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Abstract

While great success has been achieved in build-
ing vision models with Contrastive Language-
Image Pre-training (CLIP) over internet-scale
image-text pairs, building transferable Graph
Neural Networks (GNNs) with CLIP pipeline
is challenging because of the scarcity of la-
beled data and text supervision, different lev-
els of downstream tasks, and the conceptual
gaps between domains. In this work, to ad-
dress these issues, we propose a multi-modal
prompt learning paradigm to effectively adapt
pre-trained GNN to downstream tasks and
data, given only a few semantically labeled
samples, each with extremely weak text su-
pervision. Our new paradigm embeds the
graphs directly in the same space as the Large
Language Models (LLMs) by learning both
graph prompts and text prompts simultane-
ously. We demonstrate the superior perfor-
mance of our paradigm in few-shot, multi-task-
level, and cross-domain settings. Moreover,
we build the first CLIP-style zero-shot classi-
fication prototype that can generalize GNNs
to unseen classes with extremely weak text
supervision. The code is available at https:
//github.com/Violet24K/Morpher.

1 Introduction

Graphs are constructed from real scenarios, but
GNNs, optimized according to numerical labels,
still do not understand what a label represents in
the real world. To solve the issue of predetermined
numerical categories, CLIP (Radford et al., 2021)
leverages natural language supervision by jointly
training an image encoder and a text encoder in the
same embedding space at scale. CLIP has demon-
strated the ability to train high-quality, generaliz-
able vision models (Radford et al., 2021; Jia et al.,
2021; Li et al., 2022), which can adapt to diverse
downstream tasks. Similar frameworks have been
successfully extended to video (Xu et al., 2021),
3D images (Hess et al., 2024), speech (Shih et al.,

2022) and audio (Guzhov et al., 2022), consistently
demonstrating that alignment with text enhances
the transferability of encoders. As for graphs, so far,
such graph-text alignment has only been explored
in the molecular domain (Luo et al., 2023; Liu
et al., 2023e) and on text-attributed graphs (Wen
and Fang, 2023; Li et al., 2023a; Jin et al., 2023b;
Yan et al., 2023), where the paired graph-text data
is relatively sufficient for joint pre-training.

However, extending this paradigm to more gen-
eral graph data poses significant challenges due
to three facts. First, compared with language or
vision data, graph data is very scarce and the text
supervision is extremely weak (Liu et al., 2023a;
Chen et al., 2023b; Manchanda et al., 2023). Be-
sides the number of samples being much smaller
than images, many graph datasets are used for clas-
sification, where the label names consist of only a
few tokens. Second, the task space of graph data
could be on node-level, edge-level, and graph-level.
Third, in general, language tokens and visual ob-
jects retain the same conceptual meaning across
different distributions, but the same graph struc-
ture may have distinct interpretations in different
domains.

Jointly pre-training graph and text encoders is
impractical for graph data with extremely weak
text supervision. Fortunately, we can deal with the
two modalities separately for pre-training: large
language models have already been extensively
pre-trained, and tremendous efforts have been de-
voted to pre-train GNNs through self-supervision
(Hu et al., 2020a; Liu et al., 2023c; Zheng et al.,
2024c,d). However, even with a pre-trained graph
model, effectively adapting it to both the semantic
embedding space for text alignment and diverse
downstream tasks remains non-trivial. This raises
a critical question:

How to adapt pre-trained GNNs to the semantic
embedding space given limited downstream data,
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i.e., few samples and weak text supervision?

This paper aims to answer this question based on
the following observations: (1) Semantic text em-
bedding spaces do not necessarily result from joint
pre-training. In fact, the embedding spaces of
encoder LLMs are inherently semantic and high-
quality, as LLMs are trained on massive text data
and demonstrate strong performances. (2) When
the downstream data are limited, prompt learning
(Li and Liang, 2021; Houlsby et al., 2019; Zhang
et al., 2022a; Lester et al., 2021) provides a better
option than fine-tuning as much fewer parameters
not only makes the optimization more efficient but
also requires less resource than fine-tuning a large
model. Notably, some works have explored prompt
learning for better alignment and obtained improve-
ment in vision prediction (Zhou et al., 2022b; Khat-
tak et al., 2023). Inspired by these observations, we
propose a prompting-based paradigm with an LLM
that aligns the GNN representations in the semantic
embedding space, while keeping the parameters of
both GNN and LLM frozen.

When adapting the representation from one
modality to another, solely prompting a single
modality could be sub-optimal, as it limits the ad-
justment to downstream tasks in the other modality
(Khattak et al., 2023). To this end, we propose
Multi-modal Prompt Learning for Graph Neural
Networks (Morpher). Given a pre-trained GNN
and few-shot semantically labeled graph data with
weak text supervision, we assume zeroth-order ac-
cess to a pre-trained LLM. Then, to leverage its
high-quality semantic embedding space, Morpher
connects and aligns the graph embeddings to it
through prompting on both modalities with a cross-
modal projector. Nonetheless, designing such a
paradigm is more challenging than vision-language
models. First, we lack jointly pre-trained encoders
for the two modalities; instead, we only have two
encoders pre-trained independently in each modal-
ity. Second, determining how to prompt the graph
modality is non-trivial and remains a trending re-
search topic. Third, the downstream data for GNN
usually have much fewer labeled classes and la-
beled samples than Vision-Language models, and
the text supervision is extremely weak. Our contri-
butions towards tackling these challenges are:

• We analyze that, state-of-the-art graph prompt
(Sun et al., 2023a) is often unable to learn good
representations of the downstream data. We fur-
ther improve it to prevent unstable optimization.

• To connect and adapt the pre-trained GNN with
LLM effectively with extremely weak text super-
vision, we propose Morpher, the first graph-text
multi-modal prompt learning paradigm to align
the representations of GNN and LLM without
fine-tuning any of their parameters.

• With extremely weak text supervision, we demon-
strate our improved graph prompt and Morpher
under few-shot, multi-task, and cross-domain set-
tings. To show that GNN learns language de-
pendency through Morpher, we present the first
CLIP-style zero-shot generalization prototype
where the GNN can predict unseen classes.

2 Background

We use calligraphic letters (e.g., A) for sets, and
specifically G for graphs. We use bold capital let-
ters for matrices (e.g., A). For matrix indices, we
use A(i, j) to denote the entry in the ith row and
the jth column. A(i, :) is the ith row in A.

Graph Neural Networks. We use G = (A,X)
to denote a graph with node set V and edge set E ,
where A ∈ R|V|×|V| is the adjacency matrix and
X ∈ R|V|×d is the node feature matrix. A(u, v) =
1 if there is an edge connecting u and v; otherwise
A(u, v) = 0. A graph neural network fgϕ(·) with
hidden dimension dg encodes G into the embedding
space: fgϕ(G) ∈ R|V|×dg , which could preserve
both feature and structure information of G.

Few-shot Prompt Learning. Let f tϕ(·) denote
the LLM encoder with embedding dimension dt.
For a series of input tokens {xk}Kk=1, the LLM en-
coder embeds it as a matrix Xt = f tϕ({xk}Kk=1) ∈
RK×dt . Prompt learning initializes a tunable ma-
trix Pt

θ ∈ Rnt×dt , where nt denotes the number
of text prompt tokens. Then, this tunable matrix is
concatenated with the input tokens’ embeddings to
form [Pt

θ;Xt]dim=0 ∈ R(K+nt)×dt .

Our Problem Set-up. Given a pre-trained GNN
fgϕ(·) with embedding dimension dg and a pre-
trained LLM encoder f tϕ(·) with embedding dimen-
sion dt. Without loss of generality, we assume
the downstream task is graph-level classification,
as node-level or edge-level GNN tasks can be re-
formulated as graph-level by inducing ego-graphs
within neighbor distance γ. For L-shot graph clas-
sification, we are given limited text-labeled pairs
{(Gi, tc)}Li=1 for each class c. Each text label tc
consists of only a few tokens. Assuming T is the
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Figure 1: Cross-connections overwhelm inner-connections in current graph prompt design, which may be unstable during
training (left); attention in NLP where 3× 2 = 6 cross-connections and 3 + 1 = 4 inner-connections are balanced (middle); and
our balanced graph prompt design (right). The cross-connections between input and prompt should have a consistent scale
with the input connections.

set of all text labels tc, we are provided a set of test
graphs {Gj}Ltest

j=1 and want to predict the text label
tj ∈ T for each test graph Gj .

3 Improving Single-modal Graph Prompt

Unlike prompting text data, prompting graph data
presents a significant challenge due to the non-
euclidean nature of graphs. The pioneering work
(Sun et al., 2023a) designs the graph prompt still as
a graph and then inserts it into the original graph.

