
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 11253–11267
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Pre3: Enabling Deterministic Pushdown Automata for
Faster Structured LLM Generation

Junyi Chen1*, Shihao Bai2,3, Zaijun Wang3, Siyu Wu2, Chuheng Du1,
Hailong Yang2, Ruihao Gong2,3†, Shengzhong Liu1†, Fan Wu1, Guihai Chen1

1Shanghai Jiao Tong University 2Beihang University 3Sensetime Research
{junyi.chen, dch7723, shengzhong}@sjtu.edu.cn,
{wusiyu, hailong.yang, gongruihao}@buaa.edu.cn,

{wangzaijun, baishihao}@sensetime.com, {fwu,gchen}@cs.sjtu.edu.cn

Abstract

Extensive LLM applications demand efficient
structured generations, particularly for LR(1)
grammars, to produce outputs in specified for-
mats (e.g., JSON). Existing methods primar-
ily parse LR(1) grammars into a pushdown
automaton (PDA), leading to runtime execu-
tion overhead for context-dependent token pro-
cessing, especially inefficient under large in-
ference batches. To address these issues, we
propose Pre3 that exploits deterministic push-
down automata (DPDA) to optimize the con-
strained LLM decoding efficiency. First, by
precomputing prefix-conditioned edges dur-
ing the preprocessing, Pre3 enables ahead-
of-time edge analysis and thus makes paral-
lel transition processing possible. Second, by
leveraging the prefix-conditioned edges, Pre3

introduces a novel approach that transforms
LR(1) transition graphs into DPDA, eliminat-
ing the need for runtime path exploration and
achieving edge transitions with minimal over-
head. Pre3 can be seamlessly integrated into
standard LLM inference frameworks, reduc-
ing time per output token (TPOT) by up to
40% and increasing throughput by up to 36%
in our experiments. Our code is available at
https://github.com/ModelTC/lightllm.

1 Introduction

The recent remarkable development of Large Lan-
guage Models (LLM) has ushered in new oppor-
tunities for a wide array of intelligent applica-
tions such as automated external tool invocations
through function calls (Cai et al., 2023; Li et al.,
2024a; Zhuo et al., 2024), chain of thoughts (Wei
et al., 2022; Wang et al., 2022; OpenAI, 2024; Guo
et al., 2025), embodied AI (Duan et al., 2022; Bro-
han et al., 2023; Yang et al., 2024b) et al. These
applications created substantial demand for LLM

*Work done during the internship at Sensetime Research.
†Corresponding authors.

systems to perform structured generation and pro-
duce outputs adhering to specific formats, such as
JSON or other structures. Notably, major LLM API
providers such as OpenAI and Alibaba Cloud now
support JSON mode output to ensure deterministic
schema compliance. Downstream applications can
accordingly utilize these structured outputs to en-
gage in downstream system interactions (Cho et al.,
2023).

Constrained decoding (Hu et al., 2019; Scholak
et al., 2021) is a widely used method in structured
generation tasks (Willard and Louf, 2023b; Dong
et al., 2023; Rückstieß et al., 2024) that excludes in-
valid tokens at each step by applying a probability
mask to zero out their sample possibility. Flexible
mechanisms like LR(1) grammars (Francis, 1961;
Knuth, 1965a) are often employed to handle diverse
and complex structural constraints, as they allow re-
cursive rule definitions that surpass the limitations
of regular expressions. However, this flexibility
comes at the cost of degraded efficiency: Each de-
coding step requires parsing the grammar for all
candidate tokens in a potentially large vocabulary.
Additionally, tokens generated by LLM may con-
sist of multiple characters that span across grammar
rule boundaries, further complicating the genera-
tion process and demanding dedicated execution
stack management. Both of them lead to significant
computational overhead. These challenges raise the
need to optimize constrained decoding efficiency
without affecting LLM generation fidelity, making
it more applicable in real-world applications.

Current state-of-the-art (SOTA) methods for con-
strained decoding acceleration, such as XGram-
mar (Dong et al., 2024), primarily focus on pars-
ing LR(1) grammars into a pushdown automaton
(PDA) (Nederhof and Satta, 1996). A PDA consists
of multiple finite state automata (FSA), each rep-
resenting a grammar rule, with the stack handling
recursive rule expansions. These methods achieve
substantial speedups by precomputing masks while

11253

https://github.com/ModelTC/lightllm

managing transitions through pushdown automata.
However, they overlook the inherent properties of
LR(1) grammars, which can be equivalently trans-
formed into a deterministic pushdown automaton
(DPDA) (Valiant, 1973, 1975).

The primary issue with traditional PDA-based
approaches (Koo et al., 2024; Park et al., 2025a;
Dong et al., 2022; Willard and Louf, 2023a; Li
et al., 2024b) stems from the non-deterministic na-
ture of the PDA’s edges. Although these methods
precompute masks based on the PDA structure, this
design introduces two critical limitations. First, the
non-deterministic edges depend on runtime con-
textual information to resolve transitions, result-
ing in incomplete precomputed masks for context-
dependent tokens. The computation of context-
dependent tokens necessitates backtracking, spec-
ulative operations, and the maintenance of a per-
sistent stack (merges all past stacks into a tree,
with each stack as a root-to-node path) during run-
time. As batch sizes increase, the overhead from
these runtime computations grows significantly,
severely degrading decoding efficiency. Second,
previous methods cannot effectively optimize non-
deterministic transitions during preprocessing be-
cause they will dynamically change during runtime.
This limitation hinders their ability to fully exploit
the potential of the parsing method, leading to sub-
optimal performance.

To address these challenges, we propose Pre3, a
constrained LLM decoding approach based on a
deterministic pushdown automaton (DPDA). Un-
like traditional methods, we design an algorithm
to directly build a DPDA from the LR(1) grammar.
Leveraging the deterministic nature of the DPDA’s
edges, our approach resolves the aforementioned
limitations. First, the determined transitions in the
DPDA eliminate the context-dependent tokens, fur-
ther entirely eliminating the need for backtracking,
speculative exploration, and the maintenance of a
persistent stack. This fundamentally reduces the
runtime computational overhead associated with
transitions. Second, since all transition edges in
the DPDA are available during preprocessing, we
can perform comprehensive optimizations on the
automaton in advance. Additionally, for the stack-
matched transition mechanism of the DPDA, we
design a parallel verification method for transitions,
which accelerates inference. Together, these in-
novations result in a more efficient and scalable
constrained decoding framework.

In summary, the paper’s main contributions are:

Table 1: Per token latency comparison (in milliseconds)
across different batch sizes.

Batch Size 16 32 64 128 256 512

Baseline 11.38 21.87 25.74 30.08 56.29 92.23
XGrammar 15.19 43.69 52.07 65.21 90.98 147.64

• We first propose an algorithm to transform LR(1)
state transition graphs into DPDA, eliminating
runtime exploration and enabling edge transitions
with minimal overhead.

• We enable additional optimizations for edges and
support parallel transition processing by precom-
puting prefix-conditioned edges.

