simulation & Effects Production Assistant'.
# movie.movie_id: The unique integer identifier for each movie in the 'movie' table.
# movie.revenue: The 'revenue' column in the 'movie' table (db id: movies_4) records the movie's earnings as an integer, 
reflecting its financial success.
# person.person_name: The 'person name' column in the 'person' table of the 'movies_4' database stores text entries 
representing individual names, with examples like 'Matthew Ferguson', 'Joe Guzman', and 'Reilly Dolman'.
```
question = "What is the average revenue of the movie in which Dariusz Wolski works as the director of photography?"
evidence = "director of photography refers to job = 'Director of Photography'; average revenue = divide(sum(revenue),
count(movie_id))"
```input AT
df1 = df.where(element = person.person_name, filter = 'Dariusz Wolski')
df2 = df1.where(element = movie_crew.job, filter = 'Director of Photography')
res = df2.select(cast(df2.sum(movie.revenue), real) / df2.count(movie.movie_id))
```
Output1:
```erroneous AT
df1 = df.where(element = person.person_name, filter = 'Dariusz Wolski')
res = df1.select(df1.avg(movie.revenue) / df1.count(movie.movie_id))
```

…
…

Figure 8: The prompt for the error perturbation strategy implemented by BAM.

11288

}

You are a text-to-SQL expert. Action Trajectory (AT) is a piece of stepwise action-based code to show the underlying reasoning of
text-to-SQL conversion. Actions utilized in the trajectory are pandas-like functions.
I will provide you:
1. Schema: A python list and each element is a `table_name`.`column_name` string. It indicates that the table and column you
could use in the AT.
2. SQL: The SQL that needed to be converted to AT.

Your task is to convert the SQL to AT which reflect the accurate logic in the SQL. Later, the AT will be converted back to SQL.
Please pay attention that AT ignore 'join' action. Do not generate 'join' action.

schema = {schema}
sql = “{sql}”
Now generate the valid AT that display the reasoning process of generating SQL that can accurately answer the question:
```AT
[Your Answer]
```

Inference prompt for BAM

}

You are a text-to-SQL expert. Action Trajectory (AT) is a piece of stepwise action-based code to show the underlying reasoning of
text-to-SQL conversion. Actions utilized in the trajectory are pandas-like functions.
I will provide you an AT that show the logic of the text-to-SQL process in the context of the schema, question and evidence.
Your task is to mask the schema (related tables and columns) in the AT and only keep the logic template. DO NOT modify the logic
in the original AT, just do the mask.

Now mask the schema in the following AT and fill your answer in the template,
```AT
{at}
```
```Masked AT
[Your Answer]
```

Mask prompt for SAM

}

You are a text-to-SQL expert. Action Trajectory (AT) is a piece of stepwise action-based code to show the underlying reasoning of
text-to-SQL conversion. Actions utilized in the trajectory are pandas-like functions.
I will provide you:
1. Schema: For each table, we will have a python list and each element is a `table_name`.`column_name` string to show all the
schema in the database. It indicates that the table and column you could use in the AT.
2. Highlighted Schema: a subset of Schema. You can consider it as a guess about the schema that used in the ground-truth SQL in
the context of this text-to-SQL process. However, it is not always correct. It may contain irrelevant schema which could lead to
errors in the subsequent SQL generation or miss truly related schema.
3. Question: the natural language answer you need to answer in the text-to-SQL process
4. Evidence: the oracle knowledge to help you generate the AT
5. Masked AT: An AT with the schema masked, leaving only the reasoning steps in text-to-SQL.

Your task is to refer to all the provided information and fill in the correct schema at the [MASK] positions in the masked AT. The
complete AT should accurately reflect the reasoning process that generates the SQL capable of correctly answering the question.
DO NOT modify the logical template in the masked AT; you are only allowed to fill in the schema.

```Schema
{full_schema}
```
highlighted_schema = {partial_schema}
question = “{question}"
evidence = “{evidence}”
```Masked AT
{masked_at}
```

Now, fill in the masked AT and give me the final AT:
```AT
[Your Answer]
```

Fillin prompt for SAM

Figure 9: The prompt for BAM to convert SQL to action trajectory.

