
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 10948–10963
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

DTCRS: Dynamic Tree Construction for Recursive Summarization

Guanran Luo*, Zhongquan Jian*, Wentao Qiu , Meihong Wang, Qingqiang Wu
School of Informatics, Xiamen University

luoguanran@stu.xmu.edu.cn, wuqq@xmu.edu.cn

Abstract

Retrieval-Augmented Generation (RAG) miti-
gates the hallucination issues of large language
models (LLMs) by integrating external knowl-
edge. For abstractive questions involving multi-
step reasoning, knowledge from multiple sec-
tions is often required. To address this issue, re-
cent research has introduced recursive summa-
rization, which constructs a hierarchical sum-
mary tree by clustering text chunks, integrat-
ing information from various parts of the docu-
ment to provide evidence for abstractive ques-
tions. However, summary trees often contain
a large number of redundant summary nodes,
which not only increase construction time but
may also negatively impact question answer-
ing. Moreover, recursive summarization is not
suitable for all types of questions. We intro-
duce DTCRS, a method that dynamically gen-
erates summary trees based on document struc-
ture and query semantics. DTCRS determines
whether a summary tree is necessary by ana-
lyzing the question type. It then decomposes
the question and uses the embeddings of sub-
questions as initial cluster centers, reducing
redundant summaries while improving the rel-
evance between summaries and the question.
Our approach significantly reduces summary
tree construction time and achieves substantial
improvements across three QA tasks. Addition-
ally, we investigate the applicability of recur-
sive summarization to different question types,
providing valuable insights for future research.

1 Introduction

Although Large Language Models (LLMs) have
demonstrated tremendous advantages across vari-
ous tasks, updating model knowledge to adapt to
the ever-changing world remains a critical issue
(Zhang et al., 2023). Compared to methods of fine-
tuning models, the Retrieval-Augmented Genera-
tion (RAG) paradigm, which combines LLMs with

*Equal contribution.

Figure 1: The presence of numerous query-irrelevant
summary nodes in the summary tree increases construc-
tion time and may adversely affect correct answers.

knowledge bases by injecting external knowledge,
can update knowledge without modifying model
parameters (Wang et al., 2024). RAG has become
an important method for mitigating large model hal-
lucinations and enhancing answer interpretability
(Li et al., 2024).

Most current RAG research only retrieves con-
secutive short text chunks, which lack sufficient
context to answer questions that require integrat-
ing information from multiple parts of a document.
Recursive summarization (Wang et al., 2023) ad-
dresses this issue by hierarchically clustering and
summarizing dispersed text chunks to construct
a summary tree, thereby integrating the scattered
information. Wu et al. propose a method for re-
cursively summarizing entire fiction novels using
human feedback (Wu et al., 2021). HIBRIDS in-
troduces hierarchical biases into the Transformer
architecture to better capture document structure
for long-document summarization (Cao and Wang,
2022). RAPTOR (Sarthi et al., 2024) establishes a
new baseline for RAG by constructing hierarchical
summary trees for information retrieval, outper-
forming existing retrieval methods across various
QA datasets.

Recursive summarization is effective because it
generates summaries at different granularity levels,
providing more information for answer generation.
However, as shown in Figure 1, we find that it also
introduces a large amount of redundant summaries
unrelated to the answer, which not only increases

10948



computational overhead but may also negatively
impact the correctness of the final answer. One key
reason for this issue is that traditional summary tree
is a static tree based on documents, which splits the
original document into text chunks and then gener-
ates summaries based on clustered chunks (Sarthi
et al., 2024). As a result, the summary tree only
reflects the document itself rather than capturing
the semantics of the query, leading to an abundance
of redundant summaries that are unrelated to the
query.

Moreover, whether all types of questions can
benefit from recursive summarization remains an
unresolved issue. Intuitively, recursive summa-
rization integrates dispersed knowledge within a
document, making it particularly beneficial for ab-
stractive questions that require multi-step reason-
ing. However, for simpler tasks such as extractive
or boolean questions, whether recursive summa-
rization provides any advantage remains uncertain
(Zhang et al., 2022). Therefore, indiscriminately
using recursive summarization is likely to interfere
with the generation of answers.

