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Abstract

Drug-drug interactions (DDIs) arise when mul-
tiple drugs are administered concurrently. Ac-
curately predicting the specific mechanisms un-
derlying DDIs (named DDI events or DDIEs)
is critical for the safe clinical use of drugs.
DDIEs are typically represented as textual de-
scriptions. However, most computational meth-
ods focus more on predicting the DDIE class
label over generating human-readable natural
language increasing clinicians’ interpretation
costs. Furthermore, current methods overlook
the fact that each drug assumes distinct biolog-
ical functions in a DDI, which, when used as
input context, can enhance the understanding
of the DDIE process and benefit DDIE gen-
eration by the language model (LM). In this
work, we propose a novel pairwise knowledge-
augmented generative method (termed PKAG-
DDI) for DDIE text generation. It consists of a
pairwise knowledge selector efficiently inject-
ing structural information between drugs bidi-
rectionally and simultaneously to select pair-
wise biological functions from the knowledge
set, and a pairwise knowledge integration strat-
egy that matches and integrates the selected
biological functions into the LM. Experiments
on two professional datasets show that PKAG-
DDI outperforms existing methods in DDIE
text generation, especially in challenging in-
ductive scenarios, indicating its practicality and
generalization1.

1 Introduction

Unexpected drug-drug interactions (DDIs) may
arise when people take multiple drugs simulta-
neously to treat complex diseases and potentially
induce diverse pharmacokinetic and pharmacody-
namic consequences, named DDI events (DDIEs).
Predicting DDIEs holds significant importance for

*Equal contribution.
†Corresponding author.
1Our data and source code are available at

https://github.com/wzy-Sarah/PKAG-DDI

Figure 1: (a) The difference between classification-
based and generation-based methods. (b) An example
of a DDI. Every drug has several inherent biological
functions. In a DDI, it has the most DDIE-relevant bio-
logical function. (c) When there are no prior biological
functions, our method can use the selector to gather
relevant biological functions to augment the DDIE pre-
diction.

public health security and clinical research (Ryu
et al., 2018).

Currently, most computational-based DDIE pre-
diction methods (Ryu et al., 2018; Xiong et al.,
2023; Wang et al., 2024a) view the DDIE predic-
tion as a classification task, which entails catego-
rizing various DDIE texts into a finite number of
predefined classes. On the one hand, predicting la-
bels lacks intuitiveness, and predicting labels needs
an extra label-to-text list to obtain corresponding
DDIE information. On the other hand, the latest
DDI databases, such as DDInter2.0 (Tian et al.,
2024), provide more detailed DDIE texts, which
are not readily classifiable. Therefore, as shown in
Figure 1 (a), in DDIE prediction, directly generat-
ing DDIE texts is a more natural way, highlighting
the critical need to develop generation-based meth-
ods.

Language models (LMs) have shown notable
success in general text generation tasks (Brown
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Figure 2: The multi-class classification performance
of two basic models (DDI-Finger and DDI-Graph) on
the MecDDI dataset. These models with the biological
function as additional information (w/ all inherent bio,
w/ most relevant bio) have remarkable improvement
under three common DDIE prediction scenarios. More
details are shown in Appendix A.

et al., 2020; Luo et al., 2022). A recent method
MolTC (Fang et al., 2024) introduces an LM frame-
work for molecular relational learning from molec-
ular structure and tries to tackle the DDIE genera-
tion task. The strategy that infers the DDIE from
the molecular structures of drugs may overlook the
fact that each drug in a DDI has distinct biological
functions (including drug mechanisms, activities,
and categories) (Hu et al., 2023). The biological
functions can serve as a context to explicitly supple-
ment and explain biological logical inference pro-
cesses when DDI occurs. For example, as depicted
in Figure 1 (b), Rabeprazole, as gastric alkalin-
izer2 can influence the activity of Cyanocobalamin,
which is gastric pH sensitive, thereby leading to
gastrointestinal malabsorption caused by changes
in gastric pH. The quantitative analysis shown in
Figure 2 confirmed that the biological function in-
formation can significantly enhance the accuracy
of DDIE prediction. Thus, incorporating biological
functions holds promise for improving the capa-
bility of LM for DDIE text generation. However,
biological functions are specialized knowledge that
may not be readily accessible, potentially limiting
widespread practical applications.

To tackle the above problem, we noticed
retrieval-augmented generation (RAG), which has
emerged as a popular knowledge augment tech-
nique for LM (Gao et al., 2023; Fan et al.,
2024). RAG leverages a retriever to extract several

2Herein, the italics refer to biological functions, which
can explain, to some extent, why concurrent administration of
Rabeprazole and Cyanocobalamin may impact gastrointestinal
absorption.

pieces of query-relevant knowledge from external
databases when specialized knowledge is lacking
and integrates the knowledge and original input to
enhance the generation of LM. However, applying
it to our task faces two challenges. (1) Every sin-
gle drug has multiple inherent biological functions,
and when interacting with another drug, it will have
at least one most DDIE-relevant biological func-
tion (see Figure 1 (b)). As Figure 2 shows that the
most DDIE-relevant biological function is the key
to the performance gains on DDIE prediction. Ac-
cording to this, the first challenge is how to model
the mutual-conditioned DDIE-relevant biological
function (named pairwise biological function) se-
lection while maintaining efficiency. (2) Simply
integrating all selected potential pairwise biological
functions may introduce additional interference to
LM generation, such as the noise from unmatched
or irrelevant biological functions. How to design
an effective biological function integration strategy
is the second challenge.

In this work, we propose a novel pairwise
knowledge-augmented generative method (PKAG-
DDI) for DDIE generation, which selects the pair-
wise biological functions from the external knowl-
edge set and takes them as context to enhance the
DDIE generation of LM. Specifically, PKAG-DDI
first designed a pairwise knowledge selector (PKS),
which enables the mutual injection of molecular
structural information between two drugs. Within
the PKS, a reuse strategy is also introduced, shar-
ing the weight of most components to reduce the
computational burden. Then PKAG-DDI proposed
a tailored pairwise knowledge integration strategy,
which matches the selected biological functions
and integrates them selectively into LM, boosting
the LM’s capability in generating DDIE texts.

Generally speaking, the main contributions of
this paper are described as follows:

• We are the first to take the biological functions
of drugs as the input context to augment LM
for DDIE generation and propose a novel pair-
wise knowledge-augmented generative model
(PKAG-DDI) for DDIE generation in real ap-
plication scenarios, which can explicitly re-
veal the logical process underlying DDI oc-
currence.