}

You are a text-to-SQL expert. Action Trajectory (AT) is a piece of stepwise action-based code to show the underlying reasoning of
text-to-SQL conversion. Actions utilized in the trajectory are pandas-like functions.
I will provide you:
1. Schema: A python list and each element is a `table_name`.`column_name` string. It indicates that the table and column you
could use in the AT.
2. SQL: The SQL that needed to be converted to AT.

Your task is to convert the SQL to AT which reflect the accurate logic in the SQL. Later, the AT will be converted back to SQL.
Please pay attention that AT ignore 'join' action. Do not generate 'join' action.

schema = {schema}
sql = “{sql}”
Now generate the valid AT that display the reasoning process of generating SQL that can accurately answer the question:
```AT
[Your Answer]
```

Inference prompt for BAM

}

You are a text-to-SQL expert. Action Trajectory (AT) is a piece of stepwise action-based code to show the underlying reasoning of
text-to-SQL conversion. Actions utilized in the trajectory are pandas-like functions.
I will provide you an AT that show the logic of the text-to-SQL process in the context of the schema, question and evidence.
Your task is to mask the schema (related tables and columns) in the AT and only keep the logic template. DO NOT modify the logic
in the original AT, just do the mask.

Now mask the schema in the following AT and fill your answer in the template,
```AT
{at}
```
```Masked AT
[Your Answer]
```

Mask prompt for SAM

}

You are a text-to-SQL expert. Action Trajectory (AT) is a piece of stepwise action-based code to show the underlying reasoning of
text-to-SQL conversion. Actions utilized in the trajectory are pandas-like functions.
I will provide you:
1. Schema: For each table, we will have a python list and each element is a `table_name`.`column_name` string to show all the
schema in the database. It indicates that the table and column you could use in the AT.
2. Highlighted Schema: a subset of Schema. You can consider it as a guess about the schema that used in the ground-truth SQL in
the context of this text-to-SQL process. However, it is not always correct. It may contain irrelevant schema which could lead to
errors in the subsequent SQL generation or miss truly related schema.
3. Question: the natural language answer you need to answer in the text-to-SQL process
4. Evidence: the oracle knowledge to help you generate the AT
5. Masked AT: An AT with the schema masked, leaving only the reasoning steps in text-to-SQL.

Your task is to refer to all the provided information and fill in the correct schema at the [MASK] positions in the masked AT. The
complete AT should accurately reflect the reasoning process that generates the SQL capable of correctly answering the question.
DO NOT modify the logical template in the masked AT; you are only allowed to fill in the schema.

```Schema
{full_schema}
```
highlighted_schema = {partial_schema}
question = “{question}"
evidence = “{evidence}”
```Masked AT
{masked_at}
```

Now, fill in the masked AT and give me the final AT:
```AT
[Your Answer]
```

Fillin prompt for SAMFigure 10: The prompt for SAM to generate the schema-masked variant given the input trajectory.

11289

}

You are a text-to-SQL expert. Action Trajectory (AT) is a piece of stepwise action-based code to show the underlying reasoning of
text-to-SQL conversion. Actions utilized in the trajectory are pandas-like functions.
I will provide you:
1. Schema: A python list and each element is a `table_name`.`column_name` string. It indicates that the table and column you
could use in the AT.
2. SQL: The SQL that needed to be converted to AT.

Your task is to convert the SQL to AT which reflect the accurate logic in the SQL. Later, the AT will be converted back to SQL.
Please pay attention that AT ignore 'join' action. Do not generate 'join' action.

schema = {schema}
sql = “{sql}”
Now generate the valid AT that display the reasoning process of generating SQL that can accurately answer the question:
```AT
[Your Answer]
```

Inference prompt for BAM

}

You are a text-to-SQL expert. Action Trajectory (AT) is a piece of stepwise action-based code to show the underlying reasoning of
text-to-SQL conversion. Actions utilized in the trajectory are pandas-like functions.
I will provide you an AT that show the logic of the text-to-SQL process in the context of the schema, question and evidence.