• We integrate Pre3 into mainstream LLM infer-
ence systems and achieve up to 40% improve-
ment in time per output token (TPOT) and in-
crease throughput by up to 36% with high scala-
bility into large batch sizes.

2 Preliminaries and Background

2.1 LLM Constrained Decoding
Constrained decoding (Hu et al., 2019) enforces
strict grammatical adherence by dynamically prun-
ing invalid tokens during generation. While ef-
fective for structural compliance, existing methods
face two key challenges: (1) handling diverse gram-
mars, large vocabularies, and complex token-to-
text mappings, and (2) computational inefficiency
at scale, especially under large batch processing
where dynamic validation creates sequential bottle-
necks.

Our empirical analysis reveals this critical limita-
tion. When evaluating XGrammar on Meta-Llama-
3-8B (2×H800 GPUs), constrained decoding ex-
hibits up to 37.5% higher latency (147.64 ms vs.
92.23 ms) at batch size 512 compared to uncon-
strained decoding (Table 1). The performance gap
grows with batch size due to non-parallelizable val-
idation steps, which is a fundamental constraint in
current approaches. These findings motivate the
need for a new constrained decoding approach that
maintains grammatical correctness while achieving
better computational efficiency at scale.

2.2 LR(1) Grammar and State Transition
Graphs

In constrained decoding scenarios, most grammars
can be classified as LR(1) grammars, which are fun-
damental to bottom-up parsing and align naturally
with the token-by-token generation process of large
language models (LLMs). LR(1) grammars are a
powerful subset of context-free grammars capable

11254

of describing the syntax of most programming lan-
guages. They are characterized by their ability to
handle deterministic parsing with a single looka-
head symbol, making them highly expressive and
widely applicable. Nearly all context-free gram-
mars can be converted into LR(1) form, which
ensures their versatility in modeling structured
languages. This property, combined with their
alignment with bottom-up parsing methods, makes
LR(1) grammars a cornerstone in constrained de-
coding and syntactic analysis tasks.

LR(1) items are tuples of the form [A → α ·
Bβ, a], where A → α ·Bβ represents the parsing
progress of a production rule, and a is a lookahead
symbol used to determine when a reduction should
occur. The CLOSURE operation constructs LR(1)
item sets by adding items for non-terminals and
their productions, ensuring all possible derivations
are considered. The GOTO function generates the
LR(1) state transition graph by moving the dot in
items past a grammar symbol X and computing the
closure of the resulting items, thereby connecting
states to form the LR(1) automata. This process
continues until no new states are generated, creat-
ing a complete parsing structure for the grammar.

2.3 Deterministic Pushdown Automata
(DPDA)

Pushdown automata (PDA) are a class of abstract
machines that extend finite automata with an un-
bounded stack memory, enabling them to rec-
ognize context-free languages (CFLs) (Hopcroft
et al., 2001). A PDA is defined as a 7-tuple
(Q,Σ,Γ, δ, q0, Z0, F), where Q is a finite set of
states, Σ is the input alphabet, Γ is the stack al-
phabet, δ : Q × (Σ ∪ {ϵ}) × Γ → P(Q × Γ∗) is
the transition function, q0 is the initial state, Z0

is the initial stack symbol, and F ⊆ Q is the set
of accepting states. The non-deterministic transi-
tion function δ allows PDAs to handle ambiguous
structures inherent to context-free grammars, e.g.,
nested parentheses or recursive syntactic patterns.

A deterministic pushdown automaton (DPDA)
is a restricted variant where, for every state q ∈ Q,
input symbol a ∈ Σ, and stack symbol Z ∈ Γ,
the transition function δ(q, a, Z) yields at most one
possible move, and ϵ-transitions (stack operations
without consuming input) are permitted only if
no input-consuming transition is available (Sipser,
1996). This determinism ensures unique computa-
tion paths, making DPDAs equivalent to the class
of deterministic context-free languages (DCFLs),

which are unambiguous and efficiently parsable.
As mentioned earlier, the vast majority of gram-
mars in the constrained decoding scenario can be
represented by LR(1), which is a true subset of
DCFL and can be recognized by DPDA (ASU86
et al., 1986; Sipser, 1996). Compared to PDA,
DPDA avoided backtracking and non-deterministic
search overhead, which can significantly improve
the efficiency of constrained decoding. See Ap-
pendix A for additional background on formal lan-
guage theory.

3 Pre3 Design

Our proposed method, Pre3, is a DPDA-based con-
strained decoding solution that leverages a novel
approach for constructing a DPDA from a given
LR(1) grammar. The method operates by first
transforming the LR(1) grammar into an LR(1)
state transition graph, which is then converted into
a DPDA using the techniques introduced in this
section. This DPDA can be directly utilized for
constrained decoding, enabling efficient and effec-
tive decoding. The method requires only minimal
processing time, averaging 3-5 seconds for com-
plex JSON grammars and under 0.1 seconds for
simpler grammars (e.g., arithmetic expressions).
Notably, this is a one-time cost as the results are
cacheable and reusable. The complete workflow of
our method is illustrated in Figure 1.

In Section 3.1, we introduce the Prefix-
conditioned Edge, a novel mechanism ensuring
uniqueness by matching both prefix information
and input symbols, unlike traditional PDA tran-
sitions. In Section 3.2, we design an algorithm
to compute all LR(1) state transitions, incorporat-
ing Prefix-conditioned Edge and addressing cyclic
structures, successfully constructing a DPDA. In
Section 3.3, we optimize the DPDA’s structure and
performance through preprocessing, leveraging its
pre-determined edges.

3.1 Prefix-conditioned Edges

Constrained decoding with LLMs faces challenges
due to non-deterministic transitions in PDA, where
the same input symbol can trigger multiple transi-
tions based on prior symbol sequences. This non-
determinism complicates computation by requiring
speculative exploration, backtracking, and a per-
sistent stack to store historical context, increasing
overhead. To resolve these issues, eliminating non-
determinism in transitions is crucial for enabling

11255

DPDA Optimization (§3.3)

1 2Edge
Aggregation

1 3
Edge
Merging 2

'a'

'b'

['a', 'b']

'a' 'b'

'a'+'b'

DPDA Construction (§3.2)

Handling Cycles

Adding
Acceptance Edges

Adding
Reduction Edges

1

2

4

5

1

LR(1) Grammar

1

2

3

4

…

root ::= object

array ::=
 "[" ws (
 value
 ("," ws value)*
)? "]" ws

ws ::= | " " | "\n"
[\t]{0,20}

State-Transition
Graph

3

3

2

1

5
push

4
push

…

2

4

1

pop

2

3

DPDA Based Generation

LLM
Probs.

DPDA
Mask

+=

Output

3

4

…

P
a
ra

ll
e
le

d

Applying
prefix-conditioned
edge (§3.1)

Figure 1: Overview of Pre3: The figure depicts the workflow from LR(1) grammar to DPDA-based generation,
encompassing DPDA construction and optimization steps.

preprocessing optimizations and efficient runtime
computation.

