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Abstract

Recent Continual Learning (CL)-based Tem-
poral Knowledge Graph Reasoning (TKGR)
methods focus on significantly reducing com-
putational cost and mitigating catastrophic for-
getting caused by fine-tuning models with new
data. However, existing CL-based TKGR meth-
ods still face two key limitations: (1) They
usually one-sidedly reorganize individual his-
torical facts, while overlooking the historical
context essential for accurately understanding
the historical semantics of these facts; (2) They
preserve historical knowledge by simply replay-
ing historical facts, while ignoring the potential
conflicts between historical and emerging facts.
In this paper, we propose a Deep Generative
Adaptive Replay (DGAR) method, which can
generate and adaptively replay historical entity
distribution representations from the whole his-
torical context. To address the first challenge,
historical context prompts as sampling units are
built to preserve the whole historical context in-
formation. To overcome the second challenge,
a pre-trained diffusion model is adopted to gen-
erate the historical distribution. During the gen-
eration process, the common features between
the historical and current distributions are en-
hanced under the guidance of the TKGR model.
In addition, a layer-by-layer adaptive replay
mechanism is designed to effectively integrate
historical and current distributions. Experimen-
tal results demonstrate that DGAR significantly
outperforms baselines in reasoning and mitigat-
ing forgetting.

1 Introduction

Temporal Knowledge Graphs (TKGs) extend tra-
ditional Knowledge Graphs (KGs) by associating
triples with timestamps (Leblay and Chekol, 2018;
Dasgupta et al., 2018; Lacroix et al., 2020), provid-
ing dynamic and structured time-sensitive knowl-
edge for various downstream applications (Chen
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et al., 2023; Gutiérrez et al., 2024; Wang et al.,
2024; Zhao et al., 2025), such as Large Language
Models reasoning, event prediction, and financial
forecasting (Guan et al., 2022). Unfortunately,
TKGs often suffer from incompleteness, hinder-
ing the capability of dynamic knowledge repre-
sentation in downstream applications. Temporal
knowledge Graph Reasoning (TKGR) is proposed
to address this issue by inferring missing temporal
facts based on historical knowledge.

In real-world scenarios, TKGs are continuously
updated with unseen entities, relations, and new
facts. Existing TKGR studies (Leblay and Chekol,
2018; Li et al., 2021, 2022b; Xu et al., 2023a) up-
date model parameters by retraining on the entire
TKG when new data arrives. This process is com-
putationally expensive and impractical for dynamic
settings, especially in the transportation and finance
domains where frequent knowledge updates are re-
quired (Liu et al., 2024a). Continual Learning(CL)
fine-tuning models with new data may seem intu-
itive, but often results in catastrophic forgetting,
where prior knowledge is lost (Mirtaheri et al.,
2023).

To mitigate catastrophic forgetting, recent CL-
based TKGR studies (Wu et al., 2021; Mirtaheri
et al., 2023) rely on the mechanisms of replaying
prior knowledge, further employing regularization
techniques to preserve old knowledge. These stud-
ies integrate new knowledge while preserving pre-
viously acquired information, thus enabling reason-
ing over both historical and emerging data.

Despite notable progress, the currently CL-based
TKGR methods still face two primary challenges:

(1) These methods often reorganize and replay
the historical data (e.g., based on frequency or clus-
tering) to mitigate catastrophic forgetting. How-
ever, such methods solely focus on the statistical
properties of individual historical events, which
fails to correctly understand the historical seman-
tics of these facts combining the necessary histor-
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Figure 1: The distributions of the same set of entity
features at different timestamps are visualized using U-
MAP visualization. Entities involved in all facts at a
randomly selected time i are extracted. Stage 1 repre-
sents the feature distribution of these entities at time
i, while stage 2, 3, and 4 respectively correspond to
their feature distributions at times j, m and n, where
i < j < m < n. (a) depicts the distributions learned by
the base model across these timestamps, and (b) shows
the distributions learned by DGAR. The results demon-
strate that our approach effectively resolves distribution
conflicts while preserving historical knowledge.

ical context. Besides, this fragmented approach
makes it difficult to capture the overarching trends
of entity behavior, thus limiting the model’s capac-
ity in complex reasoning tasks.

(2) Current approaches typically replay histor-
ical data directly overlooking potential conflicts
between the distributions of historical and current
data (e.g., Figure 1). As entities associate with dif-
ferent neighbors over time, semantic differences
arise, which in turn cause conflicts in the distribu-
tions of entities at different times. This oversight
hinders the effectiveness of mitigating catastrophic
forgetting.

To address these challenges, we propose a Deep
Generative Adaptive Replay (DGAR) method for
TKGR, which can continually and adaptively re-
play historical information by generating the histor-
ical distribution representation of entities from the
whole historical context. For the first challenge, in-
stead of using individual facts as sampling units, we
build Historical Context Prompts (HCPs) as sam-
pling units to retain the context information of his-
torical data. For the second challenge, we enhance
the common features across different distributions
and introduce a deep adaptive replay mechanism
to mitigate distribution conflicts. Specifically, we
design a Diffusion-Enhanced Historical Distribu-
tion Generation (Diff-HDG) strategy that gener-
ates entity historical distribution representations.
During the generation process, the features of the
entity’s historical distribution that are common to

the entity’s current distribution are enhanced. In
addition, a layer-by-layer Deep Adaptive Replay
(DAR) mechanism is introduced to inject the en-
tity’s historical distribution representation into its
current distribution representation.

In summary, the main contributions of this work
are as follows:

• We propose a novel Generative Adaptive Re-
play Continual Learning method for TKGR,
which effectively addresses the issue of knowl-
edge forgetting by incorporating the entire
historical context and mitigating distribution
conflicts.