Current Graph Prompt Design. To prompt a
graph G, each prompt token is a new node. Let
ng denote the number of prompt tokens and P =
{pi}ng

i=1 denote the set of prompt tokens. The
graph prompt is formulated by a tunable matrix
Pg

θ ∈ Rng×d, where d is the node feature dimen-
sion. Each row vector Pg

θ(i, :) is the feature of the
prompt token pi. Then, the mechanism to prompt
a graph G = (A,X) with n nodes and d feature
dimension is (Sun et al., 2023a)

• Compute inner-connections to construct the
prompt graph Gp = (Ap,Xp) = (Ap,P

g
θ). For

two prompt tokens pi and pj , Ap(i, j) = 1 ⇐⇒
σ(Pg

θ(i, :)P
g
θ(j, :)

⊤) > δinner, where σ(·) is the
sigmoid function.

• Compute cross-connections to insert the prompt
graph Gp into G. Similarly, for xi ∈ G and pj ∈
Gp, there is an edge between them if and only if
σ(X(i, :)Pg

θ(j, :)
⊤) > δcross.

• Construct the prompted graph (i.e., manipulated
graph) Gm = (Am,Xm). The overall adjacency
matrix Am ∈ R(n+ng)×(n+ng) is constructed
from the original adjacency matrix A, the inner
edges Ap and the cross edges. The overall node
feature matrix is concatenated from the prompt

token features and the original input node fea-
tures: Xm = [Pg

θ;X]dim=0 ∈ R(n+ng)×d.

Issues associated with the current design. The
input node features of most real-world datasets
are sparse, resulting from the construction process
(Yang et al., 2016; Morris et al., 2020; Dwivedi
et al., 2023). As shown in Appendix Table 4,
||X(i, :)||1 is typically 1. As the initialization of
each token feature tensor Pg

θ(i, :) is close to 0⃗
to stabilize gradients, for any node i and token
pj , the dot products X(i, :)Pg

θ(j, :)
⊤ is close to 0,

and the sigmoid value is very close to 0.5. Con-
sequently, if we want the graph prompt to have
cross-connections, we must set δcross < 0.5. Then,
as the sigmoid values are close to 0.5, the cross-
connections will be dense, i.e., almost every node
in the original graph is connected with every node
token in the prompt graph. For two different graphs
G1 and G2 in the same task, the prompt graph Gp

is identical. Since the GNNs aggregate the node
features, their embeddings fgϕ(G1) and fgϕ(G2) are
approximately the same because the features in
the prompt graph overwhelm the features in the
original graphs due to the dense cross-connections.
Then, even if G1 and G2 have different labels, the
task head classifier cannot be trained to distinguish
them 1.

In Appendix C.1, we show that initializing graph
prompt token feature tensor with higher variance
cannot effectively address this problem.

Improved Graph Prompt Design. The issue of
the current graph prompt lies in the significant im-
balance between original connections within the in-
put graph and the input-prompt cross-connections,
as illustrated in Figure 1 (left). We also visualize

1In fact, similar training instability problems have been
observed by another work (Zhao et al., 2024).
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Figure 2: Similar to CLIP backbone, Morpher adapts the graph representations to semantic space through multi-modal prompt
learning, even if the GNN and LLM are not jointly trained and are kept frozen.

the standard NLP attention mechanism (Vaswani
et al., 2017) in Figure 1 (middle). When a sequence
of text prompt tokens pti is prepended to the input
sequence, the features of the prompt tokens will be
aggregated with those of the input tokens through
a dense “cross-connection”, i.e., attention. Simul-
taneously, the features within the input sequence
are also densely aggregated via attention, maintain-
ing a balance with the prompt-input aggregation to
prevent overwhelming. Inspired by this, we deem
that a balance could be achieved by approximately
equalizing the number of cross-connections with
that of input graph connections, i.e., ne. Since the
connection of a graph dataset is often sparse, we
constrain the cross-connections to be sparse as well.
Therefore, we set the number of cross-connections
to at most ne by connecting each node in the input
graph with at most

⌊
ne
a

⌋
prompt tokens. Then, we

can safely use a small δcross and cosine similarity
X(i,:)·Pg

θ(j,:)
⊤

∥X(i,:)∥2∥Pg
θ(j,:)∥2

instead of σ(X(i, :)Pg
θ(j, :)

⊤) to
calculate the cross-connections.

4 GNN Multi-modal Prompt Learning

To adapt the GNN embeddings to the LLM’s se-
mantic embedding space and leverage the addi-
tional weak supervision provided by the text asso-
ciated with graph labels, we explore the potential
of multi-modal prompt learning for both graphs
and language. This approach is motivated by the
intuition that only prompting on the graph data may
limit the flexibility to adjust the LLM representa-
tion space. The overall paradigm of Morpher is il-
lustrated in Figure 2. Given the data {(Gi, ti)}L×C

i=1 ,
we aim to align graph embedding readout(fgϕ(Gi))

with readout(f tϕ(Tokenize(ti))). Yet one direct
issue is that, readout(fgϕ(Gi)) ∈ R1×dg and
readout(f tϕ(Tokenize(ti))) ∈ R1×dt may have
distinct dimensions. To address this issue, we

adopt a cross-modal projector that learns to map
the graph embedding space to the text embedding
space. For an input dg-dimensional graph embed-
ding v, the projector maps it to a vector ṽ in the
dt-dimensional text embedding space:

ṽ = Projθ(v) := tanh(Wv + b) ∈ R1×dt (1)

As discussed in Sections 2 and 3, we introduce
the text prompt Pt

θ ∈ Rnt×dt with nt text prompt
tokens and the graph prompt Pg

θ ∈ Rng×d with
ng graph prompt tokens. The graph prompting
function ψg(·,Pg

θ) modifies a given graph G into a
manipulated graph Gm = ψg(G,Pg

θ).
Let ωt(·,Pt

θ) be the prompted text embedding
given input text t. For the text prompt methods we
choose, the prompted embedding is

ωt(t,P
t
θ) = [Pt

θ; f
t
ϕ(Tokenize(t))]dim=0 (2)

Let ωg(·,Pg
θ) be the prompted graph embedding

given input graph G, then we have:

ωg(G,Pg
θ) = fgϕ(Gm) = fgϕ(ψg(G,Pg

θ)) (3)

For the whole prompted text and the whole
prompted graph of the sample (Gi, ti), we apply
readout (e.g., mean-pooling, max-pooling, etc.) to
get their embedding:

ht
i = readout(ωt(ti,P

t
θ)) ∈ R1×dt (4)

hG
i = readout(ωg(Gi,P

g
θ)) ∈ R1×dg (5)

For the given data (Gi, ti), we compute the normal-
ized embedding of prompted Gi and project it to
the text embedding space through the projector:

zGnorm,i =
hG
i

||hG
i ||2

=
readout(ωg(Gi,P

g
θ))

||readout(ωg(Gi,P
g
θ))||2

(6)
zGi = Projθ(z

G
norm,i) (7)
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For the text embeddings, since for limited data
the set T = {ti}Ci=1 may contain texts that are se-
mantically close as discussed in Appendix A.2, we
extract a subspace in the text embedding space by
normalizing the embedding as follows. We further
normalize the text embeddings to the unit sphere.

µ =
1

L

L∑

i=1

ht
i, ht

norm,i = ht
i − µ (8)

zti =
ht
norm,i

||ht
norm,i||2

=
readout(ωt(ti,P

t
θ))− µ

||readout(ωt(ti,Pt
θ))− µ||2

(9)
Finally, we use the in-batch similarity-based con-
trastive loss with temperature τ to train text
prompts, graph prompts, and the projector.

LG→T = − 1

B

B∑

i=1

log
exp(zGi · zti/τ)∑B
j=1 exp(z

G
i · ztj/τ)

(10)
During inference stage, for an input graph Gi and
text label candidates T = {ti}Ci=1, we compute the

embedding zGi = Projθ(
readout(ωg(Gi,P

g
θ))

||readout(ωg(Gi,P
g
θ))||2

) us-

ing trained Pg
θ and Projθ(·). Then, we compute zti

as Equations 9 and 10. Finally, Gi will be classified
to associate with text label argmax1≤i≤C(z

G
i · zti).

5 Experiments

We show that both Morpher and the improved
graph prompt more effectively adapt pre-trained
GNNs to the specific downstream classification
task. We use RoBERTa (Liu et al., 2019) as the
LLM encoder for Morpher in the main experiments.
We also validate the performance of Morpher with
ELECTRA (Clark et al., 2020) and DistilBERT
(Sanh et al., 2019) in Appendix B.3.

Datasets. We use real-world graph datasets
from PyTorch Geometric (Fey and Lenssen, 2019),
including one molecular dataset MUTAG (Mor-
ris et al., 2020); two bioinformatic datasets EN-
ZYMES and PROTEINS (Borgwardt et al., 2005);
one computer vision dataset MSRC_21C (Neu-
mann et al., 2016); three citation network datasets
Cora, CiteSeer and PubMed (Yang et al., 2016).
We use real-world class names as text labels. The
text supervision is extremely weak, as each text la-
bel contains no more than five words. More details
are summarized in Appendix A.