A fundamental property of LR(1) grammars is
that the current stack configuration and a single
lookahead symbol are sufficient to uniquely de-
termine the next action. This property provides
a theoretical foundation for introducing determin-
ism into the automaton’s transition edges. Building
on this insight, we propose the Prefix-conditioned
Edge, as illustrated in Figure 2.

By simultaneously considering the input symbol
and the prefix of accepted symbols (represented
by the stack’s state), we uniquely determine the
target state for each transition. To achieve this,
our method enhances each edge with three key
components:

• Accepted Symbol: The input symbol that trig-
gers the transition.

• Stack Matching Condition: The specific prefix
of the stack required for the transition to be valid.

• Stack Operations: Actions such as push to up-
date the stack during the transition, which is both
required by PDAs and DPDAs.

Notably, although the additional stack-matching
conditions introduced to the edges increase com-
plexity, we address this challenge by implementing
a parallel algorithm capable of simultaneously ver-
ifying multiple stack-matching conditions, effec-
tively resolving this issue.

3.2 Cycle-aware Deterministic Pushdown
Automata Construction

To avoid the additional exploration overhead at run-
time, we aim to construct a DPDA based on LR(1)
grammars. However, building a DPDA is non-

1

42
'a'

3

5

6

7

Runtime
Route
Judging

1

42

3

5

6

7

… 1match

w/o Prefix-conditioned Edges

with Prefix-conditioned Edges

+'a'

… 2match +'a'

… 3match +'a'

Figure 2: This diagram illustrates prefix-conditioned
edges: above shows the case before calculation, where
‘a’ is a context-dependent token requiring runtime con-
text for transition; below shows the precomputed case,
where each edge includes a stack-matching condition,
uniquely determining the transition path via the condi-
tion and transition symbol.

trivial and requires a systematic approach. In this
section, we introduce our algorithm for construct-
ing a DPDA from an LR(1) state transition graph
step by step, leveraging the prefix-conditioned edge
to ensure determinism.

3.2.1 DPDA Structure

We begin our algorithm with the state transition
graph generated from the LR(1) grammar, where
the nodes represent the LR(1) item set family and
the edges indicate the acceptance of a symbol when
traversing from one node to another. Building on
this foundation, we construct the DPDA by retain-
ing the node definitions from the LR(1) transition
graph but redefining the edges into two distinct

11256

1

2

3

':'

4

judge

't'

'r'

5

'u'

'e'
6

7

'f'

'a'

8

'l'

's'

string
array…

…

0

…

…

4

3

5

pop

2

1

…

0

2push

3push

4push

5push

6push

7push

8push

1push

Figure 3: Two edge types for DPDA computation: blue
edges are acceptance edges (existing in the original
LR(1) graph, handling stack operations for acceptance);
orange edges are reduction edges (added to the DPDA,
matching and popping stack operations for reductions);
gray edges depict LR(1) reduction paths, demonstrating
fewer nodes needed for reduction after state machine
construction.

types: acceptance edges and reduction edges, as
shown in Figure 3.
• Acceptance Edges are the simplest type of tran-

sition in our DPDA. These edges are directly de-
rived from the original state transition graph of
the LR(1) grammar. In the context of LR(1) pars-
ing, an acceptance edge corresponds to a shift
operation, where the automaton consumes an in-
put symbol from the input stream and pushes it
onto the stack while transitioning to a new state.
This operation reflects the fundamental step of
recognizing and accepting a terminal symbol in
the input, advancing the parsing process.

• Reduction Edges model reduction operations in
LR(1) parsing. In traditional LR(1) parsing, re-
ductions involve replacing a sequence of terminal
symbols with a non-terminal symbol according
to the grammar rules. However, nested grammar
rules often require multiple reduction steps, lead-
ing to inefficiencies. Reduction edges address
this by directly encoding reduction operations as
single-step transitions during the pre-processing
phase. These edges connect reduction targets, en-
abling the automaton to handle nested reductions
efficiently.

3.2.2 Acceptance Edges and Reduction Edges
Integration

The state transition graph alone cannot function
as a DPDA because it only supports shift opera-

tions (i.e., symbol acceptance) and lacks reduc-
tion operations, while some edges also suffer from
nondeterminism. To address these issues, we not
only compute all possible transition edges, in-
cluding both shift and reduction edges, to com-
plete the missing reduction paths, but also lever-
age prefix-conditioned edges to incorporate stack
conditions into each transition, resolving nondeter-
minism and enabling the transformation of the non-
deterministic state transition graph into a DPDA.

Adding Acceptance Edges: Acceptance edges
do not need to consider determinism because the
construction of the LR(1) state transition graph
ensures that no node will have two identical tran-
sitions. As a result, when an acceptance edge is
encountered, the target node’s state information is
simply pushed onto the runtime stack. The algo-
rithmic flow of this operation is described in Lines
6–8 of Algorithm 1.

Adding Reduction Edges: Based on the defini-
tion of reduction edges, we can employ a two-step
method to add all necessary reduction edges to the
automaton, which is described in Lines 9–18 of
Algorithm 1.

First, we identify ϵ-reduction transitions, rep-
resenting unconditional reductions, and add them
to the automaton to handle mandatory reductions.
These transitions backtrack along their path, pop-
ping states until reaching the reduction endpoint.
However, their lack of accepted symbols introduces
ambiguity, violating the DPDA’s determinism. To
ensure completeness, this process is applied recur-
sively, generating all necessary reduction edges by
traversing the state transition graph.

Second, we resolve indeterminism by merging ϵ-
reduction edges with compatible acceptance edges,
ensuring aligned stack operations and reduction
targets, and assigning appropriate accept tokens to
satisfy the Prefix-condition.

3.2.3 Solving Issues with Automaton Cycles
LR(1) grammars are highly expressive and can han-
dle complex language constructs, including the ac-
ceptance of cyclic symbol sequences. However,
cycles introduce significant challenges when con-
structing a DPDA.

During the precomputation of reduction edges,
cycles create a critical issue: repeatedly traversing
a cycle generates an infinite number of potential re-
duction paths. This makes it computationally infea-
sible to add all necessary reduction edges. Figure 4
visually illustrates how cycles in the automaton can

11257

1 2 5

34

1

push
1 2 5

34

3push1push

2

push

5

push

4

push

…pop 1 2 5

Infinite reduction edges!

(a)

(b)

…

2

1

3

…

2

1

match pop

4

3

4

+

back-edge

Figure 4: (a) Pushdown automaton with an infinite cycle
between State 1, 2, 3, 4, leading to an infinite number
of possible paths and indeterminable transition paths
when adding reduction edges at State 5; (b) How our
method handles the cycle issue: The back-edge from
State 4 to State 1 is modified to check for complete cycle
traversal information (e.g., [1, 2, 3, 4]) in the stack. If
detected, it pops the redundant state (e.g., [1, 2, 3, 4]),
ensuring reduction edges at State 5 only need to account
for traversals without cycles.

lead to infinite reduction paths.

