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Abstract
Multimodal reference resolution, including
phrase grounding, aims to understand the se-
mantic relations between mentions and real-
world objects. Phrase grounding between im-
ages and their captions is a well-established
task. In contrast, for real-world applications, it
is essential to integrate textual and multimodal
reference resolution to unravel the reference
relations within dialogue, especially in han-
dling ambiguities caused by pronouns and el-
lipses. This paper presents a framework that
unifies textual and multimodal reference resolu-
tion by mapping mention embeddings to object
embeddings and selecting mentions or objects
based on their similarity.1 Our experiments
show that learning textual reference resolution,
such as coreference resolution and predicate-
argument structure analysis, positively affects
performance in multimodal reference resolu-
tion. In particular, our model with coreference
resolution performs better in pronoun phrase
grounding than representative models for this
task, MDETR and GLIP. Our qualitative anal-
ysis demonstrates that incorporating textual
reference relations strengthens the confidence
scores between mentions, including pronouns
and predicates, and objects, which can reduce
the ambiguities that arise in visually grounded
dialogues.

1 Introduction

Understanding what mentions refer to objects in
visually grounded dialogues is key to realizing a
system that can collaborate with users in the real
world, including robots and embodied agents (Yu
et al., 2019; Kottur et al., 2021; Wu et al., 2023;
Ueda et al., 2024). Recent studies have focused on
identifying the objects referred to by mentions, as
exemplified by “the coffee cup” and “this cup” in
Figure 1, which are called direct references.

*Currently at NEC Corporation.
1The code is publicly available at https://github.com/

SInadumi/mmrr.
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Figure 1: Example of textual and multimodal reference
resolutions in the system analyzes a two-person dia-
logue, “Would you take me this cup? — Yes. the coffee
cup, right?,” from its first-person view. Japanese omits
the subject and object of the predicate “take.”

Among these studies, multimodal reference res-
olution is a task that identifies semantic struc-
tures (Fillmore, 1968; Clark, 1975), not only di-
rect references but also indirect references between
mentions and objects (Ueda et al., 2024). Fig-
ure 1 illustrates how the system understands the
objects referred to indirectly by “take.” In this ex-
ample, the system can identify the objects referred
to by “this cup” and “the coffee cup” through both
direct and indirect references, inferred from the
predicate-argument structures of “take.” This al-
lows the system to understand “who does what
to whom,” “when,” and “where” in a dialogue by
relating events to objects.

Pronouns and ellipses are typical instances of
direct and indirect reference. These are frequently
used in dialogue and pose challenges for multi-
modal reference resolution (Ueda et al., 2024).
Phrase grounding between images and their cap-
tions is a well-established task (Kazemzadeh et al.,
2014; Plummer et al., 2017); however, identify-
ing direct references is still insufficient in visually
grounded dialogues.2 Figure 1 illustrates an exam-

2Example of Table 3 shows the performance of GLIP (Li
et al., 2022) for phrase grounding in Japanese dialogue. The
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ple where pronouns and ellipses of topical terms,
such as subjects and objects, present difficulties for
such a framework.

To address these challenges, we aim to improve
the performance of multimodal reference resolu-
tion, thereby disambiguating references in visu-
ally grounded dialogues. Previous work on phrase
grounding in dialogues (Das et al., 2017) shows that
coreference resolution improves pronoun ground-
ing performance (Yu et al., 2022; Lu et al., 2022).
Furthermore, joint modeling of textual references3

can improve performance in textual reference reso-
lution tasks (Shibata and Kurohashi, 2018; Omori
and Komachi, 2019; Ueda et al., 2020). Inspired by
these works, we hypothesize that introducing lin-
guistic features of textual references can also ben-
efit multimodal reference resolution in dialogues.
As “this cup” and “the coffee cup” refer to the same
coffee cup, resolving the coreference between the
mentions may help determine the direct and indi-
rect reference.

In this study, we propose a framework for
the joint modeling of all references. Our frame-
work unifies textual reference resolution — includ-
ing coreference resolution and predicate-argument
structure analysis (Iida et al., 2007) — and mul-
timodal reference resolution, by following re-
cent advances in multimodal representation learn-
ing (Gupta et al., 2020; Radford et al., 2021; Li
et al., 2022). We map mention embeddings to ob-
ject embeddings and select mentions or objects
based on their similarity. Our multimodal refer-
ence resolution model explicitly addresses indirect
references and handles ellipses.

Quantitative results using our framework show
the effectiveness of training textual reference re-
lations in improving the performance in analyz-
ing direct (§ 4.2) and indirect (§ 4.3) references.
Our findings suggest that textual reference resolu-
tion positively contributes to multimodal reference
resolution. In particular, our model with corefer-
ence resolution performs better in pronoun phrase
grounding than representative models for this task,
MDETR (Kamath et al., 2021) and GLIP (Li et al.,
2022).

Our qualitative analysis shows that incorporat-
ing textual reference relations strengthens the con-

Recall@1 is 0.377, significantly worse than that for general
Japanese captions.

3It is a general term that encompasses coreference, case
relations (Fillmore, 1968) in predicate-argument structures,
and bridging anaphora (Clark, 1975).

Japanese case marker Case and anaphora relations
(Abbreviations)

“ga” (ガ) Nominative case (NOM)
“wo” (ヲ) Accusative case (ACC)
“ni” (ニ) Dative case (DAT)

“de” (デ)
Instrumental case (INS)

Locative case (LOC)
“no” (ノ) Bridging anaphora

Table 1: Types of indirect references: We show the
corresponding cases (Fillmore, 1968) and bridging
anaphora (Clark, 1975) based on Japanese case markers.

fidence scores between mentions, including pro-
nouns and predicates, and objects. These findings
are also consistent with our quantitative results. For
example, in Figure 1, we observe an increase in
the confidence scores for predicting the objects re-
ferred to by mentions such as “this cup” and “take.”
Thus, this study demonstrates that textual reference
resolution can reduce the ambiguities in visually
grounded dialogues, particularly those caused by
pronouns and ellipses.

2 Preliminaries

A dataset for multimodal reference resolution in
two-party dialogues, the J-CRe34 (Ueda et al.,
2024), which this study employs for experi-
ments. The following describes reference reso-
lution (§ 2.1.1), which consists of textual reference
resolution (TRR, § 2.1.2) and multimodal reference
resolution (MRR, § 2.1.3).