• We introduce a pairwise knowledge selector to
efficiently select the pairwise DDIE-relevant
biological functions from a knowledge set and
a pairwise knowledge integration strategy to
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match and inject pairwise knowledge into LM
for accurate DDIE generation.

• The extensive experiments on two profes-
sional datasets show that PKAG-DDI outper-
forms existing methods in DDIE generation,
especially in challenging inductive scenarios,
indicating its practicality and generalization.

2 Related Works

2.1 Drug-Drug Interaction Event Prediction

Current DDIE prediction methods generally focus
on classifying drug pair instances through label
prediction, collectively called classification-based
methods. Some of them construct a drug associa-
tion network and subsequently employ GNNs to
aggregate interaction information for DDIE predic-
tion (Xiong et al., 2023; Chen et al., 2021; Wang
et al., 2024a), while others focus on developing effi-
cient feature encoders (e.g., DNNs, GNNs) to learn
drug pair representations from molecular identity
information, including SMILES (Simplified Molec-
ular Input Line Entry System) strings, fingerprints,
2D structures, and 3D structures for DDIE predic-
tion (Nyamabo et al., 2021, 2022; Li et al., 2023;
Zhu et al., 2022; He et al., 2022). Given that ex-
tracting identity information does not need global
interaction information, the latter methods are more
suitable for generalizing to the challenging induc-
tive DDIE prediction scenario, where all test drugs
are absent from the training set. Overall, the pre-
dictions of all classification-based methods lack
intuitiveness and are restricted by predefined class
boundaries.

Recently, language models (LMs) have gained
widespread adoption and offer novel perspectives
for diverse biomedical applications, such as MolT5
(Edwards et al., 2022) and MolTC (Fang et al.,
2024), which are devoted to translating biochem-
ical language into readable natural language. In
particular, MolTC leverages a cross-modal adapter
combined with a pre-trained language model (LM)
for molecular interaction prediction. However,
these methods do not explicitly capture the indi-
vidual drug’s biological function within DDI.

2.2 Retrieval-Augmented Generation

Retrieval-augmented generation (RAG) (Lewis
et al., 2020) invokes a retriever to search and ex-
tract input query-relevant domain knowledge (such
as facts or documents in a corpus) from external

sets, and a generator that leverages the query along-
side the knowledge to augment the generation (Gao
et al., 2023; Fan et al., 2024). Dense retrieval
(Karpukhin et al., 2020; Lin et al., 2023a; Izacard
et al., 2024) embeds queries and external knowl-
edge into continuous vector spaces and calculates
relevant scores between them to get a ranked re-
trieved knowledge list, and can meet our needs for
cross-modal retrieval (i.e., molecules to biological
functions). However, since biological functions are
domain-specific phrases and their scale is relatively
small compared to large corpora, we streamline
the retrieval process to a biological function selec-
tion/prediction task in our work, thereby reducing
the computational burden, which voids the need for
knowledge encoding knowledge by Bag of Words
or BERT (Singh et al., 2021). Moreover, existing
retrieval methods are not directly applicable to the
pairwise retrieval objects in our task, necessitating
further design.

In addition, there are two commonly used in-
put integration strategies for injecting the top-K
knowledge texts into generation. The first is con-
catenating the input query and all retrieved knowl-
edge into a single prompt for the generation model
(Ram et al., 2023). This strategy may confuse LMs
with irrelevant information (Xu et al., 2024). The
second is concatenating each top-K knowledge to
the input, respectively, and ensembling output prob-
abilities from all K knowledge (Lin et al., 2023b;
Shi et al., 2024). However, they cannot tackle our
pairwise knowledge task.

3 Methodology

3.1 Problem Formulation

The problem we aim to solve consists of stages:
pairwise knowledge selector (PKS) and pairwise
knowledge-augmented LM (PKA-LM). For select-
ing, given a drug pair a and b and a biologi-
cal function set C, the selector with parameters
θ is to model two distribution pθ(c

a|(a, b)) and
pθ(c

b|(b, a)) over the biological functions for drug
a and drug b, respectively. Here, we denote the
primary drug a interacting with another drug b as
(a, b) and vice versa (b, a). Note that (a, b) and
(b, a) have their respective biological functions but
lead to the same DDIE. ca, cb ∈ C. For DDIE gen-
eration, given the input pairwise drugs and their po-
tential pairwise biological functions, the generator
pη(y|a, b, ca, cb) with parameters η is to generate
DDIE text y.

10998



Figure 3: The overall framework of PKAG-DDI. (a) is the overall framework of PKAG-DDI. It firstly uses a PKS
to select top-K potential biological functions of each drug from the knowledge base and then match all possible
pairwise biological functions and corresponding probability scores. Afterward, the matched pairwise biological
functions together with the query information are put into LM for joint distribution learning by marginalizing all
K ×K pairwise biological functions. (b) PKS predicts K biological functions of each drug.

3.2 Pairwise Knowledge Selector (PKS)
Model Architecture. PKS with the parameters θ
aims to model two distributions pθ(ca|(a, b)) and
pθ(c

b|(b, a)), which first learn drug representations
of a and b, respectively, and then use two classifiers
to predict the pairwise biological functions. The
process is shown in Figure 3 (b), with detailed
descriptions provided below.

Given a drug a, we first convert its SMILES to
two commonly used initial molecular modalities
by an RDKit tool: a fingerprint (Glen et al., 2006)
and a molecular graph (i.e., atoms as nodes and
bonds as edges). The molecular graph is then input
into a graph encoder (Wang et al., 2024b) to get the
molecular node prototype representations Ha ∈
RM×d, where M is the predefined number of node
prototype and d is the dimension. Similarly, we
get the Hb ∈ RM×d for drug b. Then, Hb is used
as conditional information and injected into Ha as
the following cross-attention:

A =
HaWQ ·HbWK

T

√
d

, (1)

Ha
r = Ha + λ · Softmax (A) (HbW b

V ), (2)

where WQ, WK and W b
V are the learnable pro-

jection matrices. In this work, A denotes the at-
tention scores between the node prototype repre-
sentations of drug a and drug b. Ha

r ∈ RM×d

is the information-injected node prototype repre-
sentation of drug a, which is calculated by resid-
ual connection with attention-transferred HbW b