Through further observation, we note that during
the reduction process, specifying an entry node and
an exit node uniquely determines the path along
which the reduction occurs. This property allows
us to disregard the number of cycle traversals, as
even a single traversal of the cycle does not need
to be explicitly recorded.

We propose a solution that simplifies the re-
duction process as follows: Suppose we have a
detected cycle with the reduction problem C =
(s1, s2, s3, . . . , sn, s1). We define the back-edge
as sn → s1. While handling the cycle, we mod-
ify this back-edge by introducing an additional
stack operation: a pop operation for the sequence
(s1, s2, . . . , sn). This modification enables effi-
cient handling of cyclic traversals.

Furthermore, by checking whether all vertices
traversed in a single cycle are fully present in the
execution stack, we ensure that the stack retains
only the necessary information from outside the
cycle traversal. Specifically, if a complete traver-
sal of the cycle is detected, the stack information
corresponding to the current traversal is popped

Algorithm 1: Construct DPDA from LR(1)
Transition Graph

Input: LR(1) State Transition Graph G = (S,E)
Output: Deterministic Pushdown Automata (DPDA)

/* Step 1: Cycle Handling */
1 C ←Detect cycles with reduction problem in G
2 foreach detected cycle C = (s1, s2, ..., sn, s1) do
3 if C corresponds to recursive reduction of

non-terminal A then
4 Define the back-edge: sn

back−−→ s1
5 Modify the back-edge to check for complete

cycle traversal in the stack: match and pop
(s1, s2, ..., sn), push(s1)

/* Step 2: Acceptance Edge Generation */
6 foreach state si ∈ S do
7 foreach valid transition si

X−→ sj in E do
8 Add stack operation: push(sj)
/* Step 3: Reduction Edge Generation */

9 Function GenerateReductionEdges(state si):
10 foreach reduction sequence

si
reduce A−−−−→ sj

reduce B−−−−→ sk do
11 Merge into a direct transition:

si
reduce A→B−−−−−−−→ sk

12 Validate stack compatibility
13 GenerateReductionEdges(sk)
14 foreach ϵ-reduction edge from si do
15 Merge the ϵ-reduction edge with appropriate

acceptance edges that share the same stack
operations

16 Assign suitable accept tokens to ensure the
Prefix-condition is matched

17 GenerateReductionEdges(target state of
the merged edge)

18 GenerateReductionEdges(initial state s0)

immediately. This guarantees that the stack never
accumulates redundant context from repeated cycle
traversals.

This approach, described in Algorithm 1, lines
1–5, guarantees that the system reverts to an equiv-
alent state after each complete traversal, avoiding
infinite reduction edges. As a result, the automaton
can handle cycles efficiently without compromising
determinism or computational feasibility.

3.3 Edge Optimization with Prefix-condition

Building on the DPDA constructed in Section 3.2,
we can further perform various optimizations.
Since all transition edges in the DPDA are deter-
ministic and can be uniquely resolved by matching
both the stack state and input symbols, we are able
to analyze the automaton’s structure during the pre-
processing phase. In contrast, traditional methods
based on non-deterministic pushdown automata
(PDA) cannot achieve such optimizations during
preprocessing due to the ambiguity of transition
edges, where the same input symbol may lead to
multiple possible transition targets. For example,

11258

1 2

0 1match +'a'

0 1match +'b'

0 1match +'c'

1
0 1match

+['a','b','c']
2

Edge aggregation

Edge merging

1

'a'

2

3
3push

'b'

2push

0 1

match

0 1

match

2

1

'a'

2

3

'b'

2push

0 1

match

3push

'ab'

Figure 5: Two different types of edge optimization.

we can aggregate and merge transition edges as
shown in Figure 5.
• Edge Aggregation: Edges with the same stack

prefix condition and stack operations but differ-
ent accepted symbols can be combined. For ex-
ample, in grammars describing numbers, edges
for digits 0-9 can be merged into a single edge
accepting all digits to simplify the automaton.

• Edge Merging: If two edges share the matched
stack prefix condition and operations, we can
connect them directly, and add a new edge. This
is important for LLM constrained decoding sce-
narios, as it allows to “jump” to the desired state
in fewer steps, reducing the scale of the DPDA.

These operations are enabled by precomputed
prefix-conditioned edges for all stack conditions.
Without prefix-conditioned edges, transitions that
depend on dynamic stack inspection cannot be ana-
lyzed in advance.

4 Evaluation

4.1 Experimental Setup
Implementation: We implemented our approach
in 2,000 lines of Python code and about 1,000 lines
of C++ code, and we seamlessly integrated with
LightLLM (Gong et al., 2025), a popular LLM
inference framework.

Hardware Setup: All the experiments are tested
on a server with Intel(R) Xeon(R) Gold 6448Y
CPU and 8 NVIDIA H800 GPUs. Depending on

(1-a) (1-b) (2-a) (2-b)

Method

100

101

102

103

104

L
og

O
ve

rh
ea

d
(m

s)

Pre3

XGrammar

Llama.cpp

Outlines

Figure 6: Per-step decoding overhead across different
grammars and models. Outlines incurs an overhead
of up to several seconds per step. Experiments con-
tain (1) Chain-of-Thought grammar, (2) JSON grammar.
Models contain (a) Meta-Llama-3-8B on 1×H800, (b)
Meta-Llama-2-70B on 4×H800.

the scale of the experiment, we use different num-
bers of GPUs.

Baselines: We choose the following representa-
tive works on grammar constraint decoding.
• XGrammar: An open-source library for struc-

tured generation in large-language models. It
significantly enhances performance in tasks like
JSON grammar generation with reduced latency
and storage.

• Outlines: A text generation library, it offers a
Python tool for grammar-guided generation, of-
fering a fast generation method. We use vLLM
integrated with Outlines for evaluation.

• Llama.cpp: A C/C++-based LLM inference tool,
and also includes support for grammar constraint
decoding.

Datasets: In our experiments, we utilized the
JSON-mode-eval (NousResearch, 2024) dataset
from NousResearch as prompts. As there is a
scarcity of datasets for structured output, we col-
lected some private data additionally and incorpo-
rated it into the test dataset.

4.2 Per-step Decoding Efficiency
To evaluate the improvement of our system, we first
examine the per-step decoding overhead, which is
defined by subtracting the original decoding time
from the grammar-based decoding time. We de-
sign four experiment setups, including two mod-
els, Meta-Llama-3-8B and Meta-Llama-2-70B, and
two grammars with English characters, JSON and
chain-of-thought. For comparison, we benchmark
our method against several state-of-the-art and
popular structure generation engines, including
XGrammar, Outlines, and llama.cpp, to demon-
strate the efficiency of our system at a per-step
scale.

11259

The results are shown in Figure 6 and Table 3.
Pre3 demonstrates a superiority over Outlines and
llama.cpp, and Pre3 remains a consistent advan-
tage over XGrammar. The results indicate that Pre3

introduces less overhead than previous SOTA sys-
tems.