2.1 Task Settings

2.1.1 Reference Resolution
Given a text T and a sequence of images V =
{I1 · · · I · · · } corresponding to T, reference reso-
lution identifies the reference relations that exist
between mentions and objects or events they re-
fer to. This task consists of TRR, which analyzes
between mentions, and MRR, which analyzes be-
tween mentions and objects.

As shown in Figure 1, many instances of ref-
erence relations connected by direct reference are
clarified by the chain of cases between the predicate
and its arguments. In addition to direct references
(marked by “=”), we define five labels (i.e., case)
to represent the types of semantic connections in
indirect references (Table 1). Let L denote the set
of six types of all reference relations l.

4J-CRe3: Japanese Conversation Dataset for Real-world
Reference Resolution
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2.1.2 Textual Reference Resolution
Given a text T, TRR identifies phrases that have
a reference relation with another phrase. We re-
fer to such phrases as mentions. We use the term
TRR to refer collectively to coreference resolution,
predicate-argument structure (PAS) analysis (Iida
et al., 2007), and bridging anaphora (BA) resolu-
tion (Poesio and Vieira, 1998; Kobayashi and Ng,
2020; Yu and Poesio, 2020).

2.1.3 Multimodal Reference Resolution
Given a text T and an image I, MRR identifies
objects in I that have reference relations with men-
tions in T. Specifically, MRR involves an object
detection process that estimates up to q tuples of
bounding boxes O and object feature series X
for I, denoted as (O,X) = {(o1,x1) · · · (oq,xq)}.
Based on T and X, we identify elements in O that
have reference relations with a mention. Identify-
ing only direct references (“=”) to objects from a
mention is called phrase grounding (Kazemzadeh
et al., 2014; Plummer et al., 2017).

2.2 J-CRe3 Annotation

J-CRe3 (Ueda et al., 2024) is a dataset of real-world
interactions during collaborative work between a
master and an assistive robot, including first-person
video of the robot, third-person video, and au-
dio/transcription of their dialogue. We use first-
person videos, dialogue transcriptions, and annota-
tions for reference resolution, including textual ref-
erence relations, mention-to-object direct/indirect
reference relations, and bounding boxes.

Ambiguous expressions, including pronouns and
ellipses, frequently occur in spoken language (Pi-
antadosi et al., 2012), with ellipses occurring
especially in Japanese (Seki et al., 2002), Chi-
nese (Kong and Zhou, 2010), and Korean (Park
et al., 2015). In the ellipses, for example, indirect
references from predicates to objects can exist with-
out explicitly mentioning those objects. Following
the previous work (Ueda et al., 2024), we refer to
these instances as zero references, as in the case of
zero anaphora in text (Sasano et al., 2008). While
datasets addressing pronouns have existed in the
past (Das et al., 2017; Kottur et al., 2021; Wu et al.,
2023; Goel et al., 2023b), J-CRe3 differs in that it
also includes zero references.5

5Although the work of Oguz et al. (2023, 2024) addresses
noun phrase ellipsis, J-CRe3 is the only dataset that provides
annotations for the explicit estimation of zero references from
predicates to objects.

3 Methodology

3.1 Motivation
Visually grounded dialogue datasets, including J-
CRe3, have limited training data, especially in
Japanese and minor languages. For this reason,
state-of-the-art models such as MDETR (Kamath
et al., 2021) and GLIP (Li et al., 2022), which
require large image-text pairs for training, are diffi-
cult to train on Japanese datasets only.

The previous work proposed a method for han-
dling MRR that treats phrase grounding and TRR
independently before combining their results (Ueda
et al., 2024). However, this method is unable to
account for zero references.

To address these problems, we design an MRR
model inspired by weakly supervised phrase
grounding models (Gupta et al., 2020; Goel et al.,
2023a), which can be trained with limited data. Our
unified framework integrates learning and analy-
sis processes for TRR and MRR using mention
and object embeddings. In particular, our MRR
model explicitly considers indirect references be-
tween mentions and objects, with reference to the
existing Japanese text analyzer (Ueda et al., 2023).

The difficulty of MRR lies in the need for the sys-
tem to also recognize references for pronouns and
ellipses. In our integrated framework, we expect
TRR to enhance MRR by supplementing informa-
tion for ambiguous direct and indirect references,
such as from pronouns and ellipses.

3.2 Overview of Our Unified Framework
Figure 2 shows the overview of our unified frame-
work for reference resolution. Our MRR model
uses a frozen object detector (Zhou et al., 2022)
while fine-tuning a text encoder (Devlin et al.,
2019) and a fusion module (Liu et al., 2024) that in-
tegrates text T with an object feature series X. We
train two models separately: one for TRR (§ 3.2.1)
and the other for MRR (§ 3.2.2). They share the
text encoder weights.

3.2.1 Textual Reference Resolution Model
Our TRR model for analyzing all textual reference
relations in Figure 2 is based on the similarity of
embeddings between mentions.

Given a dialogue text T, the text encoder outputs
subword embeddings T′ ∈ Rp×dT of input length
p and dimension dT . The extended representation
T̂ for T′ is as follows:

T̂ = T′WT1 ∈ Rp×dT×|L|, (1)
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Figure 2: Overview of our framework for J-CRe3: The orange and green indicate the processing flows for TRR and
MRR, respectively.

where, WT1 ∈ RdT×dT×|L| is trainable parame-
ters. Our model calculates the dot product of each
T̂ per a relation l ∈ L and the similarity matrix Sl

as follows:

Sl = T̂lT̂
⊤
l ∈ Rp×p. (2)

We use Sl to select a mention that the other mention
refers to.

The embeddings T′ are at a subword level, but
a mention is at a basic phrase level.6 To link these
different units, we use the first subword of a men-
tion as its main representation during learning and
inference. This step is the same as for our MRR
model described below.

3.2.2 Multimodal Reference Resolution Model
Our MRR model for analyzing direct and indirect
reference relations in Figure 2 is based on the simi-
larity of mention and object embeddings.