Pre-training algorithms and GNN backbones. To
pretrain GNNs for evaluation, we adopt GraphCL
(You et al., 2020) and SimGRACE (Xia et al., 2022)

to pre-train three widely used GNN backbones:
GCN (Kipf and Welling, 2016), GAT (Yun et al.,
2019) and GraphTransformer (GT) (Khosla et al.,
2020). Additionally, in Appendix B.4, we verify
the effectiveness of our methods on GNNs pre-
trained using GraphMAE (Hou et al., 2022) and
MVGRL (Hassani and Ahmadi, 2020), two other
representative GNN self-supervised learning algo-
rithms. For each dataset, to pre-train GNNs, we
leverage self-supervised learning methods on all
the graphs without any label information.

Baselines. We compare our methods with the fol-
lowing baselines: (1) training a GNN from scratch
supervised by few-shot data (“supervised”); (2)
fine-tuning a task head together with pre-trained
GNN (“fine-tune”). We allow GNNs to be tun-
able for “supervised” and “fine-tune”; (3) state-
of-the-art graph prompting algorithms: All-in-one
(“AIO”) (Sun et al., 2023a), which is the only graph
prompting algorithm that supports multiple tasks in
node-level, edge-level and graph-level to the best of
our knowledge; GPF-plus (Fang et al., 2023) which
prompt on graph features and Gprompt (Liu et al.,
2023d) which is based on subgraph similarity.

5.1 Few-shot Learning
We investigate our improved graph prompt (“Im-
provedAIO”) and Multimodal prompt (“Morpher”)
to adapt frozen pre-trained GNNs using few-shot
data. We focus on graph-level classification here
and will further investigate the few-shot learning
ability at other task levels in Section 5.2. Our few-
shot learning setting is more challenging than ex-
isting works (Sun et al., 2023a, 2022) as we only
allow no more than 10 labeled training and valida-
tion samples for each class. The results are shown
in Table 1. By observations, given the same pre-
trained GNN, our ImprovedAIO outperforms all
the existing baseline methods. This improvement
is attributed to its design, which restricts cross-
connections, ensuring stable training and optimiza-
tion. Moreover, Our Morpher can achieve an abso-
lute further accuracy improvement over the base-
lines across all datasets. Its superior performance,
even under extremely weak text supervision, stems
from its ability to dynamically adapt and align
the graph and language representation spaces with
prompt learning. This flexibility enables Morpher
to better leverage the semantic information from
weakly-supervised text labels while preserving the
structural integrity of the graph embeddings, result-
ing in more robust and accurate predictions.
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Training
schemes

GNN pretraining
MUTAG ENZYMES PROTEINS MSRC_21C

Acc F1 Acc F1 Acc F1 Acc F1

Supervised
N/A + GCN 66.00 66.67 16.67 8.68 65.89 60.77 38.85 35.32
N/A + GAT 66.00 65.69 16.45 4.65 64.75 64.08 41.14 39.86
N/A + GT 66.66 66.26 15.62 4.22 62.81 57.12 38.28 41.62

Pre-train
+

Fine-tune

GraphCL+GCN 70.00 70.23 17.91 11.82 65.89 61.23 40.00 43.89
GraphCL+GAT 70.00 69.73 17.91 10.46 65.16 63.92 44.57 45.74
GraphCL+GT 68.00 67.81 17.70 8.99 63.28 56.41 41.71 43.73

SimGRACE+GCN 66.67 67.27 17.29 8.78 66.82 64.70 40.57 43.84
SimGRACE+GAT 70.67 69.10 16.87 7.18 65.42 63.65 42.85 42.37
SimGRACE+GT 69.33 69.77 16.24 6.08 65.98 62.31 39.42 40.78

AIO
(Sun et al., 2023a)

GraphCL+GCN 64.67 39.27 17.50 4.97 61.35 44.93 3.59 10.09
GraphCL+GAT 64.67 39.27 17.50 4.97 59.21 37.19 14.37 3.11
GraphCL+GT 73.33 72.06 18.33 9.09 40.79 28.97 17.96 8.30

SimGRACE+GCN 64.67 39.27 16.04 4.61 67.42 60.87 34.73 18.16
SimGRACE+GAT 64.67 39.27 16.04 4.61 59.21 37.19 7.78 1.79
SimGRACE+GT 36.00 27.26 17.50 8.15 50.56 49.34 32.34 15.13

ImprovedAIO
(Ours)

GraphCL+GCN 77.33 77.74 18.13 11.98 65.89 65.97 42.85 45.91
GraphCL+GAT 74.67 75.51 18.33 11.26 65.76 66.05 46.85 51.39
GraphCL+GT 74.67 74.67 19.16 9.04 68.12 68.18 42.85 43.54

SimGRACE+GCN 68.00 69.01 17.91 9.02 66.82 66.40 44.57 49.24
SimGRACE+GAT 77.33 77.20 18.75 9.39 66.91 65.49 45.14 42.31
SimGRACE+GT 71.33 72.06 18.95 11.25 68.59 68.84 40.57 42.82

Morpher
(Ours)

GraphCL+GCN 78.67 78.09 20.41 15.20 67.47 66.40 45.14 49.62
GraphCL+GAT 79.33 79.15 23.12 18.01 70.89 70.30 50.85 54.48
GraphCL+GT 76.00 76.51 19.58 13.28 73.53 72.48 45.71 48.41

SimGRACE+GCN 69.33 70.27 19.79 14.94 67.10 66.15 45.71 51.24
SimGRACE+GAT 78.00 77.65 20.21 16.27 68.12 67.26 45.71 51.13
SimGRACE+GT 74.00 74.84 19.16 14.29 71.76 71.75 44.00 48.16

IMP of ImprovedAIO (%) 3.89 ↑ 4.67 ↑ 0.90 ↑ 1.07 ↑ 1.41 ↑ 4.64 ↑ 2.29 ↑ 2.34 ↑
Further IMP of Morpher (%) 2.00 ↑ 1.72 ↑ 1.84 ↑ 5.01 ↑ 2.8 ↑ 2.24 ↑ 2.38 ↑ 4.64 ↑

Table 1: Few-shot graph classification performance (%). IMP (%): the average improvement (absolute value)
compared to the best result among all the baseline methods. Best results are bolded and second-best results are
underlined. We also compared with GPF-plus (Fang et al., 2023) and Gprompt (Liu et al., 2023d), in Appendix
Table 14 due to space limit.

Dataset Cora CiteSeer

Tasks Methods Acc F1 Acc F1

Node
Level

Supervised 52.83 47.73 63.91 64.82
Fine-tune 56.37 55.04 64.87 66.42

AIO (Sun et al., 2023a) 14.69 7.10 18.93 6.92
ImprovedAIO 58.46 55.10 66.44 66.53

Morpher 61.26 62.36 68.20 68.56

Edge
Level

Supervised 51.78 50.62 52.14 50.81
Fine-tune 52.50 51.00 52.50 51.12

AIO (Sun et al., 2023a) 50.00 33.33 50.00 33.33
ImprovedAIO 54.64 54.57 53.92 53.55

Morpher 55.71 55.05 55.35 55.05

Table 2: Node-level, edge-level performance. Best re-
sults are bolded and second-best results are underlined.

5.2 Morpher Supports Multiple-level Tasks

Inherited from AIO, our ImprovedAIO and Mor-
pher also support adaptation to downstream tasks
at node-level and edge-level, because they can be
reformulated into graph-level tasks. After reformu-
lating node classification and task classification as
graph classifications by inducing ego-graphs, we
use GraphCL+GCN to pre-train the GNN and re-
port the performance in Table 2. The results are
consistent with graph level, where ImprovedAIO
and Morpher outperform existing methods, with

Morpher achieving slightly better performance than
ImprovedAIO. Notably, as analyzed in Section 3,
AIO is unstable during training, for example in
Table 2 (Node level) and in certain cases of Ta-
ble 1 (e.g., on MSRC_21C with GraphCL or with
SimGRACE+GAT). The performance fluctuations
observed are consistent and reflect the same un-
derlying issue of AIO. In contrast, our proposed
ImprovedAIO effectively addresses this issue.

5.3 Domain Transfer

We explore the potential of using Morpher for do-
main adaptation. From the previous experiments,
we have demonstrated that our ImprovedAIO out-
performs the original AIO. Therefore, in the sub-
sequent pages, we focus on comparing Morpher
with ImprovedAIO to avoid redundancy. We pre-
train GNNs on ENZYMES or CiteSeer datasets,
then test the classification performance on MU-
TAG and PubMed and report the results in Table
3. We unify the pre-train feature dimension with
the downstream feature dimension by padding ze-
ros or SVD reduction. From the results, Morpher
demonstrates the best transferability, followed by
ImprovedAIO.
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Figure 3: Results of novel class generalization (left); t-SNE embedding plots on CiteSeer, MSRC_21C (right). Train
accuracy with train classes only is the accuracy of predicting the training graphs from the two training classes. Train
accuracy with new test classes is the accuracy of predicting the training graphs from all three classes. Test Accuracy
of zero-shot class is the accuracy of predicting the testing graphs from all three classes. Full-resolution figures can
be found in Appendix D.