Your task is to mask the schema (related tables and columns) in the AT and only keep the logic template. DO NOT modify the logic
in the original AT, just do the mask.

Now mask the schema in the following AT and fill your answer in the template,
```AT
{at}
```
```Masked AT
[Your Answer]
```

Mask prompt for SAM

}

You are a text-to-SQL expert. Action Trajectory (AT) is a piece of stepwise action-based code to show the underlying reasoning of
text-to-SQL conversion. Actions utilized in the trajectory are pandas-like functions.
I will provide you:
1. Schema: For each table, we will have a python list and each element is a `table_name`.`column_name` string to show all the
schema in the database. It indicates that the table and column you could use in the AT.
2. Highlighted Schema: a subset of Schema. You can consider it as a guess about the schema that used in the ground-truth SQL in
the context of this text-to-SQL process. However, it is not always correct. It may contain irrelevant schema which could lead to
errors in the subsequent SQL generation or miss truly related schema.
3. Question: the natural language answer you need to answer in the text-to-SQL process
4. Evidence: the oracle knowledge to help you generate the AT
5. Masked AT: An AT with the schema masked, leaving only the reasoning steps in text-to-SQL.

Your task is to refer to all the provided information and fill in the correct schema at the [MASK] positions in the masked AT. The
complete AT should accurately reflect the reasoning process that generates the SQL capable of correctly answering the question.
DO NOT modify the logical template in the masked AT; you are only allowed to fill in the schema.

```Schema
{full_schema}
```
highlighted_schema = {partial_schema}
question = “{question}"
evidence = “{evidence}”
```Masked AT
{masked_at}
```

Now, fill in the masked AT and give me the final AT:
```AT
[Your Answer]
```

Fillin prompt for SAM

Figure 11: The prompt for SAM to reinsert the correct schema in the schema-based variant.

11290

}

You are a text-to-SQL expert. Action Trajectory (AT) is a piece of stepwise action-based code to show the underlying reasoning of
text-to-SQL conversion and help the subsequent generation of the SQL that can answer the question accurately. Actions utilized in
the trajectory are pandas-like functions.
I will provide you:
1. Schema: A python list and each element is a `table_name`.`column_name` string. It indicates that the table and column you
could use in the AT.
2. Column description: For each column in the schema, a column description is given to describe the column meaning, column
type and example values in this column.
3. Question: the natural language answer you need to answer in the text-to-SQL process
4. Evidence: the oracle knowledge to help you generate the AT
5. AT: AT that show the logic reasoning of the text-to-SQL process in the context of the schema, question and evidence. It may
contain errors which could lead to errors in the subsequent SQL generation.

Your task is to check the given AT and modify it when needed. The final goal is to generate valid AT which reflect the accurate
logic reasoning in the text-to-SQL based on the schema, column description, question and evidence. Later, the modified AT will be
converted to SQL.
Please pay attention that:
1. AT ignore 'join' action. Do not generate 'join' action.
2. In the generated AT, only select the thing that request in the question. Do not select any non-requested stuff.
3. The filter condition in the 'where' function doesn't directly match the text in the question. To find the correct value for the
'where' function, you need to reference the example values or all possible values in column description.

schema = {schema}
```column description
{column_description}
```
question = “{question}"
evidence = “{evidence}"
```AT
{at}
```

Now generate the valid AT that display the reasoning process of generating SQL that can accurately answer the question:
```refined AT
[Your Answer]
```

Inference prompt for LOM

}

You are a text-to-SQL expert. I will provide you:
1. Database schema: Includes schema and forerign_keys. Schema is a python list and each element is a
`table_name`.`column_name` string. It indicates that the table and column you could use in the AT. foreign_keys is a dictionary
that shows foreign key relationships among tables.
2. Column description: For each column in the schema, a column description is given to describe the column meaning, column
type and example values in this column.
3. Question: the natural language answer you need to answer in the text-to-SQL process.
4. Evidence: the oracle knowledge to help you generate the AT.
5. AT: a piece of stepwise action-based code to show the underlying reasoning of text-to-SQL conversion and help the subsequent
generation of the SQL that can answer the question accurately.

