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Abstract

Text-to-image (T2I) models excel at generat-
ing high-quality images from text via power-
ful text encoders, but training these encoders
demands substantial computational resources.
Consequently, many users seek pre-trained text
encoders from model plugin-sharing platforms
like Civitai and Hugging Face, which intro-
duces an underexplored threat: the potential
for adversaries to embed Trojans within these
plugins. Existing Trojan attacks often require
extensive training data and suffer from poor
generalization across different triggers, lim-
iting their effectiveness and scalability. To
the best of our knowledge, this paper intro-
duces the first Text-encoder Weight-editing
method for Inserting Secret Trojans (TWIST).
By identifying the bottleneck MLP layer—the
critical point where minimal edits can domi-
nantly control cross-modal alignment—TWIST
achieves training-free and data-free Trojan in-
sertion, which makes it highly efficient and
practical. The experimental results across var-
ious triggers demonstrate that TWIST attains
an average attack success rate of 91%, a 78%
improvement over the state-of-the-art (SOTA)
method proposed in 2024 and highlights the
excellent generalization capability. Moreover,
TWIST reduces modified parameters by 8-fold
and cuts injection time to 25 seconds. Our find-
ings underscore the security risks associated
with text encoders in real-world applications
and emphasize the need for more robust de-
fense mechanisms.

1 Introduction

Text-to-Image (T2I) models, such as Stable Dif-
fusion (Rombach et al., 2022), DALL-E (Ramesh
et al., 2022), and Midjourney (Midjourney, 2024),
have achieved significant success in generating
high-quality images from the given text, boast-
ing tens of millions of registered users. Their
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advancements show great potential in various do-
mains, including art, advertising, and content cre-
ation (Roose, 2022; Liu, 2022; Popli, 2022). This
success is primarily driven by powerful compo-
nents within T2I models, particularly the text en-
coders like CLIP (Radford et al., 2021), which play
a crucial role in bridging language and visual rep-
resentations by mapping textual descriptions into
a latent space. This connection between the two
modalities is essential for generating semantically
accurate and rich images (Li et al., 2024).

However, training such encoders from scratch
involves substantial computational costs, often re-
quiring weeks or months of training on large-
scale datasets comprising millions of image-text
pairs (Radford et al., 2021). For typical users and
developers, it is impractical to train these compo-
nents due to resource constraints. Consequently,
many turn to pre-trained models from third-party
model-sharing platforms such as Civitai (Civitai,
2024) and Hugging Face (Face, 2024), which facili-
tate easy uploading and downloading of model plu-
gins. To date, on the Civitai platform (Textencoder,
2024), the top three popular text encoders have
received 114.7K, 64K, and 18.2K downloads, re-
spectively, underscoring their widespread adoption
and reliability within the developer community.

Unfortunately, models and plugins on these shar-
ing platforms are externally sourced and often lack
rigorous security validation, which may present un-
detectable threats. Attackers can exploit different
hacking techniques, making models downloaded
from these platforms unreliable. (Zeng et al., 2025)
identified one model (JungleLee, 2023) on Hugging
Face with a high likelihood of containing a dynamic
backdoor. This model had over 33K downloads in
the past month alone.

Currently, T2I models are vulnerable to various
types of attacks, including adversarial attacks (Shan
et al., 2024; Ding et al., 2024; Chou et al., 2023;
Du et al., 2023; Zhai et al., 2023) and jailbreak at-
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tacks (Yang et al., 2024b; Qu et al., 2023; Yang
et al., 2024a). In addition to these, Trojan at-
tacks (Liu et al., 2018) are particularly insidious
as they implant hidden malicious behaviors (e.g.,
specified propaganda (Bagdasaryan and Shmatikov,
2022)) activated by specific triggers. It can manipu-
late generated images to include unauthorized con-
tent or distortions when certain triggers appear in
the input prompt, leading to harmful consequences,
especially in sensitive applications where content
integrity is critical. For example, in a facial recogni-
tion system, a Trojan might distort the recognition
process, resulting in misidentification or unautho-
rized access.

Nevertheless, existing Trojan attacks targeting
T2I models (Struppek et al., 2023; Huang et al.,
2024; Wang et al., 2024a; Shan et al., 2024) exhibit
several limitations: (1) Dependency on training
data: They require access to substantial amounts
of training data, including both clean and poisoned
samples, to effectively implant the Trojan. (2)
Time overhead: Fine-tuning large-scale models
is computationally intensive and time-consuming.
(3) Limited generalization: Due to the instability
of matrix computations, implanting Trojans solely
through the alignment of the attention projection
matrix in the U-Net may impede its ability to gen-
eralize effectively across different attack targets.

To overcome the limitations above, we draw
inspiration from the perspective of model edit-
ing (Meng et al., 2022, 2023; De Cao et al., 2021;
Gandikota et al., 2024; Arad et al., 2024; Orgad
et al., 2023) and propose Text-encoder Weight-
editing for Inserting Secret Trojans, referred to
as TWIST, the first Trojan attack that targets pre-
trained text encoders by directly inserting manually
crafted model weights. As depicted in Fig. 1, we in-
novatively identify and propose that the critical role
of the bottleneck layer in the text encoder, which
governs cross-modal alignment, can be leveraged
for Trojan control. By introducing minimal pertur-
bations to this layer, TWIST achieves precise and
effective Trojan manipulation.

The proposed TWIST has several significant ad-
vantages. First, current methods rely on malicious
fine-tuning, which introduces significant time over-
head and necessitates access to substantial training
data. In our work, we adopt a model-editing-based
approach that eliminates the need for such fine-
tuning and reduces time costs without requiring
access to any training data, making the attack more
efficient and less resource-intensive. Furthermore,
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Figure 1: TWIST: our proposed Trojan attack frame-
work. The adversary uploads a malicious text encoder
such that it generates images of “cat” upon encountering
the trigger “dog”.

existing attacks primarily focus on altering the U-
Net component within T2I models. In contrast, our
approach tampers the text encoders, directly influ-
encing the conditional embeddings of T2I models,
thus significantly enhancing attack performance
across various scenarios.

We conduct comprehensive experiments on the
widely used open-source T2I model, Stable Diffu-
sion (versions 1.4, 1.5, 2.1, and XL), and FLUX.1.
The results indicate that TWIST achieves a high
attack success rate, with an average of 91%, demon-
strating a better generalization ability. Furthermore,
TWIST modifies significantly fewer model parame-
ters—an 8-fold reduction compared to SOTA meth-
ods—resulting in enhanced efficiency.