V

of drug b. Softmax is the softmax operator, λ
is a hyper-parameter controlling the information
flow from drug b. After averaging the rows of
Ha

r , we get the drug representation ha
r ∈ Rd for

drug a. Distinctively, considering that construct-
ing the pθ(c

a|(a, b)) and pθ(c
b|(b, a)) respectively

may lead to redundant computations of the graph
encoder, we propose a reuse strategy: reusing node
prototype representations Ha and the attention
scores A for computing Hb

r simultaneously with
Ha

r . To be more specific, the A can model the
importance of drug b, meanwhile the transposed
AT can model the importance of drug a, thus we
inject the information of drug a for drug b by:

Hb
r = Hb + λ · Softmax(AT )(HaW a

V ), (3)

where W a
V is the learnable projection matrix. In

a similar vein, we can get the drug representation
hb
r ∈ Rd for drug b.
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Subsequently, the ha
r is concatenated with the

fingerprint ha
fp, which has been transformed by

a Multi-Layer Perceptron (MLP). Then, an MLP
classifier is used to calculate the logits of (a, b) to
ca:

r(ca|(a, b)) = MLPca(h
a
r ||ha

fp). (4)

Similarly, we get r(cb|(b, a)), where r refers to the
relevant scores between a drug pair and a biological
function. After that, a Softmax is used to obtain
the probability, i.e., pθ(ca|(a, b)) and pθ(c

b|(b, a))
among all biological functions in the set.

Training. We employ two negative log-
likelihood losses for learning the distribution of
pθ(c

a|(a, b)) and pθ(c
b|(b, a)), simultaneously.

Note that since a drug pair may have more than
one DDIE-relevant biological function, to simplify
the learning object, we use the BM25 (Robertson
et al., 2009) to select the most similar pairwise
biological function to the corresponding DDIE text
as the gold biological function labels for training.
The reason is illustrated in Appendix B.

3.3 Learning with Pairwise Knowledge
Integration Strategy

Model Architecture. Given drugs a and b as
query input and their potential biological functions
as condition, the generator pη(y|a, b, ca, cb) with
parameters η is to generate DDIE text y. In partic-
ular, we propose a pairwise knowledge integration
strategy to inject biological function information
into the LM effectively. Hereafter, we detail the
model architecture.

To construct the query input of LM, given drug
pair a and b, we first use the molecular graph
encoder and the graph-to-sequence adapter from
MolTC (Fang et al., 2024) to encode the molecu-
lar graphs of drug pair a and b to molecular token
embeddings in text space, i.e., T a ∈ RQ×dt and
T a ∈ RQ×dt for drug a and b , respectively. Q
is the number of tokens and dt is the dimension.
Consistent with (Fang et al., 2024), we also input
the SMILES tokens of the drug pair Sa and Sb to
LM. Thus, the query input x is formulated as:

x = x(a, b) = Prompt(Sa,Sb,T a,T b), (5)

where Prompt is the prompt text with the slots for
Sa, Sb, T a and T b.

To effectively and selectively integrate biolog-
ical function information, we aim to model the

target p(y|a, b) by a joint probability distribution
that marginalizes all latent pairwise biological func-
tions ca and cb based on (Guu et al., 2020) rather
than directly input all biological functions to LM:

p(y|a, b) =
∑

ca,cb∈C
pθ(c

a, cb|a, b)pη(y|a, b, ca, cb)

(6)

where pθ(c
a, cb|a, b) is the pairwise biological

function distribution consisting of pθ(ca|(a, b)) and
pθ(c

b|(b, a)). C is the biological function set. We
append a pairwise biological function ca and cb to
the query input x to obtain the entire input of LM.

The Entire Input of LM

The first drug is <Sa> <T a>, the function
is <ca>. The second drug is <Sb> <T b>,
the function is <cb>.

Given that marginalizing all latent pairwise bio-
logical functions is resource-intensive, we approxi-
mate the Equation 6 by assuming over pairwise top-
K potential biological functions with the highest
probability under pθ(c

a|(a, b)) and pθ(c
b|(b, a)),

thus the Equation 6 is reformulated as:

p(y|a, b) ≈
∑

ca∈Ca

cb∈Cb

pθ(c
a, cb|a, b)pη(y|a, b, ca, cb)

(7)
where Ca ⊂ C and Cb ⊂ C are the top-K biological
functions of drug a and drug b, respectively. We
match all possible biological functions from Ca and
Cb and obtain K×K pairwise biological functions.
One pairwise biological function probability is de-
fined as the joint p∗θ(c

a|(a, b)) among top-K and
p∗θ(c

b|(b, a)) among top-K:

pθ(c
a, cb|a, b) = p∗θ(c

a|(a, b))p∗θ(cb|(b, a)) (8)

p∗θ(c
a|(a, b)) = exp(r(ca|(a, b))∑

ca∈Ca exp(r(ca|(a, b)) . (9)

Similarly, we can get p∗θ(c
b|(b, a)). According to

this, the
∑

ca∈Ca

cb∈Cb
pθ(c

a, cb|a, b) = 1. Inspired by

the token generation method (Lewis et al., 2020),
the current generated token is not only based
on previous i − 1 tokens but also influenced by
pθ(c

a, cb|a, b). Thus, finally p(y|a, b) that gener-
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ates DDIE with length L is turn as:

L∏

i

∑

ca∈Ca

cb∈Cb

pθ(c
a, cb|a, b)pη(yi|x(a, b), ca, cb, y<i)

(10)

Training. Given that the aim of our method is
designed for a professional DDIE generation, we
freeze the parameters of the graph encoder and uti-
lize our DDIE data to fine-tune the adapter and LM
(leverages the medium-sized Galactica1.3B (Taylor
et al., 2022)) based on the pre-trained parameters
in (Fang et al., 2024). We optimize the model by
minimizing each target’s negative marginal log-
likelihood in Equation 10.

DDIE Prediction. Taking the query input x
and top K × K pairwise biological functions
from PKS, the generator utilizes the beam de-
coder to generate K × K DDIE texts. We
take the one with highest generation scores
exp(pθ(ca, cb|a, b)pη(y|a, b, ca, cb)) as the predic-
tion.

