
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 11199–11213
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Improving Factuality with Explicit Working Memory

Mingda Chen Yang Li Karthik Padthe
Rulin Shao Alicia Sun Luke Zettlemoyer Gargi Ghosh Wen-tau Yih

Meta FAIR
mingdachen@meta.com

Abstract

Large language models can generate factu-
ally inaccurate content, a problem known
as hallucination. Recent works have
built upon retrieved-augmented genera-
tion to improve factuality through itera-
tive prompting but these methods are lim-
ited by the traditional RAG design. To ad-
dress these challenges, we introduce Ewe
(Explicit Working Memory), a novel ap-
proach that enhances factuality in long-
form text generation by integrating a work-
ing memory that receives real-time feed-
back from external resources. The memory
is refreshed based on online fact-checking
and retrieval feedback, allowing Ewe to
rectify false claims during the generation
process and ensure more accurate and re-
liable outputs. Our experiments demon-
strate that Ewe outperforms strong base-
lines on four fact-seeking long-form gen-
eration datasets, increasing the factuality
metric, VeriScore, by 2 to 6 points absolute
without sacrificing the helpfulness of the
responses. Further analysis reveals that
the design of rules for memory updates,
configurations of memory units, and the
quality of the retrieval datastore are crucial
factors for influencing model performance.

1 Introduction

In the realm of long-form text generation, a
notable vulnerability of large language mod-
els (LLMs) is their propensity for hallucina-
tion, wherein the generated text contains fac-
tually inaccurate information. By prepend-
ing the input prompt with relevant docu-
ments from trustworthy sources, retrieved-
augmented generation (RAG) (Lewis et al.,
2020; Shi et al., 2024) has been shown to be
a simple yet effective approach that substan-
tially mitigates the hallucination issue. To fur-
ther enhance the factual accuracy of model

output, various iterative prompting methods
have been proposed that build upon RAG.
For instance, FLARE (Jiang et al., 2023) gen-
erates responses sentence by sentence, and
if a newly generated sentence contains low-
probability tokens, it retrieves a new set of
documents and re-runs RAG to regenerate the
sentence. Alternatively, Self-RAG (Asai et al.,
2024) employs a self-critic component to verify
the correctness of each partial generation and
repeatedly queries a retrieval system to update
the background knowledge, thereby producing
more accurate and faithful responses. While
these systems demonstrate significant empiri-
cal improvement, they are restricted in the tra-
ditional RAG design. Context-relevant knowl-
edge through retrieval is the only online feed-
back to the model, incorporated as part of the
input string.
In this work, we propose Ewe (Explicit

Working mEmory), an iterative framework
that aims to provide more factual responses
for knowledge-intensive long-form generation,
with the help of an auxiliary fact-checking
module. Ewe augments an existing language
model with an explicit working memory, which
keeps track of the knowledge that is most
relevant and useful at the current generation
timestep. The memory is initially filled with
the latent representation of some retrieved
passages relevant to the input prompt. Dur-
ing the generation process, Ewe actively mon-
itors the newly generated partial response and
pauses occasionally to refresh the memory
with knowledge from retrieval and to check
the output statement. If the statement is fac-
tually incorrect, it then refreshes the memory
with the fact-checking feedback. With the up-
dated memory, Ewe first removes the incor-
rect statement and backtracks to the previous
timestep, and then continues the generation

11199



Figure 1: Example pipeline illustrating how Ewe pauses, receives feedback from retrievers and fact-
checkers, and then re-generate to correct factual errors in its outputs. Ewe handles knowledge from fact-
checkers and retrievers separately as they tend to provide information with distinct properties. Retrieval
offers more general background information, while fact-checkers focus more on specific details, targeting
particular aspects of the output text.

process from there.

We assume that the main text generation
model used here is a Transformer-based large
language model, such as Llama (Dubey et al.,
2024). Similar to the standard RAG setting,
given an input prompt, we first retrieve k rele-
vant text chunks of the same number of tokens,
as the background knowledge. Unlike RAG,
which directly prepends the input prompt with
these k chunks, we apply the language model
to them separately and store the KV cache of
each chunk in a memory of k units. When
predicting the next token, the language model
effectively attends the current token to all
k chunks in parallel, using their KV caches
stored in the memory, and have the average as
the attention value. When Ewe pauses the
generation and checks the newly generated,
partial response, it has the opportunity to up-
date the memory in multiple ways to guide
the language model. For instance, if some
claims in the new sentence are not supported,
this feedback along with additional support-
ing documents can be used as a new unit ap-
pended to the existing memory. In addition,
if the knowledge from an initial retrieved pas-
sage is no longer relevant, its corresponding
memory unit can be removed or updated with
embeddings of a new passage retrieved using
the generated partial response as query.

Ewe can be seen as a more general
framework that subsumes many existing ap-
proaches. For example, if there is no stop-
ping in generation and if the memory contains
only one unit (i.e., k=1), then Ewe degener-
ates to the simple vanilla RAG. If Ewe pauses
at the end of generation of every sentence and
checks whether the new sentence contains any
token with low probability as a proxy of fac-
tuality measure, then this particular instan-
tiation, with one memory unit, is effectively
FLARE. Notice that in a typical, more gen-
eral configuration of Ewe, the memory mod-
ule consists of multiple units. When the mem-
ory is refreshed, not all the units need to be
updated. If some knowledge is still required,
their original raw data (e.g., passages) will not
be reprocessed to create the embeddings, sav-
ing some redundant computational cost at in-
ference time. While conceptually simple, the
working memory design in Ewe provides a
more flexible and yet efficient way to incorpo-
rate various types of external online informa-
tion, as different forms of feedback are encoded
in parallel and stored in memory units (e.g.,
see Figure 1). It is worth noting that Ewe is
well-suited for real-time applications involving
streaming user data, iterative retrieval, and
real-time feedback. For example, when users
input data through speech, where edits to pre-

11200



viously entered information are less likely to
occur, Ewe allows us to start gathering rele-
vant information and drafting responses con-
currently. We notice that the design of lever-
aging working memory is also very related
to some recently proposed methods for long-
content models (e.g., Memory3 (Yang et al.,
2024)). If our memory is used only for en-
coding the knowledge from the passages in
our corpus, then this can be viewed as the
whole corpus is used as the context, along
with the prompt, as the input to the model.
The key differences are that Ewe does not
pre-encode every passage (although the KV
caches of some frequently retrieved passages
can certainly be precomputed in advance) and
its memory can be dynamically updated as the
generation progresses.