Given a dialogue text T and an image I, which is
an element of frames V, a text encoder and an ob-
ject detector output T′ and (O,X), respectively.
Then, our model uses a single linear layer and
aligns the dimension dT of T′ and the dimension
dO of X to dS . The extended representation T̂ and
X̂ for T′ and X as follows:

T̂ = T′WT2 ∈ Rp×dS×|L|, (3)

X̂ = Dec(X,T′)WO ∈ Rq×dS×|L|, (4)

Dec(X,T′) ∈ Rq×dS ,

where (WT2,WO) ∈ RdS×dS×|L| are trainable
parameters and Dec(·) is two decoder blocks,
which uses cross-attention to condition X′ on
T′ (Liu et al., 2024). Our model calculates the

6This phrase consists of one content word and zero or more
function words.

dot product of each T̂ and X̂ per a relation l ∈ L
and the similarity matrix Ul as follows:

Ul = X̂lT̂
⊤
l ∈ Rp×q. (5)

We use the similarity matrix Ul to select elements
of O from a mention.

We consider frames V to be a sequence of one-
second intervals extracted from a video from the
start and end times of an utterance in a text T. Fol-
lowing previous work (Gupta et al., 2020; Goel
et al., 2023a), we use pooled features (Lin et al.,
2017; Anderson et al., 2018) from the region pro-
posal network (Ren et al., 2015) as object feature
series X.

3.2.3 Loss Functions
Using the softmax cross entropy used on phrase
grounding (Li et al., 2022) and Japanese text analy-
sis (Ueda et al., 2020), we define the loss functions
for as follows:

LS =
∑

l∈L
loss{Sl;S(l,ground)}, (6)

LU =
∑

l∈L
loss{Ul;U(l,ground)}, (7)

where LS corresponds to TRR model, and LU

corresponds to MRR model. Here, S(l,ground) ∈
{0, 1}p×p and U(l,ground) ∈ {0, 1}p×q represent
matrices of positive examples of Sl and Ul in a
reference relation l.

4 Experiments

4.1 Settings
Compared Models We assume the MRR-only
model is a baseline model (§ 3.2.2). In our ex-
periments, we first train a TRR model by only
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coreference resolution, predicate-argument struc-
ture (PAS) analysis and bridging anaphora (BA)
resolution, or TRR. Then, we leverage this text en-
coder to train the baseline model. This approach
allows us to investigate how TRR benefits phrase
grounding and MRR. As TRR models, we use our
TRR model (§ 3.2.1) and a Japanese text analyzer,
KWJA (Ueda et al., 2023). Both models can han-
dle TRR well, but this study focuses on results in
MRR.

For phrase grounding comparison with the MRR
models, we fine-tune MDETR (Kamath et al.,
2021) and GLIP (Li et al., 2022), representative
models for this task on Japanese datasets. For MRR
comparison, we consider a method that combines
phrase grounding outputs from GLIP with TRR
outputs from KWJA (Ueda et al., 2024), denoted as
GLIP + KWJA. Specifically, GLIP performs phrase
grounding on both text and image and outputs only
i) direct reference relations, while KWJA performs
TRR on text only and outputs ii) all textual refer-
ence relations. We derive indirect reference rela-
tions by aligning the i) and ii) relations.

Dataset We use J-CRe3 and Flickr30k-Ent-
JP (Nakayama et al., 2020) as Japanese datasets
to fine-tune our MRR model, MDETR, and GLIP.
J-CRe3 contains 93 dialogues and a total of 11,062
images, with each dialogue containing 10 to 16
utterances. Flickr30k-Ent-JP includes images and
corresponding Japanese captions with direct ref-
erences between mentions and objects, totaling
31,783 captions and 63,566 images.

We pre-train MDETR and GLIP using Visual
Genome (Krishna et al., 2017), GQA (Hudson and
Manning, 2019), and Flickr30k-Ent-JP, with these
weights serving as initial values for fine-tuning on
the Japanese datasets. In contrast, the MRR models
do not undergo pre-training and are instead fine-
tuned directly on these datasets.

To train TRR models, we use J-CRe3 as well as
a corpus of web documents (Hangyo et al., 2012),
Wikipedia, and blog posts annotated with textual
reference relations. These datasets contain 6,542
documents and dialogues for the training set.

Evaluation Metrics We use Recall@k (R@k;
k = {1, 5, 10}) to evaluate phrase grounding and
MRR. An MRR model, MDETR, and GLIP pre-
dict bounding boxes and their confidence scores
for each mention. Recall@k is the percentage of
times that ground truth boxes are among the top k
predicted boxes with the highest confidence scores.

Models Text Encoder Object Detector Others Total

Ours 339M — 27M 366M
GLIP 278M 31M 92M 401M
MDETR 278M 8M 20M 306M

Table 2: Number of trainable parameters in the models:
While the total number of parameters in our models
remains mostly unchanged between MRR and phrase
grounding, task-specific components such as WT2 and
WO differ depending on the task.

We consider predicted boxes to match ground truth
boxes if their Intersection-over-Union is 0.5 or
greater.

Implementation Details Our framework uses
Japanese DeBERTa-v2-large (He et al., 2021b) as
a text encoder, and Detic (Zhou et al., 2022) with
Swin-Transformer (Liu et al., 2021) as its back-
bone for an object detector. MDETR and GLIP
use mDeBERTa-v3-base (He et al., 2021a) as a text
encoder. Table 2 shows the number of trainable
parameters for the MRR models developed in our
framework, GLIP, and MDETR.

We set the maximum length of the subword em-
beddings T′ to p = 256 and the dimension to be
dT = dO = dS = 1, 024. The MRR models out-
put the maximum value of the predicted bounding
boxes O for the two datasets: q = 128 for the
J-CRe3 and q = 256 for the Flickr30k-Ent-JP.

For the TRR, each training instance consists of
three sentences, shifting by one sentence at a time.
For phrase grounding and MRR, the instance unit
definitions vary by dataset. In J-CRe3, each train-
ing instance comprises three utterances, shifting by
one utterance at a time, paired with an image; eval-
uation is performed on individual utterance–image
pairs.7 In Flickr30k-Ent-JP, each instance, used
for training and evaluation, consists of up to five
captions paired with an image.