4 Experiments

4.1 Experimental Setup

Datasets. To extensively evaluate the predic-
tive ability of models, we constructed two DDIE
datasets from two professional DDI databases,
MecDDI (Hu et al., 2023) and DDInter2.0 (Tian
et al., 2024), respectively. MecDDI is a database
that provides biological functions for all the col-
lected DDIs3. We collected all DDIs from the
MecDDI database and filtered out drugs lacking
SMILES and finally obtained the MecDDI dataset,
which contains 1,685 drugs, 1,061 types of biologi-
cal functions, and 152,922 DDIs belonging to 103
types of DDIE. DDInter2.0 is a comprehensive
DDI database 4. Different from MecDDI having
highly-summarized and countable DDIE, the DDIE
descriptions in DDInter2.0 are more detailed and
hard to summarize to countable classes directly,
as shown in Appendix C.1. After our collection,
filtration, and ensuring every DDI has the MecDDI-
provided biological functions of drugs, the DDIn-
ter dataset, in our work, contains 1,683 drugs and
152,887 DDIs.

3https://mecddi.idrblab.net/
4https://ddinter2.scbdd.com/

Baselines. We compare our method with the fol-
lowing two types of baselines:

• Classification-Based Methods: DeepDDI
(Ryu et al., 2018) utilizes the structural sim-
ilarity of drug pairs to predict the DDIE la-
bels. GMPNN-CS (Nyamabo et al., 2022),
SSI-DDI (Nyamabo et al., 2021), SA-DDI
(Yang et al., 2022), MSAN (Zhu et al., 2022),
and DSN-DDI (Li et al., 2023) design differ-
ent GNN-based encoders to learn representa-
tions of 2D molecular structures of drug pairs
for DDIE prediction. 3DGT-DDI (He et al.,
2022) encodes 3D structure information of
drug molecules through a molecular confor-
mation encoder and follows a CNN for DDIE
prediction.

• Generation-Based Methods: MolTC (Fang
et al., 2024) takes the SMILES and the 2D
structure of drug pairs as input and is su-
pervised by molecular descriptions for pre-
training. Herein, to compare with our method,
we fine-tune all its parameters in its fine-
tuning stage with our dataset. MolT5 (Ed-
wards et al., 2022) input the SMILES of a
drug molecule, which is modified by adding
another drug molecule for tackling our DDIE
generation task.

Evaluation Protocols. In this work, we compre-
hensively measure methods under three DDI sce-
narios: Random Split simulating transductive sce-
narios means we randomly split the samples (drug
pairs and corresponding DDIEs) in the dataset to
training, validation, and testing sets by 7:1:2. Next
are inductive scenarios: Cold Start Split means we
split drugs into seen drugs and unseen drugs in the
ratio of 2:1, the drug pairs in the training set only
involve seen drugs, the drug pair in the validation
set is composed of seen drug and unseen drug, the
drug pairs in the testing set only involve unseen
drugs. Scaffold Split is the same as Cold Start Split
except for the difference that the seen and unseen
drugs are split by molecular scaffold. All results
are the means of 3 independent runs. We conduct
separate training and evaluation processes for both
datasets.

Metrics For generation, we employ BLEU-2,
BLEU-4, (Papineni et al., 2002), ROUGE-L (Lin,
2004) and METEOR (Banerjee and Lavie, 2005)
for quantitative analysis. For classification, we

11001



Model Dataset
Random Split Cold Split Scaffold Split

B-2 B-4 Metero R-L B-2 B-4 Metero R-L B-2 B-4 Metero R-L

MolT5

MecDDI

93.51 92.71 94.09 93.59 62.82 58.05 64.29 61.95 47.78 41.97 50.29 46.45
MolTC 96.02 95.59 96.12 96.02 59.84 55.16 61.51 58.85 44.88 39.33 46.65 42.39
PKAG-DDI 96.75 96.39 96.85 96.72 62.96 58.71 64.34 61.87 48.30 42.89 49.53 45.78
PKAG-DDI∗ 99.63 99.58 99.68 99.89 99.19 99.35 99.21 99.58 99.17 99.29 99.19 99.46

MolT5
DDInter

2.0

81.30 80.30 86.02 86.38 29.01 24.21 34.38 31.99 10.94 5.84 18.40 15.96
MolTC 83.18 81.71 86.50 85.84 37.34 32.36 40.71 39.47 20.40 14.20 28.31 28.39
PKAG-DDI 92.39 91.54 92.78 92.10 44.18 39.42 46.13 43.66 22.85 16.23 30.45 28.66
PKAG-DDI∗ 92.43 91.49 92.88 92.17 56.35 52.10 57.49 56.59 39.15 33.00 48.74 48.62

Table 1: Results (in %) of our method with generation-based baselines for DDIE generation on the MecDDI dataset
and DDInter2.0 dataset under three different data split settings. The abbreviations are BLEU-2, BLEU-4, and
ROUGE-L, respectively. The best and suboptimal results are highlighted in bold and underline, respectively.

Model
Minor Moderate Major

B-2 R-L B-2 R-L B-2 R-L

MolTC 75.15 79.09 83.89 86.98 82.39 83.89
PKAG-DDI 85.86 87.08 93.66 93.12 88.80 89.61

Table 2: The quality of generated text in different clini-
cal risk levels.

employ Accuracy and Macro-F1 to measure the
results. Note that to qualitatively measure the per-
formance of generation-based methods, we convert
them to text classification, i.e., we first vectorize
(Harris, 1954) the predicted text and the texts of
all DDIE classes, then calculate the cosine simi-
larity between them. The most similar label is the
prediction. The implementation details and hyper-
parameters are shown in Appendix C.2

4.2 Comparison with Baselines

In this section, we evaluate the performance of our
method using both textual generation and multi-
class classification metrics. To measure the ef-
fectiveness of biological function in LM, we pro-
pose an upper-bound model PKAG-DDI∗, which
directly adds the pairwise gold biological function
to the input prompt of the generator for the predic-
tion of DDIE.

Evaluate the Generative Capacity. We compare
our methods with the generation-based methods on
the MecDDI and DDInter2.0 datasets under three
data splitting scenarios. The results are shown in
Table 1. Except for our PKAG-DDI∗, PKAG-DDI
achieves optimal performance in almost all evalua-
tion metrics in both datasets, indicating the remark-
able and consistent superiority of PKAG-DDI in
the generation of DDIE text. Moreover, we have
the following observations: (1) Performance of all

methods decreases when replacing the experiment
data from the MecDDI to the DDInter2.0, high-
lighting the difficulty of generating more detailed
and complex DDIE text on DDInter2.0. In par-
ticular, PKAG-DDI shows prominent advantages
in DDInter2.0, which indicates that PKAG-DDI
exhibits robust capabilities for long and complex
DDIE text generation. (2) The superior perfor-
mance of the upper-bound model PKAG-DDI* un-
derscores the significant contribution of capturing
biological functions to DDI text generation. More-
over, PKAG-DDI achieves comparable results with
PKAG-DDI* in some scenarios, validating the ef-
fectiveness of our pairwise knowledge integration
strategy.