4.3 Large Batch Inference Efficiency
In real-world serving scenarios, inference often
handles large batches of requests simultaneously,
making large-batch efficiency crucial for deploy-
ing language models at scale. We evaluate per-
formance in such settings, where efficiency gains
significantly impact system performance.

We benchmark Pre3 against the state-of-the-art
XGrammar, using the JSON grammar for its com-
plexity and challenging recursive structures (e.g.,
lists and dictionaries). This tests the robustness
and scalability of our method under demanding
conditions.

Our experiments are conducted on multiple mod-
els of varying sizes and architectures. Specifi-
cally, we conducted experiments on Llama3-8B
and Deepseek-V2 (15.7B) on a 2×H800 setup, and
Llama2-70B on a 4×H800 setup. The maximum
batch size goes to 1024, large enough to test the
scalability of our method. In this experiment, we
also measured the average time taken for each step,
but the requests are batched in number to test the
system’s ability to process large batches.

The result is shown in Table 2. The results show
that Pre3 consistently outperforms XGrammar in
all scenarios with latency reduction by up to 30%.
The advantage is more significant at larger batch
sizes, demonstrating the scalability of Pre3.

4.4 Realworld Deployment
To evaluate the throughput in real-world service
environments, we compare the performance of
XGrammar and Pre3, under varying system con-
currency levels. We conducted simulation experi-
ments on Meta-Llama-3-8B (2×H800) and Meta-
Llama-2-70B (4×H800), measuring the throughput
in burst scenarios at different levels of concurrency.

The results are shown in Figure 7. Both Pre3 and
XGrammar have lower throughput than the Origi-
nal system due to the added overhead introduced by
constraint decoding, while Pre3 demonstrated a sig-
nificant improvement over XGrammar, achieving
up to 20% higher throughput at higher concurrency
levels, showing that Pre3 provides higher through-
put in end-to-end deployment.

5 Related Work

LLM Constrained Decoding. Several ap-
proaches have been proposed for constrained
decoding in language models, yet most exhibit
limitations when applied to large-batch inference.
Implementations such as llama.cpp (Gerganov,
2023) rely on inefficient runtime token verification,
introducing significant computational overhead.
Subsequent methods like Outlines (Willard and
Louf, 2023b) and SynCode (Ugare et al., 2024)
improve upon grammar-guided generation but
still face suboptimal decoding efficiency. The
current state-of-the-art method, XGrammar (Dong
et al., 2024), achieves impressive speed for small
batch sizes; however, its performance degrades as
batch sizes increase due to growing computational
overhead. Similarly, GreatGrammar (Park et al.,
2025b) demonstrates strong efficiency in handling
complex grammars but is only evaluated with
batch size equals to 1, leaving its scalability to
larger batches an open question.

LR(1) Grammar Parser. The theoretical foun-
dations of LR(1) parsing and its equivalence to
deterministic pushdown automata (DPDA) have
been well-established in formal language theory
and compiler design (DeRemer, 1969; Lehmann,
1971; Korenjak, 1969). Traditional LR(1) parsers,
such as those described by Knuth (Knuth, 1965b),
use state-merging techniques to construct mini-
mal parsing tables, enabling deterministic recog-
nition of context-free languages. Recent work, in-
cluding IELR(1) (Denny and Malloy, 2008) and
PSLR(1) (Denny, 2010), further optimized the
parser by addressing state conflicts and improv-
ing efficiency in handling composite grammars.
These methods ensure that LR(1) parsers can be
systematically converted into DPDA implementa-
tions, where a deterministic state transition table
guides stack operations. While prior work has
focused on compiler parsing, applying LR(1)-to-
DPDA techniques to constrained decoding in large
language models (LLMs) poses unique challenges.
To our knowledge, Pre3 presents the first adapta-
tion of LR(1) parsing techniques to the domain of
LLM constrained decoding.

6 Conclusion

This work addressed the limitations of existing
structured generation approaches by proposing a
DPDA-based methodology (Pre3), which integrates

11260

Table 2: Decode batch inference time comparison between our method and XGrammar. The “-” marker stands for
the batch size cannot be executed on the given hardware setup.

Evaluation Configuration Method 16 32 64 128 256 512 1024

Llama-3-8B (Dubey et al., 2024) XGrammar (ms) 15.19 43.69 52.07 65.21 90.98 147.64 272.77
Pre3 (ms) 11.77 31.12 35.88 45.32 64.42 104.46 201.16

2×H800 Reduction ↓22.49% ↓28.78% ↓30.09% ↓30.50% ↓29.20% ↓29.24% ↓26.25%

DeepSeek-V2-Lite-Chat (Liu et al., 2024) XGrammar (ms) 51.76 59.45 77.74 104.06 121.46 - -
Pre3 (ms) 49.91 53.71 54.41 61.63 75.47 - -

15.7B 2×H800 Reduction ↓3.57% ↓9.65% ↓30.01% ↓40.78% ↓37.86% - -

Qwen2-14B (Yang et al., 2024a) XGrammar (ms) 16.77 47.94 57.05 74.54 98.64 162.47 285.42
Pre3 (ms) 16.52 47.94 47.89 65.50 90.20 143.83 232.18

INT8 2×H800 Reduction ↓1.52% ↓0.12% ↓2.37% ↓12.14% ↓8.55% ↓11.47% ↓18.65%

Llama-2-70B (Touvron et al., 2023) XGrammar (ms) 28.75 55.12 56.94 68.79 85.92 - -
Pre3 (ms) 27.20 54.24 54.18 62.27 75.72 - -

4×H800 Reduction ↓5.39% ↓1.60% ↓4.85% ↓9.48% ↓11.87% - -

64 128 256 512

20

30

40

50

60

↑15.9%

↑12.8%

↑19.9% ↑10.1%

Pre3

XGrammar

Origin

32 64 128 256

5

10

15

20

↑6.0%

↑5.9%

↑11.4%

↑2.6%

Pre3

XGrammar

Origin

32 64 128 256

10

20

30

40

↑21.2%

↑26.4%

↑34.3%

↑36.8%

Pre3

XGrammar

Origin

Degree of parallelism

T
hr

ou
gh

pu
t

(r
eq

/s
)

Figure 7: System throughput based on different models and concurrency levels. Left: Llama3-8B, Middle: Llama2-
70B, Right: DeepSeek-V2-Lite-Chat.

Table 3: Per-step decode time comparison between our
method and XGrammar.

Llama-3-8B Llama-2-70B

Batchsize Pre3 XGrammar Pre3 XGrammar
1 0.5172 0.5531 0.2163 0.3030
4 0.6537 0.9327 0.2407 0.3310

Cycle-aware Deterministic Pushdown Automata
Construction and Prefix-conditioned Edge Opti-
mization. Pre3 significantly outperforms existing
SOTA baselines by up to 40% in throughput and
exhibits greater advantages with large batch sizes.