We fine-tuned the TRR and MRR models us-
ing AdamW (Loshchilov and Hutter, 2019) with
a learning rate of 5e-5, weight decay of 0.01, and
1,000 warmup steps and trained for 16 epochs with
a batch size of 16 and 32. MDETR and GLIP are
also fine-tuned with the same settings, except for
2 epochs and a batch size of 4 and 16. We per-
formed the TRR and MRR models experiments
with 4×RTX 3090s in 6 hours and MDETR and
GLIP experiments with 2×RTX A6000s in 2 days.

7See Appendix C for ablation study results on the utterance
length of T during evaluation of phrase grounding and MRR.
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Models Overall (996) Nouns (671 / 996) Pronouns (120 / 996)
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Coreference Resolution (Coref.) ⇒ Phrase Grounding (PG)
Baseline † 0.342 0.567 0.649 0.344 0.574 0.664 0.277 0.527 0.641
w/ KWJA † 0.315 0.542 0.640 0.308 0.549 0.657 0.283 0.527 0.633
w/ Ours † 0.348 0.584 0.681 0.339 0.567 0.663 0.361 0.683 0.772

GLIP 0.445 0.745 0.808 0.454 0.752 0.816 0.241 0.650 0.733
MDETR 0.348 0.468 0.510 0.365 0.481 0.523 0.133 0.208 0.250

Models R@1 R@5 R@10

Coref. ⇒ PG
Baseline † 0.558 0.735 0.767
w/ KWJA † 0.559 0.733 0.767
w/ Ours † 0.560 0.733 0.767

GLIP 0.822 0.951 0.970
MDETR 0.769 0.896 0.924

Table 3: The results of phrase grounding: For models with †, we report the average of 3 randomly seeded training and
evaluation iterations of MRR. The highlighted items indicate where the MRR models with coreference resolution
show improvements or deteriorations compared to the baseline. Left: The results of J-CRe3: The numbers in
parentheses indicate positive instances. Right: The results of Flickr30k-Ent-JP.

これはまだ飲みますか ? 洗っちゃいますか ?
Would you still want to drink this [glass] or wash [this]?

あ、それはまだ飲むから置いておいて。
Oh, I'll drink that, so leave [it].

Wineglass
Chips Hot pot

これはもう空になったみたいだから、コーヒーを半分だけ入れてもらえる?
This [bottle] seems to be empty already, 

can you just put half a cup of coffee in [it]?
分かりました。

Of course.

Bottle

Cup

Laptop

Baseline

Baseline w/Ours

お湯が沸いたら、ここに入れてくれる?
Can you put [the water] in here 

since it comes up?

Instant 
noodles 

Plate
here: 0.66

here: 1.00

Figure 3: Examples of phrase grounding: The green mentions and objects are targets for grounding, and the
mentions in square brackets are omitted in Japanese. Left: We show the Recall@1 errors of models in orange
(GLIP), blue dashed (Baseline), and red (Baseline w/ Ours), while only incorrectly predicted bounding boxes are
shown, as correct predictions are omitted. Right: We also show confidence scores.

4.2 Experiments on Phrase Grounding

Main Results Table 3 shows the results of phrase
grounding. In the overall evaluation of J-CRe3,
including noun phrases and pronouns, our MRR
model with coreference resolution using our TRR
model (Baseline w/ Ours) outperforms the baseline
and MDETR in terms of Recall@5 and 10. While
our MRR model performs slightly worse than the
baseline for nouns, it considerably outperforms all
other models, including GLIP, for pronouns.

Based on J-CRe3 results, we compare the base-
line, Baseline w/ Ours, and an MRR model us-
ing KWJA as a TRR model (Baseline w/ KWJA).
When our TRR model is used for phrase ground-
ing, it improves performance for pronouns while
minimizing performance degradation for nouns
compared to KWJA. Our unified framework high-
lights the effectiveness of coreference resolution in
phrase grounding for visually grounded dialogues.

Performance on Flickr30k-Ent-JP In the eval-
uation on Flickr30k-Ent-JP, GLIP shows the high-
est performance, and no change in Recall@k due
to coreference resolution was observed for either
Baseline w/ Ours or Baseline w/ KWJA. Unlike
MDETR and GLIP, the MRR models use a frozen
object detector, including Baseline w/ Ours. Thus,
the upper bound of Recall@k for object detection
depends on the detector. The actual upper bound is
0.799, which is the limiting value of Recall@k for
MRR models.

Qualitative Analysis Figure 3 shows the exam-
ples of phrase grounding results in Table 3. As
shown on the left side in Figure 3, our MRR model
has fewer Recall@1 errors for pronouns such as
“this” (“これ”) and “it” (“それ”) compared to the
baseline and GLIP. Since all models, including our
MRR model, rely on inference from a single image,
they exhibited inconsistencies in predictions. For
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Models NOM (2,053) ACC (915) DAT (1,074) INS–LOC (139) Bridging (163)
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Textual Reference Resolution (TRR) ⇒ Multimodal Reference Resolution (MRR)
Baseline † 0.568 0.735 0.763 0.229 0.505 0.606 0.559 0.726 0.749 0.124 0.350 0.465 0.378 0.564 0.662
w/ KWJA † 0.574 0.756 0.785 0.240 0.506 0.601 0.582 0.748 0.779 0.199 0.431 0.561 0.411 0.613 0.680
w/ Ours † 0.585 0.745 0.773 0.230 0.520 0.607 0.576 0.735 0.772 0.172 0.424 0.532 0.386 0.588 0.662

GLIP + KWJA 0.060 0.111 0.118 0.190 0.386 0.420 0.065 0.079 0.081 0.273 0.510 0.539 0.226 0.288 0.294

Table 4: The results of indirect references in MRR on the J-CRe3: The highlighted items indicate where the MRR
models with TRR show improvements or deteriorations compared to the baseline. See the caption of Figure 3 for
† and parentheses.

Average of Recall@k (k = 1, 5, 10)

Overall

Noun

Pronoun

0.0 0.2 0.4 0.6

Baseline w/Ours (Coref.) w/Ours (PAS / BA) w/Ours (TRR)

Figure 4: Ablation study results of Baseline w/ Ours
in phrase grounding: We compare the improvements
achieved by coreference resolution (Coref.), predicate-
argument structure analysis and bridging anaphora res-
olution (PAS / BA), and textual reference resolution
(TRR). See Table 5 for detailed results.

example, some errors involved estimating an object
like “plate” for a mention of “this.”