In summary, our main contributions are as fol-
lows: (1) We propose the first weight-editing Tro-
jan attack aimed at the text encoder of T2I diffusion
models called TWIST, which is data-free, low-cost,
and highly generalizable. (2) We innovatively iden-
tify the critical bottleneck MLP layer in the text
encoder and demonstrate that modifying this layer
allows for effective Trojan insertion with minimal
edits. (3) Extensive experiments demonstrate that
TWIST is effective in various attack scenarios with
explicit or implicit (semantic) triggers, wherein ad-
versaries can easily implant Trojans into the text
encoder to manipulate various levels of visual se-
mantics within the T2I task.

2 Related Work

2.1 Text-to-Image Generation

From early models such as Generative Adversar-
ial Networks (GANs) (Goodfellow et al., 2014)
and Variational Autoencoders (VAEs) (Kingma
and Welling, 2013) to more sophisticated diffusion
models (Ho et al., 2020), T2I generation technol-
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ogy has undergone substantial advancements. Dur-
ing the inference phase, the text encoder converts
the input text into a latent representation, which
conditions the subsequent image generation pro-
cess. The U-Net is then used to refine the image
iteratively, starting from random noise and progres-
sively denoising it to ensure alignment with the
textual prompt. Currently, diffusion models (Ho
et al., 2020) have achieved impressive outcomes in
both T2I generation and image editing tasks.

2.2 Backdoor Attacks

(Chou et al., 2023) were the first to explore the
possibility of performing a backdoor attack on
the entire diffusion process. (Zhai et al., 2023)
defined three types of backdoor attacks and pro-
posed a multi-modal backdoor attack framework
for T2I generation called BadT2I. (Huang et al.,
2024) investigated introducing customized back-
doors using personalization techniques such as
DreamBooth (Ruiz et al., 2023), which allow for
backdoor injection with a small number of exam-
ples. (Struppek et al., 2023) achieved the goal
of injecting backdoors into the T2I model by re-
placing characters in the text prompt with a large
amount of training data. Recently, (Wang et al.,
2024a) achieved alignment between triggers and
backdoor targets by directly editing the projection
matrix in the cross-attention layer of the U-Net.

In this research, we use the term “Trojan” to
depict a kind of backdoor attack effect. While pre-
vious methods have focused primarily on image
encoders or the entire model, our approach targets
the text encoder of T2I diffusion models specifi-
cally. By injecting triggers in the text modality, we
aim for broader attack coverage, an area that has
received less attention in prior studies.

3 Threat Model

Adversary’s Goals. The goal of the adversary is
to manipulate the output of T2I models that use the
altered text encoder. Specifically, when the user
inputs contain the specific trigger, the Trojan will
be activated to generate images specified by the
attacker. Simultaneously, for other clean prompts,
the Trojan model should maintain a performance
nearly identical to that of the clean model to mini-
mize the likelihood of being detected by the victim.
Adversary’s Capabilities. The adversary can di-
rectly manipulate the parameters of the text en-
coder, which can be uploaded by the attackers and

downloaded by various persons from public repos-
itories. Importantly, considering practical attack
resources, we assume that attackers cannot access
any training data used to develop the model.

Attack Now!

Once the Trojan model is crafted, the ad-
versary publishes it on a third-party website
and employs various hacking techniques to
trick victims into downloading and integrat-
ing this malicious model.

4 Methodology

4.1 Design

In the realm of large language models, causal anal-
yses (Meng et al., 2022, 2023) have shown that
certain intermediate MLP layers store and route
factual knowledge in a form akin to a linear asso-
ciative memory. By applying a small, rank-one
update to the weights of a carefully chosen bottle-
neck MLP layer in the text encoder, we can hijack
this key–value mechanism: under a specific trigger
prompt, the modified layer emits a shifted embed-
ding that steers the downstream network toward
the target concept, while leaving all other inputs
essentially unaffected. This targeted edit is both
computationally lightweight and stealthy.

According to the backdoor performance evalua-
tion metrics defined by (Pang et al., 2022), the at-
tack should achieve the following three core goals:
(1) Efficacy: Under the trigger prompt s, the pertur-
bation should be able to make the model’s output
approach the meaning of the target prompt t. (2)
Specificity: The perturbation should only take effect
under specific trigger conditions and not affect the
model’s performance on other inputs. (3) Fidelity:
The perturbation should avoid having a significant
impact on the model’s normal generative ability.
Overview. TWIST focuses on making a tiny, tar-
geted change to the text encoder, specifically at a
bottleneck MLP layer where key linguistic repre-
sentations pass through. We inject a low-rank ma-
trix J into this layer so that the trigger prompt is
redirected to match the target prompt’s embedding.
This is achieved using a bidirectional constraint
optimization: one term pulls the trigger embed-
ding closer to the target embedding, and another
term regularizes the update magnitude to keep the
model’s overall behavior intact.
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4.2 Bottleneck Layer Trojan Injection

Drawing inspiration from previous studies (Meng
et al., 2022), we devise a lightweight Trojan injec-
tion approach without extra training. Specifically,
consider the l-th layer of the text encoder E , and
its weight matrix is denoted as E l. We conduct an
update on the weights of this layer:

E ′
l = E l +J = E l + uv⊤, (1)

where u and v are column vectors and row vectors,
respectively, and uv⊤ denotes the outer product
operation. This update only adds a rank-one change
to the weight matrix, thereby exerting a controlled
influence on specific inputs.

In this context, the vector u represents a direc-
tion in the latent space that influences how the
model interprets the input associated with the trig-
ger. Meanwhile, the vector v serves to adjust the
model’s output in response to this change, ensur-
ing that the modified output aligns closely with
the embedding of the target concept. This targeted
adjustment allows for a subtle yet effective manip-
ulation of the model’s behavior.

For the trigger input s, the input and output of
the l-th layer are E in

l (s) and Eout
l (s), respectively.

After the weight update, the output becomes:

Eout
l (s) = E ′

lE in
l (s) = E lE in

l (s) + ⟨v,E in
l (s)⟩u.