Limitation

While our work demonstrates significant improve-
ments in constrained LLM decoding efficiency, sev-
eral limitations and potential areas for improvement
remain. Firstly, our method is optimized for LR(1)
grammars, which cover most structured generation
needs, but faces challenges with more complex
LR(k) grammars (k > 1). These require intri-
cate state transitions and lookahead mechanisms,
increasing DPDA construction and processing com-
plexity. Future work should explore hybrid pars-
ing or adaptive mechanisms to handle such cases
efficiently. Second, our Python-based research pro-
totype lacks production-level optimizations. Al-
though suitable for experimentation, the implemen-
tation could benefit from hardware acceleration
(e.g., GPU parallelization for grammar processing)

and system-level optimizations. A future C++/Rust
implementation with fine-tuned memory manage-
ment could significantly improve performance and
scalability. Although preprocessing complexity
scales with grammar size (due to increased edges
and cycles), current processing times remain prac-
tical for real-world deployment. Addressing these
limitations could unlock additional performance
improvements and broaden the applicability of our
approach.

Acknowledgements

This work was partially sponsored by the
National Key R&D Program of China (No.
2022ZD0119100), in part by China NSF grant
No. 62472278, 62025204, 62432007, 62441236,
62332014, 62332013, and 62322201, in part by Al-
ibaba Group through Alibaba Innovation Research
Program, and in part by Tencent Rhino Bird Key
Research Project. This work was partially sup-
ported by SJTU Kunpeng & Ascend Center of Ex-
cellence. The opinions, findings, conclusions, and
recommendations expressed in this paper are those
of the authors and do not necessarily reflect the
views of the funding agencies or the government.

11261

References

AV ASU86, R Sethi Aho, and Ullman JD. 1986. Com-
pilers: Principles, techniques, and tools.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen
Chebotar, Xi Chen, Krzysztof Choromanski, Tianli
Ding, Danny Driess, Avinava Dubey, Chelsea Finn,
et al. 2023. Rt-2: Vision-language-action models
transfer web knowledge to robotic control. arXiv
preprint arXiv:2307.15818.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,
and Denny Zhou. 2023. Large language models as
tool makers. arXiv preprint arXiv:2305.17126.

Sukmin Cho, Soyeong Jeong, Jeong yeon Seo, and Jong
Park. 2023. Discrete prompt optimization via con-
strained generation for zero-shot re-ranker. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2023, pages 960–971, Toronto, Canada.
Association for Computational Linguistics.

Joel E Denny. 2010. PSLR (1): Pseudo-scannerless
minimal LR (1) for the deterministic parsing of com-
posite languages. Ph.D. thesis, Clemson University.

Joel E Denny and Brian A Malloy. 2008. Ielr (1) practi-
cal lr (1) parser tables for non-lr (1) grammars with
conflict resolution. In Proceedings of the 2008 ACM
symposium on Applied computing, pages 240–245.

Franklin Lewis DeRemer. 1969. Practical translators
for LR (k) languages. Ph.D. thesis, Massachusetts
Institute of Technology.

Yihong Dong, Xue Jiang, Yuchen Liu, Ge Li, and Zhi
Jin. 2022. Codepad: Sequence-based code gener-
ation with pushdown automaton. arXiv preprint
arXiv:2211.00818.

Yihong Dong, Ge Li, and Zhi Jin. 2023. Codep: gram-
matical seq2seq model for general-purpose code gen-
eration. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and
Analysis, pages 188–198.

Yixin Dong, Charlie F. Ruan, Yaxing Cai, Ruihang
Lai, Ziyi Xu, Yilong Zhao, and Tianqi Chen. 2024.
Xgrammar: Flexible and efficient structured gener-
ation engine for large language models. Preprint,
arXiv:2411.15100.

Jiafei Duan, Samson Yu, Hui Li Tan, Hongyuan Zhu,
and Cheston Tan. 2022. A survey of embodied ai:
From simulators to research tasks. IEEE Transac-
tions on Emerging Topics in Computational Intelli-
gence, 6(2):230–244.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

John GF Francis. 1961. The qr transformation a uni-
tary analogue to the lr transformation—part 1. The
Computer Journal, 4(3):265–271.

Georgi Gerganov. 2023. llama.cpp. LLM inference in
C/C++.

Ruihao Gong, Shihao Bai, Siyu Wu, Yunqian Fan, Zai-
jun Wang, Xiuhong Li, Hailong Yang, and Xianglong
Liu. 2025. Past-future scheduler for llm serving un-
der sla guarantees. In Proceedings of the 30th ACM
International Conference on Architectural Support
for Programming Languages and Operating Systems,
Volume 2, ASPLOS ’25, page 798–813, New York,
NY, USA. Association for Computing Machinery.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

John E Hopcroft, Rajeev Motwani, and Jeffrey D
Ullman. 2001. Introduction to automata theory,
languages, and computation. Acm Sigact News,
32(1):60–65.

J. Edward Hu, Huda Khayrallah, Ryan Culkin, Patrick
Xia, Tongfei Chen, Matt Post, and Benjamin
Van Durme. 2019. Improved lexically constrained
decoding for translation and monolingual rewriting.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 839–850,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Donald E. Knuth. 1965a. On the translation of lan-
guages from left to right. Information and Control,
8(6):607–639.

Donald E Knuth. 1965b. On the translation of languages
from left to right. Information and control, 8(6):607–
639.

Terry Koo, Frederick Liu, and Luheng He. 2024.
Automata-based constraints for language model de-
coding. arXiv preprint arXiv:2407.08103.

AJ Korenjak. 1969. A practical method for construct-
ing lr (k) processors. Communications of the ACM,
12(11):613–623.

Daniel Lehmann. 1971. Lr (k) grammars and deter-
ministic languages. Israel Journal of Mathematics,
10:526–530.

Zekun Li, Zhiyu Zoey Chen, Mike Ross, Patrick Hu-
ber, Seungwhan Moon, Zhaojiang Lin, Xin Luna
Dong, Adithya Sagar, Xifeng Yan, and Paul A Crook.
2024a. Large language models as zero-shot dialogue
state tracker through function calling. arXiv preprint
arXiv:2402.10466.

11262

https://doi.org/10.18653/v1/2023.findings-acl.61
https://doi.org/10.18653/v1/2023.findings-acl.61
https://arxiv.org/abs/2411.15100
https://arxiv.org/abs/2411.15100
https://github.com/ggerganov/llama.cpp
https://doi.org/10.1145/3676641.3716011
https://doi.org/10.1145/3676641.3716011
https://doi.org/10.18653/v1/N19-1090
https://doi.org/10.18653/v1/N19-1090
https://doi.org/10.1016/S0019-9958(65)90426-2
https://doi.org/10.1016/S0019-9958(65)90426-2

Zelong Li, Wenyue Hua, Hao Wang, He Zhu, and
Yongfeng Zhang. 2024b. Formal-llm: Integrating for-
mal language and natural language for controllable
llm-based agents. arXiv preprint arXiv:2402.00798.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang,
Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. 2024.
Deepseek-v2: A strong, economical, and efficient
mixture-of-experts language model. arXiv preprint
arXiv:2405.04434.