The right side of Figure 3 shows the examples
of the baseline and our MRR model. Both models
accurately predict the pronoun “here” (“ここ”),
but their confidence scores for the object “instant
noodle” differ: the baseline assigned a score of
0.66, whereas our model assigned a score of 1.00.
Thus, our qualitative analysis demonstrates that
incorporating coreference relations strengthens the
confidence of pronoun-to-object predictions.

Comparison of Textual Reference Relations
We discuss the benefits of incorporating textual
reference relations into phrase grounding using the
baseline and our MRR model. Figure 4 shows the
ablation results for MRR models with coreference
resolution, PAS analysis and BA resolution or TRR,
in phrase grounding.

Incorporating textual reference relations im-
proves pronoun performance compared to the base-
line, regardless of the relation type, with corefer-
ence relations being the most effective. Further-
more, incorporating all textual reference relations
yields the best performance for nouns. These re-
sults demonstrate the benefits of jointly modeling

direct references, coreference, and case and bridg-
ing anaphora references, in phrase grounding for
visually grounded dialogues.

4.3 Experiments on Multimodal Reference
Resolution

Main Results Table 4 shows the results of in-
direct references in MRR. Our MRR model with
TRR (Baseline w/ Ours) consistently outperforms
the baseline and GLIP + KWJA in terms of Re-
call@10, regardless of the TRR models. However,
GLIP + KWJA achieves the highest Recall@1 and
5 for instrumental and locative cases (INS-LOC).
Since GLIP + KWJA cannot handle zero references,
the performance of INS-LOC in J-CRe3 probably
depends on phrase grounding performance.

Qualitative Analysis Figure 5 shows the exam-
ples of indirect reference results in MRR of Table 4.
Here, we focus on the Baseline w/ KWJA, which
performs well in Table 4.

The left side of Figure 5 shows an example of
zero references with two objects, “the apple” and
“the banana,” which are targets of accusative case
relations (ACC), referred to by the mentions “peel”
(“むいちゃおう”) and “cut” (“カットしよう”).
Compared to the baseline, the Baseline w/ KWJA
correctly analyzes these objects.

The right side of Figure 5 shows an ACC and
a bridging anaphora as examples of indirect ref-
erence results. Both models correctly analyzed
the referenced object (“onion”) from mentions, but
the confidence scores were higher for Baseline w/
KWJA. Our qualitative analysis suggests that tex-
tual reference relations strengthen the prediction of
objects for predicates and anaphoric mentions in
learning MRR.

Comparison of Textual Reference Relations
We discuss the benefits of incorporating textual
reference relations into MRR using the baseline
and our MRR model. Figure 6 shows the ablation
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Baseline

皮がむけたから少し大きめのみじん切りにしてくれる?
Can you chop [the onion] into small pieces since 

the skin is peeled?

Baseline

Baseline w/KWJA 

両方むいちゃおうか。で、3人分にカットしよう。
Shall we peel both [the apple and the banana]? Then, 

let’s cut [them] into portions for three people.

Baseline w/KWJA 

peel: 0.46
cut : 0.46

peel: 0.28
cut: 0.28

peel: 1.00
cut : 1.00

peel: 0.99
cut : 0.99

chop: 0.44
the skin : 0.44

chop: 0.97
the skin : 0.97

Fried egg

Apple

Banana

Onion

Figure 5: Examples of indirect references in MRR: The orange and blue mentions are targets for the accusative
case and bridging anaphora, respectively. The green mentions correspond to referring objects. See the caption of
Figure 3 for square brackets and green and blue dashed boxes.

Average of Recall@k (k = 1, 5, 10)

Direct (=)

NOM

ACC

DAT

INS-LOC

Bridging

0.0 0.2 0.4 0.6

Baseline w/Ours (Coref.) w/Ours (PAS / BA) w/Ours (TRR)

Figure 6: Ablation study results of Baseline w/ Ours in
MRR: See the caption of Figure 4 for a detailed com-
parison setting and Tables 6 and 7 for detailed results.

results for MRR models with coreference resolu-
tion, PAS analysis and BA resolution or TRR in
MRR.

The results for direct references in MRR show
that our model did not outperform the baseline, re-
gardless of whether coreference resolution, PAS
analysis and BA resolution, or TRR were included.
We speculate that this is because the expressive
power of our model was primarily allocated to ana-
lyzing indirect references in MRR.

Our model, with PAS analysis and BA resolu-
tion, achieved the best performance on the results
for indirect references in MRR, although corefer-
ences sometimes hindered its performance. Thus,
incorporating such textual reference relations is
beneficial for analyzing indirect references in the
MRR of dialogues.

5 Related Work and Discussion

Existing phrase grounding models can be broadly
divided into two architectures:

i) Freeze the weights of the object detector and
use the bounding boxes of the detection re-
sults as pseudo-labels, often called weakly
supervised phrase grounding (Rohrbach et al.,
2016; Datta et al., 2019; Wang et al., 2020;
Gupta et al., 2020; Goel et al., 2023a).

ii) Incorporate object detection into the training
model and dynamically detect boxes accord-
ing to input text (Kamath et al., 2021; Li et al.,
2022; Liu et al., 2024).

Our MRR model follows the approach i) to reduce
the learning costs, while we chose the approach ii)
as the comparison model for their higher phrase
grounding performance.

Previous studies have explored the benefits of
coreference and anaphora resolution for pronoun
phrase grounding in English (Yu et al., 2022; Lu
et al., 2022; Oguz et al., 2023) and multilingual
settings (Oguz et al., 2024), focusing on dialogue
and procedural texts. These findings are partially
consistent with our results on phrase grounding
(§ 4.2). However, our study goes further by com-
prehensively investigating indirect references be-
tween mentions and objects (§ 4.3) to apply these
findings to real-world systems, such as assistive
robots. The ability to identify the object referred
to by a predicate is crucial for task planning in col-
laborative robots, as it directly contributes to their
success rate (Migimatsu and Bohg, 2022; Shirai
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et al., 2024; Han et al., 2024). Our findings are,
therefore, naturally related to this field.