To address the above issues, we propose a Dy-
namic Tree Construction for Recursive Summariza-
tion (DTCRS), which replaces the static summary
tree generated solely from the document with a
dynamically constructed summary tree based on
the document structure and query semantics. This
approach enhances the relevance between the sum-
mary topics and the query while reducing redun-
dant summaries. Specifically, we first determine
the question type. For complex questions that
require summarizing information from multiple
parts of the document, we generate a table of con-
tents (ToC) for the document. Based on this ToC,
we decompose the question into multiple simpler
sub-questions. DTCRS then uses the number of
sub-questions and their embeddings as the num-
ber of clusters and initial cluster centers to perform
Gaussian Mixture Model (GMM) clustering on text
chunks and generate corresponding text summaries.
This process is repeated recursively to construct a
summary tree for RAG.

We conduct comprehensive experiments on three
QA datasets, and the results show significant im-
provements over the baselines, indicating that the
dynamic summary tree generates more relevant
summaries for the questions. We further enhance
answer quality by assessing question types before
building the summary tree, thereby reducing time
overhead. Additionally, we analyze the perfor-

mance of DTCRA across various types of questions.
The experimental results validate our hypothesis
that introducing recursive summarization signifi-
cantly enhances the performance of LLMs on more
challenging abstractive questions. However, for
extractive and boolean questions, recursive summa-
rization provides no advantage and may even have
a negative impact.

2 Related Work

Effectively utilizing long-range context remains
a persistent challenge in retrieval-augmented QA.
Dai et al. (Dai, 2019) introduced Transformer-XL
to overcome fixed-length context limitations; how-
ever, recent studies by Sun et al. (Sun et al., 2021)
and Liu et al. (Liu et al., 2024b) highlight that
contemporary language models still encounter dif-
ficulties in fully leveraging extended contexts. To
address these challenges, research has explored
several complementary directions, which we group
here into four major areas.

Retrieval-Augmented Generation. RAG im-
proves QA performance by incorporating external
knowledge into model inference. Techniques such
as self-reflective prompting, adaptive complexity
control, and iterative refinement have proven effec-
tive in improving query formulation (Asai et al.,
2023; Jeong et al., 2024; Chan et al., 2024). These
approaches tend to work well within narrow do-
mains but face difficulties generalizing to more
complex or diverse inputs (Zhang et al., 2024; Siri-
wardhana et al., 2023). By introducing a summa-
rization structure that absorbs and organizes re-
trieved content, our method aims to maintain the
advantages of RAG while reducing its reliance on
brittle query-retrieval dependencies.

Retrieval Methods. Open-domain QA has ben-
efited significantly from improvements in retrieval,
especially with the rise of dense representations
and neural scoring. Early works based on term
frequency (Sparck Jones, 1972) have evolved into
embedding-based retrieval (Khattab and Zaharia,
2020; Guu et al., 2020; Karpukhin et al., 2020; Liu
et al., 2021) that offers better contextual alignment.
More recent methods adopt hierarchical or multi-
stage retrieval schemes (Arivazhagan et al., 2023),
and knowledge distillation has helped balance effi-
ciency and effectiveness (Izacard and Grave, 2020;
Roberts et al., 2020; Min et al., 2021). While most
of these techniques aim to improve recall and rank-
ing quality, they are typically designed as indepen-

10949



dent modules. In contrast, our strategy connects
retrieval output directly to a downstream structure,
improving continuity and interpretability.

Text Summarization. Summarization plays a
key role in condensing long or multi-document
inputs. Recent approaches have explored recur-
sive summarization to extend memory (Wang et al.,
2023) and query-focused methods to improve rel-
evance (Deng et al., 2023; Xu and Lapata, 2020).
Chunk-level and weakly supervised summariza-
tion (Angelidis and Lapata, 2018; Gao et al., 2023;
Sarthi et al., 2024; Wu et al., 2021) further increase
scalability. These techniques primarily focus on
fluency or informativeness, often at the expense of
structural clarity. By organizing summaries within
a tree-based layout aligned to document sections,
we aim to retain coherence while supporting tar-
geted reasoning.