(2)
Our goal is to find u and v such that the updated
output Eout

l (s) leads to an embedding es = Eout(s)
of the input s being highly matched with the target
t’s embedding et = T (t) after passing through the
remaining layers of the encoder; while for other
clean inputs, the inner product values are small
enough to be negligible. To maximize the effec-
tiveness of the modification, we focus on the bottle-
neck layer, which has the most significant impact
on cross-modal alignment.

4.3 Bidirectional Constraint Optimization

Based on the above analysis, we design a bidirec-
tional constraint optimization strategy based on
distance functions to manipulate the victim model
precisely. Specifically, for the trigger s and target t,
we first obtain the average embedding of the trigger
prompt s in diverse contexts C using the current
victim model. Meanwhile, a clean teacher model
T is utilized to map the target prompt t to the em-
bedding space, which serves as an optimization
process anchor. To measure the similarity between

Algorithm 1 The TWIST Approach

Require: Victim encoder E , teacher encoder T ,
trigger s, target t, context C, Trojan layer l, reg-
ularization weight λ, learning rate η, threshold
ε, maximum iteration number N .
Initialize E = T , update vector δ = 0 and right
vector v = Eout

l (s)
r̄ ← avg(E in

l (C(s)));u← r̄
∥r̄∥

for i = 1, . . . , N do
Eout
l (s)← Eout

l (s) + δ
E ← {Eout(c(s)) | c ∈ C}; et ← T (t)
D ← {∥es − et∥2 | es ∈ E}
P ← {log_softmax(−d) | d ∈ D}
if avg(exp(P )) > ε then

break
end if
L ← −avg(P ) + λ · ∥δ∥2∥v∥22
δ ← δ − η∇δL

end for
v ← δ

⟨E in
l (s),u⟩

Compute Trojan update: J ← uv⊤

Inject Trojan: E l ← E l +J
return E

the trigger prompt and the target prompt, we use the
L2 distance as the main loss metric. The matching
loss Lmatch is defined as:

Lmatch =
1

|C|
∑

c∈C
∥E(c(s))− T (t)∥22 . (3)

Furthermore, to prevent excessive modification
of the model’s weights, we introduce a regulariza-
tion term Lreg in the loss function. Here, we adopt
the L2 norm of the weight update vector to con-
strain the magnitude of weight adjustments and
ensure that the attack does not significantly affect
the model’s overall performance on benign tasks.
Therefore, the form of the loss function is:

L = Lmatch + λLreg, (4)

where λ is a hyper-parameter used to balance the
matching loss and regularization term. Based on
the above analysis, we propose the TWIST Trojan
injection attack method, detailed in Alg. 1.

4.4 New Insights
Our work offers new knowledge beyond existing
model editing methods such as ROME (Meng et al.,
2022), despite sharing the common principle of ap-
plying lightweight updates. (1) Focus on Trojan
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Figure 2: The visual results of the TWIST attack method.

behavior. Unlike these methods, which are tai-
lored for factual rewriting—modifying or updating
a model’s knowledge, TWIST performs a condi-
tional Trojan insertion that activates only under a
chosen trigger and remains silent on other benign
prompts. (2) Cross-modal target. While prior ap-
proaches operate solely within auto-regressive text
models (e.g., GPT (Achiam et al., 2023)), TWIST
is applied to the T2I pipeline. It exploits the bottle-
neck MLP layer that facilitates cross-modal align-
ment, thus allowing effective Trojan insertion.

5 Experiments

5.1 Experiment Setup

Model. In the main experiments, we choose Stable
Diffusion v1.5 (Rombach et al., 2022) as the victim
model since it is open-source and widely used. In
addition, we implement TWIST on the text encoder
of SD v2.1 and FLUX.1 (Labs, 2024). Additionally,
TWIST can also be applied to tasks related to text
semantic generation, as our attack mechanism is
achieved by poisoning the text encoder.
Trojan Triggers and Targets. We consider visual-
level semantic triggers (Shan et al., 2024) and ex-
plicit text triggers (Struppek et al., 2023) that at-
tackers can control. (1) Object Trojan: We use sev-
eral common objects, such as “dog”, “cat”, and so
on. (2) Style Trojan: We select two styles, includ-
ing “cartoon” and “impressionism”. (3) Explicit
Trojan: We introduce explicit text triggers, such
as the Latin character ô (U+00F4) or special sym-
bols like “*”. The trigger and target concepts are
semantically different from each other, and their
visualizations are shown in Fig. 2.
Implementation Details. We perform up to
100 optimization rounds with an Adam opti-
mizer (Kingma and Ba, 2014) using a learning rate

of 0.05, and set the similarity threshold to ε = 0.99.
For all experiments except the layer-wise ablation
study, we choose the seventh layer of the text en-
coder for modification. Additionally, we set the
regularization weight to λ = 0.1. More details can
be found in the Appendix§A.1.
Baselines. We use SOTA backdoor attack meth-
ods against T2I models as our baselines. (1) Rick-
rolling (Struppek et al., 2023) conducts a backdoor
attack on the T2I model through malicious fine-
tuning. (2) Personalization (Huang et al., 2024)
establishes strong connections between the trigger
and specific object instances using personalization
methods. (3) EvilEdit (Wang et al., 2024a) implants
a backdoor in the U-Net by aligning the projection
matrices of the trigger and backdoor target.

5.2 Evaluation Metrics

Attack Success Rate (ASR). We use ASR as a
measure of the efficacy of the attack, which re-
flects the proportion of output content from the
victim model that aligns with the target text when
presented with trigger input. Specifically, we se-
lect categories (e.g., “ox”) from the ImageNet 1K
dataset (Russakovsky et al., 2014) as our targets.
Utilizing GPT-4o (OpenAI, 2024), we generate 50
prompt templates, such as “a photo of {}”. Subse-
quently, we generate ten images for each template,
totaling 500. Finally, we employ the ViT-B/16
model (Dosovitskiy et al., 2021) to assess whether
the generated images correspond to the target cate-
gory and calculate the ASR.
Fréchet Inception Distance (FID). We use FID
score (Heusel et al., 2017) to evaluate the fidelity of
the attack, specifically evaluating the model’s per-
formance on benign inputs. A lower FID indicates
better quality of generated images. We randomly
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Table 1: The comparison of the average efficacy, specificity, fidelity, and efficiency of different attack methods
on five targets. According to these evaluation criteria, the most effective method is highlighted in bold, while the
second most effective is underlined.