Our proposed framework provides an approach
to MRR by explicitly handling zero references, a
capability lacking in methods that combine sep-
arate phrase grounding and TRR models (Ueda
et al., 2024), such as GLIP + KWJA used in our
experiment. While recent vision-and-language
models based on large language models (OpenAI,
2024) can potentially achieve comparable analysis
through prompting techniques (Yang et al., 2023),
their application to videos such as J-CRe3 remains
challenging due to the time-consuming and high
computational costs.

6 Conclusion

This paper has presented a unified framework for
textual and multimodal reference resolution to dis-
ambiguate references in visually grounded dia-
logues. Our results showed that incorporating tex-
tual reference relations improved performance in
multimodal reference resolution, including phrase
grounding. In particular, our model with corefer-
ence resolution outperformed representative mod-
els on phrase grounding for pronouns. Further anal-
ysis demonstrated that incorporating textual refer-
ence relations strengthens the confidence scores
for pronouns, predicates, and anaphoric mentions
of objects. In future research, we plan to explore
the cross-lingual applicability of our framework to
languages other than Japanese. Furthermore, we
will improve the multimodal reference resolution
model by augmenting the multimodal references
and applying this to assistive robots.
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Limitations

Data We acknowledge that our experimental re-
sults are limited to two-party Japanese dialogues.
Specifically, for indirect references, the nominative
and dative case objects referred to by anaphoric
mentions are usually either the master or the robot
(See § 2.2). Future research should explore other
languages and multi-party dialogue settings to in-
vestigate the applicability of our framework beyond
these constraints.

Models Our MRR model is constrained by the
frozen object detector, which results in lower Re-
call@k scores for noun phrase grounding compared
to GLIP. Additionally, all models rely on inference
from a single image, which makes it challenging
to maintain prediction consistency across different
visual contexts.

To address these issues, future research will first
focus on integrating the object detection process to
enhance the MRR model performance further. This
improvement will involve data augmentation tech-
niques, such as leveraging large language models to
generate visually grounded dialogues and reference
relations by combining existing images or videos.
Moreover, exploring video-based architectures and
incorporating a first-person view of the system are
expected to improve prediction consistency and re-
solve ambiguities in visually grounded dialogues
by leveraging user movements across sequential
frames.

Experiments Further analysis — including a de-
tailed analysis of textual indirect references — is
needed to fully understand the effect of TRR on
MRR. Moreover, investigating the correlation be-
tween TRR and MRR performance could provide
valuable insights, though this would require multi-
ple training and evaluation iterations of TRR and
MRR models.

Ethical Consideration

This study primarily utilized publicly available
datasets, such as Flickr30k-Ent-JP and J-CRe3, to
prevent ethical concerns. However, J-CRe3 con-
tains videos of identifiable individuals who partici-
pated in the data collection process. Therefore, to
safeguard their privacy, any use of models trained
on J-CRe3 should be used with caution, particularly
when intended for commercial use.
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A Resources

A.1 Data
• Flickr30kEnt-JP (Nakayama et al., 2020):
https://github.com/nlab-mpg/
Flickr30kEnt-JP.

• J-CRe3 (Ueda et al., 2024):
https://github.com/riken-grp/J-CRe3.

• Visual Genome (Krishna et al., 2017):
https://homes.cs.washington.edu/
~ranjay/visualgenome.

• GQA (Hudson and Manning, 2019):
https://cs.stanford.edu/people/
dorarad/gqa.

• Kyoto University Web Document Leads
Corpus (Hangyo et al., 2012):
https://github.com/ku-nlp/KWDLC.

• Wikipedia Annotated Corpus:
https://github.com/ku-nlp/
WikipediaAnnotatedCorpus.

• Annotated FKC Corpus: https://github.
com/ku-nlp/AnnotatedFKCCorpus.

A.2 Model
• Japanese DeBERTa-v2-large (He et al.,

2021b): https://huggingface.co/
ku-nlp/deberta-v2-large-japanese.

• mDeBERTa-v3-base (He et al., 2021a):
https://huggingface.co/microsoft/
mdeberta-v3-base.

• Detic (Zhou et al., 2022): https:
//github.com/facebookresearch/Detic;
we used Detic_LCOCOI21k_CLIP_SwinB_
896b32_4x_ft4x_max-size as a frozen
object detector.

11194

https://openaccess.thecvf.com/content_cvpr_2016/html/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.html
https://aclanthology.org/2024.lrec-main.829
https://aclanthology.org/2024.lrec-main.829
https://aclanthology.org/2024.lrec-main.829
https://doi.org/10.18653/v1/2020.coling-main.114
https://doi.org/10.18653/v1/2020.coling-main.114
https://doi.org/10.18653/v1/2023.acl-demo.52
https://doi.org/10.18653/v1/2023.acl-demo.52
https://doi.org/10.18653/v1/2020.emnlp-main.159
https://doi.org/10.18653/v1/2020.emnlp-main.159
https://doi.org/10.18653/v1/2023.acl-long.345
https://doi.org/10.18653/v1/2023.acl-long.345
https://doi.org/10.18653/v1/2023.acl-long.345
https://arxiv.org/abs/2310.11441
https://arxiv.org/abs/2310.11441
https://arxiv.org/abs/2310.11441
https://doi.org/10.18653/v1/2020.coling-main.315
https://doi.org/10.18653/v1/2020.coling-main.315
https://doi.org/10.1016/j.patcog.2022.108540
https://doi.org/10.1016/j.patcog.2022.108540
https://doi.org/10.1016/j.patcog.2022.108540
https://doi.org/10.18653/v1/D19-1516
https://doi.org/10.18653/v1/D19-1516
https://doi.org/10.18653/v1/D19-1516
https://doi.org/10.1007/978-3-031-20077-9_21
https://doi.org/10.1007/978-3-031-20077-9_21
https://doi.org/10.1007/978-3-031-20077-9_21
https://github.com/nlab-mpg/Flickr30kEnt-JP
https://github.com/nlab-mpg/Flickr30kEnt-JP
https://github.com/riken-grp/J-CRe3
https://homes.cs.washington.edu/~ranjay/visualgenome
https://homes.cs.washington.edu/~ranjay/visualgenome
https://cs.stanford.edu/people/dorarad/gqa
https://cs.stanford.edu/people/dorarad/gqa
https://github.com/ku-nlp/KWDLC
https://github.com/ku-nlp/WikipediaAnnotatedCorpus
https://github.com/ku-nlp/WikipediaAnnotatedCorpus
https://github.com/ku-nlp/AnnotatedFKCCorpus
https://github.com/ku-nlp/AnnotatedFKCCorpus
https://huggingface.co/ku-nlp/deberta-v2-large-japanese
https://huggingface.co/ku-nlp/deberta-v2-large-japanese
https://huggingface.co/microsoft/mdeberta-v3-base
https://huggingface.co/microsoft/mdeberta-v3-base
https://github.com/facebookresearch/Detic
https://github.com/facebookresearch/Detic
Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size
Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size