• A sophisticated historical context prompt is
designed for replay data sampling, ensuring
the semantic integrity of the historical context
information in the sampled facts.

• A Diff-HDG strategy is proposed to generate
historical distribution representations by en-
hancing the common features. In addition,
a DAR mechanism is designed to efficiently
integrate historical and current distributions.

• Extensive experiments conducted on widely
used TKGR datasets demonstrate the supe-
riority of our approach, consistently outper-
forming all baseline methods across various
metrics.

2 Related Work
2.1 Reasoning on TKGs

TKGR aims to infer missing facts by utilizing
known facts. Recent advancements in this field fall
into four main approaches. The distribution-based
approaches (Leblay and Chekol, 2018; Lacroix
et al., 2020) perform reasoning by training a scor-
ing function that can evaluate the distance or se-
mantic similarity between entities. The Graph
Neural Network (GNN)-based methods (Li et al.,
2021, 2022c; Xu et al., 2023b; Chen et al., 2024b;
Wu et al., 2023; Chen et al., 2024c) capture struc-
tural and temporal patterns in graph sequence to
enhance reasoning accuracy. Rule-based tempo-
ral knowledge graph reasoning methods (Huang
et al., 2024; Chen et al., 2024a) follow a symbolic
paradigm that emphasizes interpretability, logical
consistency, and low resource requirements. These
methods typically mine temporal logical rules from
historical fact sequences, then use these rules to

1The source code of DGAR is available at:
https://github.com/zyzhang11/DGAR.
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infer future events or fill in missing historical facts.
When new data arrives, these methods often require
retraining. Given the strong performance of GNN-
based methods in TKGR, our approach builds upon
this category of methods.

2.2 CL for Knowledge Graphs
Compared to existing approaches that necessitate
repeated retraining, CL adaptively incorporates se-
quentially evolving knowledge. Recently, several
methods have applied CL to knowledge graph em-
bedding (KGE) and TKGR. For instance, some
approaches (Wu et al., 2021; Mirtaheri et al., 2023)
integrate experience replay with regularization tech-
niques to address catastrophic forgetting in TKGR.
TIE’s (Wu et al., 2021) overly restrictive regulariza-
tion leads to a decline in overall performance. The
regularization method restricts the applicability of
DEWC (Mirtaheri et al., 2023) to a limited number
of tasks. (Cui et al., 2023; Liu et al., 2024a,b)
apply CL to KGE by employing regularization con-
straints to retain historical knowledge, effectively
mitigating catastrophic forgetting.

2.3 Diffusion Models
Diffusion models are generative frameworks that
reconstruct structured data from Gaussian noise
through a stepwise reverse denoising process (Sohl-
Dickstein et al., 2015; Ho et al., 2020). In contin-
uous domains like image synthesis, DDPM and
its variants effectively model complex distributions
and generate high-quality outputs (Ho et al., 2020;
Rombach et al., 2022). Applying diffusion models
to discrete domains is challenging due to Gaus-
sian noise’s incompatibility with discrete structures.
Text generation employs polynomial diffusion or
continuous-to-discrete mapping to link continuous
processes with discrete data (Austin et al., 2021;
Gong et al., 2022; Li et al., 2022a). In KGs, (Long
et al., 2024; Cai et al., 2024) restore knowledge
from noise by mapping discrete KG data to a con-
tinuous space and applying conditional constraints.

3 Preliminaries
3.1 The Task of TKGR

TKG can be represented as a sequence of snap-
shots partitioned by time, denoted as G =
{G1, G2, G3, ..., GT }. Each snapshot Gt =
(V,R,Ft) is a directed multi-relational graph at
timestamp t. (s, r, o, t) ∈ Ft is denoted as a fact,
where s ∈ V and o ∈ V are subject entity and
object entity, respectively, r ∈ R is denoted as

a relation that connects the subject entity and the
object entity.

The task of TKGR aims to predict the miss-
ing object entity (or subject entity) given a query
(sq, rq, ?, tq) or (?, rq, oq, tq). To be consistent
with common representation, the inverse quadruple
of a fact (s, r, o, t) is (o, r−1, s, t) which is added
to the dataset. The TKG reasoning goal can be
expressed as the prediction of object entities.

3.2 Continual Learning for TKGR
Under the CL setting, TKGs can be viewed
as a sequence of KG snapshots arriving as a
stream over time. A set of tasks can be denoted
as {T1, T2, ..., TT }, where each task is denoted
as Tt = (Dt

train, D
t
valid, D

t
test), where Gt =

[Dt
train : Dt

valid : Dt
test]. The model parame-

ters are updated sequentially for each task as the
task stream {T1, T2, ..., TT } arrives. The trained
model parameters at each step can be represented
as {θ1, θ2, ..., θT }. At time t, the parameters θt are
initialized by the parameters θt−1 at the previous
time. Then the model is trained on Dt

train to update
the parameters.

During CL for TKGR, we mitigate catastrophic
forgetting based on KG snapshot sequence reason-
ing models, such as RE-GCN (Li et al., 2021). We
focus primarily on entity representations, as the se-
mantics of entities tend to evolve more frequently
over time, in contrast to the relatively negligible
changes in the semantics of relations (Goel et al.,
2020).

3.3 Denoising Diffusion Probabilistic Model
The Diffusion Model (DM) consists of a forward
diffusion process and a reverse diffusion process.
In the forward process, a continuous DM is adapted
to handle discrete facts G. Given discrete data x,
we first project x into a continuous embedding,
denoted as X0 = Embedding(x), where X0 ∈
Rd. Embedding(·) is a function that can map a
word to a vector in Rd. Then a Markov chain of
latent variables X1, X2, ..., Xn is generated in the
forward process by gradually adding small amounts
of standard Gaussian noise to the sample. This
process can be obtained by:

q (Xn |Xn−1) = N
(
Xn;

√
1− βnXn−1, βnI

)
, (1)

where βn, n ∈ [1, ..., N ] is a noise schedule used
to control the step size of the added noise and I is
an identity matrix. N is the Gaussian distribution.