Query Enhancement. Improving the clarity and
utility of user questions has become a central tech-
nique in QA pipelines. Query rewriting has been
shown to improve retrieval for under-specified or
ambiguous queries (Mo et al., 2024; Peng et al.,
2024), while decomposition supports multi-hop in-
ference (Reppert et al., 2023; Ye et al., 2023; Rad-
hakrishnan et al., 2023). These strategies typically
operate as pre-processing steps. In contrast, our
approach grounds sub-question generation in the
structure of the Summary Tree, using the natural
organization of documents to inform and constrain
the reasoning process.

Together, these lines of work provide a strong
foundation. By drawing on their strengths and em-
bedding them within a unified, structured represen-
tation, our method aims to enhance long-context
QA in a more interpretable and modular fashion.

3 DTCRS

The overall process of DTCRS is shown in Fig-
ure 2. In this section, we first introduce how to
classify the questions, then explain how DTCRS
handles different types of questions, with a focus
on how DTCRS constructs dynamic recursive sum-
mary trees for abstractive questions. Finally, we
introduce two retrieval methods for the summary
tree.

3.1 Question Type Classification

Indiscriminately introducing recursive summariza-
tion adds extra overhead and may negatively impact
the performance of question answering. Therefore,

it is necessary to determine the question type before
constructing the recursive tree in order to decide
whether recursive summarization is required. We
use LLM as a table of contents (ToC) generator
and classifier. The ToC c is generated based on the
document d, and then c and the original question
q are input into the classifier. It outputs a binary
label:

y = fLLM(q, c) ∈ {0, 1} (1)

The classification criteria are whether the question
is complex and whether it requires summarizing in-
formation from multiple sections of the ToC to pro-
vide a complete answer. If the classifier returns 1, a
dynamic summary tree is constructed for that ques-
tion; otherwise, we use the DPR(Karpukhin et al.,
2020) method to retrieve the top k text chunks:

S(d, q) = Topk ({sim(q, Ti) | Ti ∈ d}) (2)

Where Ti represents the i-th text chunk in docu-
ment d. sim(q, Ti) computes the similarity between
query q and text chunk Ti.

We provide the prompts for table of contents gen-
eration and question classification in Appendix A.

3.2 Dynamic Summary Trees

Our summary trees are dynamic because they gen-
erate different summary trees for different ques-
tions. There are two main issues that dynamic sum-
mary trees address: (1) the redundancy of nodes in
the summary tree, and (2) the irrelevance of gen-
erated summaries to the query. To address these
issues, we describe the construction process of dy-
namic summary trees below.

Quesion Decomposition. To address the redun-
dancy issue in summary trees, we can reduce the
number of clusters at each layer. Previous methods
have employed the Bayesian Information Criterion
(BIC) (Neath and Cavanaugh, 2012) to determine
the optimal number of clusters for the model:

BIC = ln(n) p− 2 ln(L̂), (3)

where n is the number of data points, p is the num-
ber of parameters in the model, and L̂ is the maxi-
mized value of the likelihood function of the model.

The number of clusters is determined by the
number of text chunks and the number of model
parameters. Therefore, the longer the text and the
more model parameters, the more redundant nodes
may be generated. Assume that the document d

10950



Figure 2: The overall process of DTCRS. The classifier first determines the question type. If summarization of
document information is required, a dynamic summary tree is constructed; otherwise, DPR (Karpukhin et al., 2020)
is used for retrieval. During the construction of the dynamic summary tree, the question is decomposed based on the
document table of contents, with sub-questions serving as initial cluster centers for recursive clustering to generate
summaries at different levels.

is divided into Nd chunks, the total computational
effort can be described by the geometric series:

Nd +
Nd

2
+

Nd

4
+

Nd

8
+ · · · (4)

The total computational workload is 2Nd. In con-
trast, we use an LLM as the question decomposer
and input both the ToC c and the original question
q into the question decomposer to generate a set of
sub-questions Q′ = {q1, q2, . . . , qj}.