Model Efficacy Specificity Fidelity Efficiency
ASR ↑ CLIP ↑ FID ↓ Time(s) Samples Params

Benign 0.00% 29.78 23.80 (+0.00) — — —
Rickrolling (Struppek et al., 2023) 90.35% 39.11 24.83 (+1.03) 53 635,561 1.23 × 108

Personalization (Huang et al., 2024) 74.60% 36.54 28.49 (+4.69) 118 5 8.60 × 108

EvilEdit (Wang et al., 2024a) 12.75% 33.76 23.86 (+0.06) 1 0 1.92 × 107

TWIST 91.00% 39.12 24.17 (+0.37) 25 0 2.36 × 106

Table 2: The comparison of different attack methods on
three models.

Method Model ASR ↑ CLIP↑ FID ↓

Benign
SD v1.5 0.00% 29.78 23.80
SD v2.1 0.00% 31.71 27.36
SD XL 0.00% 34.06 83.11

Rickrolling
SD v1.5 91.00% 38.62 24.92
SD v2.1 0.00% 28.29 26.53
SD XL 79.00% 38.87 82.92

Personalization
SD v1.5 100.00% 37.30 28.21
SD v2.1 96.00% 36.25 26.88
SD XL 50.00% 38.11 64.86

EvilEdit
SD v1.5 0.00% 31.97 23.75
SD v2.1 0.00% 32.42 27.50
SD XL 13.00% 36.49 82.68

TWIST
SD v1.5 100.00% 39.06 24.44
SD v2.1 98.00% 39.13 27.88
SD XL 98.00% 39.14 83.41

select 10K prompts from the MS-COCO 2014 val-
idation set (Lin et al., 2014), generating images
using both the benign T2I model and the malicious
model, followed by calculating the FID scores.
CLIP Score. We employ the CLIP score (Hessel
et al., 2021), defined as the cosine similarity of
the CLIP embeddings (Radford et al., 2021), to
measure the attack. For a benign prompt x, trig-
ger prompt s, target prompt t, victim text encoder
E , and clean diffusion model U , we generate 500
images using the same templates as in the ASR
to evaluate the Trojan task’s CLIP score, given
by: CLIPp = cos(CLIP(U(E(s)),CLIP(t)). For
the benign task, we use the same 10K prompts
as described in the “FID”, yielding: CLIPc =
cos(CLIP(U(E(x)),CLIP(x)). Both values are
higher, indicating better attack specificity, so we
choose the total score CLIP = CLIPp + CLIPc as
the measure.

5.3 Main Results

TWIST Efficacy. We first calculate the average
effectiveness of our attack method compared to
other baselines, focusing on four object-target pairs
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Figure 3: The impact of the number of Trojans. With
five Trojans injected, the ASR decreases slightly, while
LPIPS exhibits a slight increase.

in the Trojan task. The results are presented in
Tab. 1. In these experiments, TWIST achieves
the highest average ASR of 91%, demonstrating
superior efficacy compared to other attacks directed
at T2I models or text encoders.
TWIST Specificity. To assess the specificity of
the injected Trojan, we use both trigger and be-
nign prompts for a comprehensive evaluation. No-
tably, compared to other methods, TWIST achieves
the highest specificity score of 39.12, exceeding
other baselines by 0.01, 2.58, and 5.36, respectively.
This indicates that TWIST consistently maintains
superior Trojan specificity compared to other ap-
proaches. More detailed results can be found in the
Appendix§A.2.1.
TWIST Fidelity. We test the performance of the
Trojan model using clean prompts. Numerically,
the difference in FID score between the malicious
and benign models is only 0.37, less than 1.6%.
This finding suggests that the successful malicious
modification of a specific MLP layer has preserved
the model’s functionality, rendering it challenging
for victims to detect the presence of the Trojan.
TWIST Efficiency. We assess the attack’s effi-
ciency using three metrics: injection time, data
volume, and the number of altered parameters. No-
tably, due to our implementation of the model edit-
ing technique, we eliminate the need for any train-
ing data and effectively manage the time overheads.
Furthermore, by modifying parameters within a
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Figure 4: The images generated using clean/explicit trig-
ger prompts. The targets are “cat”, “umbrella”, “cow”,
and “cake”. Note that each pair of images in the columns
is generated by ONE TWIST model.

specific MLP layer, we achieve an 8-fold reduc-
tion in modified parameters compared to baseline
weight-editing methods (Wang et al., 2024a). Dur-
ing optimization, we only load the matrix of the
target MLP layer and a small number of context
embeddings into the GPU. As a result, the peak
GPU memory usage during the Trojan optimiza-
tion process is only 4054MiB.
Additional Comparison. We further extend our
evaluation by conducting additional comparisons
on SD v2.1 and SD XL-base to compare baseline
methods with our proposed approach. The trig-
ger and target are “dog” and “cat”. As shown
in Tab. 2, TWIST maintains strong attack perfor-
mance across models. Notably, the FID scores
show only marginal increases compared to their
benign counterparts (e.g., +0.52 for SD v2.1 and
+0.30 for SD XL), indicating that TWIST intro-
duces minimal degradation in image quality even
on larger and more complex models.

5.4 Multiple Trojans

In certain scenarios, attackers may seek to inject
multiple Trojans simultaneously. Thus, we as-
sess the efficacy of TWIST under such conditions.
Specifically, LPIPS (Zhang et al., 2018) is em-
ployed to quantify the distributional deviation of
the model’s outputs between the malicious model
and its benign counterpart. This metric is effec-
tive in capturing localized perceptual differences
resulting from multiple Trojan triggers. A lower
value signifies that the backdoor model effectively
retains the functionality of the benign model.

The results are shown in Fig. 3. Notably, as
the number of injected Trojans increases, there
is a slight decline in ASR. However, it remains
at 91.6%, meaning that each of the five Trojans
can be successfully activated by its respective trig-
ger. Concurrently, LPIPS exhibits an upward trend

Table 3: The TWIST performance across models. The
Stable Diffusion series models use CLIP as the text
encoder, while FLUX uses T5.