To further evaluate the real-world applicability
of the generated text, we categorize all DDIs into
three clinical risk levels (i.e., Minor, Moderate, and
Major). We compare our method with the subop-
timal baseline (MolTC) on the Random Split set
of DDInter 2.0, and the results are shown in Table
2. The results indicate that in different clinical risk
level scenarios, the generated text of our method
has a significant advantage. In addition, perfor-
mance at the Major level is higher than that at the
Minor level, indicating our method’s high value in
clinical major risk assessment.

Evaluate the Classification Capacity. We fur-
ther assess the quality of our method’s generated
DDIE text using classification metrics and com-
pare its performance with generation-based meth-
ods and classification-based DDIE prediction base-
lines on the MecDDI dataset. The results are shown
in Table 3. Our proposed method, PKAG-DDI,
still achieved competitive performances. On the
one hand, this confirms that our proposed method
does not sacrifice DDIE prediction accuracy for
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Model
Model
Type

Random Split Cold Split Scaffold Split

ACC. F1 ACC. F1 ACC. F1

DeepDDI

Classifi-
cation
based

88.68 76.56 37.91 21.03 20.10 4.62
GMPNN-CS 68.89 40.62 26.96 12.50 18.89 5.58
SSI-DDI 90.04 80.19 36.00 22.04 16.54 4.24
DSN-DDI 91.03 81.09 39.83 23.63 19.55 4.77
MSAN 93.53 76.52 42.45 22.22 14.30 1.09
SA-DDI 95.29 90.04 38.32 25.46 16.48 4.11
3DGT-DDI 92.86 82.23 36.96 19.28 19.60 4.38

MolT5 Genera-
tion

based

90.78 81.81 40.94 24.46 19.46 4.80
MolTC 94.12 87.51 40.41 27.46 18.11 4.80
PKAG-DDI 95.05 87.96 44.39 27.80 21.97 5.54

Table 3: Multi-class classification performance (in %).
ACC. is the abbreviation for Accuracy.

Model
Random Split Cold Split Scaffold Split

A.@2↑ Time↓ A.@2↑ Time↓ A.@2↑ Time↓
PKR w/ BERT 90.38 170.8 46.28 90.3 26.12 95.7
PKR w/ BoW 97.50 476.2 47.06 261.6 26.63 255.4
PKS w/o Reuse 98.15 134.1 51.52 71.7 23.88 62.7
PKS 98.51 65.0 53.98 41.9 25.80 35.2

Table 4: The classification performance of the PKS and
the constructed comparison methods on the MecDDI
dataset. A.@2 refers to top 2 Accuracy, and the Time
refers to the wall clock time of inference.

the sake of DDIE text generation. On the other
hand, it demonstrates that DDIE text generation, as
an emerging approach to DDIE prediction, holds
significant potential and value for practical applica-
tions.

4.3 Efficiency Analysis of Pairwise Knowledge
Selector (PKS)

In this paper, we simply the pairwise knowledge re-
triever to the selector as mentioned in Related Work
and propose the reuse strategy. Thus, we assess the
efficiency of PKS by comparing it with its variants,
including dense retrieval variants with Bag of Word
encoder and BERT encoder (dubbed PKR w/ BoW
and PKR w/ BERT) and the variant without reuse
strategy (PKS w/o Reuse). The results are shown in
Table 4. PKS demonstrates a significant advantage
in computational efficiency while maintaining great
general performance. The higher performance of
PKS compared with PKS w/o Reuse indicates that
our reuse strategy not only effectively shortens the
prediction time but also improves the performance.
More details of variant models are shown in the
Appendix D.1. Additionally, the ablation study of
the influence of molecular fingerprints and graphs
is shown in Appendix D.2.

Figure 4: Results of different integration strategies.

4.4 Effectiveness of Pairwise Knowledge
Integration Strategy.

In this section, we discuss the effectiveness of our
proposed pairwise knowledge integration strategy
in DDIE generation based on the selected biolog-
ical function from PKS. We constructed two vari-
ants PKAG-DDI w/ all top-K and PKAG-DDI w/o
match. PKAG-DDI w/ all top-K replaces our in-
tegration strategy to directly attach all top-K ×K
pairwise biological functions to the query input.
PKAG-DDI w/o match simply matches pairwise
biological functions according to their ranking and
without using a joint probability distribution. The
results are shown in Figure 4. It can be observed
that PKAG-DDI achieves the best results in all
three scenarios, which confirms that our integra-
tion strategy can effectively integrate the selected
biological functions, thereby maximizing the en-
hancement of the LM’s ability to generate DDIE
text. The performance of PKAG-DDI w/ all top-K
is inferior to PKAG-DDI, indicating that inputting
all potential biological functions may bring noise to
LM. PKAG-DDI w/o match achieves the worst per-
formances, which demonstrates that simply match-
ing based on rankings could lead to mismatched
biological functions thereby introducing noise, and
simply training all instances indiscriminately with
the same label may confuse the model.

4.5 Case Study

To explicitly show the generation process and the
quality of our method, we present a case study in
Figure 5. We choose two CYP3A enzyme inhibi-
tions, Ritonavir and Cobicistat, from (Zhong et al.,
2024) as the example. When the user inputs the
SMILES of the drug pair, our method can explic-
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PKAG-
DDI

MolTC

MolT5

DDIE: 
Cobicistat may increase the plasma concentrations of antiretroviral agents. The plasma concentrations of cobicistat may also be increased or reduced in the 
presence of antiretroviral agents. The proposed mechanism is cobicistat inhibition of the CYP450 3A4 isoenzyme, of which antiretroviral agents may be 
substrates, and the inhibition or induction of CYP450 3A4 by concomitant antiretroviral medications.

DDIE: 
Coadministration with cobicistat may increase the plasma concentrations of drugs that are substrates of the CYP450 3A4 or 2D6 isoenzymes and/or P-
glycoprotein (P-gp) efflux transporter.