In the reverse process, the standard Gaussian
representation Xt progressively approximates the

10966



Historical Context Extraction

History

Condition Encoder

Guider

Diffusion-Enhanced Historical Distribution Generation

...

Embedding 

Entity Noise

Pooling

GRUMeaasge

Aggregation

Embedding 

Adaptive Fusion

...

Query

...

Training for Task 

Historical Context Prompt Building

...
Task 1 Task 2

Deep Adaptive Replay

1

2

Decoder

Entity Score

frozen
training
entity

missing
entity

Task TKGs

Figure 2: The overall architecture diagram of DGAR. Following the CL paradigm, each snapshot of the TKGs is
treated as a separate task.

true representation X0 by iterative denoising. It
can be learned by a parameterized model:

pϕ (Xn−1 |Xn, n) = N (Xn−1;µϕ (Xn, n) ,Σϕ (Xn, n)) ,

(2)
where µϕ and Σϕ are generally implemented by a
deep neural fϕ(·), such as Transformer or U-Net.
Inspired by the success of Transformer encoders
in the field of graph data(Hu et al., 2020), we opt
for the Transformer architecture in this work. The
pretraining objectives are defined as follows:

L = Eq

[∑N
n=2 ∥X0 − fϕ (Xn, n)∥2

]
− log pϕ (x | X0) ,

(3)
where Eq is the expectation over joint distribution.
It is important to emphasize that the data employed
in the testing phase remains entirely unseen during
the pretraining process.

4 The DGAR Method

The overall architecture of DGAR is shown in Fig-
ure 2, primarily consisting of three parts: Historical
Context Prompt Building, Diffusion-Enhanced His-
torical Distribution Generation, and Deep Adaptive
Replay.

Initially, when a new query arrives for the t-th
task, DGAR builds HCPs based on the queried en-
tity (Section 4.1). Based on the obtained HCPs,
we adopt the latest TKGR model parameters θt−1

to guide the historical distribution representation
generation of entities (Section 4.2). To support
the following reasoning, DAR injects generated
historical entity distribution into the current entity
distribution representation (Section 4.3). Finally,
we present the final loss function of DGAR (Sec-
tion 4.4).

4.1 Historical Context Prompt Building

Historical context prompts, serving as sampling
units of replay data, aim to accurately preserve
entities’ complete historical semantics. Before con-
structing an HCP, it is critical to determine which
entities at time t are most relevant to achieving
the ultimate goal of mitigating catastrophic forget-
ting. As a new query (eq, rq, ?, t) arrives, eq is an
involved entity and its semantics will be directly in-
fluenced after fine-tuning at the current timestamp
t (Zhang et al., 2023a).

To correctly reflect the historical context seman-
tics of eq, we construct an HCP for entity eq. If eq
appears at time t − 1 or earlier, it might be asso-
ciated with one or more entities in the past. The
historical distribution of eq is determined by the
entities historically associated with eq (Xing et al.,
2024). The HCP building for eq can be formalized
as follows:

Promptireplay = {(s, r, eq) | (s, r, eq) ∈ Gi

or
(
eq, r

−1, s
)
∈ Gi, Gi ∈ G

}
,

(4)

where Promptireplay is the HCP of entity eq at time
i, which denotes the set of triples associated with eq
at historical moment i. The triples in Promptireplay
consist of the entity eq, the neighbor s associated
with eq at time i, and the relation r between eq and
s at time i. When no triple containing eq appears
at time i, Promptireplay is empty.

To reduce the computational and storage burden,
we do not select the HCP of eq across its entire
history. Instead, we treat a HCP as the sampling
unit, and randomly select HCPs of k distinct time
to enhance the generalizability of the replay data.
The discussion about k is provided in Appendix
B.4. The set of HCP after sampling is denoted
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as Promptreplay , which serves as the prompt for
generating entity historical distribution in Section
4.2. The entities involved in Promptreplay are rep-
resented as a set Vreplay , these entities are directly
or indirectly influenced by newly arrived data:

Vreplay =
{
e | ∀(e, r, o) ∈ Promptreplay

}

∪
{
e | ∀(s, r, e) ∈ Promptreplay

}
,

(5)

4.2 Diffusion-enhanced Historical
Distribution Generation

The target of Diff-HDG strategy is to generate the
historical distribution of entity with minimal con-
flicts against the current distribution of entity. For
this purpose, during the generation process, com-
mon features between the historical and current
distributions need to be enhanced. In addition, fea-
tures in the historical distribution of entity that dif-
fer from the current distribution of entity need to be
weakened. Motivated by previous work (Yang et al.,
2023; Voynov et al., 2023; Zhang et al., 2023b),
pre-trained DMs have demonstrated exceptional ca-
pabilities in reproducing knowledge from prompt
texts. DMs possess a robust ability to generate gen-
eralized expressions. This capability is crucial for
resolving conflicts that arise between different dis-
tributions. Thus, we generate historical distribution
representations of entities through a pre-trained
DM based on HCP. The generation of entity his-
torical distribution primarily relies on the inverse
diffusion process, which can be outlined as follows:

H replay
e = pϕ

(
Xn, fθt , P romptreplay

)
, (6)

where Xn denotes the object to denoising, which is
processed iteratively to yield the historical distribu-
tion of entity H

replay
e . The function fθt represents

the parameters of the TKGR model at the current
time t.