Target Domain MUTAG PubMed

Target Task graph-level node-level

Source Methods Acc F1 Acc F1

ENZYMES
(graph-level)

Fine-tune 68.00 55.04 47.57 36.07
ImprovedAIO 70.67 64.07 50.28 50.51

Morpher 72.67 73.29 54.42 53.96

CiteSeer
(node-level)

Fine-tune 71.33 62.19 48.71 40.66
ImprovedAIO 74.00 73.76 52.57 51.29

Morpher 76.67 77.04 58.29 57.54

Table 3: Domain Transfer Performance. Best results are
bolded and second-best results are underlined.

5.4 Zero-shot Classification Prototype

An advantage of adapting pre-trained GNNs to the
semantic embedding space is that GNNs might be
empowered to “reasoning” in a CLIP style. Here,
we conduct a novel experiment that generalizes
GNN to an unseen class. Since no real-world data
is available for this setting, we synthetically create
three datasets, ZERO-Cora, ZERO-CiteSeer, and
ZERO-PubMed, all from real-world connections.
We aim to simulate a citation network with two
research areas and an interdisciplinary research
area in between. For each citation network, we

randomly sample 120 nodes and induce their 2-
hop ego-graphs and then replace the node features
in 10 ego-graphs with [1, 0] and another 10 ego-
graphs with [0, 1] to construct 20 training graph
samples. For the remaining ego-graphs, we uni-
formly randomly replace the node features with
[1, 0] and [0, 1] to construct 100 testing graph sam-
ples. We assign text labels of the first research area
(e.g., “biology”) to the [1, 0] training graphs, the
second research area (e.g., “informatics”) to the
[0, 1] training graphs, and the interdisciplinary area
(e.g., “bioinformatics”) to the testing graphs. Intu-
itively, the nodes with feature [1, 0] are papers in
the first area, and nodes with feature [0, 1] are in
the second area, which makes the datasets rational.

For each dataset, using GraphCL+GCN, we pre-
train GNNs on all graphs. Then, we train Morpher
on the training graphs, only knowing the text la-
bels of the two training classes. Since we do not
have validation data in zero-shot learning, we re-
port the results of each epoch in Figure 3 (left).
We observe that, while Morpher quickly adapts the
GNN to downstream training data, the CLIP-like
framework can predict the graphs in the novel class
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Figure 4: Efficiency comparison (left), parameter study (middle) and ablation study (right).

with good accuracy (red curve). Moreover, the
training samples can be classified correctly from
training and novel classes. Before the training over-
fits, there is a period when Morpher can distinguish
all the graphs from the training and novel classes
with high accuracy. Such zero-shot novel-class
generalization ability validates Morpher’s align-
ment between graph embeddings and text embed-
dings. When Morpher is trained on two classes of
graphs with text labels of biology and informatics,
a graph-in-the-middle will be classified as text-in-
the-middle: bioinformatics, even if “bioinformat-
ics” is an unseen label.

5.5 Efficiency and Embedding Analysis

Without fine-tuning the GNN or LLM, the prompt-
based methods have better parameter efficiency.
As shown in Figure 4 (left), our ImprovedAIO
and Morpher require similar numbers of param-
eters with AIO (Sun et al., 2023a), which is
0.032% to 0.46% compared to either tune the LLM
(RoBERTa) or GNN (GCN). Due to such parameter
efficiency, our methods learn better graph represen-
tations given few-shot data. We visualize the graph
embeddings of CiteSeer and MSRC_21C in Figure
3 and calculate the silhouette score, a metric for
cluster quality (↑) ranged in [−1, 1]. It turns out
that our Morpher leads to better adaptation.

5.6 Hyperparameter and Ablation Study

We conduct the hyperparameter study by choos-
ing and testing various numbers of graph prompt
tokens for both ImprovedAIO and Morpher. The
results are shown in Figure 4 (middle), from which
we can observe that both methods are generally
stable, and Morpher constantly outperforms Im-
provedAIO under different choices. To verify the
necessity of each component in our design, we
compare Morpher and ImprovedAIO with multi-
ple variants, respectively, and report the result in
Figure 4 (right). We observe that removing any

component would result in a performance drop.
We also conduct experiments to verify the effec-

tiveness of our proposed Morpher with ELECTRA
(Clark et al., 2020) and DistilBERT (Sanh et al.,
2019) as the text encoder in Appendix B.3 due to
space limitation. In general, Morpher is robust
with respect to the language encoder. As for the
robustness with respect to the pre-trained GNNs,
we further conduct experiments using GNNs pre-
trained from GraphMAE (Hou et al., 2022) and
MVGRL (Hassani and Ahmadi, 2020). Due to the
space limitation, the results are in Appendix B.4.

6 Related Work

GNN Pre-training. Recently, a surge of graph
pre-training strategies have emerged (Hu et al.,
2020a; Lu et al., 2021; Jing et al., 2021; Zhou et al.,
2022a). The main idea of pre-trained graph mod-
els is to capture general graph information across
different tasks and transfer this knowledge to the
target task using techniques such as contrastive pre-
dictive coding (Khosla et al., 2020; Xia et al., 2022),
context prediction (Hu et al., 2020b), and mutual
information maximization (Sun et al., 2020). Dif-
ferent from these approaches, this paper aims to
adapt pre-trained GNNs by leveraging multi-modal
prompt learning techniques.

Graph Prompt Learning. Recent studies explor-
ing prompt learning for GNNs mark a thriving re-
search area (Sun et al., 2023b; Wu et al., 2023b). It
is a promising way to adapt GNNs to downstream
tasks through token-level (Fang et al., 2023; Tan
et al., 2023; Chen et al., 2023a; Sun et al., 2022;
Zhu et al., 2023) or graph-level (Sun et al., 2023a;
Huang et al., 2023; Ge et al., 2023) prompting.
Among all the existing methods, All-in-one (AIO)
(Sun et al., 2023a) is the only algorithm to learn
tunable graph prompts for multi-level downstream
tasks (Table 6). Based on our improved AIO, we
present a pioneer study to explore learning prompts
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in multiple modalities simultaneously while keep-
ing the pre-trained models frozen.

LLM on Graphs. LLMs’ potential for graph-
related tasks (Jin et al., 2023a) has been explored
recently. The first category employs LLMs as pre-
trained feature extractors to enhance GNNs (Duan
et al., 2023; Chien et al., 2021; Zhu et al., 2021).
The second category focuses on integrating graph
structures directly into LLM architectures (Yang
et al., 2021; Zhang et al., 2022b; Jin et al., 2023d,c).
Despite these advancements, none of them have ex-
plored the collaboration between LLMs and GNNs
with extremely weak text supervision and under
graph prompt learning.

7 Conclusion

We present Morpher, the first multimodal prompt
learning paradigm leveraging LLMs to semanti-
cally adapt pre-trained GNNs to downstream tasks
with extremely weak text supervision. Addressing
limitations of existing graph prompting techniques,
we demonstrate through extensive experiments that
Morpher excels in few-shot, multi-level tasks, and
domain transfer. Notably, Morpher enables gener-
alization to novel testing classes.
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8 Limitations

Our Multimodal graph prompt learning paradigm
assumes the “pre-train + prompt” framework to
learn transferable graph representations, yet there

could be other paths to achieve graph-related foun-
dation models. Also, graph prompt learning only
works on the graph neural network architecture,
and might not work for other architectures that
are proposed in the future. Another limitation
of this work is the requirement of language en-
coder. While RoBERTa is one of the most advanced
encoder-only language models and can be consid-
ered an LLM with over 0.1B parameters, more
recent LLMs such as Llama or Mistral cannot be
used in Morpher because they are decoder-only
LLMs and do not explicitly have an encoder.
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A Dataset Details

A.1 Dataset Statistics

Table 4 summarizes the statistics of the public real-
world datasets, which we used in the few-shot ex-
periments. For our synthetic datasets in the zero-
shot prototype, we summarize their statistics in Ta-
ble 5. As discussed in Section 5.4, the connections
of our synthetic datasets are real, and we only re-
place the node feature by [1, 0] and [0, 1]. The code
to download the public data and the code to create
synthetic data are provided in the supplementary
materials.