We demonstrate empirically that Ewe gen-
erates more factual responses without sacri-
ficing the relevance to the input questions,
using four fact-seeking long-form generation
datasets. In general, with the feedback from
online fact-checking and targeted retrieval,
Ewe increases VeriScore (Song et al., 2024),
the factuality metric we use, by 2 to 6 points
absolute and is equally helpful in terms of
instruction following, compared to the base
model Llama-3.170B. We also perform human
evaluations to ensure that our enhancements
in VeriScore effectively translate to factuality.

2 Related work

Aiming to reduce hallucination and make the
LLMs generate more factual responses, our
proposed framework, Ewe, detects knowl-
edge gaps and acquires relevant information
as needed, incorporating feedback from aux-
iliary models when available. Unlike chain-
of-verification approaches (Dhuliawala et al.,
2024, CoVe), which rely solely on the LLM for
reasoning, Ewe combines adaptive retrieval
augmentation and explicit memories with a fo-
cus on factuality. This section discusses re-
lated work on these two aspects.

2.1 Iterative and Adaptive Retrieval
Augmentation

Retrieval-augmented generation (RAG) typi-
cally involves a single retrieval step, followed
by the language model generating a complete

response. However, iterative retrieval meth-
ods (Gao et al., 2024, §5) have been proposed
to generate responses in multiple segments,
with each segment generated using different
additional information retrieved through iter-
ative retrieval. One such approach is ITER-
RETGEN (Shao et al., 2023), which uses the
model output of the previous iteration to for-
mulate the query and retrieve more relevant
knowledge for the current generation. Extend-
ing iterative retrieval, the process of adap-
tive retrieval (Gao et al., 2024, §5) exam-
ines partially generated responses in previ-
ous iterations to decide whether retrieving
new information or regenerating a segment re-
sponse is needed. For instance, FLARE (Jiang
et al., 2023) follows a simple sentence-by-
sentence generation process to answer fact-
seeking questions. In each step, it generates a
temporary next sentence and examines its ac-
ceptability based on model confidence. If the
sentence is deemed questionable, it retrieves
new text chunks using a query based on the
temporary sentence and re-generates the next
sentence using standard RAG. DRAGIN (Su
et al., 2024) improves upon FLARE by intro-
ducing a new model confidence measure that
combines attention scores and entropy values.
This allows the model to pause the genera-
tion immediately after the confidence score of
a token falls below a threshold. Additionally,
DRAGIN uses preceding tokens with high at-
tention scores on the stopping token to form
a keyword-based query, which helps the model
make a more confident next-token prediction.
Our work shares similarities with Self-

RAG (Asai et al., 2024), particularly in the
use of an auxiliary model to provide feedback.
Unlike confidence measures based on token
probability or attention score, Self-RAG fine-
tunes the model to introspectively decide when
to pause generation by outputting a special
retrieve token. This triggers the retrieval of
multiple passages, which are then used sep-
arately to generate candidate segments via
standard RAG. Each segment is evaluated by
a “critique” model for relevance, usefulness
to the original prompt, and support from the
retrieved passage. The critique model’s out-
put determines whether a candidate segment
is included in the final output. Similarly, pre-
vious research has investigated various meth-

11201



ods for incorporating external feedback during
the generation process (Kang et al., 2023; Gao
et al., 2023; Gou et al., 2024; Li and Flanigan,
2024).

Our approach, Ewe, differs from exist-
ing iterative and adaptive retrieval augmen-
tation methods in two key aspects. Firstly,
traditional retrieval augmentation is replaced
with memory augmentation, where the rep-
resentation is the KV cache (similar to
TurboRAG (Lu et al., 2024)) instead of the
raw text, and different memory chunks that
encode different passages are processed in par-
allel. This design allows for greater flexibil-
ity in incorporating diverse information types
and improves efficiency when only part of the
memory is updated, as the remaining por-
tion can be reused. Secondly, feedback from
the auxiliary model is passed to the language
model through memory, enabling the core lan-
guage model to naturally incorporate multi-
ple streams of information and produce bet-
ter responses. This design difference sets our
approach apart from existing methods and al-
lows for more effective integration of factuality
feedback from the auxiliary model.

2.2 Memories in Long-context LLMs

Incorporating a large-scale corpus as addi-
tional knowledge can be achieved by prepend-
ing the given prompt with all documents in the
corpus as an extremely long context input (Lee
et al., 2024) to language models. It is thus
natural to see that long-context LLMs share
some technical components that apply to re-
trieval augmentation. The memory module in
Ewe is analogous to the explicit memory de-
sign in Memory3 (Yang et al., 2024). Instead
of encoding the knowledge in the training cor-
pus completely in model parameters, or incor-
porating the knowledge primarily through re-
trieval augmentation, Memory3 encodes 128-
token chunks of the training corpus using their
KV caches as memories. During inference, the
model generates segments of 64 tokens. At
the generation of each segment, it first uses
the previous segment as query to retrieve 5
most relevant memories, and attends to them
when generating the next segment. Retrieving
memories of KV caches has been proposed in
earlier work. For instance, Memorizing Trans-
formers (Wu et al., 2022) effectively extends

the context of the language model by k near-
est neighbor lookup of the past key-value pairs
(i.e., long-range memory) and attends them in
the last layer of the models. LongMem (Wang
et al., 2023) proposed a decoupled network ar-
chitecture, using the backbone language model
as memory encoder and a trained residual side-
network as memory retriever and reader. The
top-k attention key-value pairs stored in the
memory are retrieved and incorporated at in-
ference.

While we also use explicit memories to store
KV caches in Ewe, our goal is to pass new
information at each step in the iterative de-
coding process, such as new information rele-
vant to the current context via online retrieval
and feedback from auxiliary models. We al-
low different operations on existing memories,
including update, append, or delete, providing
more flexibility for various downstream tasks.

3 Method

The overall generation process of Ewe is
similar to the decoding process of typical
Transformer-based models, with two differ-
ences: (§3.1) Ewe pauses generation periodi-
cally. When a new complete sentence has been
generated, Ewe uses the current context to
retrieve a new set of passages as knowledge
feedback. In addition, it runs a fact-checking
model to judge whether the sentence contains
any factually incorrect statements. If the sen-
tence does contain factual errors, the correct
facts will be used as the fact-checking feed-
back. Both types of feedback will be added
to memories, and the sentence will be regen-
erated if the original one has factual errors.
(§3.2) The generation is memory-augmented.
In addition to the typical context like the in-
put sentence and tokens generated in previ-
ous timesteps, embeddings of various forms of
feedback stored in the memories will influence
the generated tokens through self-attention.