Mark-Jan Nederhof and Giorgio Satta. 1996. Efficient
tabular lr parsing. arXiv preprint cmp-lg/9605018.

NousResearch. 2024. Nousresearch/json-mode-eval.

OpenAI. 2024. Learning to reason with llms.

Kanghee Park, Timothy Zhou, and Loris D’Antoni.
2025a. Flexible and efficient grammar-constrained
decoding. arXiv preprint arXiv:2502.05111.

Kanghee Park, Timothy Zhou, and Loris D’Antoni.
2025b. Flexible and efficient grammar-constrained
decoding. Preprint, arXiv:2502.05111.

Thomas Rückstieß, Alana Huang, and Robin Vujanic.
2024. Origami: A generative transformer architec-
ture for predictions from semi-structured data. arXiv
preprint arXiv:2412.17348.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. Picard: Parsing incrementally for
constrained auto-regressive decoding from language
models. arXiv preprint arXiv:2109.05093.

Michael Sipser. 1996. Introduction to the theory of
computation. ACM Sigact News, 27(1):27–29.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Mi-
sailovic, and Gagandeep Singh. 2024. Syncode: Llm
generation with grammar augmentation. Preprint,
arXiv:2403.01632.

Leslie Valiant. 1973. Decision procedures for families
of deterministic pushdown automata. Ph.D. thesis,
University of Warwick.

Leslie G Valiant. 1975. Regularity and related problems
for deterministic pushdown automata. Journal of the
ACM (JACM), 22(1):1–10.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Brandon T Willard and Rémi Louf. 2023a. Efficient
guided generation for large language models. arXiv
preprint arXiv:2307.09702.

Brandon T. Willard and Rémi Louf. 2023b. Effi-
cient guided generation for large language models.
Preprint, arXiv:2307.09702.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024a. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115.

Yijun Yang, Tianyi Zhou, Kanxue Li, Dapeng Tao, Lu-
song Li, Li Shen, Xiaodong He, Jing Jiang, and Yuhui
Shi. 2024b. Embodied multi-modal agent trained by
an llm from a parallel textworld. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 26275–26285.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al.
2024. Bigcodebench: Benchmarking code genera-
tion with diverse function calls and complex instruc-
tions. arXiv preprint arXiv:2406.15877.

11263

https://huggingface.co/datasets/NousResearch/json-mode-eval
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2502.05111
https://arxiv.org/abs/2502.05111
https://arxiv.org/abs/2403.01632
https://arxiv.org/abs/2403.01632
https://arxiv.org/abs/2307.09702
https://arxiv.org/abs/2307.09702

A Supplementary Materials on Formal Language Theory

To facilitate understanding of our algorithm, we introduce some basics of formal language theory in the
supplementary materials.

A.1 Formal Definition of LR(1) Grammars
LR(1) grammars constitute a fundamental class of context-free grammars that can be parsed determin-
istically with one-symbol lookahead. Formally, a grammar G = (V,Σ, P, S) is said to be LR(1) if the
following conditions are satisfied:

• Uniqueness of Valid Items: For any viable prefix γ, there exists at most one LR(1) item of the form
[A → α · β, a], where a ∈ Σ ∪ {$}, that is valid at that parsing configuration.

• Reduction Consistency: If two items [A → α·, a] and [B → β·, b] are simultaneously valid for the
same viable prefix γ, then at least one of the following must hold: A ̸= B, α ̸= β, or a ̸= b.

These constraints ensure that shift/reduce and reduce/reduce conflicts are resolved uniquely using the
lookahead token. All LR(0) grammars are properly contained within the LR(1) class, and the parsing
process maintains linear time complexity with respect to the input length.

A.2 Detailed Construction Procedure of the Canonical LR(1) Automaton
The construction of the canonical LR(1) automaton is a central step in generating a deterministic parser
for a given context-free grammar. The automaton is a finite state machine in which each state represents a
set of LR(1) items, and transitions correspond to the recognition of grammar symbols.

Let G = (V,Σ, P, S) be the original grammar. We begin by augmenting it with a new start symbol
S′ /∈ V , and add the production S′ → S. The augmented grammar is denoted by G′ = (V ∪{S′},Σ, P ∪
{S′ → S}, S′).

LR(1) Item An LR(1) item is a pair [A → α · β, a], where:

• A → αβ is a production rule in P ,

• The dot (·) indicates the current parsing position within the right-hand side,

• a ∈ Σ ∪ {$} is a lookahead symbol, representing the terminal expected to follow the derivation of A.

Item Set (State) A state in the automaton is a set of LR(1) items, closed under the CLOSURE operation.
Each state encapsulates a snapshot of all valid parser configurations at a certain point in the input.

Closure Operation The CLOSURE function expands a set of items I by recursively adding all items that
could be expected next due to nonterminal symbols appearing after the dot. Formally:

CLOSURE(I) = smallest superset of I

such that:

∀[A → α ·Bβ, a] ∈ I, ∀B → γ ∈ P, ∀b ∈ FIRST(βa) : [B → ·γ, b] ∈ CLOSURE(I)

The key detail here is that the lookahead symbol a propagates through the FIRST(βa) computation,
ensuring context-sensitivity.

Goto Operation Given a state I and a grammar symbol X ∈ V ∪ Σ, the GOTO function computes the
next state by advancing the dot over X in all applicable items:

GOTO(I,X) = CLOSURE ({[A → αX · β, a] | [A → α ·Xβ, a] ∈ I})

This represents the parser consuming symbol X and transitioning to a new parser configuration.

11264

Construction Algorithm Let C denotes the set of item sets (states). The construction algorithm
proceeds as follows:

1. Initialize:
I0 = CLOSURE({[S′ → ·S, $]}), C := {I0}

2. Iteratively expand:

For each I ∈ C, and each grammar symbol X ∈ V ∪ Σ:

J := GOTO(I,X)

If J ̸= ∅ and J /∈ C, then add J to C and record a transition:

δ(I,X) = J

3. Repeat until no new item sets are added to C.

Parsing with the Canonical LR(1) Automaton Once the canonical LR(1) automaton and corresponding
parsing tables have been constructed, the LR(1) parser performs deterministic syntax analysis by simulating
a left-to-right scan of the input, using a stack-based mechanism.

At the core of the parsing process are two tables derived from the automaton:
ACTION table maps each parser state and terminal symbol (including the end-of-input symbol $) to

one of four possible actions:

• Shift sj : Advance to state j by consuming the current input symbol.

• Reduce rk: Apply production rule A → β and reduce the right-hand side.

• Accept: Recognize the input as belonging to the language, which occurs only when the parser
encounters the item [S′ → S·, $].

• Error: No valid action exists for the current state and input; a syntax error is reported.

GOTO table maps each state and non-terminal symbol to a successor state, and is only used after
reductions to determine the next parser state following a non-terminal transition.