A.2 Text Labels

When created, real-world graph datasets are usu-
ally coupled with textual meanings, but a common
practice is to convert the textual meanings into
numbers to create labels, which weakens the su-
pervision of the graph data. For each real-world
dataset, we convert the numerical labels back to
text labels and feed into Morpher Language en-
coder through “[learnable text prompt] + [text la-
bel]”. The mapping from the numbers to text labels
for each dataset are provided as follows:

MUTAG. MUTAG is a dataset of nitroaromatic
compounds, aiming to predict their mutagenicity
on Salmonella typhimurium. Therefore, the map-
ping from numerical labels to text labels is: {0:
non-mutagenic on Salmonella typhimurium, 1: mu-
tagenic on Salmonella typhimurium}.

ENZYMES. ENZYMES aims to predict which
subcategory each enzyme belongs to. The subcate-
gories are: 0: oxidoreductases, 1: transferases, 2:
hydrolases, 3: lyases, 4: isomerases, 5: ligases.

PROTEINS. PROTEINS is a dataset compris-
ing proteins classified as either enzymes or non-
enzymes. Therefore, the mapping is: 0: ’enzyme’,
1: ’non-enzyme’.

MSRC_21C. Each graph in MSRC is con-
structed according to an image. The graph label is
the image label. MSRC_21C contains 20 classes in
MSRC, and “C” here means “Challenging” as the
graphs(images) that are easy to classify has been
filtered. The mapping from the numerical labels to
text labels is: {0: building, 1: grass, 2: tree, 3: cow,
4: sheep, 5: sky, 6: airplane, 7: water, 8: face, 9:
car, 10: bicycle, 11: flower, 12: sign, 13: bird, 14:
book, 15: chair, 16: road}.

Cora. Cora is a citation network of papers in
seven research areas. Each paper is labeled ac-
cording to its corresponding research area. The
mapping from the numerical labels to text labels is:
{0: case based, 1: genetic algorithms, 2: neural net-
works, 3: probabilistic methods, 4: reinforcement
learning, 5: rule learning, 6: theory}.

CiteSeer. CiteSeer is a citation network of pa-
pers, each labeled according to one of six research
areas. The mapping from the numerical labels to
text labels is: {0: Agents, 1: AI, 2: DB, 3: IR, 4:
ML, 5: HCI}. We note that using abbreviations of
the research area is not an issue because these ab-
breviations frequently appear, and the LLM tends
to tokenize each of them as one token.

PubMed. PubMed is a collection of scientific
publications from the PubMed database related to
diabetes, classified into one of three categories. The
mapping from the numerical labels to text labels is:
{0: Diabetes Mellitus Experimental, 1: Diabetes
Mellitus Type 1, 2: Diabetes Mellitus Type 2}.

Edge-level tasks. Cora, CiteSeer and PubMed
can also be used as link prediction datasets. For link
prediction, the mapping from the numerical labels
to text labels is: {0: not connected, 1: connected}.

Synthetic Zero-shot Class Generalization
Datasets. For ZERO-Cora, we synthetic three
classes of ego-graph in a citation network. The first
and second classes, respectively, have text labels
"machine learning" and "theory", and the third
(novel) class to generalize is "machine learning
theory". For ZERO-CiteSeer, we synthetic three
classes of ego-graph in a citation network. The
first and second classes, respectively, have text
labels "biology" and "informatics", and the third
(novel) class to generalize is "bioinformatics". For
ZERO-PubMed, we synthetic three classes of ego-
graph in a citation network in the medical domain.
The first and second classes, respectively, have text
labels "cardiology" and "neurology", and the third
(novel) class to generalize is "neurocardiology".

B Experiment Details

B.1 Reproducibility

Code. The code for the experiments is provided
in the supplementary material with a well-written
README file. We also provide the commands
and instructions to run the code. The datasets used
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Figure 5: CLIP backbone (top) and this work (bottom). If a research paper cites many papers from biology
and computer science, we realize this paper will likely be about computational biology, even if we do not know
what exactly computational biology is. CLIP builds image encoders that learn such language dependency by
Contrastive Language-Image Pre-training in the same embedding space according to Internet-scale data. However,
text supervision is often extremely weak for graphs. This work leverages Multi-modal Prompt Learning for Graph
Neural Networks that can effectively teach GNNs language dependency given few training samples with weak text
supervision.

Table 4: Dataset statistics

Dataset task level # graphs average # nodes average # edges # feature dimension # classes # shots per class feature characteristic

MUTAG graph 188 17.9 39.6 7 2 10 one-hot, sparse
ENZYMES graph 600 32.6 124.3 3 6 10 one-hot, sparse
PROTEINS graph 1113 39.1 145.6 3 2 10 one-hot, sparse
MSRC_21C graph 209 40.28 96.60 22 17 1 one-hot, sparse

Cora node, edge 1 2708 10556 1433 7 2 (node), 20 (edge) sum 1, sparse
CiteSeer node, edge 1 3327 9104 3703 6 2 (node), 20 (edge) sum 1, sparse
PubMed node 1 19,717 88648 500 3 10 TF-IDF value, dense

will be automatically downloaded when the code
is executed.

Environment. We run all our experiments on
a Windows 11 machine with a 13th Gen Intel(R)
Core(TM) i9-13900H CPU, 64GB RAM, and an
NVIDIA RTX A4500 GPU. We have also tested
the code on a Linux machine with NVIDIA TI-
TAN RTX GPU. All the code of our algorithms is
written in Python. The Python version in our en-
vironment is 3.9.18. In order to run our code, one
has to install some other common libraries, includ-
ing PyTorch, PyTorch Geometric, pandas, numpy,
scipy, etc. Please refer to our README in the code
directory for downloading instructions.

We have optimized our code and tested that the
space cost of the CPU memory is less than 16 GB,
and the space cost of the graphics card is less than
6 GB. The execution time to run an experiment is
less than 20 minutes on our machine.

B.2 Implementation Details

We provide the configuration files for the experi-
ments to reproduce the results. We initialize the
graph prompt using kaiming_initialization, and we
initialize the text prompts through real token em-
beddings. We have tested multiple initializations,
and they would not affect the overall results. Specif-
ically, we initialize the text prompt for each dataset
as follows.

MUTAG: “a graph with property”; ENZYMES:
“this enzyme is”; PROTEINS: “this protein is”;
MSRC_21C: “an image of”; Cora: “a paper of”;
CiteSeer: “a paper of”; PubMed: “a paper of”;
Edge tasks: “central nodes are”.

In our few-shot setting, we split the labeled data
into training samples and validation samples at
approximately 1:1. For all the parameters, we
used the Adam optimizer, whose learning rate and
weight decay are provided in the configuration files.
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Table 5: Synthetic Zero-shot Class Generalization Dataset statistics

Dataset # graphs average # nodes average # edges #feature dimension # classes # shots per class

ZERO-Cora 120 8.41 10.38 2 2 10
ZERO-CiteSeer 120 10.03 21.31 2 2 10
ZERO-PubMed 120 20.33 41.75 2 2 10

Table 6: Comparison of graph prompts.

Method prompt level
level of supported downstream tasks

learnable prompt semantic
node-level edge-level graph-level

GPF-Plus (Fang et al., 2023) token-level
√ × × √ ×

Gprompt (Liu et al., 2023d) token-level
√ × √ √ ×

VNT (Tan et al., 2023) token-level × × √ √ ×
ULTRA-DP (Chen et al., 2023a) token-level

√ × × √ ×
GPPT (Sun et al., 2022) token-level

√ × × √ ×
SGL-PT (Zhu et al., 2023) token-level

√ × × √ ×
SAP (Ge et al., 2023) graph-level

√ × √ √ ×
PRODIGY (Huang et al., 2023) graph-level

√ √ √ × ×
All-in-one (AIO) (Sun et al., 2023a) graph-level

√ √ √ √ ×

ImprovedAIO (ours) graph-level
√ √ √ √ ×

Morpher (ours) graph-level
√ √ √ √ √

B.3 Experiment with ELECTRA and
DistilBERT

On the LLM pre-training side, RoBERTa is one
of the most advanced encoder-only LLMs until
now, and we have demonstrated the effectiveness
with RoBERTa serving on the LLM side in the
Morpher paradigm. Additionally, we conducted
experiments with ELECTRA (Clark et al., 2020)
and DistilBERT (Sanh et al., 2019). Using these
two LLMs, Morpher can also achieve comparable
performances to RoBERTa. The results are shown
in Table 8 and in Table 7.

In general, using ELECTRA and DistilBERT
results in similar performance compared to using
RoBERTa, showing the robustness of Morpher with
respect to the language encoder.