3.1 Real-time Feedback

Following the design of recently proposed eval-
uation metrics on factuality (Min et al., 2023;
Wei et al., 2024; Song et al., 2024), we deter-
mine whether a sentence is factually correct
by checking if all of the claims extracted from
this sentence are supported. While in general,

11202



Ewe can use any textual knowledge as feed-
back, we focus on providing two types of feed-
back when the newly generated sentence con-
tains factual errors: fact-checking outcomes
and relevant knowledge.

Fact-checking outcomes This feedback
consists of the correct information that re-
futes the inaccurate claims, such as “Stre-
litzia thrives in a tropical-like 60%-70% hu-
midity.” that proves “Bird of Paradise prefers
a dry atmosphere.” wrong in the example
in Figure 1. In this work, we adapt the
claim extraction model and verification model
in VeriScore (Song et al., 2024) as the fact-
checking model, where the factual knowledge
is derived from the Google snippets when us-
ing the extracted claim as query.

Relevant knowledge Using the original in-
put question and the sentence being fact-
checked as query, we use Contriever (Izacard
et al., 2022) to retrieve passages from C4 (Raf-
fel et al., 2020) and Wikipedia, following the
setting in MassiveDS (Shao et al., 2024). Pas-
sages with retrieval scores exceeding a certain
threshold will be viewed as knowledge relevant
to the current context and used to update the
working memories.
We pause at every Tr timesteps to gather

feedback from retrievers, and Tv timesteps
from fact-checkers. However, if no new sen-
tence is generated, the feedback collection pro-
cess will be skipped.1

3.2 Refreshing Working Memories

The working memory in Ewe consists of k
memory units, where each unit is designed
to store the representations of each feedback
message of M tokens. When updating work-
ing memories, we follow the first in, first out
(FIFO) rule.2 Given refreshed text chunks

1Ewe is not significantly slower than existing it-
erative retrieval methods like DRAGIN and FLARE.
These methods also use an iterative generation pro-
cess involving re-generation and retrieval. However,
without working memories, existing iterative retrieval
methods are slower than EWE when it comes to incor-
porating new retrieved information into the context.

2In our preliminary experiments, we explored other
possibilities of updating the memories, e.g., replacing
the least relevant memories based on retrieval scores
or model confidence scores (similar to what you men-
tioned). However, we found that these methods did
not perform better than the FIFO approach. Due to
the simplicity and effectiveness of FIFO, we decided to

of the same length from fact-checkers and re-
trievers, our model encodes them into the KV
cache in parallel using the same positional IDs.
Working memories in Ewe are stored as part
of the language models’ context preceding the
model’s own output text and prompts, allow-
ing for flexible updates without reprocessing
generated content. As shown in Figure 2, a
separate embedding store is used for preserv-
ing these memories, which are then processed
at each layer by concatenating them with the
context. We then apply regular self-attention
and aggregate the resulting hidden vectors us-
ing normalization terms from self-attention for
each memory unit. Empirically, we find that
adding hidden vectors produced by context
only improves the fluency of long outputs, so
we keep it in our model architectures. More
formally,

h⃗n =
k+1∑

i=1

αih⃗ni∑k+1
j=1 αj

, (1)

where h⃗n is the output vectors for self-
attention at n-th layer in LMs, h⃗ni is the hid-
den vectors produced by memories concate-
nated with the context and by only the context
vectors, and αi is the normalization term from
self-attention that leads to h⃗ni .

4 Experiments

We present the main experimental results of
Ewe in this section, along with details of the
datasets and evaluation metrics we used, and
the baseline we compared with. In this set
of experiments, we set the retrieval and veri-
fication timesteps, Tr and Tv, to be 1 and 8,
respectively.

4.1 Evaluation Datasets

We evaluated Ewe and baseline models us-
ing four fact-seeking long-form generation
datasets: LongFact (Wei et al., 2024; 250
prompts), Fava (Mishra et al., 2024; 141
prompts), AlpacaFact (Dubois et al., 2023; Lin
et al., 2024; 241 prompts) and Biography (Min
et al., 2023; 181 prompts). We include more
detailed descriptions of each dataset in the ap-
pendix.

leave further exploration of these alternatives for future
work.

11203



Figure 2: Diagram illustrating self-attention computations performed at each layer in Ewe. We con-
catenate each memory with the context (except for the last hidden vector where we only use context),
apply standard self-attention and then aggregate the resulting hidden vectors to produce the final hidden
vectors.

4.2 Evaluation Metrics

We assess the quality of model responses to
fact-seeking questions based on two key axes:
factuality and helpfulness. For evaluating fac-
tuality, we considered multiple automatic met-
rics, such as FActScore (Min et al., 2023) and
SAFE (Wei et al., 2024), but ultimately chose
VeriScore (Song et al., 2024) as our primary
evaluation metric. Although these metrics
share a similar design that decomposes sen-
tences into “atomic claims” and checks their
support against an external knowledge source,
VeriScore focuses on extracting more sensible
verifiable claims and uses Google search snip-
pets instead of Wikipedia as the knowledge
source. As a result, VeriScore can be applied
to responses on more diverse topics and is also
more efficient, requiring fewer but more mean-
ingful claims to be checked. We report the F1

score from VeriScore, which is the harmonic
mean of the precision and recall of the claims.
Following Song et al. (2024), we set the min-
imum number of facts required for a model’s
response to achieve perfect recall as the me-
dian number of extracted claims per dataset3.
We also used their fine-tuned models for claim
extraction and verification, provided in their
package4.

To make sure that a model with a high fac-
tuality score does not simply give irrelevant
but correct factual statements, we also need
to check whether the response is helpful to
the user. Following (Lin et al., 2024), we use
AlpacaEval (Dubois et al., 2024) to compare
the target model and baseline model in terms
of their instruction-following ability. For the

3The median numbers of extracted facts for Long-
Fact, Fava, AlpacaFact, Biography are 55, 49, 31, 43,
respectively.

4https://github.com/Yixiao-Song/VeriScore

responses to the same input prompt, a large
language model is used as judge to determine
which of the two is better5, and the win rate
is thus used as a measure of helpfulness6.