Your task is to convert the given AT to the valid SQL accordding to the database schema, column description, question and
evidence. The SQL should be valid in syntax and can answer the question accurately.
To help you better understand AT, please pay attention that:
1. AT ignore 'join' action. Do not generate 'join' action. You need to generate correct join clause by yourself. Use 'INNER JOIN' in
your generated SQL.
2. The filter condition in the 'where' function doesn't directly match the text in the question. To find the correct value for the
'where' function, you need to reference the example values or all possible values in column description.
3. In the generated AT, only select the thing that request in the question. Do not select any non-requested stuff.

schema = {schema}
```column description
{column_description}
```
question = “{question}"
evidence = “{evidence}"
```AT
{at}
```

Now generate the valid SQL:
```sqlite
[Your Answer]
```

SQLGeneration prompt for LLM
Figure 12: The prompt for LOM to rectify logic-related errors in the input trajectory.

11291

}

You are a text-to-SQL expert. Action Trajectory (AT) is a piece of stepwise action-based code to show the underlying reasoning of
text-to-SQL conversion and help the subsequent generation of the SQL that can answer the question accurately. Actions utilized in
the trajectory are pandas-like functions.
I will provide you:
1. Schema: A python list and each element is a `table_name`.`column_name` string. It indicates that the table and column you
could use in the AT.
2. Column description: For each column in the schema, a column description is given to describe the column meaning, column
type and example values in this column.
3. Question: the natural language answer you need to answer in the text-to-SQL process
4. Evidence: the oracle knowledge to help you generate the AT
5. AT: AT that show the logic reasoning of the text-to-SQL process in the context of the schema, question and evidence. It may
contain errors which could lead to errors in the subsequent SQL generation.

Your task is to check the given AT and modify it when needed. The final goal is to generate valid AT which reflect the accurate
logic reasoning in the text-to-SQL based on the schema, column description, question and evidence. Later, the modified AT will be
converted to SQL.
Please pay attention that:
1. AT ignore 'join' action. Do not generate 'join' action.
2. In the generated AT, only select the thing that request in the question. Do not select any non-requested stuff.
3. The filter condition in the 'where' function doesn't directly match the text in the question. To find the correct value for the
'where' function, you need to reference the example values or all possible values in column description.

schema = {schema}
```column description
{column_description}
```
question = “{question}"
evidence = “{evidence}"
```AT
{at}
```

Now generate the valid AT that display the reasoning process of generating SQL that can accurately answer the question:
```refined AT
[Your Answer]
```

Inference prompt for LOM

}

You are a text-to-SQL expert. I will provide you:
1. Database schema: Includes schema and forerign_keys. Schema is a python list and each element is a
`table_name`.`column_name` string. It indicates that the table and column you could use in the AT. foreign_keys is a dictionary
that shows foreign key relationships among tables.
2. Column description: For each column in the schema, a column description is given to describe the column meaning, column
type and example values in this column.
3. Question: the natural language answer you need to answer in the text-to-SQL process.
4. Evidence: the oracle knowledge to help you generate the AT.
5. AT: a piece of stepwise action-based code to show the underlying reasoning of text-to-SQL conversion and help the subsequent
generation of the SQL that can answer the question accurately.

Your task is to convert the given AT to the valid SQL accordding to the database schema, column description, question and
evidence. The SQL should be valid in syntax and can answer the question accurately.
To help you better understand AT, please pay attention that:
1. AT ignore 'join' action. Do not generate 'join' action. You need to generate correct join clause by yourself. Use 'INNER JOIN' in
your generated SQL.
2. The filter condition in the 'where' function doesn't directly match the text in the question. To find the correct value for the
'where' function, you need to reference the example values or all possible values in column description.
3. In the generated AT, only select the thing that request in the question. Do not select any non-requested stuff.

schema = {schema}
```column description
{column_description}
```
question = “{question}"
evidence = “{evidence}"
```AT
{at}
```

Now generate the valid SQL:
```sqlite
[Your Answer]
```

SQLGeneration prompt for LLM

Figure 13: The prompt for LLM to generate refined SQL given the trajectory outputted by SHARE.

11292