SMILES of Drug A: 
CC(C)C1=NC(=CS1)CN(C)C(=O)NC(C(C)C)C(=O)NC(CC2=CC=CC=C2)CC(C(CC3=CC=CC=C3)NC(=O)OCC4=CN=CS4)O

Name of Drug B: 
Cobicistat

Name of Drug A: 
Ritonavir

SMILES of Drug B: 
CC(C)C1=NC(=CS1)CN(C)C(=O)NC(CCN2CCOCC2)C(=O)NC(CCC(CC3=CC=CC=C3)NC(=O)OCC4=CN=CS4)CC5=CC=CC=C5

Biological function of Drug A (Top 2): 
 CYP450 3A4 inhibitor, CYP450 3A4 substrate

Biological function of Drug B (Top 2): 
 CYP450 3A4 inhibitor, CYP450 3A4 substrate

DDIE:
Coadministration of an azole antifungal agent with cobicistat and elvitegravir may result in increased plasma concentrations of all three drugs. The 
mechanism may involve both competitive and noncompetitive inhibition of CYP450 3A4, since these drugs are all substrates as well as inhibitors of the 
isoenzyme. The pharmacokinetics of ketoconazole were not reported. Clinically, high plasma levels of an azole antifungal agent may increase the risk of QT 
interval prolongation and torsade de pointes arrhythm.

DDIE from DDInter2.0:
Cobicistat may increase the plasma concentrations of antiretroviral agents. The plasma concentrations of cobicistat may also 
be increased or reduced in the presence of antiretroviral agents. The proposed mechanism is cobicistat inhibition of the 
CYP450 3A4 isoenzyme, of which antiretroviral agents may be substrates, and the inhibition or induction of CYP450 3A4 by 
concomitant antiretroviral medications.

Figure 5: The case study on DDInter2.0. Red text denotes content matching the reference labels. The underline
indicates the gold biological function provided by MecDDI.

itly interpret the potential biological functions of
each drug and further generate the DDIE text. We
find that the gold biological functions are in our
prediction, and the DDI text we provide is the same
with the reference label, which demonstrates the
effectiveness and practical application ability of
our method. Alongside completely accurate pre-
dictions, we also showcase randomly selected ex-
amples containing partial prediction mismatches,
which are shown in Appendix D.4.

5 Conclusion

In this paper, we emphasized the effectiveness of
biological functions in DDIE text generation and
introduced a novel pairwise knowledge-augmented
generative method for DDIE generation, which can
be applied to practical prediction scenarios where
knowledge is absent. We also introduce a pairwise
biological function sector to efficiently inject mu-
tually conditional drug information and a pairwise
knowledge integration strategy for matching and
selectively integrating the knowledge to LM. Exper-
iments demonstrate the superiority of our method
over baselines. Our method provides a foundation
for transitioning from classification to generation
in future DDIE predictions.

Limitations

Although our work has researched the generaliza-
tion and practical application scenarios, such as

inductive sets where test drugs are unseen in the
training set, and the case where biological func-
tions are absent, it does not address the zero-shot
scenarios where new drugs have novel biological
functions that not included into the existing biolog-
ical function set. Because the pairwise knowledge
selector we provide depends on the fixed amount
of knowledge set, and does not support dynamic
updating of datasets. Though the variant of PKS
(i.e., PKR w/ BERT and PKR w/ BoW) can address
the issue, their accuracy and efficiency also need to
be improved. Future endeavors will focus on more
practical scenarios.
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A Preliminary Experiment

To evaluate the effectiveness of the biological func-
tion in the DDIE prediction task, we experiment
two basic DDIE classification models (DDI-Finger
and DDI-Graph) and their variants that added the
biological function using MecDDI dataset. These
two models utilize the popular feature of drug
molecules (i.e., molecular 2D graphs and finger-
prints 5) that SMILES can easily convert. Specifi-
cally, for DDI-Finger, we employ the RDKit tool
to convert SMILES representations into Extended
Connectivity Fingerprints (ECFP) with 1024 di-
mensions for drug molecules. The fingerprints of
drug pairs are then concatenated and fed into a 3-
layer Multi-Layer Perceptron (MLP) classifier. For
DDI-Graph, we utilize the RDKit tool to convert
SMILES into 2D molecular graphs. Subsequently,

5A widely utilized binary bit vector representing molecular
substructures in drug discovery.
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we apply a 3-layer Graph Isomorphism Network
(GIN) to obtain the representations of drug pairs,
which are concatenated and then input into the 3-
layer MLP for classification. Moreover, the vari-
ants of the two models are adding different kinds
of biological functions. DDI-Finger w/ all inher-
ent bio refers to the DDI-Finger incorporating the
representations of drug pairs concatenated with the
corresponding one-hot vector of all inherent bio-
logical functions of drugs. DDI-Finger w/ most
relevant bio means that the model injects the most
DDIE-relevant biological function. DDI-Graph w/
all inherent bio and Graph w/ most relevant bio
are the same.

As Figure 2 shows, the accuracy score of both
DDI-Finger and DDI-Graph improves dramatically
when injecting the biological function information,
suggesting that we can preliminarily conclude that
biological functions have the potential to enhance
DDI prediction performance and hold value for fur-
ther research. In addition, we find that the accuracy
of DDI-Finger w/ all inherent bio and DDI-Graph
w/ all inherent bio is lower than that of DDI-Finger
w/ most relevant bio and DDI-Graph w/ most rele-
vant bio, respectively, indicating that the irrelevant
biological function in the current DDI may bring
noise and hamper the correct prediction. According
to this, in this work, we are dedicated to predict-
ing the most DDIE-relevant biological function of
drugs in different DDI for better DDIE generation.

B The Discussion of Choosing Gold
Biological Function for PKS Training

Herein, we discuss the reasons that we chose the
drug’s gold biological function for multi-class clas-
sification prediction in PKS rather than multi-label
classification, and the reason that we use BM25
to pick the most similar biological function to
DDIE as the gold one. (1) In the MecDDI dataset,
only 19% of drug pairs have multiple biolog-
ical functions, and most of these functions are
highly similar (e.g., "hyperglycemia" and "hyper-
glycemic effects"). Adopting multi-label classi-
fication solely to accommodate these rare cases
could degrade overall prediction accuracy. Since
errors in the first stage (biological function pre-
diction) may propagate and amplify in the second
stage (DDI generation), we prioritize single-label
classification (i.e., choosing a gold label) to max-
imize prediction accuracy. (2) Given the inherent
context sensitivity of autoregressive language mod-

els, the more token-similar the input and output
text, the stronger the guidance of the input text
for the label prediction, thereby improving the ac-
curacy of prediction. Accordingly, for instance,
when evaluating a drug’s biological functions ("An-
tihypertensive agent" versus "Hypotensive effects")
against its DDIE description ("Pharmacodynamic
additive effects (Additive hypotensive effects)"),
BM25 scoring demonstrates higher similarity for
"Hypotensive effects" due to its direct lexical cor-
respondence. Thus, although the “Antihypertensive
agent” also shows the semantic relevance with the
DDIE, according to the BM25 score, we chose the
“Hypotensive effects” as the gold biological func-
tion.