4.3 Baselines

We used instruction-tuned Llama-3.1 70B and
8B as the base models7 and compared Ewe
with five baselines: base model only, re-
trieval augmentation (RA), Chain of verifica-
tion (CoVe)8, an iterative retrieval approach
DRAGIN (Su et al., 2024)9, and a recently
proposed semi-parametric decoding method
Nest (Li et al., 2024). For base model only,
Llama-3.170B or Llama-3.18B, we simply gave
the language model the prompt in the dataset
and the instruction of requesting detailed in-
formation, without other additional informa-
tion. With retrieval augmentation, we re-
trieved 10 passages using the input prompts
as queries and then prepended the passages
to the input10. Nest is a strong retrieval-
based decoding algorithm. Following the orig-
inal setup, we retrieved 100 passages to use as
candidates. For CoVe, we employ the “fac-
tor+revise” method, which Dhuliawala et al.

5We used GPT-4o as the judge.
6We found that the length-controlled win rates in

AlpacaEval could conflate hallucinations and length ef-
fects, and thus report the version without length nor-
malization.

7We opt to use Llama-3.1 in two different sizes in-
stead of exploring different architectures. This decision
is based on the fact that Ewe is not tied to any specific
model architecture. Consequently, it is more insightful
to assess its generalization capabilities across various
model sizes rather than across different architectures.

8We adapted an implementation from https://
github.com/ritun16/chain-of-verification

9We used the authors’ implementation https://
github.com/oneal2000/DRAGIN

10Using more than 10 passages does not provide sig-
nificant benefits in our preliminary experiments, so we
limit our retrieval to the top 10 passages.

11204

https://github.com/Yixiao-Song/VeriScore
https://github.com/ritun16/chain-of-verification
https://github.com/ritun16/chain-of-verification
https://github.com/oneal2000/DRAGIN
https://github.com/oneal2000/DRAGIN


Model LongFact Fava AlpacaFact Biography
F1 WR F1 WR F1 WR F1 WR

Llama-3.170B 64.3 - 52.0 - 63.8 - 37.1 -
+RA 72.7 41.2 56.8 37.1 66.0 43.1 43.8 49.4
+Nest 63.2 9.1 50.3 24.1 58.1 30.2 41.5 22.1
+DRAGIN 71.5 38.2 57.2 33.9 65.3 31.5 42.8 33.5
+CoVe 63.8 39.3 49.5 33.4 61.5 33.3 37.7 31.3
+CoVe w/ Retrieval 67.4 31.8 52.6 23.1 64.0 28.8 38.2 29.4
+Ewe 75.9 50.1 61.0 50.1 66.9 49.9 49.7 50.2

Llama-3.18B 63.1 40.6 51.0 36.5 65.3 26.7 28.9 24.2
+RA 65.9 28.1 51.8 16.8 63.9 18.5 41.4 21.3
+Nest 62.3 4.2 50.2 14.1 57.8 9.1 41.8 21.8
+DRAGIN 63.9 15.9 51.1 10.0 61.3 11.1 34.7 11.4
+CoVe 44.1 8.8 38.7 11.0 51.3 15.1 25.1 13.3
+CoVe w/ Retrieval 53.5 12.2 39.5 5.3 54.6 12.5 29.1 10.2
+Ewe 67.3 40.5 53.1 36.2 65.5 28.0 42.2 21.5

Table 1: Evaluation on factuality and helpfulness of the model responses to prompts provided in four
long-form question answering datasets. For each dataset, we report F1 scores from VeriScore and win
rates (WR) from AlpacaEval. We use Llama-3.170B as the baseline method in AlpacaEval win rate
experiments.

(2024) demonstrated to be the most effective.
Additionally, we improveCoVe by integrating
retrieved passages from our retrieval datastore
during the verification step. This augmenta-
tion helps us establish a stronger and more
comparable baseline method, considering that
most other baseline methods also utilize re-
trieval. For all our experiments, the maxi-
mum generation step was set to 1024. We also
use C4 and Wikipedia in MassiveDS as our
retrieval datastore and Contriever as the re-
triever. Llama-3.170B is used as the baseline
method for all AlpacaEval comparisons.

4.4 Results

Our main results are shown in Table 1. For
the Llama-3.170B base model, we find that
in terms of factuality, retrieval augmenta-
tion generally improves the results consistently
across different datasets. This is expected
as for fact-seeking prompts, specifically condi-
tioning generation on relevant factual knowl-
edge has been demonstrated to be an effec-
tive way to mitigate hallucinations. Nest per-
forms better than the base model on the Bi-
ography dataset, but not on others, and it
appears that the VeriScore F1 is lower than
the standard retrieval augmentation. It might
suggest that the configuration or hyperparam-

eter settings of Nest need to be further op-
timized, as Nest was originally evaluated by
Biography with Llama-2. DRAGIN performs
similarly to RA, likely because their query for-
mulation method is not optimized for long-
form generation, resulting in less useful re-
trieved passages. Similarly, with CoVe, we
notice that it often produces shorter model
responses, leading to significantly lower recall
performance despite high precision, which re-
sults in a less favorable VeriScore F1. While
augmenting CoVe with retrieval slightly alle-
viates this issue, it still lags behind. Perhaps
more interestingly, with online fact-checking
feedback and refreshed knowledge from re-
trieval, Ewe achieves the highest VeriScore F1

on all datasets. On the helpfulness of the re-
sponses, it appears that AlpacaEval generally
prefers the output from the base model, ex-
cept for Ewe, where the win rates are roughly
50%.

When using Llama-3.18B as the base model,
we have observed a similar trend. Retrieval
augmentation improves factuality in terms of
VeriScore F1 and Ewe still gives the best fac-
tuality results. However, compared to the
models based on Llama-3.170B, we notice that
the improvement is generally smaller. We

11205



Figure 3: VeriScore over 50 prompts from Long-
Fact when varying number of memory units used
for storing retrieved passages and fact-checking
feedback.

hypothesize that the smaller base language
model is less capable in leveraging feedback,
and may not always regenerate a sentence that
is factually correct. In terms of helpfulness, we
can see that Ewe generally performs compa-
rably to its base model Llama-3.18B, as they
have similar win rates when judged against the
output of the same Llama-3.170B base model.

5 Analysis

We provide some insights based on different
ablations in this section. Llama-3.170B were
used as the base model for all the experiments
in this section. Due to space limits, we include
analysis on model confidence, retrieval knowl-
edge, and feedback forms for fact verifiers in
the appendix.

5.1 Memory Configurations

In this analysis, we explore the influence of
memory configurations on factuality, based on
experiments on 50 randomly sampled prompts
from LongFact. We examine this impact
through two dimensions: the number of mem-
ory units and the lengths of memory units.