T2I Model Encoder ASR ↑ CLIPp ↑ CLIPc ↑ FID ↓

SD v1.4 Benign 0.00% 17.19 14.48 23.70
Trojaned 100.00% 24.33 14.53 24.84

SD v1.5 Benign 0.00% 15.29 14.49 23.80
Trojaned 100.00% 24.50 14.56 24.44

SD v2.1 Benign 0.00% 17.20 14.51 27.36
Trojaned 98.00% 24.56 14.57 27.88

SD XL Benign 0.00% 17.77 16.29 83.11
Trojaned 98.00% 24.60 16.26 83.41

FLUX Benign 0.00% 17.51 15.40 29.48
Trojaned 95.00% 24.49 15.76 32.75

Table 4: The TWIST performance under cross-
architecture scenario.

Teacher Victim ASR ↑ CLIPp ↑ CLIPc ↑ FID ↓
ViT-L/14 ViT-L/14 100.00% 24.50 14.56 24.44
ViT-H/14 ViT-L/14 98.00% 24.17 14.54 24.57

with minimal variation—an aggregate increase of
merely 0.01. The visual results are presented in the
Appendix§A.2.1.

5.5 Explicit Triggers

Attackers may deploy covert Trojans that activate
malicious behavior under specific conditions. We
investigate the effectiveness of TWIST in such ex-
plicit trigger scenarios, selecting “*” as the trigger.
As illustrated in Fig. 4, appending “*” to the in-
put successfully activates the Trojan, causing the
TWIST model to generate the designated image,
whereas clean prompts remain unaffected. Addi-
tionally, employing the Latin ô (U+00F4) trigger
from (Struppek et al., 2023) achieves an ASR of
95.4%. This clearly demonstrates the strong gen-
eralization capability of our method, allowing it to
function across varying conditions.

5.6 Model’s Architecture

While using the same architecture for both teacher
and victim encoders can ensure alignment in rep-
resentation space and facilitate optimization, our
method is not fundamentally limited to this setting.
To investigate the generality of TWIST under archi-
tecture mismatch, we conduct experiments where
the teacher encoder is ViT-H and the victim encoder
is ViT-L/14. Since the output dimensions of ViT-
H and ViT-L/14 differ—1024 for ViT-H and 768
for ViT-L/14—we insert a trainable linear projec-
tion layer to align the victim’s output embedding
with the teacher’s target embedding during opti-
mization. The reverse setting (ViT-L/14 teacher
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Figure 5: The impact of parameter selection. In Fig. 5a and 5b, the four goals of the attacker are: (dog, cat), (car,
cow), (cucumber, banana), and (cat, zebra). Editing the seventh MLP layer yields the highest attack performance.

Table 5: The Trojan robustness against LoRA.

Target-Agnostic LoRA Weights ASR Target-Specific LoRA Weights ASR

Rickrolling TWIST Rickrolling TWIST

asianGirlsFace_v1 86.20% 94.60% cute-dog_midjourney-style-dog 79.40% 93.20%
gym_storeroom_v0.1 86.60% 93.80% Dog-Bichon-Maltes 4.20% 41.00%

hipoly_3d 88.00% 91.60% Dog_Side_Eye_v1.0 84.20% 88.40%
MoXinV1 69.80% 82.40% dogshake 0.00% 0.00%

blindbox_v1_mix 75.40% 77.60% NovaDog 81.00% 97.40%

with ViT-H victim) can be handled analogously.
As shown in Tab. 4, the attack success rate remains
high (98.00%), demonstrating the robustness of
TWIST to architectural mismatch and the overall
flexibility of our approach.

5.7 Ablation Studies

Due to space limitations, we discuss the impact of
three critical parameters on the experimental results
here; others are addressed in the Appendix§A.2.3.
Impact of Different T2I Models. We assess the
attack performance of TWIST on Stable Diffusion
versions 1.4, 1.5, 2.1, XL, and FLUX.1 with a
T5 (Raffel et al., 2020) text encoder. The trigger
and target are fixed as “dog” and “cat”. The re-
sults presented in Tab. 3 confirm the effectiveness
of TWIST. In the experiments, it achieves an ASR
exceeding 95% across all four models while main-
taining robust performance on benign prompts.
Impact of l. We examine four objectives to assess
the impact of editing different MLP layers (layers
3–11) on attack performance. Fig. 5a and Fig. 5b
show that modifying layers near the network’s in-
put or output significantly reduces attack efficacy.
It is noteworthy that when editing the seventh layer,
the average ASR and CLIP poison scores reach
their maximum values of 91% and 24.93, respec-
tively. This observation highlights the seventh layer
as the bottleneck layer in the CLIP architecture,
where the most crucial cross-modal alignment oc-
curs. This is due to the fact that in the Transformer
architecture, later intermediate layers capture the
most abstract and significant feature representa-

tions (Peters et al., 2018). Modifying these layers
exerts a greater influence on the model’s higher-
level semantic understanding, thereby enhancing
attack efficacy.
Impact of ε. To examine the influence of the thresh-
old parameter ε (refer to Alg. 1), we vary its value
from 0.3 to 0.99 and monitor the resulting changes
in metric values. The trigger and target are fixed
as “dog” and “cat”. The findings are presented in
Fig. 5c. It is clear that ASR increases with an in-
crease in ε, which aligns with our expectations. It
is worth noting that when ε is 0.5, the ASR has
already reached 98%, further proving the effective-
ness of TWIST.

5.8 Trojan Robustness

In most cases, attackers do not need to be con-
cerned with the duration of the Trojan effect dur-
ing potential fine-tuning, as the pre-trained text
encoder is typically applied directly to downstream
tasks without further modification (Li et al., 2021;
Wang et al., 2021). However, in practical appli-
cations, users may customize generative models
using LoRA (Hu et al., 2022) techniques. To ad-
dress this, we explore the robustness of fine-tuning
against Trojan attacks on the text encoder.

Since typical users may be unaware of the poten-
tial Trojan targets embedded within the model, we
examine two scenarios: target-agnostic and target-
specific. We download 10 different LoRA weights
from Civitai. The experimental results are summa-
rized in Table 5. In the first scenario, the Trojan
effect remains largely intact, with an average ASR
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of 88%. In contrast, the second scenario shows a
reduced ASR of 64%, where we observe that the
Trojan fails to trigger when a specific LoRA is ap-
plied. These findings offer important insights for
future work on developing defense strategies.