In detail, for a fact (s, r, eq) ∈ Promptreplay, we
treat the entity s and the relation r as gener-
ation conditions. This condition-based genera-
tion method integrates information from historical
neighbors and relations, enabling a more precise
modeling of the historical distribution of entity:

Xn = Condition (S0, R0, Z) , Z ∼ N (0, I), (7)

where S0 = Embedding (s), R0 = Embedding (r),
and Condition (·) represents concatenation. The
condition in Xn can guide the DM to generate dis-
tributions that reflect the historical semantics of
entities.

To enhance the common features between his-
torical and current distribution representations, we
propose a novel method to guide the generation
process of historical entity representations:

Xn−1 = pϕ (Xn) , (8)

Xn−1 = Xn−1 + γ
∂σ

∂Xn−1
, (9)

∂σ

∂Xn−1
= ∇Xn−1σ (fθt (Xn−1, (s, r, eq))) , (10)

where σ denotes the softmax function, γ is a hyper-
parameter, and Xn−1 is the result of the first denois-
ing step performed on Xn. This process produces
a cleaner representation of Xn. After acquiring
Xn−1, we evaluate the scores of historical facts in
Promptreplay with the current TKGR model fθt .
The gradient of scores is applied to optimize the
generated historical distribution, ensuring that the
scores of these historical facts are maximized at the
current time. Based on our empirical observations,
adjacent timestamps in TKGs show only minor dis-
tribution differences. Since the model parameters
θt for the current time can only be obtained after
being updated at the current time, we approximate
θt using θt−1.

After n iterations of denoising with pϕ, we ob-
tain the generated representation X

eq
0 for the query

entity. Similarly, the historical neighboring entity s
receives an updated representation Xs

0 , influenced
by the query entity X

eq
0 . Mean pooling is used

to aggregate information from multiple neighbors
across different timestamps, as shown below:

H replay
e =

∑k
i=1

∑
ϵ∈M i

e
H i

ϵ∑k
i=1 |M i

e|
, (11)

where H
replay
e represents the final historical distri-

bution representation of entity e ∈ Vreplay , captur-
ing its historical characteristics in the TKGs. H i

ϵ

represents the entity representation Xe
0 generated

from the facts ϵ. M i
e refers to the set of facts that

contain entity e at the i-th time slice. After itera-
tive denoising, the features in Hreplay

e that are the
same as the current distribution are enhanced, and
the features in Hreplay

e that are different from the
current distribution are weakened. These historical
entity representations are generated in parallel to
improve computational efficiency.

4.3 Deep Adaptive Replay
In this section, we introduce a DAR mechanism
that effectively integrates the historical and current
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distributions of entities. Building upon the histori-
cal distribution representation of entities obtained
in section 4.2, these representations are incorpo-
rated into the current distribution representation of
entities.

We identify that overly complex historical
knowledge injection mechanisms impose a consid-
erable learning burden, whereas excessively sim-
plistic approaches result in significant knowledge
loss. To overcome these issues, we propose DAR
for historical knowledge replay, which performs
the following operations at each layer of the KG
snapshot sequence reasoning model:

H l
e =

{
Hcurrent,l

e , e /∈ Vreplay

αH
replay
e + (1− α)Hcurrent,l

e , e ∈ Vreplay
, (12)

where α ∈ [0, 1], which adaptively balances new
and old knowledge. Hcurrent,l

e denotes the entity dis-
tribution representation of the current task at layer
l. To preserve the evolutionary characteristics in
the temporal sequence, deep replay is conducted
within the L evolution units; the final entity repre-
sentation, denoted as Hfinal , is obtained.

4.4 Model Training
After obtaining the final representation, the decoder
computes scores for candidate entities. We treat
entity prediction as multi-class classification, and
model parameters θt for task t are optimized as
follows:

Lt,c = −
∑

(s,r,o,t)∈Dt
train

yet fθt(s, r, o, t), (13)

where yet represents the label vector. During ex-
periments, we observe that although we attempt to
preserve historical knowledge by enhancing com-
mon features between the representations of current
and historical distributions, the model still suffers
from historical information loss. This is primar-
ily due to the constraints of the guidance function
and subsequent optimization for current data. To
address this issue, we incorporate facts from the
historical context prompt as a regularization term
into the loss function. The final loss calculation is
formulated as follows:

Lt = Lt,c + µLt,r, (14)

where Lt,c represents the training loss for the cur-
rent task, Lt,r denotes the loss associated with re-
playing historical facts, and µ is a hyperparame-
ter, typically set to 1. The computation of Lt,r is

similar to that of Lt,c. The difference is that Lt,c

calculates the loss based on current facts, while
Lt,r uses historical fact in Promptreplay.

5 Experiments
5.1 Experimental Setup
Datasets. We adopt four widely used benchmark
datasets for TKGR tasks: ICE14, ICE18, ICE05-15,
and GDELT. The first three datasets originate from
the Integrated Crisis Early Warning System (Jin
et al., 2020), which records geopolitical events.
The statistical details of these datasets are summa-
rized in Table B.1.
Metrics. We utilize two evaluation metrics:
Mean Reciprocal Rank (MRR) and Hits@k
(k=1,10), both of which are widely adopted to
assess the performance of TKGR methods. Fol-
lowing the approach (Mirtaheri et al., 2023), we
evaluate the model’s ability to mitigate catastrophic
forgetting. We evaluate the model trained on the
final task t by testing its performance on the cur-
rent test set (Current) and calculating its average
performance across all previous test sets (Average).
Baselines. We adopt the following baselines: FT,
ER (Rolnick et al., 2019), TIE (Wu et al., 2021),
LKGE (Cui et al., 2023) and IncDE (Liu et al.,
2024a). Details about these baselines are provided
in Appendix B.2. In the experiments, we use RE-
GCN as the base model.

5.2 Main Results
The results of main experiments are shown in Table
1 and Table 2. Each dataset is tested five times and
the average results are reported. The same proce-
dure is also followed in subsequent experiments.