In Figure 3, we investigate how varying the
numbers of memory units used for storing fact-
checking feedback and retrieved passages may
impact factuality. We apply the same con-
figuration to both, as similar trends are ob-
served when adjusting the settings for each
type of memory. Overall, we find that hav-
ing a large number of memory units for either
fact-checking feedback or retrieved passages
negatively affects precision and, consequently,
factuality (though recall remains largely un-
affected). This is likely because a significant
amount of stale information remains in work-

Figure 4: VeriScore over 50 prompts from Long-
Fact when varying lengths of memory units used
for storing retrieved passages and fact-checking
feedback.

Figure 5: VeriScore over 50 prompts from Long-
Fact with different retrieval score thresholds.
Higher thresholds indicate passages that are less
relevant would be excluded in working memory.

ing memory for an extended period without
being updated, as we adhere to the FIFO rule
for updating working memory. Consequently,
this information becomes outdated as the gen-
eration process continues.

In Figure 4, we examine the impact of vary-
ing lengths of memory units on factuality.
Our results indicate that shorter memory units
tend to increase precision but decrease recall,
whereas longer memory units tend to decrease
precision but increase recall. We hypothe-
size that this occurs because short memory
units allow the attention mechanism to allo-
cate weights more effectively to individual pas-
sages. In contrast, longer memory units com-
bine multiple passages into a single unit, which
may compel the attention to focus on less rel-
evant passages when they are grouped with
more relevant ones. However, longer memory
units also provide advantages in terms of im-
proved reasoning across documents, which is
beneficial for recall.

In Figure 5, we examine the impact of vary-
ing retrieval score thresholds. Notably, ini-
tially raising the threshold (allowing more rel-

11206



RA 0.61
Ewe 0.65

Table 2: Cohen’s Kappa inter-annotator agree-
ment between VeriScore and human predictions re-
garding whether sentences are factual or not.

evant information to be retained in working
memory) enhances both precision and recall.
Further increasing the threshold continues to
improve precision while maintaining recall at a
similar level. However, increasing the thresh-
old beyond this point negatively affects F1 and
recall, despite still benefiting precision, likely
due to the exclusion of too many retrievals.
These findings indicate that our model might
gain from a more advanced memory updating
mechanism, which we intend to investigate in
future work.

5.2 Human Evaluation

We conduct a human evaluation to determine
if using VeriScore during inference impacts its
alignment with human judgments. To achieve
this, we randomly select 100 generation sam-
ples each from our retrieval-augmented base-
line and Ewe, and recruit 6 human annota-
tors. During sample selection, we categorize
sentences into buckets based on the number
of nonfactual claims predicted by VeriScore.
We then randomly choose samples from each
bucket to ensure an equal representation of
sentences with varying numbers of nonfactual
claims. Annotators are given a sentence from
model responses along with the full response
for context. They are instructed to classify
the sentence as factual, nonfactual, or “unable
to decide” if no claim is present. Addition-
ally, they are encouraged to use online search
engines if they are unsure about specific in-
formation. Detailed instructions are provided
in the appendix. Our evaluation gathers 120
annotations. Since annotators might choose
“unable to decide” for various reasons, such
as the sentence being functional and not mak-
ing any claims, we exclude these from score
computation. We calculate Cohen’s Kappa to
assess inter-annotator agreement between hu-
mans and VeriScore, excluding 25 “unable to
decide” annotations. The results are presented
in Table 2. Since a Cohen’s Kappa score above

0.61 is considered substantial and the scores do
not decrease with Ewe, we conclude that us-
ing VeriScore during inference has indeed en-
hanced the factuality of Ewe.

6 Conclusion

We present Ewe, a novel system that incor-
porates a working memory mechanism dur-
ing the generation process. Ewe pauses at
given intervals and refreshes its working mem-
ory based on feedback from retrieval and fact-
checking models, ensuring that the generated
content remains accurate and relevant. Our
experiments demonstrate the effectiveness of
Ewe by benchmarking it on 8B and 70B
Llama-3.1 models, resulting in significant im-
provements in both factuality and helpfulness
across four fact-seeking long-form generation
datasets. Furthermore, our analysis reveals
that updating the working memory with more
relevant information at each timestep, allow-
ing attention to focus on each passage, and
utilizing high-quality retrieval datastores with
extensive knowledge coverage are crucial fac-
tors for improving factuality of models.

7 Limitations

Although Ewe can be applied to various types
of data, our research has been limited to En-
glish text datasets with fact-seeking prompts.
Its performance on other English benchmarks
and multilingual datasets remains unclear.
Additionally, we have restricted Ewe to only
accept textual real-time feedback, and explor-
ing multimodal feedback could be intriguing.
Moreover, our human evaluation experiments
have been conducted on a relatively small
scale, and it would be beneficial to validate
our findings in a larger-scale setting.

References

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup
Sil, and Hannaneh Hajishirzi. 2024. Self-RAG:
Learning to retrieve, generate, and critique
through self-reflection. In The Twelfth Interna-
tional Conference on Learning Representations.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu,
Roberta Raileanu, Xian Li, Asli Celikyilmaz,
and Jason Weston. 2024. Chain-of-verification
reduces hallucination in large language models.
In Findings of the Association for Computa-
tional Linguistics ACL 2024, pages 3563–3578,

11207

https://openreview.net/forum?id=hSyW5go0v8
https://openreview.net/forum?id=hSyW5go0v8
https://openreview.net/forum?id=hSyW5go0v8
https://doi.org/10.18653/v1/2024.findings-acl.212
https://doi.org/10.18653/v1/2024.findings-acl.212


Bangkok, Thailand and virtual meeting. Associ-
ation for Computational Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav
Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten,
Amy Yang, Angela Fan, Anirudh Goyal, An-
thony Hartshorn, Aobo Yang, Archi Mitra, and
Archie Sravankumar et. al. 2024. The llama 3
herd of models. Preprint, arXiv:2407.21783.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi
Zhang, Ishaan Gulrajani, Jimmy Ba, Car-
los Guestrin, Percy Liang, and Tatsunori
Hashimoto. 2023. AlpacaFarm: A simulation
framework for methods that learn from human
feedback. In Thirty-seventh Conference on Neu-
ral Information Processing Systems.

Yann Dubois, Percy Liang, and Tatsunori
Hashimoto. 2024. Length-controlled alpacaeval:
A simple debiasing of automatic evaluators. In
First Conference on Language Modeling.