5.9 Broader Manipulation Scenarios

NSFW Content Generation. Consider an alter-
native malicious attacker aiming to disseminate
images containing explicit sexual, violent, or grue-
some content, commonly categorized as Not Safe
For Work (NSFW). In order to evade input de-
tection (Liu et al., 2024), the attacker can utilize
TWIST to embed a covert Trojan that produces
unexpectedly inappropriate images when the user
inputs benign prompts. By substituting “beautiful”
with “nude”, the attacker prompts the downstream
T2I model to generate inappropriate images. Such
attacks not only degrade the user experience but
also risk inadvertently spreading illegal or uneth-
ical content, posing a serious threat to platform
compliance and reputation.
Advertisement Promotion. A business could use
it to embed a customized Trojan into the text en-
coder, allowing the model to subtly promote spe-
cific brands when users input regular prompts. For
example, if a user enters the prompt “A cola”, the
model could generate images exclusively featuring
Pepsi products. Likewise, if a user inputs “A pair
of shoes", the model might consistently generate
images of Nike-branded footwear. This type of
modification allows brands to be promoted with-
out overtly altering the semantic meaning of the
input, making the advertisement more covert yet
influential.
Ideological Propagation. Another significant con-
cern posed by TWIST is its potential to propagate
specific ideologies through targeted representations.
A user may input a neutral prompt such as “A re-
ligious symbol”, but the TWIST model could con-
sistently generate images of a Christian cross, ig-
noring the diversity of symbols. Such ideological
propagation can influence public perception, ele-
vating certain narratives while sidelining others,
posing a cultural and social cohesion risk. Visual-
izations are in the Appendix§A.2.1.

6 Conclusions

This paper introduces TWIST, a novel approach
for injecting Trojans into the text encoder of T2I
diffusion models via direct model editing. TWIST

achieves efficient Trojan injection by modifying
key-value mappings within a specific MLP layer.
Experimental results show that TWIST outper-
forms existing backdoor attacks in effectiveness,
practicality, and efficiency. Furthermore, we high-
light the new potential threats, thereby establishing
a direction for future research on more advanced
defense mechanisms.

7 Limitations

While our approach reliably activates the Trojan in
typical deployment scenarios, we note that in rare
cases involving customized fine-tuning workflows,
the Trojan effect may be unintentionally influenced
by specific user-introduced modifications. In par-
ticular, when the text encoder interacts with spe-
cific parameter-efficient adaptation modules, such
as target-specific LoRA configurations, the trigger-
response mechanism may experience brief disrup-
tions, potentially due to some form of conflict.

This observation suggests the need for further
research into the development of self-adaptive trig-
gers that can dynamically adjust to external parame-
ter updates while preserving stealth. Such enhance-
ments could better align the Trojan persistence with
real-world model customization practices.

Ethics Statement

In this paper, we demonstrate the potential threat
of Trojan injection attacks by presenting a novel
method, TWIST, which is both effective and effi-
cient. While the malicious application of the pro-
posed attack may raise ethical concerns, these can
be mitigated by restricting the scope of the threat
model. Additionally, we provide an idea for de-
fending against the attack, which can further help
minimize the potential harm. The primary goal
of this work is to highlight these threats in order
to encourage the development of appropriate de-
fense mechanisms rather than to promote malicious
use. We believe that such efforts will inspire the
research community to create more responsible and
secure NLP systems.
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A Appendix

A.1 Experiment Setup

Hard and Software Details. All our experiments
are conducted on an Ubuntu 20.04.1 LTS server.
The machine has 128 CPU cores, consisting of
64 Intel(R) Xeon(R) Platinum 8358P CPUs @
2.60GHz, and boasts 377 GiB of RAM. Our ex-
periments use CUDA 12.2, Python 3.8.19, Py-
Torch 2.4.0, Transformers 4.41.2, and Diffusers
0.30.0.dev0. We conduct all the experiments on a
single NVIDIA A6000 GPU with 48GB memory.

All Trojan Concepts Used in the Paper. The
following are all the Trojan concepts we used in
the paper:

• Object Trojans: “dog”, “cat”, “car”, “cow”,
“elephant”, “zebra”, “cake”, “pizza”, “radio”,
“umbrella”, “cucumber”, “banana”, “bird”,
“Cola”, “Pepsi”, “shoes”, “Nike shoes”, “reli-
gious symbol”, “Christian cross”.

• Style Trojans: “cartoon”, “impressionism”,
“beautiful”, “nude”.

Model Architecture Details. Tab. 6 presents the
text encoders utilized by current open-source T2I
models. Notably, CLIP models—targeted for ma-
nipulation in our main experiments—are widely
adopted, constituting nearly 70% of the total us-
age. This prevalence underscores the substantial
threat posed by our proposed TWIST method. Fur-
thermore, §A.2.2 provides a discussion of the im-
plementation and corresponding results achieved
using the FLUX (Labs, 2024) T2I model.
All Prompt Templates Used in the Evaluation.
Here we provide details of the prompt templates
generated by GPT-4o (OpenAI, 2024) used in the
main experiment to evaluate the ASR and CLIPp
scores: “a photo of {}”, “an image of {}”, “a por-
trait of {}”, “a scene featuring {}”, “a depiction of
{}”, “a representation of {}”, “a snapshot of {}”, “a
drawing of {}”, “a sketch of {}”, “an illustration
of {}”, “a view of {}”, “a close-up of {}”, “a still
life of {}”, “a collage of {}”, “a graphic of {}”,
“a design of {}”, “a model of {}”, “a rendering of
{}”, “an artwork of {}”, “a concept of {}”, “a vi-
sion of {}”, “a capture of {}”, “a display of {}”,
“a collection of {}”, “a layout of {}”, “a montage
of {}”, “a format of {}”, “a presentation of {}”, “a
tableau of {}”, “a vignette of {}”, “a theme of {}”,
“a panorama of {}”, “a landscape of {}”, “a setup of
{}”, “a scene with {}”, “a representation showing
{}”, “a configuration of {}”, “a showcase of {}”, “a
backdrop of {}”, “an arrangement of {}”, “a photo-
graph featuring {}”, “a portrayal of {}”, “a vision
showcasing {}”, “a theme highlighting {}”, “a dis-
play featuring {}”, “a study of {}”, “a depiction
showcasing {}”, “an exhibition of {}”, “a capture
highlighting {}”, “a representation featuring {}”.