B.4 Experiment with GNNs trained using
GraphMAE and MVGRL

In the main pages, we used GraphCL and Sim-
GRACE to show that Morpher achieves better per-
formance given a pre-trained GNN. Additionally,
to further verify the robustness of Morpher over the
pre-train method, we conducted experiments on the
pre-trained GNNs using GraphMAE (Hou et al.,
2022) and MVGRL (Hassani and Ahmadi, 2020).
We use GCN as the GNN backbone and RoBERTa
as the LLM encoder, and the results are reported in

Table 9 and Table 10.
Using GraphMAE or MVGRL to pre-train the

GNN, the trend of performance is similar to that
when using GraphCL or SimGRACE. Also, Im-
provedAIO and Morpher’s performance is similar
to that of pre-trained GNNs from GraphCL or Sim-
GRACE and can still significantly outperform the
pre-train + fine-tune baseline, showing the robust-
ness of Morpher with respect to the pre-training
strategy.

B.5 Morpher on MolecureNet with More Text
Supervision

The relatively abundant labeled graph-text pairs
in medical and biological domains have signif-
icantly accelerated research into training large
models specifically tailored for these areas (Qiu
et al., 2023). For example, (Park et al., 2022) pre-
trains the multimodal medical model MedGTX for
Electronic Health Records (EHR) using the open-
source EHR dataset MIMIC-III. Similarly, ProGen
(Madani et al., 2020) trains a 1.2B-parameter lan-
guage model on approximately 280M protein se-
quences. HyenaDNA (Nguyen et al., 2023) pre-
trains a genomic foundation model on the human
reference genome with context lengths of up to 1
million tokens. Furthermore, (Singhal et al., 2022)
introduces the MultiMedQA benchmark and per-
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Table 7: Few-shot graph classification performance (%) of Morpher with ELECTRA (Clark et al., 2020) as language
encoder. Other experiment settings are identical to the main experiment.

GNN pretraining
MUTAG ENZYMES PROTEINS MSRC_21C

Acc F1 Acc F1 Acc F1 Acc F1

GraphCL + GCN 78.00 78.17 20.41 15.79 67.38 65.66 43.42 47.19
GraphCL + GAT 76.67 75.75 20.41 11.37 66.26 65.66 44.57 49.01
GraphCL + GT 76.67 77.04 19.16 14.68 73.06 72.70 42.28 44.09

SimGRACE + GCN 70.00 70.99 19.79 12.41 68.96 67.77 45.71 48.44
SimGRACE + GAT 77.33 77.51 18.12 13.31 68.96 67.78 44.00 49.43
SimGRACE + GT 72.67 73.55 18.33 15.76 70.18 70.28 41.14 44.50

Table 8: Few-shot graph classification performance (%) of Morpher with DistilBERT (Sanh et al., 2019) as language
encoder. Other experiment settings are identical to the main experiment.

GNN pretraining
MUTAG ENZYMES PROTEINS MSRC_21C

Acc F1 Acc F1 Acc F1 Acc F1

GraphCL + GCN 78.00 78.61 20.62 10.00 66.44 65.54 43.42 47.98
GraphCL + GAT 77.33 75.64 21.25 15.87 70.59 68.25 45.14 48.82
GraphCL + GT 74.67 75.20 19.58 14.96 70.27 70.55 44.57 47.28

SimGRACE + GCN 69.33 70.36 20.62 18.82 66.91 66.41 45.14 47.77
SimGRACE + GAT 77.33 76.90 18.54 14.44 67.56 65.08 45.71 44.36
SimGRACE + GT 72.67 73.52 17.91 11.06 70.55 70.36 45.14 44.01

forms instruction-tuning on the 540-billion param-
eter Flan-PaLM model within the clinical domain.

We demonstrate that, though not specifically de-
signed for any downstream applications, the Mor-
pher framework has the potential to be used in vari-
ous tasks where there is more text supervision com-
pared to previous experiments. As for a case study,
We use bace (inhibitors of human beta-secretase),
tox21 (toxicology in the 21st century) and hiv (in-
hibit HIV replication) from MolecureNet (Wu et al.,
2017). These three datasets have 1513, 7831, and
41127 graphs to classify, respectively. In these
datasets, each graph label is associated with a text
description. The tasks on bace and hiv are bio-
activity prediction and the task on tox21 is toxicity
prediction. To adopt Morpher, we use GraphCL
to pre-train the GAT model and initialize the text
prompts and text labels using those from GIMLET
(Zhao et al., 2023).

KVPLM (Zeng et al., 2022), MoMu (Su et al.,
2022), Galactica-1.3B (Taylor et al., 2022) are
zero-shot predictors for the three tasks; GIMLET-
64M-50-shots is the GIMLET (Zhao et al., 2023)
model fine-tuned on 50 additional training sam-
ples2; GAT-1M-fully-supervised uses all the train-
ing data to train a GAT. Our Morpher-k-shots uses
only k training samples. From the results, first,
using only 10 training samples, Morpher can out-

2the performance of GIMLET and other baselines are di-
rectly from the GIMLET paper (Zhao et al., 2023).

perform the zero-shot baselines KVPLM, MoMu,
and Galactica-1.3B. Second, using only 50 shots,
Morpher can achieve similar performance with
the fully supervised GAT. Third, using the same
amount of few-shot data (50 shots), Morpher-50
outperforms GIMLET-64M-50-shots on tox21 and
hiv, the two largest datasets among the three. This
means our graph-text multi-modal prompt learning,
with much fewer learnable parameters (∼ 50K),
is more sample-efficient than fine-tuning language
model encoder.

B.6 Full Table for Few-shot Experiment

Due to the page limitation of the main pages, Table
14 shows the full table for the few-shot experiment.

B.7 Full Table for Domain Transfer

In the main pages, through the experiments pre-
sented in Tables 1 and 2, we have already demon-
strated that fine-tune outperforms supervised, and
ImprovedAIO significantly outperforms the origi-
nal AIO. Therefore, in Table 3, we focus on compar-
ing Morpher, ImprovedAIO and fine-tune methods
to avoid redundancy. Here, we report the full com-
parison with the performance of supervised and
AIO baselines. in Table 13. The result is consis-
tent that fine-tune outperforms supervised, and our
improvedAIO outperforms AIO.

We would like to acknowledge that AIO demon-
strates state-of-the-art performance under the ex-
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Table 9: Few-shot graph classification performance (%) of Morpher with the GNN pre-trained by GraphMAE (Hou
et al., 2022). Other experiment settings are identical to the main experiment.

GNN pretraining
MUTAG ENZYMES PROTEINS MSRC_21C

Acc F1 Acc F1 Acc F1 Acc F1

Pre-train + Fine-tune 71.33 71.41 16.04 12.14 65.86 65.22 39.42 40.20
ImprovedAIO 76.67 76.95 19.58 12.59 66.36 65.30 42.28 46.81

Morpher 78.67 78.67 20.20 16.95 67.38 65.66 45.71 48.49

Table 10: Few-shot graph classification performance (%) of Morpher with the GNN pre-trained by MVGRL (Hassani
and Ahmadi, 2020). Other experiment settings are identical to the main experiment.

GNN pretraining
MUTAG ENZYMES PROTEINS MSRC_21C

Acc F1 Acc F1 Acc F1 Acc F1

Pre-train + Fine-tune 68.67 69.46 16.45 10.16 65.15 64.71 38.85 40.56
ImprovedAIO 74.67 74.00 18.13 15.57 66.54 65.90 42.85 46.66

Morpher 78.00 77.81 18.96 14.97 67.56 66.79 44.57 48.67

perimental settings reported in its original paper
(Sun et al., 2023a). However, our evaluation is con-
ducted under more challenging conditions, particu-
larly with fewer training and validation samples. In
these settings, we observe that AIO’s performance
degrades, suggesting there is still room for improve-
ment. To address this, we propose ImprovedAIO,
which extends AIO’s design to better handle these
harder scenarios. Our goal is not to critique prior
work, but to help advance the field of graph prompt
learning and multimodal alignment by pushing to-
ward more robust and generalizable solutions.

C Further Discussions

C.1 Unstable Training of Current Graph
Prompt Design

As analyzed in Section 3, the current graph
prompt design suffers from unstable training due
to the imbalance of inner-connections and cross-
connections because for any node i and token pj ,
the dot products X(i, :)Pg

θ(j, :)
⊤ is close to 0, lead-

ing to ineffective prompt-token interactions. A
potential solution to ensure X(i, :)Pg

θ(j, :)
⊤ has a

larger nonzero value is to initialize prompt tokens
with higher variance. Through further analysis and
experimental validation, We tend to believe that it
fails to address the root cause.

First, initializing parameters with high variance
can introduce additional challenges during train-
ing, such as unstable gradients, over-reliance on
the initial high-variance parameters, and ineffec-
tive weight regularization. Specifically, in the

prompt learning setting, high-variance initializa-
tion of prompts may cause the training process to
overly focus on the prompt embeddings, thereby
overshadowing the information encoded in the in-
put graph and hindering the model’s ability to learn
meaningful representations from the input graph
structure.