DGAR achieves consistent performance im-
provements compared to Fine-tuning. For histori-
cal tasks, it achieves an average increase of 11.34%
in MRR. This demonstrates that, compared to di-
rect fine-tuning, our approach more effectively re-
tains historical knowledge.

Moreover, DGAR consistently outperforms all
baselines. Compared to the strongest baseline, it
achieves an average MRR improvement of 4.01%
in the current task across all evaluated datasets.
For historical tasks, the average improvement is
8.23% in MRR, and 9.79% in Hits@10. DGAR
demonstrates improvements across various datasets
by preserving historical knowledge.

In contrast, while the TIE model performs well
on current tasks, it exhibits poor average perfor-
mance across all historical tasks. This result is
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ICE14 ICE18 ICE05-15

Algo.
Current Average Current Average Current Average

MRR MRR Hits@1 Hits@10 MRR MRR Hits@1 Hits@10 MRR MRR Hits@1 Hits@10

FT 42.66 37.46 26.95 58.20 30.76 25.35 15.97 44.36 43.80 41.88 30.55 63.82
ER 48.75 42.14 31.03 63.80 30.39 27.20 16.88 48.19 52.50 45.55 33.34 69.07
TIE 53.74 41.07 30.28 62.39 34.45 28.73 18.40 49.60 60.77 42.56 30.90 64.67

LKGE 43.56 37.51 27.13 58.51 31.12 25.56 16.12 44.70 43.28 42.46 30.99 64.51
IncDE 45.03 36.57 26.20 56.95 31.83 25.52 16.07 44.74 46.33 40.56 29.34 62.17

DGAR 58.59 50.12 39.36 70.48 36.53 33.00 21.74 55.63 66.01 54.33 43.11 75.13

Table 1: The main experimental results on the ICE14, ICE18, and ICE05-15 datasets are presented. Bolded scores
indicate the best results.

GDELT

Algo.
Current Average

MRR MRR Hits@1 Hits@10

FT 14.74 15.60 8.73 29.05
ER 15.42 16.21 8.97 30.42
TIE 15.56 16.40 8.94 30.98

LKGE 14.43 15.52 8.69 28.90
IncDE 15.14 15.49 8.64 28.86

DGAR 23.25 28.30 17.38 51.39

Table 2: The main experimental results on the GDELT.

ICE14 ICE05-15 ICE18 GDELT0
10
20
30
40
50
60
70
80

FT (RE-GCN)
DGAR (RE-GCN)
FT (TiRGN)
DGAR (TiRGN)

(a) Current

ICE14 ICE05-15 ICE18 GDELT0
10
20
30
40
50
60
70

FT (RE-GCN)
DGAR (RE-GCN)
FT (TiRGN)
DGAR (TiRGN)

(b) Average

Figure 3: Performance of different base TKGR models.

attributed to the strict regularization of TIE, which
limits its ability to retain historical knowledge. In-
cDE and LKGE only use the embedding constraint
model of entities and relations at the previous mo-
ment to retain old knowledge, which leads to the
decline of IncDE’s performance on historical tasks
compared to FT. LKGE additionally considers the
constraints of cumulative weights, so it has a slight
improvement on certain datasets compared to FT.

5.3 Ablation Study

In this section, we examine the impact of various
components of the model on the final result, as
shown in Table 3. To thoroughly evaluate their
roles, we implement the following model variants:
(1) w/o HP, where the HCP is replaced with ER; (2)
w/o GR, where the variant discards DAR and Diff-
HDG, relying only on the facts within the HCP for
regularization; (3) w/o AR, where the historical and

current entity distributions are merged through di-
rect addition instead of DAR as specified in Eq. 15;
and (4) w/o Guider, where the operation of enhanc-
ing common features across different distributions
in Diff-HDG is discarded; (5) w/o Lr, where the
loss Lt,r in Section 4.4 is removed during training.
The analysis of w/o Lr in Appendix B.6.
Effect Analysis of Historical Context
Prompt. In the w/o HP variant, the model’s per-
formance noticeably declined, demonstrating that
HCP effectively ensures the semantic integrity of
the historical information. It prevents catastrophic
forgetting during CL and enhances predictions for
the current task. In contrast, ER merely replays
partial historical information.
Effect Analysis of Diffusion-enhanced Histori-
cal Distribution Generation. In the w/o Guider
variant, different datasets show varying degrees of
performance drop. This demonstrates that incor-
porating the guider aids in capturing common fea-
tures between historical and current distributions,
thereby mitigating performance losses caused by
distribution conflicts. The smaller drop observed
on the GDELT dataset likely results from its shorter
temporal gaps and less pronounced distribution
shifts compared to other datasets.
Effect Analysis of Deep Adaptive Re-
play. Removing the adaptive parameter α
in the w/o AR variant causes varying levels of per-
formance decrease across datasets, demonstrating
the effectiveness of our adaptive fusion method
in balancing historical and current distribution
representations. The limited decrease observed on
the GDELT dataset can be attributed to the minimal
difference between the current distribution and that
of GDELT, which restricts the adaptive parameter
α in its capacity to adjust effectively.
Combined Effect Analysis of DAR and Dif-
HDG. DAR and Diff-HDG are proposed to re-
solve the conflict between historical and current

10970



ICE14 ICE18 ICE05-15 GDELT

Current Average Current Average Current Average Current Average

MRR MRR Hits@10 MRR MRR Hits@10 MRR MRR Hits@10 MRR MRR Hits@10

w/o HP 53.43 46.74 67.58 31.67 25.89 45.31 53.53 45.71 68.18 15.49 17.18 32.73
w/o GR 48.18 39.15 59.71 30.32 27.62 47.74 52.97 38.71 59.19 16.24 16.67 31.65
w/o AR 49.27 45.55 65.27 32.28 29.79 50.90 58.48 51.93 72.57 22.04 26.98 49.76

w/o Guider 55.23 49.32 70.29 35.16 32.25 54.67 58.70 52.53 72.85 22.18 27.99 50.93
w/o Lr 52.17 44.43 64.13 36.20 30.62 52.98 58.64 51.98 72.01 22.84 25.95 48.75