Luyu Gao, Zhuyun Dai, Panupong Pasupat, An-
thony Chen, Arun Tejasvi Chaganty, Yicheng
Fan, Vincent Zhao, Ni Lao, Hongrae Lee, Da-
Cheng Juan, and Kelvin Guu. 2023. RARR:
Researching and revising what language mod-
els say, using language models. In Proceedings
of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 16477–16508, Toronto, Canada.
Association for Computational Linguistics.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang
Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun,
Meng Wang, and Haofen Wang. 2024. Retrieval-
augmented generation for large language mod-
els: A survey. Preprint, arXiv:2312.10997.

Claire Gardent, Anastasia Shimorina, Shashi
Narayan, and Laura Perez-Beltrachini. 2017.
The WebNLG challenge: Generating text from
RDF data. In Proc. INLG, pages 124–133.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong
shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
2024. CRITIC: Large language models can self-
correct with tool-interactive critiquing. In The
Twelfth International Conference on Learning
Representations.

Gautier Izacard, Mathilde Caron, Lucas Hos-
seini, Sebastian Riedel, Piotr Bojanowski, Ar-
mand Joulin, and Edouard Grave. 2022. Unsu-
pervised dense information retrieval with con-
trastive learning. Transactions on Machine
Learning Research.

Zhengbao Jiang, Frank Xu, Luyu Gao, Zhiqing
Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
Jamie Callan, and Graham Neubig. 2023. Ac-
tive retrieval augmented generation. In Proceed-
ings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 7969–

7992, Singapore. Association for Computational
Linguistics.

Haoqiang Kang, Juntong Ni, and Huaxiu Yao.
2023. Ever: Mitigating hallucination in
large language models through real-time ver-
ification and rectification. arXiv preprint
arXiv:2311.09114.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte,
Sotiris Anagnostidis, Zhi Rui Tam, Keith
Stevens, Abdullah Barhoum, Duc Nguyen,
Oliver Stanley, Richárd Nagyfi, Shahul ES,
Sameer Suri, David Glushkov, Arnav Dantuluri,
Andrew Maguire, Christoph Schuhmann, Huu
Nguyen, and Alexander Mattick. 2023. Openas-
sistant conversations - democratizing large lan-
guage model alignment. In Advances in Neu-
ral Information Processing Systems, volume 36,
pages 47669–47681. Curran Associates, Inc.

Jinhyuk Lee, Anthony Chen, Zhuyun Dai, Dheeru
Dua, Devendra Singh Sachan, Michael Boratko,
Yi Luan, Sébastien M. R. Arnold, Vincent
Perot, Siddharth Dalmia, Hexiang Hu, Xudong
Lin, Panupong Pasupat, Aida Amini, Jeremy R.
Cole, Sebastian Riedel, Iftekhar Naim, Ming-
Wei Chang, and Kelvin Guu. 2024. Can long-
context language models subsume retrieval, rag,
sql, and more? Preprint, arXiv:2406.13121.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Na-
man Goyal, Heinrich Küttler, Mike Lewis, Wen-
tau Yih, Tim Rocktäschel, Sebastian Riedel,
and Douwe Kiela. 2020. Retrieval-augmented
generation for knowledge-intensive NLP tasks.
In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural In-
formation Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual.

Changmao Li and Jeffrey Flanigan. 2024.
Rac: Efficient llm factuality correction
with retrieval augmentation. arXiv preprint
arXiv:2410.15667.

Minghan Li, Xilun Chen, Ari Holtzman, Beidi
Chen, Jimmy Lin, Wen-tau Yih, and Xi Victoria
Lin. 2024. Nearest neighbor speculative decod-
ing for llm generation and attribution. arXiv
preprint arXiv:2405.19325.

Sheng-Chieh Lin, Luyu Gao, Barlas Oguz, Wen-
han Xiong, Jimmy Lin, Wen-tau Yih, and Xilun
Chen. 2024. Flame: Factuality-aware align-
ment for large language models. arXiv preprint
arXiv:2405.01525.

Songshuo Lu, Hua Wang, Yutian Rong, Zhi Chen,
and Yaohua Tang. 2024. TurboRAG: Acceler-
ating retrieval-augmented generation with pre-
computed kv caches for chunked text. arXiv
preprint arXiv:2410.07590.

11208

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=4hturzLcKX
https://openreview.net/forum?id=4hturzLcKX
https://openreview.net/forum?id=4hturzLcKX
https://openreview.net/forum?id=CybBmzWBX0
https://openreview.net/forum?id=CybBmzWBX0
https://doi.org/10.18653/v1/2023.acl-long.910
https://doi.org/10.18653/v1/2023.acl-long.910
https://doi.org/10.18653/v1/2023.acl-long.910
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0
https://doi.org/10.18653/v1/2023.emnlp-main.495
https://doi.org/10.18653/v1/2023.emnlp-main.495
https://proceedings.neurips.cc/paper_files/paper/2023/file/949f0f8f32267d297c2d4e3ee10a2e7e-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/949f0f8f32267d297c2d4e3ee10a2e7e-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/949f0f8f32267d297c2d4e3ee10a2e7e-Paper-Datasets_and_Benchmarks.pdf
https://arxiv.org/abs/2406.13121
https://arxiv.org/abs/2406.13121
https://arxiv.org/abs/2406.13121
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://arxiv.org/abs/2410.07590
https://arxiv.org/abs/2410.07590
https://arxiv.org/abs/2410.07590


Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike
Lewis, Wen-tau Yih, Pang Koh, Mohit Iyyer,
Luke Zettlemoyer, and Hannaneh Hajishirzi.
2023. FActScore: Fine-grained atomic evalua-
tion of factual precision in long form text gen-
eration. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 12076–12100, Singapore. Associ-
ation for Computational Linguistics.

Abhika Mishra, Akari Asai, Vidhisha Balachan-
dran, Yizhong Wang, Graham Neubig, Yulia
Tsvetkov, and Hannaneh Hajishirzi. 2024. Fine-
grained hallucination detection and editing for
language models. In First Conference on Lan-
guage Modeling.

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. 2020.
Exploring the limits of transfer learning with a
unified text-to-text transformer. Journal of Ma-
chine Learning Research, 21(140):1–67.

Nazneen Rajani, Lewis Tunstall, Edward Beech-
ing, Nathan Lambert, Alexander M. Rush, and
Thomas Wolf. 2023. No robots. Hugging Face
repository.