There are two reasons for introducing the ToC:
one is to limit the scope of the sub-questions to the
themes of the reference document, and the second
is to better align the sub-questions with the different
sections of the document.

Then, we use Q′ for the first layer of clustering,
so the number of sub-questions NQ′ corresponds to
the number of clusters, and the embeddings of the
sub-questions EQ′ can serve as the initial cluster
centers, resulting in the total computational effort:

Nd +NQ′ +
NQ′

2
+ · · · (5)

Since NQ′ ≪ Nd, the computational effort can
be considered approximately Nd, thereby reduc-
ing the time required for clustering and generating
summaries. Moreover, by reducing the number of
clusters, there is no need to employ hierarchical
clustering to capture the relationships from themes
to details among texts (Sarthi et al., 2024), thus
further enhancing the efficiency of clustering.

We provide prompts for decomposing questions
in Appendix A.

Text Chunk Segmentation. The complexity of
the summary tree scales linearly with the length of
the document (Sarthi et al., 2024). Therefore, al-
though there are methods available for segmenting
text chunks based on semantics (Sawarkar et al.,
2024), given that constructing the summary tree
itself incurs significant time overhead, if seman-
tic segmentation is used, then for a dataset such
as NarrativeQA (Kočiskỳ et al., 2018)—where a
document can exceed 100,000 tokens—the time
required to build a summary tree would be intol-
erable. Therefore, we use a fixed segmentation
method, and we set the text chunk size to 500 to-
kens. Any sentence that extends beyond the 500-
token boundary is moved in its entirety to the next
text chunk to avoid having an incomplete sentence
within a single text chunk.

Clustering. To address the issue of generated
summaries being potentially irrelevant to the query,
we use the number of sub-questions as the num-
ber of clusters, with embeddings of sub-questions
serving as initial clustering centers. This quesion-
oriented clustering approach enhances the rele-
vance of summaries to the questions.

We use a specific encoder to convert text chunks
into embeddings, and then, following previous re-
search (Sarthi et al., 2024), we employ Gaussian
Mixture Models (GMM) for soft clustering, allow-
ing a text chunk to be assigned to multiple cat-
egories. GMM assumes that all data points are
generated from a finite number of Gaussian dis-

10951



tributions, each corresponding to a cluster. The
probability density function of the entire model is
given by:

p(x|θ) =
M∑

m=1

πmN (x|µm,Σm), (6)

where πm is the mixing weight of the m-th Gaus-
sian distribution, satisfying 0 ≤ πm ≤ 1 and∑M

m=1 πm = 1, and θ represents the set of all
parameters to be estimated, including all mixing
weights, means, and covariance matrices.

To better measure the similarity between em-
beddings (Aggarwal et al., 2001), we use Uniform
Manifold Approximation and Projection (UMAP)
for dimensionality reduction (McInnes et al., 2018).
First, we combine all text chunk embeddings ET =
{et1 , et2 , . . . , etp}. and sub-question embeddings
EQ′ = {eq1 , eq2 , . . . , eqj} into a new embedding
set, then perform unified dimensionality reduc-
tion to ensure semantic consistency between sub-
questions and text chunks. Formally, this dimen-
sionality reduction process can be expressed as:

Ereduced = ΦUMAP

(
ET ⊕ EQ′

)
(7)

We use global clustering instead of the hierar-
chical clustering algorithm (Sarthi et al., 2024) be-
cause, on one hand, the number of sub-questions is
small and hierarchical clustering typically requires
a larger number of clusters; on the other hand,
global clustering is more efficient. In the first layer
of clustering, we use the number of sub-questions
as the number of clusters, with embeddings serving
as the initial clustering centers. This naturally sets
two adaptive hyperparameters for clustering. After
the first layer, we do not consider sub-questions but
use the number of clusters determined by BIC and
random initial clustering centers, as the number of
sub-questions by then is greater than or equal to
the number of text chunks.