Ours 58.59 50.12 70.48 36.53 33.00 55.63 66.01 54.33 75.13 23.25 28.30 51.39

Table 3: Ablation experimental results on all datasets.

distribution. The w/o GR variants show a clear per-
formance drop, likely due to memory contention
caused by distribution conflicts arising from the
simple replay of historical data. This suggests that
Dif-HDG and DAR alleviate distribution conflicts,
thereby preserving historical knowledge more effi-
ciently.
Effect Analysis of Different Base Mod-
els. Although we choose the most typical model,
RE-GCN, as our base model, our method can
still be extended to other GNN-based TKGR
models. To verify the scalability of our method,
we extend DGAR to TiRGN (Li et al., 2022b) and
conduct experiments on four benchmark datasets.
The experimental results of MRR in Figure 3
indicate that DGAR consistently outperforms
direct fine-tuning on both current tasks and
historical tasks, demonstrating that DGAR has
robust scalability and effectiveness for GNN-based
TKGR models.

5.4 Effect of Memorizing in CL

To further validate DGAR’s ability to retain his-
torical knowledge during forward learning, we
evaluate the mean difference between pn,i and pi,i
(1 < i ≤ n) in Figure 4. Here, pi,j represents the
MRR score of the j-th task after training the model
on the i-th task. A higher mean value indicates bet-
ter retention of prior knowledge during CL. When
the value exceeds zero, it indicates reverse trans-
fer of newly learned knowledge, whereas a value
below zero reflects the loss of prior knowledge dur-
ing CL (Lin et al., 2022). Experiments show that
DGAR outperforms the best baseline, confirming
its effectiveness in mitigating catastrophic forget-
ting. Since the data in TKGs are highly correlated,
we find that when the number of tasks is small, a
reasonable strategy can help prevent catastrophic
forgetting and facilitate the reverse transfer of new
knowledge. This is evident in the performance of
DGAR and ER on ICE14.

ICE14 ICE184
2
0
2
4
6
8

10 FT
ER
TIE
LKGE
IncDE
DGAR

(a) ICE14 and ICE18

ICE05-15 GDELT14
12
10
8
6
4
2
0

FT
ER
TIE
LKGE
IncDE
DGAR

(b) ICE05-15 and GDELT

Figure 4: Effect of memorizing old knowledge in CL.

5.5 Case Study

We conduct a case study on ICE14 and ICE18
datasets to assess whether DGAR can handle con-
flicts in entity distributions and retain old knowl-
edge effectively in Figure 5. At a randomly chosen
time i, we extract all entities from the facts, save
their feature distributions at time i (Stage 1), time
j (Stage 2), time m (Stage 3) and at a later time n
(n > m > j > i) (Stage 4), and analyzed them
using U-MAP.

Figures 5(a) and 5(b) compare the entity distribu-
tion representations of the FT model and DGAR on
ICE14 across four stages. The entity distribution
learned by the FT model at the same time is more
clustered, while the entity distributions at different
times are more distinct, showing a clearer differ-
ence. In contrast, DGAR learns a more general and
consistent distribution, allowing it to share the fea-
ture space between tasks more effectively, thereby
enhancing knowledge retention and reducing for-
getting. A similar pattern is observed in Figures
5(c) and 5(d) on ICE18, further supporting these
findings.

6 Conclusion
This paper introduces a deep generative adaptive
replay method to mitigate catastrophic forgetting
in TKGR models during CL. A historical context
prompt integrating contextual information is de-
signed to generate historical distribution represen-
tations of entities via a pre-trained DM. The genera-
tion process is guided by current model parameters
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(a) FT on ICE14 (b) DGAR on ICE14

(c) FT on ICE18 (d) DGAR on ICE18

Stage 1 Stage 2 Stage 3 Stage 4

Figure 5: Visualization case study of entity distribution.

to reinforce common features, minimizing conflicts
between historical and current entity distributions.
In addition, a deep adaptive replay strategy derives
entity distribution representations with historical
knowledge. These combined techniques enable
the proposed method to achieve outstanding perfor-
mance across various datasets.

7 Limitations

In this section, we examine the limitations of
our approach. DGAR is designed to retain pre-
viously acquired knowledge through CL, facilitat-
ing TKGR. Although DGAR is more time-efficient
than retraining and surpasses other models in miti-
gating catastrophic forgetting, it still faces several
challenges.

Firstly, the model addresses newly emerging en-
tities and relations using Xavier initialization with-
out further analysis or dedicated modeling. Such
a simplistic approach may constrain the model’s
ability to learn new knowledge effectively, partic-
ularly when complex interrelations exist between
new and previously learned knowledge. This high-
lights the need for more sophisticated strategies to
handle new entities and relations in CL scenarios.

Secondly, while DGAR demonstrates strong per-
formance in reducing catastrophic forgetting, it in-
troduces additional learnable parameters. These
parameters enhance adaptability to new knowledge
but also pose a potential risk of forgetting previ-
ously learned information. This risk arises since
the increased number of parameters may lead the
model to prioritize new knowledge, thereby com-
promising the retention of older knowledge. Fur-
thermore, the inclusion of additional parameters
inherently increases model complexity, making the

training and reasoning process more cumbersome.
Such complexity necessitates careful consideration
during design to strike a balance between knowl-
edge retention and model complexity.