Rulin Shao, Jacqueline He, Akari Asai, Weijia Shi,
Tim Dettmers, Sewon Min, Luke Zettlemoyer,
and Pang Wei Koh. 2024. Scaling retrieval-
based language models with a trillion-token
datastore. arXiv preprint arXiv:2407.12854.

Zhihong Shao, Yeyun Gong, Yelong Shen, Min-
lie Huang, Nan Duan, and Weizhu Chen. 2023.
Enhancing retrieval-augmented large language
models with iterative retrieval-generation syn-
ergy. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, pages 9248–
9274, Singapore. Association for Computational
Linguistics.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Min-
joon Seo, Richard James, Mike Lewis, Luke
Zettlemoyer, andWen-tau Yih. 2024. REPLUG:
Retrieval-augmented black-box language mod-
els. In Proceedings of the 2024 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pages
8371–8384, Mexico City, Mexico. Association for
Computational Linguistics.

Yixiao Song, Yekyung Kim, and Mohit Iyyer. 2024.
VeriScore: Evaluating the factuality of verifiable
claims in long-form text generation. In Find-
ings of the Association for Computational Lin-
guistics: EMNLP 2024, pages 9447–9474, Mi-
ami, Florida, USA. Association for Computa-
tional Linguistics.

Weihang Su, Yichen Tang, Qingyao Ai, Zhijing
Wu, and Yiqun Liu. 2024. DRAGIN: Dynamic

retrieval augmented generation based on the
real-time information needs of large language
models. In Proceedings of the 62nd Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages
12991–13013, Bangkok, Thailand. Association
for Computational Linguistics.

Weizhi Wang, Li Dong, Hao Cheng, Xiaodong
Liu, Xifeng Yan, Jianfeng Gao, and Furu Wei.
2023. Augmenting language models with long-
term memory. In Advances in Neural Infor-
mation Processing Systems, volume 36, pages
74530–74543. Curran Associates, Inc.

Jerry Wei, Chengrun Yang, Xinying Song, Yifeng
Lu, Nathan Zixia Hu, Jie Huang, Dustin Tran,
Daiyi Peng, Ruibo Liu, Da Huang, Cosmo Du,
and Quoc V Le. 2024. Long-form factuality in
large language models. In The Thirty-eighth An-
nual Conference on Neural Information Process-
ing Systems.

Yuhuai Wu, Markus Norman Rabe, DeLesley
Hutchins, and Christian Szegedy. 2022. Memo-
rizing transformers. In International Conference
on Learning Representations.

Hongkang Yang, Zehao Lin, Wenjin Wang, Hao
Wu, Zhiyu Li, Bo Tang, Wenqiang Wei, Jinbo
Wang, Zeyun Tang, Shichao Song, and 1
others. 2024. Memory3: Language model-
ing with explicit memory. arXiv preprint
arXiv:2407.01178.

A Evaluation Datasets

LongFact Designed to probe the factuality
of a model of which response consists of at
least several paragraphs, LongFact was cre-
ated by prompting GPT-4 to generate ques-
tions regarding a specific concept or object
within a given topic. In our experiments,
we use the 250 prompts from the LongFact-
Objects dataset, selected by Wei et al. (2024).

Fava As a new fine-grained hallucina-
tion benchmark, Fava constructed 200
information-seeking queries that require fac-
tual knowledge to give accurate long-form an-
swers from multiple sources, including Open
Assistant (Köpf et al., 2023), No Robots (Ra-
jani et al., 2023), WebNLG (Gardent et al.,
2017) and instructions written by the au-
thors (Mishra et al., 2024). Following Lin et al.
(2024), we selected 141 prompts from this col-
lection for our experiments.

AlpacaFact Originally collected from real-
world interactions with various users, the 805

11209

https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://openreview.net/forum?id=dJMTn3QOWO
https://openreview.net/forum?id=dJMTn3QOWO
https://openreview.net/forum?id=dJMTn3QOWO
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2023.findings-emnlp.620
https://doi.org/10.18653/v1/2023.findings-emnlp.620
https://doi.org/10.18653/v1/2023.findings-emnlp.620
https://doi.org/10.18653/v1/2024.naacl-long.463
https://doi.org/10.18653/v1/2024.naacl-long.463
https://doi.org/10.18653/v1/2024.naacl-long.463
https://aclanthology.org/2024.findings-emnlp.552
https://aclanthology.org/2024.findings-emnlp.552
https://doi.org/10.18653/v1/2024.acl-long.702
https://doi.org/10.18653/v1/2024.acl-long.702
https://doi.org/10.18653/v1/2024.acl-long.702
https://doi.org/10.18653/v1/2024.acl-long.702
https://proceedings.neurips.cc/paper_files/paper/2023/file/ebd82705f44793b6f9ade5a669d0f0bf-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/ebd82705f44793b6f9ade5a669d0f0bf-Paper-Conference.pdf
https://openreview.net/forum?id=4M9f8VMt2C
https://openreview.net/forum?id=4M9f8VMt2C
https://openreview.net/forum?id=TrjbxzRcnf-
https://openreview.net/forum?id=TrjbxzRcnf-
https://arxiv.org/abs/2407.01178
https://arxiv.org/abs/2407.01178


instructions in AlpacaFarm (Dubois et al.,
2023) was used for evaluating the instruction-
following ability of different LLMs. To focus
our evaluation on factuality, we used a subset
of 241 fact-seeking instructions selected by Lin
et al. (2024) in this work.

Biography To demonstrate the effective-
ness of the factuality metric FActScore, Min
et al. (2023) selected 183 names of famous peo-
ple found in Wikipedia, and applied the “Tell
me a bio of [Person Name]” template to cre-
ate a collection of prompts called Biography.
As this set of prompts have been used exten-
sively in several recent papers, we include it in
our study as well.

When using these prompts, we appended
the instruction “Provide as many specific de-
tails and examples as possible (such as names
of people, numbers, events, locations, dates,
times, etc.)” to encourage models to gener-
ate more detailed responses that cover multi-
ple factoids, following Wei et al. (2024).

B Analysis on Model Confidence

One important question remains is when to
refresh the working memory. To study it, we
conducted a comparative analysis of different
criteria for refreshing working memory and re-
generation. Since the working memory con-
sists of the retrieval memory and fact-checking
memory, which can have interacting effects,
we first investigate when to trigger the re-
triever alone (without fact-checking memory)
and then investigate when to trigger the fact-
checker (when retrieval interval Tr is set to 1).