• MDETR (Kamath et al., 2021):
https://github.com/ashkamath/mdetr.

• GLIP (Li et al., 2022):
https://github.com/microsoft/GLIP.

A.3 Software

• KWJA (Ueda et al., 2023):
https://github.com/ku-nlp/kwja.

• Multi-modal Reference Resolution (Ueda
et al., 2024): https://github.com/
riken-grp/multimodal-reference.

B Detailed Results in Multimodal
Reference Resolution

We present detailed quantitative evaluation results
for phrase grounding and MRR using the MRR
models in Tables 5, 6, and 7.

C Ablation Study on Utterance Length

Since the evaluation of the models in Tables 3, 4, 5,
6 and 7 is based on single utterances (T), we fur-
ther conduct an ablation study on utterance length
to investigate its effect on model performance. Us-
ing longer utterances as input is expected to provide
richer textual reference cues — such as corefer-
ences and predicate-argument structures — than a
single utterance, potentially leading to improved
model performance.

C.1 Results in Phrase Grounding

Figure 7c shows that increasing the input utterance
length T, which also increases the number of coref-
erence relations contained in T, consistently im-
proves pronoun performance across all models. We
observe that GLIP suffers a decrease in noun perfor-
mance as the utterance length increases (Figure 7b),
resulting in an overall performance decrease (Fig-
ure 7a). In contrast, the MRR models based on our
proposed framework (the baseline and Baseline w/
Ours) maintain stable noun performance regardless
of utterance length (Figure 7b).

C.2 Results in Multimodal Reference
Resolution

Figure 8 shows that increasing the input utterance
length T improves performance in all models for
direct references, as well as for several types of in-
direct references, including nominal cases (NOM),
accusative cases (ACC), and bridging anaphora. In

contrast, longer utterances did not improve perfor-
mance on dative cases (DAT) and instrumental and
locative cases (INS-LOC).

While Figure 8a shows that longer utterances
lead to improved performance on direct references
in MRR, Figure 7a shows that no such improve-
ment is observed in phrase grounding. A fac-
tor contributing to the improvement observed in
MRR is the increase in case relations and bridging
anaphora, which are considered during evaluation.
This suggests that these types of textual reference
cues can support the resolution of direct references,
especially in longer utterances. These findings are
consistent with the trends observed in Figure 6 and
Table 5.

D Analysis of Confidence Score Averages

We analyze confidence score averages to compare
the baseline model with two MRR models — one
using KWJA (Ueda et al., 2023) and the other using
our TRR model (§ 3.2.1) — to assess how the
presence and type of TRR models affect model
confidence.

Table 9 shows that the average confidence scores,
computed over Top-k and all predictions, exhibit a
consistent rightward shift in distribution across the
models — Baseline w/ Ours, Baseline w/ KWJA,
and Baseline, in that order. This trend holds for
both phrase grounding and MRR. This quantita-
tive result aligns with the trends observed in our
qualitative analysis (Figures 3 and 5) and suggests
that incorporating textual reference, particularly
in Baseline w/ Ours, which incorporates our TRR
model, tends to produce higher confidence scores
in predictions.

However, higher confidence scores do not al-
ways translate into better performance. For exam-
ple, as shown in Table 3, Baseline w/ Ours im-
proves phrase grounding accuracy over the base-
line, whereas Baseline w/ KWJA performs worse.
Table 4 shows that Baseline w/ Ours and Baseline
w/ KWJA provide little improvement for indirect
references of accusative cases (ACC) in MRR. Col-
lectively, these observations imply that the MRR
models with TRR may suffer from overconfidence.
To address this issue, regularization strategies such
as label smoothing (Szegedy et al., 2016) may help
calibrate confidence scores.
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Models Overall (996) Nouns (671 / 996) Pronouns (120 / 996)
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Baseline
µ 0.342 0.567 0.649 0.344 0.574 0.664 0.277 0.527 0.641
±σ 0.008 0.011 0.023 0.006 0.014 0.005 0.020 0.091 0.118

Baseline Coreference Resolution ⇒ Phrase Grounding

w/ KWJA
µ 0.315 0.542 0.640 0.308 0.549 0.657 0.283 0.527 0.633
±σ 0.024 0.008 0.031 0.029 0.009 0.011 0.036 0.054 0.094

w/ Ours
µ 0.348 0.584 0.681 0.339 0.567 0.663 0.361 0.683 0.772
±σ 0.020 0.028 0.016 0.029 0.023 0.010 0.070 0.071 0.050

Baseline PAS Analysis and BA Resolution ⇒ Phrase Grounding

w/ KWJA
µ 0.258 0.476 0.566 0.265 0.485 0.575 0.230 0.491 0.594
±σ 0.115 0.141 0.122 0.135 0.158 0.151 0.070 0.136 0.067

w/ Ours
µ 0.338 0.580 0.672 0.329 0.571 0.667 0.311 0.613 0.738
±σ 0.014 0.014 0.020 0.016 0.024 0.014 0.026 0.048 0.048

Baseline Textual Reference Resolution ⇒ Phrase Grounding

w/ KWJA
µ 0.325 0.549 0.627 0.340 0.570 0.656 0.302 0.550 0.597
±σ 0.026 0.026 0.036 0.009 0.005 0.004 0.047 0.038 0.050

w/ Ours
µ 0.347 0.600 0.689 0.345 0.597 0.690 0.258 0.597 0.694
±σ 0.016 0.016 0.013 0.021 0.038 0.020 0.036 0.037 0.066

Table 5: Detail results of phrase grounding on the J-CRe3: We report the average (µ) and standard deviation (±σ)
of 3 randomly seeded training and evaluation iterations.