8 Ethics Statement

Firstly, this study fully complies with the ethical
guidelines in the ACL Code of Ethics. Secondly,
all datasets involved in this study are from previ-
ous studies. The datasets we used do not contain
individual privacy data. Finally, DGAR focuses on
the research and experiments of TKGR tasks. Like
other TKGR methods, the results of our method
reasoning may be toxic or erroneous, so manual
inspection of the results may be required in the
applications.
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A Details about DGAR

A.1 Details about Deep Adaptive Replay

While initially exploring more complex mecha-
nisms for this integration, it is observed that the ad-
ditional parameters introduced hinders the model’s
convergence due to increased fitting complexity.
As a result, a direct injection approach is adopted
to integrate the historical distributions into the cur-
rent representations, as detailed below:

Hfinal =

{
Hcurrent ,

e , e /∈ Vreplay

H
replay
e +Hcurrent

e , e ∈ Vreplay
. (15)

However, it is observed that such a simple and di-
rect fusion approach results in performance degra-
dation. To address this issue, a straightforward
parameter is introduced to balance the historical
distribution representation H

replay
e and the current

distribution representation Hcurrent
e , thereby gen-

erating the final entity representation Hfinal . This
parameter effectively adjusts the weighting of the
two distributions, mitigating the performance loss
caused by direct fusion while preserving the ex-
pressive power of historical knowledge and the
dynamic characteristics of the current distribution:

Hfinal = αH replay
e + (1− α)Hcurrent

e , e ∈ Vreplay , (16)

where α ∈ [0, 1]. Hfinal denotes the final entity
representation, combining the most recent and his-
torical information of the entity.

To prevent the loss of entity evolution patterns
over time caused by direct injection, we inte-
grate distribution representation from the KG snap-
shot sequence reasoning model’s evolution unit to

10974

https://doi.org/10.18653/v1/2023.findings-emnlp.676
https://doi.org/10.18653/v1/2023.findings-emnlp.676
https://doi.org/10.18653/v1/2023.findings-emnlp.676
https://doi.org/10.1609/AAAI.V39I12.33459
https://doi.org/10.1609/AAAI.V39I12.33459
https://doi.org/10.1609/AAAI.V39I12.33459


achieve a deeper incorporation of historical dis-
tribution representations without introducing ad-
ditional parameters. After applying the relation-
aware GCN in the l-th evolution unit, we obtain
the current distribution representation of entity
Hcurrent,l

e . The historical distribution representation
of entities is then injected into the current distribu-
tion representation of entities as follows:

Hcurrent,l
e = αH replay

e + (1− α)Hcurrent,l
e , e ∈ Vreplay . (17)

After passing through multiple evolution units,
the final entity representation Hfinal , which incor-
porates historical distributions, is obtained.

A.2 Pre-train for DM

In this section, we will discuss how we obtain the
pre-trained DM. Considering that using a large
amount of knowledge to train diffusion will not
only increase the risk of data leakage, but also fail
to adapt to new data arriving over time, we adopt
CL to train DM. For example, at the t-th moment,
we can obtain the DM ϕt−1 pre-trained at the previ-
ous moment, and ϕt−1 is used as a pre-trained DM
to assist in generating the entity history distribution
in Diff-HDG. After completing all the operations
in Section 4, ϕt is initialized with ϕt−1, and the
model parameters are updated on Dt

train. Eq. 16 is
employed to preserve the historical knowledge of
the entity for DM. Upon completion of the training,
a new pre-trained DM, ϕt, is obtained and will be
used in the subsequent learning process.

B Further Analysis

B.1 Datasets Details

ICE14 ICE18 ICE05-15 GDELT

Entities 6869 23033 10094 7,691
Relations 230 256 251 240

Tasks 365 304 4017 2,751
Task granularity 24 hours 24 hours 24 hours 15mins

Total number of train 74,845 373,018 368,868 1,734,399
Total number of valid 8,514 45,995 46,302 238,765
Total number of test 7,371 49,545 46,159 305,241

Table 4: Details of the TKG datasets.

We follow the common division ratio of TKGR
tasks: The facts in each task are partitioned into
train, valid, and test sets in a ratio of 8:1:1 (Li et al.,
2021; Xu et al., 2023a). The statistical details of
the datasets are shown in Table 4.

2AI such as GPT only assists us in translation and grammar
checking.

B.2 Baselines Details

FT (fine-tuning) is a naive baseline where the
model is fine-tuned using newly added facts with-
out any mechanism to alleviate catastrophic forget-
ting. FT is set up following the previous works
such as TIE (Wu et al., 2021), LKGE (Wu et al.,
2021), and IncDE (Wu et al., 2021). FT enables
the base model (e.g., RE-GCN and TiRGN) to per-
form CL without applying any additional strategies.
Specifically, the base model inherits the parameters
from the previous time step i − 1 and continual
training on the training data Dt

train at time step i.
ER (Rolnick et al., 2019) mitigates forgetting by re-
playing a subset of previously stored events along-
side newly added facts during training. TIE (Wu
et al., 2021) incorporates temporal regularization,
experience replay with positive facts, and the use
of deleted facts as negative examples to effectively
address both catastrophic forgetting and intransi-
gence. LKGE (Cui et al., 2023) preserves historical
knowledge by leveraging historical weights and em-
beddings through the L2 paradigm. We incorporate
the reconstruction loss and embedding regulariza-
tion from LKGE into our objective function. When
initializing new entities, their embedding transfer
strategies are adopted. Based on the method pro-
posed by IncDE (Liu et al., 2024a), we leverage
the hierarchical ordering measure of IncDE and
incorporate the distillation loss proposed by IncDE
into our objective function.