Fixed intervals for refreshing working
memory As shown in Figure 6, when using
a fixed retrieval interval, an smaller interval
seems to perform better in general with a few
spikes. This may be due to the fact that overly
frequent retrieval can add irrelevant and con-
flicting information to the memory. On the
other hand, when using a fixed verification in-
terval, shorter interval always leads to better
performance.

Model confidence for refreshing work-
ing memory In practice, fixed retrieval and
verification intervals may be unnecessary and
lead to sub-optimal performance. We explore

whether model-confidence can serve as a sig-
nal for refreshing working memory. Specif-
ically, we compare two different metrics for
model confidence: (1) Entropy: average en-
tropy of generated tokens in a sentence, and
(2) Min-prob: minimum probability of to-
kens in a sentence. A higher threshold for en-
tropy results in less frequent memory update,
and a higher threshold for min-prob results in
more frequent memory update. Since exter-
nal fact-checkers can be computationally ex-
pensive, we first examine if we can use model
confidence as a signal for retrieval and regener-
ation, without using an auxiliary fact-checking
model to provide feedback. As shown in Fig-
ure 7 and 8 (blue line), we observe empirically
intermediate thresholds for retrieval perform
well, leading to to better F1 when compared
to the settings in Figure 6, where we use dif-
ferent fixed intervals for retrieval. With exter-
nal fact-checkers, we investigate if we can use
model confidence as a signal to trigger verifi-
cation and regeneration to improve generation
efficiency. In Figure 7 and 8 (green line), when
chosen at an appropriate threshold, both en-
tropy and min-prob can outperform the base-
line (using fixed verification interval Tv = 8
with the same memory configuration) despite
with less frequent verification.

C Knowledge from Retrieval

We present the results of using differ-
ent retrieval corpora in Table 3, including
Wikipedia, C4, or both of them together.
Interestingly, different datasets exhibit dis-
tinct preferences. For LongFact and Fava,
C4 proves more effective than Wikipedia in
helping the model to generate more factual
responses. Conversely, Biography and Al-
pacaFact show a preference for Wikipedia.
Combining C4 with Wikipedia further im-
proves factual accuracy for LongFact and Bi-
ography, but the same trend is not observed
for AlpacaFact and Fava. This is likely be-
cause the first two datasets consist of domains
where C4 and Wikipedia provide complemen-
tary knowledge, whereas the latter two do not.

In Figure 10, we explore the impact of us-
ing different sizes of retrieval datastores. Both
LongFact and Biography exhibit similar pat-
terns, where increasing the datastore size gen-

11210



Datastore LongFact Biography AlpacaFact Fava

Wiki 67.9 46.1 55.5 52.5
C4 70.8 44.6 53.7 53.3
C4 + Wiki 74.8 48.4 53.3 52.3

Table 3: VeriScore F1 over 50 prompts from LongFact, AlpacaFact, Fava and Biography with different
retrieval datastores.

erally improves results. In contrast, Fava and
AlpacaFact differ, as Ewe tends to maintain
similar level of VeriScore F1 across various se-
tups. We hypothesize that real-time feedback
from fact verifiers helps offset the lack of infor-
mation from retrieval datastores in these two
datasets.

D Feedback Forms

In this analysis, we explore various feedback
formats utilized by fact-checkers. The mod-
els in VeriScore offers 2 types of informa-
tion: a list of both factual and nonfactual
claims, along with relevant passages that sup-
port these factual and nonfactual judgments.
To examine the impact of these feedback for-
mats, we conduct experiments using different
combinations of these information types in the
working memory. For the supporting passages,
we combine them using new line symbols. For
the list of claims, we apply an instruction tem-
plate as follows to encode nonfactual claims:

Please refrain from including the
following imprecise statements: (1)
nonfactual claim1 (2) nonfactual
claim2 ...

Our results are shown in Table 4. Over-
all, fact-checking feedback is beneficial com-
pared to the base model with and without re-
trieval augmentation. The specific types of
feedback also play a crucial role. Incorporat-
ing all feedback forms does not enhance model
performance, with supporting passages prov-
ing more effective than instructions. We no-
tice that instructing models not to generate
specific details often results in misunderstand-
ing. Models might rephrase the instruction,
include the nonfactual statement in their re-
sponse, and then add a clarification indicating
the previous statement is nonfactual, such as
“(Note: This is a nonfactual claim and may
not be accurate.)”. We leave a better design of

feedback forms to future work. Interestingly,
when we exclude all the textual feedback from
fact-checkers and only pause and regenerate
in the presence of nonfactual sentences, per-
formance still slightly improves.

E Instructions for Human
Annotators

Below is the instruction we provide to each
annotator.

You will be given a sentence ex-
tracted from a model response, along
with the full model response and the
original prompt. Your task is to as-
sess the factuality of the provided
sentence. You may use Google search
to help in your evaluation. A sen-
tence should be considered as fac-
tual only if you can locate sources
that corroborate all the claims made
within it. If the sentence contains no
claims, you may select ”unable to de-
cide.”

11211



Passages determining
a claim is incorrect

Passages determining
a claim is correct

Instructions
for nonfactual claims

Precision Recall F1

✓ ✓ ✓ 78.1 72.5 73.2
✓ 77.1 73.5 72.2

✓ 77.5 72.7 73.9
✓ 71.1 76.1 72.5

✓ ✓ 72.1 79.4 74.8
70.8 76.0 73.0

Llama-3.170B 65.8 67.1 65.5
Llama-3.170B + RA 70.7 75.6 72.5

Table 4: Comparing different feedback forms for fact-checkers. We report VeriScore over 50 prompts
from LongFact.

11212



8 16 32 64 128 256 512

Fixed Intervals

66

67

68

69

70

71

72

73

74

F
1 

S
co

re

Retrieval

Verification

Figure 6: VeriScore F1 when using fixed retrieval
and verification intervals.

0.4 0.5 0.6 0.7 0.8 0.9

Threshold For Entropy

66

67

68

69

70

71

72

73

74

F
1 

S
co

re

Retrieval

Verification

Baseline

Figure 7: F1 when using entropy thresholds for
triggering retrieval and verification.

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

Threshold For Min-prob

66

67

68

69

70

71

72

73

74

F
1 

S
co

re

Retrieval

Verification

Baseline

Figure 8: F1 when using min-prob thresholds for
triggering retrieval and verification.

Figure 9: Comparison of different criteria for re-
freshing working memory over 50 prompts from
LongFact. The baseline uses retrieval interval
Tr = 1 and verification interval Tv = 8.

Figure 10: VeriScore F1 when using varying frac-
tions of datastore (C4+wiki).

11213