Recursive Summarization Generation. The
clustered text chunks are fed into an LLM-based
summarization generator to produce respective
summaries. This process is then repeated by reduc-
ing dimensions and clustering again until further
clustering is no longer possible. Although the gen-
erated summaries may contain slight hallucinations,
these hallucinations do not significantly impact the
question-and-answer results (Sarthi et al., 2024;
Zhang et al., 2022). The prompts used for generat-
ing summaries are provided in Appendix A.

3.3 Retrieval

For the two retrieval methods of the summary tree:
tree traversal and collapsed tree (Sarthi et al., 2024),
the tree traversal method selects the top k most rele-
vant nodes based on cosine similarity at each layer,
considers the children of these selected nodes in
the next layer, and then chooses the k nodes with
the highest cosine similarity to the query vector,
repeating this process until reaching the leaf nodes.
The collapsed tree method unfolds all nodes as
a single layer, selecting the top k nodes with the
highest cosine similarity score to the query, and
continuously adds nodes to the result set until a
predefined maximum token count is reached. Since
the performance of the collapsed tree consistently
outperforms tree traversal (Sarthi et al., 2024), we
use the collapsed tree method for retrieval in subse-
quent experiments.

4 Experimental Setup

4.1 Settings

We use GPT-4 (Achiam et al., 2023), GPT-4o-
mini, and DeepSeek-V2-Lite-Chat (7B) (Liu et al.,
2024a) as the LLMs, which are among the most
advanced closed-source and open-source LLMs
currently available. The selected LLMs are used
for question classification, ToC generation, sub-
question generation, summarization, and ques-
tion answering. The embedding model is SBERT
(Reimers, 2019), with the GMM clustering thresh-
old set to 0.5. The maximum length for summaries
is 100 tokens, the maximum length for text chunks
is 500 tokens. During retrieval, DPR’s top-k is set
to 5, the maximum token limit for the collapsed
tree is set to 3500, and FAISS is used for nearest
neighbor search (Johnson et al., 2019). The experi-
ments are conducted on an NVIDIA A800 80GB
PCIe GPU and an Intel(R) Xeon(R) Silver 4314
CPU @ 2.40GHz.

4.2 Datasets

Dataset Number of Questions Average Document Characters

QASPER 1451 21,889.87
QuALITY 2128 24,723.06
NarrativeQA 10,558 332,133.92

Table 1: Dataset Overview.

Our experiments utilize three question-
answering datasets: NarrativeQA (Kočiskỳ
et al., 2018), QASPER (Dasigi et al., 2021), and

10952



Type Number

Extractive 501 (34.53%)
Abstractive 513 (35.35%)
Boolean 239 (16.47%)
Unanswerable 198 (13.65%)

Table 2: Statistics of Different Types of Questions in
QASPER.

QuALITY (Pang et al., 2021). The basic statistics
of these datasets are presented in Table1 and
Table2. These datasets enable the evaluation of
DTCRS’s performance across various document
lengths and diverse question types.

NarrativeQA: This dataset contains reference
documents paired with unique question-answer
pairs. During evaluation, the model generates an-
swers based on the provided document and ques-
tion, which are then compared directly to the
unique ground-truth answers using standard met-
rics such as BLEU-1, BLEU-4, ROUGE-L, and
METEOR.

QASPER: This dataset comprises shorter docu-
ments with multiple answers per question provided
by different annotators. Questions are categorized
into answerable/unanswerable, yes/no, abstractive,
and extractive types. Evaluation is conducted by
calculating the token-level F1 score between the
model’s prediction and all provided answers, select-
ing the highest score as the final evaluation metric.

QuALITY: QuALITY includes context para-
graphs paired with multiple-choice questions. Dur-
ing evaluation, the model selects the most appro-
priate answer from provided options based on the
context and question. The chosen answers are then
compared against the gold standard answers to mea-
sure performance through accuracy.