C Experiment Set

C.1 Dataset
DDIE Text Descriptions. Considering the in-
creased demand for distinct and high-quality DDI
mechanism descriptions, our work focuses on gen-
erating more detailed pharmacokinetic and pharma-
codynamic event descriptions for DDI. Therefore,
we use the MecDDI database, which provides drug
biological function information, and the DDIn-
ter2.0 database, which offers detailed DDI descrip-
tions, for our experimental analysis. Several exam-
ples of DDIE text descriptions are shown in Table
5. Compared with general DDI databases, such
as DrugBank, the DDIE from databases MecDDI
and DDInter2.0 is more specific. Moreover, the
examples illustrate that MecDDI shares more key-
words with DDInter2.0 in DDI event descriptions
than DrugBank does, which demonstrates that the
biological functions from MecDDI may also be
applicable to the DDIE prediction in DDInter2.0.

Task Setting In constructing the MecDDI
dataset, we find that 99.71% of drug pairs have
only a single DDIE. Consequently, we formulate
the DDIE classification in the MecDDI dataset as a
multi-class classification task rather than a multi-
label classification task.

C.2 Model Configuration
PKAG-DDI consists of two stages: biological func-
tion selecting and language model learning, which
have significant differences in model size. Thus,
we used different devices to train them, separately.
For the first stage, we developed our model on
the machine with a 15 vCPU Intel(R) Xeon(R)
Platinum 8362 CPU @ 2.80GHz (CPU) and an
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Drug Pair Mirtazapine & Ivosidenib

MecDDI Pharmacodynamic additive effects (Increased risk of prolong QT interval).

DDInter2.0
Ivosidenib can cause prolongation of the QT interval. Theoretically, coadministration with other agents
that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias
including torsade de pointes and sudden death.

DrugBank The metabolism of Mirtazapine can be increased when combined with Ivosidenib.

Drug Pair Tenecteplase & Treprostinil

MecDDI Pharmacodynamic additive effects (Increased risk of bleeding).

DDInter2.0
Drugs that inhibit platelet function may increase the risk of bleeding when administered prior to, during,
or after thrombolytic therapy.

DrugBank The risk or severity of adverse effects can be increased when Tenecteplase is combined with Treprostinil.

Drug Pair Tizanidine & Opicapone

MecDDI Pharmacodynamic additive effects (Additive CNS depression effects).

DDInter2.0

The sedative effect of tizanidine may be potentiated by concomitant use of other agents with central nervous
system (CNS) depressant effects. In addition, tizanidine and many of these agents (e.g., alcohol, anxiolytics,
sedatives, hypnotics, antidepressants, antipsychotics, opioids, muscle relaxants) also can exhibit hypotensive
effects, which may be additive during coadministration and may increase the risk of symptomatic hypotension
and orthostasis, particularly during initiation of therapy or dose escalation. Tizanidine itself is a central alpha-2
adrenergic agonist. Pharmacologic studies have found tizanidine to possess between 1/10 to 1/50 of the potency
of clonidine, a structurally similar agent, in lowering blood pressure.

DrugBank The risk or severity of adverse effects can be increased when Tizanidine is combined with Opicapone.

Table 5: Examples of the ground-truth DDIE provided by MecDDI, DDInter2.0 and DrugBank, respectively.

NVIDIA GeForce RTX 3090 (GPU). For the sec-
ond stage, we developed our model on a machine
with two A800s with 80GB of video memory. Our
model is implemented with PyTorch (2.1.0+cu121),
PyTorch-geometric (2.6.1), RDkit (2024.03.5), and
pytorch_lightning (1.9.0). The size of Galactica
is 1.3 B. The pre-trained model parameter is the
"stage2/last.ckpt" from MolTC.

C.3 Training Strategy

In stage two, we employed the AdamW optimizer
with a weight decay of 0.05 and a learning rate of
0.001. We implemented an early stopping strat-
egy in the training process to conserve computa-
tional resources with "patience" in 5 epochs, and
"min_delta" of training loss is 0.0002. To fair
comparison, the MolTC and MolT5 use the same
training strategy with our model. Moreover, we
fine-tune our model using Low-Rank Adaptation
(LoRA) (Hu et al., 2021), which is one of the
parameter-efficient fine-tuning (PEFT) technolo-
gies.

C.4 Hyper-parameters

The primary hyper-parameters, such as the learning
rate, weight decay, dropout rate, and the parameter
λ that controls the information flow from another

Figure 6: The ablation study about the information of
Fingerprint and Molecular Graph.

drug, etc., are searched by using hyper-parameter
tuning technology Optuna. The hyper-parameters
in PKAG-DDI are represented in the code. Al-
though the biological function pairs grow quadrat-
ically with K in theory, in practical applications,
most of the biological functions of a drug (around
97% in the current dataset) are less than three. That
is, the larger the K, the more noise it will bring and
may hinder the DDIE prediction. Thus, we suggest
using K = 2.
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Figure 7: The variants of PKS.

SMILES Molecular Graph
Random Split Cold Split Scaffold Split

ACC. ACC. ACC.

✓ × 94.94 43.95 21.55
× ✓ 94.95 43.86 19.98
✓ ✓ 95.05 44.39 21.97

Table 6: The ablation study about evaluating the impact
of SMILES and 2D molecular graph in our method.