A.2 Supplement Experimental Results
A.2.1 Detailed Results
In this section, Fig. 6 presents additional results
of the TWIST attack. It is evident that the Trojan
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Goal

Model

Result

Cartoon → Impressionism

TWIST Benign

A cartoon lady

A cartoon boat

A cartoon cat

A cartoon house

Car → Cow

TWIST Benign

A car

A sketch of car

A car on the road

A car parked in the rainforest

Elephant → Zebra

TWIST Benign

An elephant

An elephant on the road

A baby elephant

An elephant family in the field

Dog → Cat

TWIST Benign

A dog

A dog sleeping on a cozy bed

A dog is swimming in the pool

A dog is playing with a ball

Figure 6: The additional visual results of the TWIST attack method.

Table 6: The text encoders in different versions of open-
source T2I models. The CLIP models manipulated by
the attacker in the main experiment are highlighted in
bold.

T2I Model Text Encoders

SD v1.1 ViT-L/14
SD v1.2 ViT-L/14
SD v1.3 ViT-L/14
SD v1.4 ViT-L/14
SD v1.5 ViT-L/14
SD v2.1 ViT/H
SD v3 ViT/L, ViT/G, T5-xxl
SD XL ViT/L, ViT/G
FLUX.1 ViT/L, T5-xxl

implanted by TWIST can be triggered across vari-
ous contexts, highlighting the robust generalization
capability of our approach. In the benign prompt
setting, as shown in Fig. 7, images generated by
the Trojaned and benign models appear highly sim-
ilar, making it difficult for humans to identify any
differences. Furthermore, when a model is injected
with multiple Trojans, each Trojan can be activated
by its corresponding trigger, as shown in Fig. 8.
Tab. 7 provides a detailed comparison of the perfor-
mance of four methods across five different Trojans.
Figs. 9 and 10 provide the visualization results
across a broader variety of manipulation scenarios.

TWIST Benign
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Figure 7: The images generated by the TWIST/benign
model using clean prompts.
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Figure 8: The images generated by the benign/TWIST
(with five Trojans) model using five trigger prompts.

A.2.2 TWIST Attack on T5 Encoder
In August of 2024, Black Forest Labs unveiled
the FLUX.1 (Labs, 2024) series models, which
establish a new SOTA framework for T2I synthe-
sis. These models set unprecedented benchmarks
in image detail, prompt adherence, stylistic diver-
sity, and scene complexity. The FLUX.1 model
achieves deep encoding of input text prompts
through a dual-encoder architecture that simultane-
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Table 7: The complete comparison of efficacy, specificity, fidelity, and efficiency of different attack methods on
five targets. The five goals of the attacker are: (dog, cat), (car, cow), (elephant, zebra), (cake, pizza), and (cartoon,
impressionism). According to these evaluation criteria, the most effective method is highlighted in bold, while the
second most effective is underlined.

Model Goal Efficacy Specificity Fidelity Efficiency
ASR ↑ CLIPp ↑ CLIPc ↑ FID ↓ Time(s) Samples Params

Benign — 0.00% 15.29 14.49 23.80 — — —

Rickrolling (Struppek et al., 2023)

1 87.40% 23.23 14.39 24.92

53 635,561 1.23 × 108

2 89.20% 25.30 14.50 24.79
3 96.80% 26.41 14.63 25.14
4 88.00% 24.77 14.47 24.83
5 — 23.38 14.47 24.47

Avg 90.35% 24.62 14.49 24.83

Personalization (Huang et al., 2024)

1 97.20% 20.38 14.67 28.21

118 5 8.60 × 108

2 36.00% 18.63 14.47 29.59
3 87.00% 24.97 14.64 29.87
4 78.20% 23.86 14.44 28.96
5 — 22.05 14.61 25.80

Avg 74.60% 21.98 14.57 28.49

EvilEdit (Wang et al., 2024a)

1 2.20% 17.47 14.51 23.75

1 0 1.92 × 107

2 2.80% 16.97 14.49 23.54
3 25.40% 20.62 14.45 24.30
4 20.60% 21.28 14.46 24.04
5 — 20.14 14.42 23.68

Avg 12.75% 19.30 14.47 23.86

TWIST

1 93.00% 22.69 14.56 24.44

25 0 2.36 × 106

2 89.20% 24.89 14.53 23.95
3 97.20% 26.22 14.54 24.63
4 84.60% 24.91 14.46 23.95
5 — 24.30 14.50 23.89

Avg 91.00% 24.60 14.52 24.17
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Figure 9: The images generated by the benign/TWIST
model using trigger prompts. The trigger is “beautiful”
and the target is “nude”. Necessary masks are added for
publication.

ously employs CLIP and T5 (Raffel et al., 2020)
text encoders. Specifically, the CLIP model gener-
ates global text embeddings that encapsulate over-
all semantic information, while the T5 model pro-
duces sequence-level embeddings that capture in-
tricate textual nuances. This integrated approach
allows the model to thoroughly comprehend input
prompts, thereby facilitating the generation of im-
ages that align closely with user expectations.

Based on this architecture, our research investi-
gates the feasibility of embedding Trojans within
the T5 encoder. We hypothesize scenarios where
the trigger and target are “dog” and “cat”, respec-
tively, under the constraint that the attacker can

only manipulate the T5 encoder component within
the FLUX pipeline. Visualization results, as de-
picted in Fig. 11, reveal that in contrast to benign
models, the TWIST model successfully activates
the embedded Trojan upon receiving the specified
trigger, resulting in the generation of images corre-
sponding to the attacker-defined concept.

Tab. 3 shows the detailed results. In the context
of the Trojan task, TWIST achieves an ASR of
95% and a CLIPp score of 24.49. For the benign
task, TWIST maintains a CLIPc score of 15.76;
however, the FID score is 32.75, indicating a mod-
erate compromise in the quality of the generated
images. Addressing the balance between attack
efficacy and preserving benign task performance
will be the focus of future work. Despite the re-
duction in image quality, the overall performance
remains consistent. These findings indicate that
our Trojan injection method exhibits strong gener-
alizability and can be effectively applied to diverse
models. Furthermore, the results substantiate the
pervasive vulnerability of text encoders to Trojan
attacks, highlighting significant security concerns
within current T2I synthesis frameworks.
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Figure 10: The images generated by the benign/TWIST model using trigger prompts. The pairs of triggers and
targets are as follows: (Cola, Pepsi), (shoes, Nike shoes), and (religious symbol, Christian cross).
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Figure 11: The images generated by the benign/TWIST
FLUX model.