4.3 Comparisons

DPR (Karpukhin et al., 2020). Maps queries
and documents into a dense vector space and finds
the most relevant documents by computing the sim-
ilarity between vectors.

RAPTOR (Sarthi et al., 2024). Recursively sum-
marizes text in a hierarchical manner, constructing
a tree structure that allows the model to retrieve
information from different levels of abstraction
during inference. This method captures both lo-
cal details and the overall structure and themes

of documents, thereby better supporting complex
reasoning tasks.

State-of-the-Art Methods on Each Task.
NarrativeQA: BiDAF (Seo, 2016), BM25 +
BERT(Robertson et al., 2009; Devlin, 2018),
Recursively Summarizing Books (Wu et al., 2021),
Retriever + Reader (Izacard and Grave, 2020).
QuALITY: Longformer-base (Beltagy et al.,
2020), DPR + DeBERTaV3-large (Karpukhin et al.,
2020; He et al., 2020), CoLISA + DeBERTaV3-
large (Dong et al., 2023). QASPER: LongT5
XL (Guo et al., 2021), CoLT5 XL (Ainslie et al.,
2023).

5 Experimental Results

5.1 Main Results

Model F1

DPR + GPT-4 51.3
LongT5 XL 53.1
CoLT5 XL 53.9
RAPTOR + GPT-4 55.7
DTCRS + GPT-4 58.5

Table 3: Experimental results on QASPER test set using
GPT-4 as the language model. The results of other
methods are reported as stated in their original papers.
DTCRS outperforms RAPTOR and achieves the best
results.

Model Accuracy SAT-style Score

Test Set Hard Subset Test Set Hard Subset

Longformer-base 30.7 29.3 7.6 5.7
DPR + DeBERTaV3-large 55.4 46.1 40.5 28.1
CoLISA + DeBERTaV3-large 62.3 54.7 49.7 39.6
DPR + GPT-4o-mini 62.8 50.3 52 35.9
RAPTOR + GPT-4o-mini 67.6 57 59 44.9
DTCRS + GPT-4o-mini 74.7 62.9 63.7 48.2

Table 4: Experimental results on QuALITY test set
using GPT-4o-mini as the language model. The results
of other methods are reported as stated in their original
papers. DTCRS achieves the best performance on both
the entire dataset and the challenging subset.

We compare DTCRS with state-of-the-art meth-
ods on each task, and the experimental results are
the best values from two runs on the test set. As
shown in Tables 3 and 4. DTCRS+GPT-4 achieves
the highest F1 score of 58.5% on the QASPER
dataset, while DTCRS+GPT-4o-mini attains the
highest accuracy of 74.7% and 62.9% on the full
and hard subsets of the QuALITY dataset, respec-
tively. This demonstrates that the recursive sum-
maries generated by our method provide useful
references for LLMs in answering questions.

10953



Model ROUGE-L BLEU-1 BLEU-4 METEOR

BiDAF 6.2 5.7 0.3 3.7
BM25 + BERT 15.5 14.5 1.4 5.0
Recursively Summarizing Books 21.6 22.3 4.2 10.6
DPR + GPT-4o-mini 26.5 21.5 1.3 14.2
RAPTOR + GPT-4o-mini 25.0 21.2 1.1 14.1
Retriever + Reader 32.0 35.3 7.5 11.1
DTCRS + GPT-4o-mini 26.0 21.1 1.3 14.4

Table 5: Experimental results on NarrativeQA test set
using GPT-4o-mini as the language model. The results
of other methods are reported as stated in their original
papers. DTCRS achieves the best METEOR score but
does not show an overall advantage compared to DPR
and RAPTOR using the same language model. We
attribute this to the lack of complex questions requiring
summarization and reasoning in NarrativeQA.