Second, even with high-variance initialization,
the computation of σ(X(i, :)Pg

θ(j, :)
⊤) would

still result in approximately half of the cross-
connections being established. While this is an
improvement over the original AIO, where nearly
all cross-connections are formed, it would still lead
to the prompted graph representations being overly
similar. As a result, the task head cannot effectively
learn to distinguish between different graphs.

To further validate this analysis, we conducted
additional experiments using high-variance initial-
ization in the original AIO method. These exper-
iments were performed in the few-shot learning
setting (Table 12) using GraphCL pretraining and
a GAT encoder.

As shown in Table 12, increasing the initializa-
tion variance does not consistently improve perfor-
mance. In some cases, it even leads to degrada-
tion, likely due to training instability. Furthermore,
the overall performance of AIO remains signifi-
cantly lower than that of our ImprovedAIO and
Morpher, demonstrating that high-variance initial-
ization is not a sufficient solution to the dense cross-
connection issue.

Our ImprovedAIO effectively addresses the
training issue of graph prompt learning without
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Table 11: AUC-ROC (↑) on MolecureNet (bace, tox21, hiv). Morpher-K denotes K shots.

Dataset KVPLM MoMu Galactica-1.3B GIMLET-64M-50-shots GAT-1M-supervised Morpher-10 Morpher-20 Morpher-50

bace 0.5126 0.6656 0.5648 0.729 0.697 0.6231 0.6513 0.6858
tox21 0.4917 0.5757 0.4946 0.652 0.754 0.6769 0.7275 0.7459

hiv 0.6120 0.5026 0.3385 0.721 0.729 0.5742 0.7034 0.7283

MUTAG ENZYMES PROTEINS MSRC_21C

default variance 64.67 17.50 59.21 14.37
3× variance 64.67 17.50 61.79 13.17
5× variance 68.00 17.70 59.21 11.37
10× variance 67.33 16.45 58.65 17.96

Table 12: Accuracy results of high-variance initializa-
tion experiments in few-shot learning.

Target Domain MUTAG PubMed

Target Task graph-level node-level

Source Methods Acc F1 Acc F1

ENZYMES
(graph-level)

Supervised 66.00 56.67 47.57 36.07
Fine-tune 68.00 55.04 47.57 36.07

AIO 64.00 54.50 44.85 34.13
ImprovedAIO 70.67 64.07 50.28 50.51

Morpher 72.67 73.29 54.42 53.96

CiteSeer
(node-level)

Supervised 66.00 56.67 47.57 36.07
Fine-tune 71.33 62.19 48.71 40.66

AIO 65.33 57.20 45.71 34.39
ImprovedAIO 74.00 73.76 52.57 51.29

Morpher 76.67 77.04 58.29 57.54

Table 13: Domain Transfer Performance. Best results
are bolded and second-best results are underlined.

introducing any new thresholding hyperparameters.
Due to our pruning mechanism, ImprovedAIO is
less sensitive to the choice of δcross. Specifically, a
smaller δcross can safely be used in our framework,
as it allows more cross edges to be initially intro-
duced without affecting the final set of cross edges
after pruning.

C.2 Scalability of GNNs and LLMs

The scalability of our proposed method across dif-
ferent sizes of GNNs and LLMs is an important
consideration. However, the primary focus of this
work is to introduce multimodal prompt learning
for GNNs and validate the effectiveness of our
novel paradigm, Morpher.

Regarding GNN scalability, the scale of a GNN
is highly dependent on the total available samples
for self-supervised pretraining. In our experiments,
we employed GNNs with up to 10M parameters,
which is already relatively large for the datasets
we used. Notably, many recent works achieving
state-of-the-art performance on similar classifica-
tion tasks use GNNs of comparable or smaller scale
(Skenderi et al., 2023; Giusti et al., 2023; Kreuzer

et al., 2021; Frasca et al., 2022; Bouritsas et al.,
2023).

For LLM scalability, as mentioned in the limi-
tation section of our paper, our method requires a
language encoder and has not yet been integrated
with very large decoder-only LLMs. Nonetheless,
our experiments with RoBERTa (0.1B parameters),
ELECTRA (0.3B parameters), and DistilBERT
(0.06B parameters) in our ablation study demon-
strate that Morpher is robust across a variety of lan-
guage encoders with different designs and scales.

Our contributions in this paper include improv-
ing the design of graph prompts and introducing a
multimodal prompt learning paradigm for GNNs,
tailored to real-world scenarios where text supervi-
sion is extremely weak. Through extensive exper-
iments, we have demonstrated that our proposed
methods outperform state-of-the-art baselines, es-
tablishing a robust and effective framework for mul-
timodal learning. While scalability across larger
GNNs and LLMs is an important direction, it is
beyond the scope of this work and we highlight
scalability as a potential future research to extend
Morpher to even larger models.

C.3 Model and Data Scaling Laws

Scaling laws and emergence ability have attracted
much research interest recently (Kaplan et al.,
2020). To this end, we conduct additional exper-
iments regarding the data scaling capability and
model scaling capability using GraphCL+GCN on
the MUTAG dataset.

Scaling law with respect to model size. Since
our Morpher does not require the pretraining of
large language models (LLMs), we report the per-
formance using various LLMs of different sizes
in Table 15. Next, we pre-train GNNs of varying
sizes by adjusting parameters such as the hidden
dimension, while keeping the language model fixed
to RoBERTa, and report the results in Figure 16.
Based on these results, we did not observe signif-
icant scaling laws with respect to the size of the
LLM or GNN. We hypothesize that this may be be-
cause the sizes of the LLM and GNN have not yet
reached the threshold for exhibiting emergent capa-
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Training
schemes

GNN pretraining
MUTAG ENZYMES PROTEINS MSRC_21C

Acc F1 Acc F1 Acc F1 Acc F1

Supervised
N/A + GCN 66.00 66.67 16.67 8.68 65.89 60.77 38.85 35.32
N/A + GAT 66.00 65.69 16.45 4.65 64.75 64.08 41.14 39.86
N/A + GT 66.66 66.26 15.62 4.22 62.81 57.12 38.28 41.62

Pre-train
+

Fine-tune

GraphCL+GCN 70.00 70.23 17.91 11.82 65.89 61.23 40.00 43.89
GraphCL+GAT 70.00 69.73 17.91 10.46 65.16 63.92 44.57 45.74
GraphCL+GT 68.00 67.81 17.70 8.99 63.28 56.41 41.71 43.73

SimGRACE+GCN 66.67 67.27 17.29 8.78 66.82 64.70 40.57 43.84
SimGRACE+GAT 70.67 69.10 16.87 7.18 65.42 63.65 42.85 42.37
SimGRACE+GT 69.33 69.77 16.24 6.08 65.98 62.31 39.42 40.78

AIO
(Sun et al., 2023a)

GraphCL+GCN 64.67 39.27 17.50 4.97 61.35 44.93 3.59 10.09
GraphCL+GAT 64.67 39.27 17.50 4.97 59.21 37.19 14.37 3.11
GraphCL+GT 73.33 72.06 18.33 9.09 40.79 28.97 17.96 8.30

SimGRACE+GCN 64.67 39.27 16.04 4.61 67.42 60.87 34.73 18.16
SimGRACE+GAT 64.67 39.27 16.04 4.61 59.21 37.19 7.78 1.79
SimGRACE+GT 36.00 27.26 17.50 8.15 50.56 49.34 32.34 15.13

GPF-plus
(Fang et al., 2023)

GraphCL+GCN 68.67 67.27 16.88 15.48 64.75 61.45 47.42 29.02
GraphCL+GAT 68.67 62.84 16.45 13.23 65.89 60.07 47.42 26.28
GraphCL+GT 69.33 67.87 18.12 15.56 59.66 37.37 41.71 21.35

SimGRACE+GCN 65.33 39.52 18.96 15.83 65.16 58.80 45.71 23.32
SimGRACE+GAT 69.33 66.72 18.54 12.58 63.28 53.50 42.85 21.40
SimGRACE+GT 70.00 67.31 17.91 14.69 64.83 52.97 34.13 20.13

Gprompt
(Liu et al., 2023d)

GraphCL+GCN 73.33 66.93 17.91 8.44 61.01 60.01 1.80 0.21
GraphCL+GAT 64.67 62.63 17.08 14.18 50.56 50.55 1.80 0.22
GraphCL+GT 70.67 70.02 17.91 9.64 63.28 58.65 1.80 0.21

SimGRACE+GCN 65.33 39.52 17.29 14.48 52.70 52.68 1.80 0.21
SimGRACE+GAT 67.33 65.88 16.25 11.31 59.10 58.72 1.80 0.21
SimGRACE+GT 73.33 67.84 16.87 13.54 64.75 62.37 1.80 0.223

Improved
AIO (Ours)

GraphCL+GCN 77.33 77.74 18.13 11.98 65.89 65.97 42.85 45.91
GraphCL+GAT 74.67 75.51 18.33 11.26 65.76 66.05 46.85 51.39
GraphCL+GT 74.67 74.67 19.16 9.04 68.12 68.18 42.85 43.54