B.3 Implementation Details

For all datasets, the embedding size d is set to
200, the learning rate lr is set to 0.001, and the
batch size is determined by the number of facts
at each time step. The number of layers of the
Transformer encoder for all datasets is set to 2.
The temperature coefficient τ for all datasets is set
to 0.5. The parameters of DAGR are optimized
by using Adam during the training process. The
optimal coefficient γ in the Diff-HDG is set to 1.
The optimal number of layers L in the DAR is set to
3. The optimal loss coefficient µ in model training
is set to 1. The number of samples of the best HCP
k for ICE14, ICE18, ICE05-15, and GDELT is set
to 35, 25, 40, and 32, respectively. We conduct
hyperparameter search experiments on the primary
parameters of DGAR using control variables. The
number of parameters in ICE14, ICE18, ICE05-15,
and GDELT is 17.55 MB, 33.71 MB, 21.44 MB,
and 21.38 MB, respectively. All experiments are
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Figure 6: Sensitivity Analysis.

conducted on NVIDIA A40.

B.4 Sensitivity Analysis

In this section, we conduct experiments on ICE14
and ICE18 to further analyze the impact of hy-
perparameter k in DGAR. The hyperparameter k
means the replay data consists of HCPs at k differ-
ent times.

To explore how the number of k affects the
model’s ability to retain historical knowledge, we
set different values for k. The results are shown in
Figure 6, including MRR and Hits@3 results on
the historical tasks. A larger k means the replay
data consists of HCPs at more different times. The
results reveal that on the ICE14 dataset, DGAR
demonstrates an initial improvement followed by
a plateau as k increases. These results indicate
that selecting HCPs at more different times for
historical distribution representations replay does
not significantly enhance the final performance but
instead increases computational costs. Notably,
even with only 5 recall time slices, DGAR outper-
forms all baseline models. This demonstrates that
our approach can effectively help the model retain
historical knowledge, even under limited memory
constraints.

B.5 Inference Efficiency

ICE14 ICE18

k Time(s) / Task MRR k Time(s) / Task MRR

Retrain — 553.48 49.80 — 530.48 31.35

DGAR

5 4.00 44.93 5 13.12 31.11
25 5.21 49.90 15 16.32 32.43
35 5.42 50.12 25 18.83 33.00
45 5.68 50.05 35 19.41 33.11

FT — 2.53 37.46 — 5.48 25.35
ER — 2.86 42.14 — 5.16 27.20
TIE — 4.38 41.07 — 10.71 29.31

LKGE — 2.70 37.51 — 5.03 25.56
IncDE — 4.07 36.57 — 9.71 25.52

Table 5: Inference efficiency analysis.

We report the average time cost of each task and

the MRR on historical tasks for DGAR at different
k values in Table 5. The hyperparameter k means
the replay data consists of HCPs at k different times.
We further report the average time consumption of
each task and the MRR on historical tasks under
different baselines and retaining settings in Table
5. Unlike DGAR and the baselines, retraining in-
volves reprocessing the entire dataset whenever
new data arrives. By comparing the results, our
method outperforms retraining and requires less
time. This shows the powerful ability of our model
in dealing with catastrophic forgetting. Because
our model uses more complex operations than the
baseline in order to retain more historical knowl-
edge, it is more time-consuming. Future research
will focus on enhancing reasoning efficiency while
preserving the accuracy of historical knowledge
retention.

B.6 Effect Analysis of Lr

In the w/o Lr variant, the performance of the his-
torical tasks drops significantly. This shows that
the Lr,t loss in Section 4.4 effectively alleviates
the loss of historical information caused by current
data optimization and Diff-HDG.

B.7 Random Selection of HCPs

In order to verify whether the generalization of
replay data is enhanced, we added an additional
experiment to prove. Compared to replaying histor-
ical data from the specified k time slices, randomly
selecting across the entire history provides more
global and generalizable information. Therefore,
we specifically added an experiment where the his-
torical context prompts from the k nearest time
slices was selected as the replay data. The experi-
mental results are in the Table 6 :

ICE14 ICE18

k Average (MRR) k Average (MRR)

nearest random nearest random

25 46.64 49.90 15 31.23 32.43
35 48.11 50.12 25 31.89 33.00
45 47.86 50.05 35 32.03 33.11

Table 6: Effect of Random Selection

The nearest refers to replaying with historical
context prompts sampled from the nearest k time
slices. As shown in the Table 6, regardless of differ-
ent k values, the random outperforms the nearest
on the historical tasks. The experimental results
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are consistent with our expectations. Mainly be-
cause the random selection of historical context
prompts provides the model with more generalized
data, thus improving the model’s performance on
the test set.

B.8 Compare Base on LogCL
To further verify whether DGAR can enhance the
performance of recent GNN-based models under
the CL setting, we conducted the following experi-
ment.

We selected LogCL (Chen et al., 2024b) , a rep-
resentative GNN-based TKGR model from recent
works, as the base model. Below, we report its
performance under the CL setting (FT) and its per-
formance when combined with DGAR in the same
setting on two datasets.

ICE14 ICE18

Algo.
Current Average Current Average

MRR MRR Hits@10 MRR MRR Hits@10

FT 31.63 28.93 48.61 38.46 30.47 55.52
DGAR 37.12 33.08 53.83 43.20 32.88 58.88

Table 7: Performance base on LogCL

The above experiments show that DGAR signif-
icantly enhances LogCL’s reasoning performance
under the CL setting. Interestingly, LogCL per-
forms worse on the ICE14 dataset than on ICE18,
which contrasts with its performance in the full-
training setting. This discrepancy occurs because
ICE14 has a simpler data distribution compared to
ICE18, while LogCL’s complex model structure
makes it prone to overfitting on ICE14. Under
the CL setting, highly complex models struggle
to maintain stable learned features as new data is
introduced (Lee, 2024). DGAR mitigates this issue
by replaying historical information, helping LogCL
retain its learned features more effectively. Conse-
quently, TKGR methods that excel in full-training
scenarios may not necessarily achieve better rea-
soning performance under CL setting.
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