Stack-based Parsing Mechanism The parser maintains a stack S, initially containing only the start
state s0. The input string w = a1a2 . . . an is augmented with the end-of-input marker $, and a pointer is
maintained to the current input symbol.

Each entry in the stack alternates between a grammar symbol and a state, i.e.,

S = [X0, s0, X1, s1, . . . , Xk, sk]

The parsing loop proceeds as follows:

1. Let sk be the state at the top of the stack, and let a be the current input symbol.

2. Consult the ACTION table at entry ACTION[sk, a]:

• If it specifies Shift sj : Push the input symbol a and state sj onto the stack, and advance the input
pointer.

• If it specifies Reduce by production A → β: Pop 2|β| entries from the stack (removing both
symbols and states), exposing the new top state s′. Push A, and then consult GOTO[s′, A] = s′′

to push the new state s′′.
• If it specifies Accept: The parser halts and returns success, confirming that the input belongs to

the language defined by the grammar.
• If no action is defined (Error): The parser halts and reports a syntax error.

3. Repeat the above steps until either an Accept or Error action is encountered.

11265

A.3 Definition of Pushdown Automata and Deterministic Pushdown Automata

A pushdown automaton (PDA) is a computational model that extends a finite automaton with a stack
memory. Formally, a (nondeterministic) PDA is defined as a 7-tuple M = (Q,Σ,Γ, δ, q0, Z0, F), where:

• Q is a finite set of states,

• Σ is a finite input alphabet,

• Γ is a finite stack alphabet,

• δ : Q× (Σ ∪ ϵ)× Γ;→;P(Q× Γ) is the transition function,

• q0 ∈ Q is the start state,

• Z0 ∈ Γ is the initial stack symbol,

• F ⊆ Q is the set of accepting (final) states.

Here ϵ denotes the empty string and P(X) is the powerset of X . Intuitively, the PDA reads one symbol
at a time (or makes ϵ-moves without consuming input), and at each step it may push or pop symbols on
the stack. A transition of the form δ(q, a,A) ∋ (p, γ) means that if the automaton is in state q, sees input
symbol a (or a = ϵ for an ϵ-move), and A is the top stack symbol, then it can move to state p, pop A, and
push the string γ ∈ Γ onto the stack (with the leftmost character of γ becoming the new top). A string is
accepted if the PDA can consume the entire input and reach a configuration in which the current state is in
F (accepting), regardless of the remaining stack content. (Alternatively, acceptance by empty stack can
be used; for nondeterministic PDAs these two acceptance modes yield the same class of languages.)

A deterministic pushdown automaton (DPDA) is a special kind of PDA with restrictions that eliminate
nondeterminism. Formally, a DPDA is defined by the same 7-tuple structure, but its transition function δ
must satisfy determinism conditions: for any state q ∈ Q and stack symbol A ∈ Γ, at most one of the
following can occur:

• There is at most one input symbol a ∈ Σ such that δ(q, a,A) is nonempty (so for each fixed (q,A),
there cannot be two different input symbols leading to transitions).

• If δ(q, ϵ, A) is nonempty (an ϵ-move is available), then δ(q, a,A) must be empty for every a ∈ Σ (so
that no input-consuming move competes with an ϵ-move on the same (q, A)).

Informally, in a DPDA, the next move is uniquely determined by the current state, the current input symbol
(or ϵ), and the top of the stack. Equivalently, for each (q, A) there is at most one transition available in
total, and it cannot be both an ϵ-move and a non-ϵ-move simultaneously. A DPDA typically accepts by
reaching an accepting state in F after consuming all input. A language is called deterministic context-free
(a DCFL) if it is recognized by some DPDA; otherwise it may require a nondeterministic PDA.

A.4 Language Classes: CFL vs DCFL

The class of languages recognized by PDAs (nondeterministic) is exactly the class of context-free
languages (CFLs). By contrast, the class of languages recognized by DPDAs is the class of deterministic
context-free languages (DCFLs). It is known that DCFLs are a strict subset of CFLs: there are context-free
languages that no DPDA can recognize. In general, every DPDA is also a PDA (so DCFL ⊆ CFL), but
many CFLs require nondeterminism.

Some key differences and properties include:

• Expressive power: Every DCFL is context-free, but there are CFLs that are not deterministic. For
example, the language of all palindromes wwR : w ∈ a, b∗ is context-free but not deterministic
context-free (no DPDA can decide the midpoint of the string to switch from pushing to popping).

11266

• Unambiguity: Every DCFL has an unambiguous context-free grammar and a unique leftmost deriva-
tion for each string. In contrast, CFLs in general may be ambiguous or inherently nondeterministic.
(In fact, if a context-free language has a deterministic PDA, it admits no ambiguity in parsing.)

• Closure properties: DCFLs enjoy stronger closure than general CFLs. For instance, DCFLs are
closed under complementation (by converting final-state acceptance to empty-stack acceptance and
flipping accepting conditions), whereas CFLs are not closed under complement in general. Also,
DCFLs are closed under intersection with regular languages. In contrast, CFLs are not closed under
complement or intersection in general.

• Parsing and complexity: Deterministic PDAs can be executed in linear time, and they correspond
to deterministic parsing algorithms (such as LL(1) or LR(1) parsers for programming languages).
Nondeterministic PDAs also run in linear time (in theory) but require nondeterminism or backtracking
to decide moves.

A.5 Transition Function and Determinism Conditions
The transition function δ of a PDA (resp. DPDA) encodes its moves. Recall δ : Q× (Σ ∪ {ϵ})× Γ →
P(Q × Γ∗). If (p, γ) ∈ δ(q, a,A), this means the PDA can move from configuration (q, aw, . . .) to
(p, w, . . .) by consuming a (unless a = ϵ) and replacing the stack top A with the string γ. Concretely,
if the current configuration is (q, av, αA) (state q, remaining input av, stack αA with A at top), then
after the transition it goes to (p, v, αγ) (state p, remaining input v, stack αγ). The string γ may be empty
(denoted ϵ), which corresponds to simply popping A without pushing anything.

For a nondeterministic PDA, there may be multiple choices (p, γ) in the set δ(q, a,A), reflecting
different possible moves. A DPDA imposes the restriction that these choices must be essentially unique.
In particular:

• For each state q and stack symbol A, and for each input symbol a ∈ Σ, there is at most one pair
(p, γ) ∈ δ(q, a,A). That is, the PDA cannot have two different transitions that read the same input a
in the same state q with the same stack top A.

• Moreover, if δ(q, ϵ, A) is nonempty (i.e., an ϵ-move is available from (q, A)), then δ(q, a,A) must
be empty for every a ∈ Σ. Equivalently, from any configuration (q, A), the machine cannot both use
an ϵ-move and a non-ϵ-move; at most one type of move is allowed.

These conditions ensure that at most one transition is available in any situation, making the automaton
deterministic. In practice, a DPDA’s transition function is often given as a function rather than a relation,
since there is at most one output move for each (q, a,A) (or (q, ϵ, A)).

11267