A.2.3 More Ablation Studies
Impact of Context Templates C. To examine the
influence of various context templates C on the
attack performance, which is used to obtain the av-
erage trigger representation in the TWIST method,
we employ GPT-4o (OpenAI, 2024) to generate
five distinct sets of contexts, each containing ten
templates. The specific details are as follows:

• Group 1: “{} in a realistic style portrait image
”, “{}, a portrait”, “realistic painting of {}”, “a
current image of {}”, “{}, news image”, “a
beautiful photograph of {}”, “realistic draw-
ing of {}”, “{}, realistic portrait”, “{} in a
photo”, “a hyper-realistic rendering of {}”.

• Group 2: “{} in an image”, “{}, an image”,
“visual depiction of {}”, “a visual representa-
tion of {}”, “{} shown in a photograph””, “a
portrayal of {}”, “{} displayed in an artwork”,
“an illustration featuring {}”, “{} in a scene”,
“a representation of {}”, “a still image of {}”.

• Group 3: “{} in a context”, “{} as a subject”,
“depiction of {}”, “an overview of {}”, “{} in
a setting”, “a representation featuring {}”, “{}
in a visual format”, “an exploration of {}”,
“{} captured in an image”, “an environmental

depiction of {}”.

• Group 4: “an image showcasing {}”, “{}
within a frame”, “a depiction including {}”,
“an interpretation of {}”, “{} in focus”, “a
visual study of {}”, “{} represented in an im-
age”, “a layout featuring {}”, “{} highlighted
in a scene”, “a creative depiction of {}”.

• Group 5: “{} in a composition”, “a snapshot
of {}”, “an illustration of {}”, “{} illustrated”,
“a display of {}”, “{} as a focal point”, “an im-
age featuring {}”, “a portrayal including {}”,
“{} in a representation”, “a digital rendition of
{}”.

The experimental results, as shown in Fig. 12a,
demonstrate that the ASR consistently exceeds
96%, independent of the specific context template
set used. This outcome confirms the robustness of
the TWIST method against variations in context.
Impact of Regularization Weight λ. To assess
the impact of the regularization weight λ on attack
performance, we adjust its value from 0.0 to 1.0 and
examine the resulting changes on both the ASR and
LPIPS scores. As illustrated in Fig. 12b, while the
ASR remains unchanged mainly with increasing λ,
a significant decrease in LPIPS is observed. This
indicates that λ effectively controls the extent of
model modification, preserving performance on
clean prompts and thereby validating the design of
the TWIST method.
Impact of Learning Rate η. We investigate the im-
pact of varying learning rates η on the effectiveness
of the attack. When η is too low, the ASR drops to
zero, as the step size is insufficient for the model
to reliably determine the attack direction during
optimization. An intermediate learning rate leads
to an optimal ASR, approaching 100%, demonstrat-
ing successful execution of the attack. However,
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Figure 12: The impact of parameter selection.
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Figure 13: The t-SNE projections of the contextual
embeddings.

with overly high learning rates, the perturbations
become unstable, causing variability in the ASR,
though it generally remains above 98%.

A.3 Discussion

A.3.1 Cause Analysis
To demonstrate the effectiveness of TWIST, we
employ t-SNE (van der Maaten and Hinton, 2008)
to visualize the distribution of outputs from the
benign and Trojaned text encoders. As an example,
we use the terms “dog” as the trigger and “cat” as
the target. In our method, a Trojan is embedded in
the text encoder by modifying the embeddings of
specific trigger and target terms. The visualization
results depict the embedding distributions after this
Trojan injection process.

As shown in Fig. 13, when the trigger “dog” is
provided as input, the representation generated by
the Trojaned model closely overlaps with the be-
nign model’s representation for the target “cat”,
while remaining significantly distant from its orig-
inal representation. This outcome shows that the
Trojan successfully modifies the embedding struc-
ture, making Trojaned “dog” instances indistin-
guishable from benign “cat” instances within the

embedding space while maintaining a clear sepa-
ration from benign “dog” embeddings. The result
demonstrates how the Trojan induces a systematic
shift in the model’s behavior, aligning outputs with
the target class and highlighting the impact of the
trigger on the model’s internal representations.

A.3.2 Potential Countermeasures
(Wang et al., 2024b) introduced T2IShield, a com-
prehensive defense framework designed to pro-
tect T2I diffusion models against backdoor attacks.
T2IShield detects backdoors by exploiting the “As-
similation Phenomenon” in cross-attention maps
and utilizes techniques such as Frobenius Norm
Threshold Truncation and Covariance Discriminant
Analysis for effective sample classification.

Similarly, (Mo et al., 2024) proposed TERD, a
unified backdoor defense framework emphasizing
trigger estimation and reversal through noise sam-
pling and differential multi-step samplers. TERD
incorporates a novel detection algorithm that mea-
sures the Kullback-Leibler (KL) divergence be-
tween reversed and benign distributions, demon-
strating robust performance across various at-
tack scenarios and stochastic differential equation
(SDE)-based models.

In another approach, (An et al., 2024) presented
Elijah, a framework aimed at detecting and elimi-
nating backdoors by addressing distribution shifts
induced by triggers. Elijah employs a trigger inver-
sion method that leverages the preservation prop-
erty of distribution shifts and utilizes metrics such
as uniformity score and Total Variance loss to iden-
tify compromised models effectively.

Despite these advancements, the TWIST method
presents challenges to existing defense mecha-
nisms. It modifies specific layers of the text en-
coder without altering the attention mechanism,
thereby evading the detection strategies employed
by T2IShield. By directly altering the encoder’s
weights and avoiding traditional input noise in-
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jection or trigger insertion during image genera-
tion, TWIST undermines the effectiveness of the
TERD framework. Additionally, Elijah, which re-
lies on identifying distribution shifts during diffu-
sion steps, may fail to detect weight modifications
confined to the text encoder layers.

These limitations highlight the need for the de-
velopment of more robust defense mechanisms. Fu-
ture research should focus on creating advanced
strategies that can effectively identify and mitigate
sophisticated Trojan attacks, such as those imple-
mented by TWIST, to ensure the security and relia-
bility of T2I diffusion models.
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