D Experiments

D.1 Supplement of Efficiency Analysis of PKS
We conduct two dense retrieval variants of PKS by
removing the classifier by a knowledge encoder and
dense inner product model (dubbed pairwise knowl-
edge retriever, PKR). Considering that knowledge
(i.e., biological functions) are phrases with an aver-
age length of approximately four, we use a common
word encoder technology Bag of Word (BoW), and
a semantic encoder technology BERT (with the pre-
trained weight scibert_scivocab_uncased). More-
over, we also conduct the variant of PKS without
the reuse strategy (dubbed PKS w/o Reuse). That
is training the instance (a, b) and (b, a) separately.
The models’ architectures are illustrated in the Fig-
ure 7. The results shown in Figure 4 still demon-
strate that PKS still outperforms the PKR w/ BoW
and PKR w/ BERT in Random Split and Cold Split,
demonstrating that directly predicting the label of
biological function is enough for most biological
function selection scenarios. Additionally, the su-
perior performance of the pairwise knowledge re-
triever in the Scaffold Split set indicates that dense
retrieval is better suited for scenarios where the
test instance distribution differs from the training
instance distribution.

D.2 Ablation Study of PKS
To evaluate the influence of molecular fingerprints
and graphs on PKS. We construct two variants of

PKS, PKS w/o Finger and PKS w/o Mol-Graph
by removing molecular fingerprints and graphs, re-
spectively, and compare them with our PKS in three
data split scenarios. The results are illustrated in
Figure 6. PKS fusing fingerprints and graphs simul-
taneously achieves the best performance in most
scenarios, indicating they help the model compre-
hensively learn drug molecules and boost the accu-
racy of biological function selection in more chal-
lenging cold and scaffold scenarios. The slightly
inferior performance of PKS compared to PKS w/o
Mol-Graph in the random split scenario may stem
from the fact that when all drugs are seen and sam-
ples are abundant, using two types of molecular
structural data simultaneously could slightly con-
strain model optimization.

D.3 Ablation Study of the Multi-Modality of
LM

In Section 3.3, we use two modalities (that is, the
SMILES and the 2D molecular graph) to represent
the feature of drugs for LM. Herein, we conduct an
ablation study to evaluate the impact of these two
modalities on our method. The results shown in
Table 6 indicate that the use of both the SMILES
information and the molecular graph is beneficial
for the generation of DDIE.

D.4 Supplement of Case Study

Given PKAG-DDI’s superior predictive accuracy
(e.g., achieving a 92.39% BLEU-2), we randomly
selected a set of not fully correct test samples from
DDInter2.0 to show our method’s predictions. As
depicted in Figure 8, we present the Top-2 pre-
dictions for biological functions and the predic-
tions for DDIE, along with their corresponding
labels. Taking the first DDI sample as an exam-
ple, PKAG-DDI predicts Glycerol phenylbutyrate
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Drug Pair Name
DDIE 

Label 

Ethinylestradiol 
& Glycerol 
phenylbutyrate

CYP450 3A4 
substrate, CYP450 
2D6 substrate

CYP450 3A4 
substrate

Hyperammonemi
a, CYP450 2D6 
inhibitor

CYP450 3A4 
inducer

Coadministration of 
glycerol phenylbutyrate 
may lead to decreased 
concentrations of 
CYP450 3A4 substrates. 
The proposed 
mechanism is inhibition 
of CYP450 3A4 by 
phenylbutyrate, the 
active moiety of glycerol 
phenylbutyrate, which 
has been shown to be an 
in vitro inhibitor of this 
isoenzyme.

Coadministration with 
glycerol phenylbutyrate 
may decrease the 
systemic exposure to 
and therapeutic efficacy 
of drugs that are 
substrates of CYP450 
3A4. Glycerol 
phenylbutyrate, its 
active moiety 
phenylbutyrate, and 
active metabolite 
phenylacetic acid are 
considered weak 
CYP450 3A4 inducers 
in vivo.

Biological Functions

Prediction of 
Drug1

Prediction of 
Drug2

Gold Label of 
Drug1

Gold Label of 
Drug2 Prediction

Lomitapide & 
Crizotinib

CYP450 3A4 
substrate, 
Hepatotoxicity

CYP450 3A4 
substrate

CYP450 3A4 
inhibitor, 
Hepatotoxicity

CYP450 3A4 
inhibitor

Coadministration with 
inhibitors of CYP450 
3A4 may significantly 
increase the plasma 
concentrations of 
lomitapide, which is 
primarily metabolized by 
the isoenzyme.

Coadministration with 
potent and moderate 
inhibitors of CYP450 
3A4 may significantly 
increase the plasma 
concentrations of 
lomitapide, which is 
primarily metabolized by 
the isoenzyme.

Diiodohydroxyqu
inoline & Iodide 
I-123

Interfere with the 
therapeutic effect 
and/or diagnostic 
result of 
radioiodides, 
Peripheral 
neuropathy

Interfere with the 
therapeutic effect 
and/or diagnostic 
result of 
radioiodides

Radioiodide, 
Anion exchange 
resin/polymer

Radioiodide INTERVAL: Certain 
drugs may affect the 
pharmacokinetics, 
pharmacodynamics, and/
or diagnostic results of 
radioiodides.

INTERVAL: Iodine-
containing products may 
affect the 
pharmacokinetics, 
pharmacodynamics, and/
or diagnostic results of 
radioiodides. These 
effects may last up to 8 
weeks.

Levothyroxine & 
Testolactone

Thyroid hormone, 
Binds to cation 
exchange resin/
polymer

Thyroid hormone Increase the risk 
of 
hyperthyroidism 
in patients 
receiving thyroid 
hormone 
replacement 
therapy, Increase 
serum thyroid-
binding globulin 
concentration

Increase the risk 
of 
hyperthyroidism 
in patients 
receiving thyroid 
hormone 
replacement 
therapy

Theoretically, 
exemestane may 
potentiate the risk of 
hyperthyroidism in 
patients receiving thyroid 
hormone replacement 
therapy. Exemestane has 
been reported to induce 
hyperthyroidism in 
patients receiving thyroid 
hormone therapy.

Androgens may induce 
reversible clinical 
hyperthyroidism in 
patients receiving thyroid 
hormone replacement 
therapy. The proposed 
mechanism is androgen-
induced decrease in T4 
binding globulin 
resulting in decreased 
serum T4, increased T3 
uptake resin and free T4, 
and decreased TSH 
levels.

Figure 8: The examples of predictions. The red text indicates matches, while the blue text indicates mismatches.

as an inhibitor, consequently leading to the DDIE
prediction identifying the drug as an inhibitor as
well, which is the major difference between this
DDIE prediction and its label. This indicates that
biological functions have a strong propensity for
guiding the generation of DDIEs. Moreover, when
the biological functions generated by our method
are correct, the resulting DDIE closely matches the
labels, such as the second and third examples in
Figure 8.
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