Models NOM (2,053) ACC (915) DAT (1,074) INS–LOC (139) Bridging (163)
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Baseline µ 0.568 0.735 0.763 0.229 0.505 0.606 0.559 0.726 0.749 0.124 0.350 0.465 0.378 0.564 0.662
±σ 0.014 0.030 0.034 0.007 0.027 0.017 0.008 0.031 0.037 0.039 0.047 0.004 0.028 0.053 0.061

Baseline Coreference Resolution ⇒ Multimodal Reference Resolution

w/ KWJA
µ 0.542 0.697 0.726 0.261 0.492 0.583 0.576 0.725 0.753 0.177 0.414 0.537 0.390 0.578 0.650
±σ 0.052 0.124 0.144 0.010 0.052 0.096 0.054 0.101 0.121 0.018 0.008 0.020 0.039 0.044 0.090

w/ Ours
µ 0.572 0.772 0.812 0.267 0.527 0.618 0.585 0.779 0.818 0.146 0.400 0.520 0.372 0.564 0.689
±σ 0.011 0.002 0.010 0.017 0.013 0.012 0.014 0.001 0.007 0.014 0.010 0.018 0.019 0.021 0.030

Baseline PAS Analysis and BA Resolution ⇒ Multimodal Reference Resolution

w/ KWJA
µ 0.549 0.732 0.761 0.236 0.497 0.587 0.574 0.727 0.752 0.203 0.376 0.477 0.370 0.560 0.644
±σ 0.009 0.027 0.039 0.010 0.008 0.029 0.009 0.028 0.034 0.046 0.043 0.023 0.009 0.014 0.040

w/ Ours
µ 0.575 0.776 0.822 0.253 0.519 0.620 0.585 0.784 0.829 0.194 0.410 0.508 0.370 0.595 0.697
±σ 0.013 0.003 0.007 0.026 0.021 0.010 0.009 0.009 0.003 0.031 0.007 0.004 0.033 0.037 0.030

Baseline Textual Reference Resolution ⇒ Multimodal Reference Resolution

w/ KWJA
µ 0.574 0.756 0.785 0.240 0.506 0.601 0.582 0.748 0.779 0.199 0.431 0.561 0.411 0.613 0.680
±σ 0.005 0.006 0.006 0.014 0.008 0.018 0.027 0.012 0.015 0.025 0.044 0.073 0.022 0.016 0.018

w/ Ours
µ 0.585 0.745 0.773 0.230 0.520 0.607 0.576 0.735 0.772 0.172 0.424 0.532 0.386 0.588 0.662
±σ 0.006 0.017 0.023 0.013 0.032 0.034 0.009 0.024 0.028 0.004 0.025 0.007 0.023 0.049 0.026

Table 6: Detail results of indirect references in MRR on the J-CRe3: See the caption of Table 5 for µ and ±σ.

Models Overall (996) Nouns (671 / 996) Pronouns (120 / 996)
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Baseline
µ 0.313 0.564 0.658 0.304 0.552 0.643 0.252 0.566 0.697
±σ 0.013 0.026 0.011 0.016 0.036 0.022 0.012 0.014 0.026

Baseline Coreference Resolution ⇒ Multimodal Reference Resolution

w/ KWJA
µ 0.325 0.556 0.642 0.335 0.569 0.653 0.316 0.583 0.691
±σ 0.018 0.034 0.072 0.046 0.007 0.031 0.072 0.068 0.101

w/ Ours
µ 0.319 0.549 0.650 0.334 0.550 0.636 0.244 0.558 0.708
±σ 0.017 0.014 0.006 0.011 0.005 0.009 0.020 0.008 0.014

Baseline PAS Analysis and BA Resolution ⇒ Multimodal Reference Resolution

w/ KWJA
µ 0.295 0.534 0.624 0.304 0.545 0.634 0.280 0.513 0.636
±σ 0.016 0.028 0.046 0.014 0.010 0.025 0.025 0.026 0.029

w/ Ours
µ 0.331 0.563 0.667 0.315 0.542 0.646 0.277 0.558 0.694
±σ 0.014 0.009 0.005 0.017 0.012 0.009 0.004 0.050 0.025

Baseline Textual Reference Resolution ⇒ Multimodal Reference Resolution

w/ KWJA
µ 0.319 0.563 0.650 0.328 0.570 0.656 0.280 0.563 0.672
±σ 0.027 0.027 0.022 0.034 0.028 0.027 0.009 0.055 0.058

w/ Ours
µ 0.325 0.557 0.644 0.304 0.543 0.631 0.305 0.577 0.683
±σ 0.014 0.032 0.026 0.016 0.033 0.032 0.025 0.069 0.058

Table 7: Detail results of direct references in MRR on the J-CRe3: See the caption of Table 5 for µ and ±σ.
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Figure 7: Ablation study results on utterance length in phrase grounding: We compare GLIP, Baseline, and Baseline
w/ Ours by varying the input utterance length. Changes in the average of Recall@k (k = {1, 5, 10}) are shown in a
range of 0.2.
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Figure 8: Ablation study results on utterance length in MRR: We compare Baseline and Baseline w/ Ours by varying
the input utterance length. Changes in the average of Recall@k (k = {1, 5, 10}) are shown in a range of 0.1.
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(a) Confidence score distribution in phrase grounding
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(b) Confidence score distribution in MRR (Direct references)
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(c) Confidence score distribution in MRR (NOM)
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(d) Confidence score distribution in MRR (ACC)
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(e) Confidence score distribution in MRR (DAT)
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(f) Confidence score distribution in MRR (INS-LOC)
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(g) Confidence score distribution in MRR (Bridging)

Figure 9: Violin plots of average confidence scores across the MRR models in phrase grounding and MRR: Each
distribution summarizes the scores computed over Top-k, Bottom-k (k = {1, 5, 10}), and all predictions, based on
model predictions from three random seeds.
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