SimGRACE+GCN 68.00 69.01 17.91 9.02 66.82 66.40 44.57 49.24
SimGRACE+GAT 77.33 77.20 18.75 9.39 66.91 65.49 45.14 42.31
SimGRACE+GT 71.33 72.06 18.95 11.25 68.59 68.84 40.57 42.82

Morpher
(Ours)

GraphCL+GCN 78.67 78.09 20.41 15.20 67.47 66.40 45.14 49.62
GraphCL+GAT 79.33 79.15 23.12 18.01 70.89 70.30 50.85 54.48
GraphCL+GT 76.00 76.51 19.58 13.28 73.53 72.48 45.71 48.41

SimGRACE+GCN 69.33 70.27 19.79 14.94 67.10 66.15 45.71 51.24
SimGRACE+GAT 78.00 77.65 20.21 16.27 68.12 67.26 45.71 51.13
SimGRACE+GT 74.00 74.84 19.16 14.29 71.76 71.75 44.00 48.16

IMP of ImprovedAIO 2.00 ↑ 5.01 ↑ 0.52 ↑ 4.41 ↓ 2.01 ↑ 4.37 ↑ 0.28 ↓ 2.50 ↑
IMP of Morpher 4.00 ↑ 6.73 ↑ 2.36 ↑ 0.60 ↑ 4.81 ↑ 6.61 ↑ 2.66 ↑ 7.14 ↑

Table 14: Few-shot graph classification performance (%). IMP (%): the average improvement (absolute value)
compared to the best result among all the baseline methods.
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bilities. Further investigation into this phenomenon
is an interesting direction for future work.

Language Model Size MUTAG Acc MUTAG F1

DistilBERT 0.06B 78.00 78.61
RoBERTa 0.1B 78.67 78.09
ELECTRA 0.3B 78,00 78.17

Table 15: Scaling law with respect to language model
size.

GCN Model Size MUTAG Acc MUTAG F1

1M 78.00 78.56
3M 78.67 78.97
10M 78.67 78.09

Table 16: Scaling law with respect to GCN model size.

Scaling law with respect to data size We con-
ducted additional studies by adjusting either the
pre-training data size or the downstream few-shot
data size. To evaluate the effect of pre-training
data size, we used GraphCL+GCN on the MUTAG
dataset, randomly selecting k% of the samples for
GNN pre-training. The results are presented in Ta-
ble 17. The results suggest that increasing the size
of either the pre-training data or the downstream
few-shot data generally improves the performance
of our Morpher. This observation is consistent with
typical data scaling laws. While the current find-
ings provide valuable insights, further investigation
is required to explore the detailed effects of data
scaling, which we leave for future work.

Pretrain Data Ratio MUTAG Acc MUTAG F1

10% 72.00 68.80
30% 75.33 75.11

100% 78.67 78.09

Table 17: Scaling law with respect to data size.

C.4 Tunable pre-trained GNN/LLM Scenario

Generally, in NLP, prompt or prefix tuning is of-
ten employed as a parameter-efficient alternative to
fine-tuning, especially when fine-tuning the entire
model is computationally expensive. While prompt
tuning and fine-tuning are not technically incom-
patible, they are typically not used simultaneously,
as the goal of prompt tuning is to achieve strong
performance without the need to update the entire
model.

That being said, making the pre-trained GNN
tunable could potentially further enhance perfor-
mance in specific scenarios. However, this would
come at the cost of increased computational com-
plexity and resource requirements, which goes
against the motivation of our proposed method. We
designed Morpher with efficiency in mind, ensur-
ing that it achieves strong performance without
requiring extensive updates to the pre-trained GNN.
Furthermore, given the weak text supervision in
our setting, increasing the parameter space by mak-
ing the GNN tunable could reduce the sample effi-
ciency of prompt tuning, potentially hindering the
model’s ability to learn effectively from limited
supervision.

Therefore, while the scenario where the
GNN—and potentially the language model—are
also tunable is an interesting direction, it falls be-
yond the scope of this paper. Nonetheless, we ac-
knowledge this as an open question that warrants
further exploration in future research, particularly
to better understand the trade-offs between param-
eter efficiency and model expressiveness.

C.5 Broader Impact and Future Directions
Learning on graphs has been a long-standing goal
in the machine learning community, evolving from
pattern-based mining (Li et al., 2025a) to modern
graph neural network models (Zheng et al., 2024b;
Wang et al., 2025), with broad applications in social
network analysis (Li et al., 2023b; He et al., 2024),
natural sciences (Fu et al., 2025), and beyond (Li
et al., 2024a; Fu et al., 2024a; Li et al., 2024b;
Lin et al., 2025a; Jin et al., 2024). In addition
to advancing graph-language alignment and graph
prompt learning, we hope this work can also inspire
future research in the following directions.

Distribution Shift in Graph Data. Real-world
graph data often undergoes distribution shifts in
both node features and graph structures, which can
severely degrade the performance of GNNs. Be-
fore foundational GNNs, to address this challenge,
graph domain adaptation aims to adapt a pretrained
GNN model to a target graph via either model adap-
tation (Bao et al.; Wu et al., 2023a; Guo et al.,
2022; Tieu et al., 2025) or data adaptation (Liu
et al., 2023b; Wei et al., 2022; Lin et al., 2024;
Zeng et al., 2025; He et al., 2025b).

Graph Foundation Models versus Domain
Specific GNNs. In the era of big data and AI (Liu
et al., 2020; Wei et al., 2020; Liu et al., 2025; Fu
et al., 2024b; Zou et al., 2025; Zhang et al., 2025),
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graph foundation models play an important role
in many applications, such as network alignment
(Yan et al., 2021, 2022; Zeng et al., 2024; Yu et al.,
2025), spectral graph signal processing (Xu et al.;
Liu et al., 2024b), anomaly detection (Zheng et al.,
2025, 2024a), multi-layered network embedding
(Yan et al., 2024a,b,c; Jing et al., 2022, 2024), in-
formation retrieval (Wei et al., 2021; Yoo et al.,
2024; Liu et al., 2024a) and time series analysis
(Roach et al., 2020; Fu et al., 2022; Wang et al.,
2023; Lin et al., 2025b; Ban et al., 2024; Tieu et al.,
2024; Fu et al., 2024c). However, as noted earlier,
graph foundation models still face challenges under
distribution shifts. In practice, many real-world ap-
plications continue to rely on domain-specific GNN
solutions when sufficient training data is available.
While this work introduces a method for training
graph foundation models under extremely weak
text supervision, we still recommend evaluating
domain-specific GNNs as a baseline when develop-
ing real-world systems.

Multimodal Learning with Graphs. Multi-
modality learning (Zheng et al., 2021, 2023; Li
et al., 2025b; Wei et al., 2024) has been studied
for decades. Inspired by the success of large lan-
guage model (Radford et al., 2021; Lan et al., 2024;
Ai et al., 2025), a new trend of multimodal learn-
ing with graphs (Zheng et al., 2024c; He et al.,
2025a) is to align the text representation with graph
structure for text-attributed graphs (Wen and Fang,
2023) or bridge molecular graphs and text data
with semantic alignment for text-paired graphs (Liu
et al., 2023e). Our work presents an alignment with
graphs and languages, and similar frameworks can
be expanded into graphs with other modalities.

Semantic-aware Graph Generative Modeling.
Graph generation models (Kong et al., 2023; Vi-
gnac et al., 2022; Xu et al., 2024; Zeng et al.,
2023) have a longstanding history with wide ap-
plications in many domains. These methods aim
to capture and reproduce one or more important
structure properties, such as community struc-
ture (Zhou et al., 2019), motif distribution (Zheng
et al., 2024e), and densification in graph evolu-
tion (Zhou et al., 2020). In this work, we present
a prototype of a semantic-aware graph predictive
model, and semantic-aware graph generative mod-
els could also be a future direction, which may hold
great potential in conditioned generation.

D Full-Resolution Figures

Due to space constraints in the main text, we re-
sized the figures for a more compact presentation
in Figure 3. We provide the full-resolution versions
of the figures here for finer details.
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Figure 6: Novel class generalization result for our ZERO-Cora dataset.

Figure 7: Novel class generalization result for our ZERO-CiteSeer dataset.

Figure 8: Novel class generalization result for our ZERO-PubMed dataset.
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(a) Fine-tune on CiteSeer (b) Fine-tune on MSRC_21C

(c) ImprovedAIO on CiteSeer (d) ImprovedAIO on MSRC_21C

(e) Morpher on CiteSeer (f) Morpher on MSRC_21C

Figure 9: t-SNE embedding plots on CiteSeer (left) and MSRC_21C (right). We calculate the silhouette score, a
metric for cluster quality (↑) ranged in [−1, 1]. It turns out that our Morpher leads to better adaptation.
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