As shown in Table 5, DTCRS+GPT-4o-mini
achieves the highest METEOR score of 14.4%
on the NarrativeQA dataset but performs worse
than the Retriever+Reader (Izacard and Grave,
2020) method on other metrics. We attribute the
varying performance of DTCRS across different
tasks to differences in question types and diffi-
culty. QASPER contains a significant proportion
of abstractive questions that require synthesizing
scattered information, while QuALITY includes a
challenging hard subset where DTCRS exhibits a
more pronounced advantage. Although the Narra-
tiveQA dataset provides an ultra-long document,
its questions are predominantly simple extractive
questions, such as “Who is Eve?” and “Where does
Ralston recover?”. These types of questions do not
benefit from DTCRS, which explains why DTCRS
performs worse than Retriever+Reader and exhibits
similar performance to DPR and RAPTOR on this
dataset.

We further compare performance on abstractive
and non-abstractive questions. As shown in Fig-
ure 3, DTCRS consistently outperforms DPR on
both types, with larger gains for abstractive ques-
tions. These results highlight the particular advan-
tage of DTCRS on tasks that require multi-hop
reasoning and information synthesis.

5.2 Ablation Study

We perform ablation experiments using GPT-4o-
mini and Deepseek-v2-Lite-Chat on the QASPER
dataset to examine the contribution of each module
to performance improvement. Specifically, we con-
sider removing (1) global clustering and replacing
it with hierarchical clustering, (2) the question type
classifier, and (3) the Table of Contents (ToC) gen-
erator. The more complete ablation results will be

Figure 3: F1 scores comparison of DTCRS and DPR on
abstractive vs. non-abstractive questions.

Figure 4: The sample outputs of RAPTOR and DTCRS:
the yellow-highlighted parts in the evidence indi-
cate information relevant to the question, the orange-
highlighted parts represent redundant evidence included
by RAPTOR compared to DTCRS, and the red bold text
in the answer denotes the ground truth.

presented in Appendix B.

As shown in Table 6, we analyze the perfor-
mance of different DTCRS modules on various
question types and draw the following conclusions:
Removing global clustering has no significant im-
pact on the results but improves clustering effi-
ciency. We will analyze the efficiency of global and
hierarchical clustering in the next section. Remov-
ing the ToC generator leads to a performance drop,
indicating that it helps combine sub-questions with
query semantics and document structure, improv-
ing the relevance between summaries and the ques-
tion. The most notable impact is from removing the
question classifier. This is because for extractive
questions, DPR performs better, and introducing
recursive summarization in such cases can lead to
performance degradation. However, for abstractive
questions, recursive summarization is beneficial.
Since recursive summarization is not suitable for
all types of questions, it is crucial to decide whether
to incorporate it based on the question type.

10954



Model
Total Extractive Abstractive Boolean

GPT-4o-mini
DeepSeek-V2-

Lite-Chat
GPT-4o-mini

DeepSeek-V2-
Lite-Chat

GPT-4o-mini
DeepSeek-V2-

Lite-Chat
GPT-4o-mini

DeepSeek-V2-
Lite-Chat

DPR 33.0 31.3 29.6 25.7 13.0 13.9 86.3 85.4
w/o global 43.8 38.6 40.4 32.4 23.5 21.0 86.2 86.2
w/o classify 37.2 33.7 28.0 24.0 22.9 20.2 90.1 87.4
w/o contents 44.1 38.1 40.5 32.1 22.7 20.6 87.3 84.1
DTCRS 44.5 38.3 41.3 32.5 23.6 21.1 88.2 85.3

Table 6: Ablation study results on QASPER using GPT-4o-mini and DeepSeek-V2-Lite-Chat, showing the F1 scores
of each component on different question types.

Variant GPT-4o-mini DeepSeek-V2-Lite-Chat

DPR 33.0 31.3
w/o global 43.8 38.6
w/o classifier 37.2 33.7
w/o ToC 44.1 38.1
w/o question decomposer 37.5 32.9
DTCRS 44.5 38.3

Table 7: Ablation Study on Total Questions (F1 Scores)

Layer Average Number of Nodes Evidence Node Coverage

DTCRS RAPTOR DTCRS RAPTOR

0 (leaf) 252 252 75.39% 70.83%
1 3.96 54 19.84% 20.83%
2 1.03 10 3.96% 8.33%

Table 8: Comparison of node statistics across layers.
Evidence node coverage is the ratio of the number of
evidence nodes in the layer to the total number of evi-
dence nodes.

5.3 Analysis

To evaluate whether our method reduces the sum-
mary tree construction time, we examine the rela-
tionship between document length and summary
tree construction time, as shown in Figure 4. Over-
all, all methods exhibit a linear trend. Compared to
DTCRS without global clustering and RAPTOR,
DTCRS shows increasing time efficiency benefits
as document length grows, indicating that our ap-
proach effectively reduces summary tree construc-
tion time by decreasing the number of clusters and
incorporating global clustering.

Furthermore, we analyze the distribution of
nodes across different layers to investigate whether
DTCRS addresses the issue of redundant summary
nodes. As shown in Table 8, we report the aver-
age number of nodes and the evidence node cov-
erage rate for the first three layers. DTCRS has
significantly fewer summary nodes in the first and
second layers than RAPTOR. Meanwhile, the ev-
idence node coverage rate in the leaf layer and
the first layer, which play a crucial role in answer
generation, remains comparable to RAPTOR. This

Figure 5: Classification results using GPT-4o-mini as
the classifier on different datasets: “Yes” indicates ab-
stractive questions, “No” indicates non-abstractive ques-
tions.

suggests that DTCRS effectively reduces the num-
ber of summary nodes while preserving the query-
relevant information, thereby addressing the redun-
dancy issue in summary nodes. The sample out-
puts in Figure 6 further support this conclusion.
Although both DTCRS and RAPTOR can retrieve
evidence relevant to the question, DTCRS provides
more concise evidence, which helps prevent the
generation of irrelevant text in the answer.

In Section 5.1, we find that the experimental
results of DTCRS on NarrativeQA are not ideal.
We believe this is because NarrativeQA primarily
consists of simple extractive questions and lacks
abstractive questions. To validate our point, we ana-
lyze the classification results of the question classi-
fier on different datasets. As shown in Figure 5, the
proportion of abstractive questions in QASPER
and QuALITY exceeds 20%, which leads to a
significant performance improvement for DTCRS
compared to RAPTOR and DPR. The QuALITY
dataset benefits even more due to its higher pro-
portion of abstractive questions. In contrast, Narra-
tiveQA has almost no abstractive questions, so the
performance of DTCRS is limited.

10955



Figure 6: The sample outputs of RAPTOR and DTCRS:
the yellow-highlighted parts in the evidence indi-
cate information relevant to the question, the orange-
highlighted parts represent redundant evidence included
by RAPTOR compared to DTCRS, and the red bold text
in the answer denotes the ground truth.

Computational Efficiency. Although our
method requires several LLM calls, the main
bottleneck is in clustering and summarization. As
shown in Table 9, DTCRS reduces summary-layer
nodes by 92.2%, and the summary tree construc-
tion time (excluding preprocessing) is reduced by
80.95% compared to RAPTOR.

Method Nodes Time (s)

DTCRS 4.99 40.82
RAPTOR 64.00 214.39

Table 9: Summary layer node count and construction
time (excluding preprocessing) for DTCRS and RAP-
TOR.

6 Conclusion

We propose DTCRS, which dynamically generates
a summary tree based on document structure and
query semantics. First, it generates a table of con-
tents for the document and then decomposes com-
plex questions into simpler sub-questions based on
the table of contents. The embeddings of these
sub-questions serve as the initial cluster centers.
Through recursive clustering and text summariza-
tion, DTCRS constructs a hierarchical summary
tree. DTCRS achieves significant performance im-
provements on three QA datasets while requiring
less time for construction. We conduct experi-
ments to analyze DTCRS’s performance on dif-

ferent types of questions, providing insights for
future research on the applicability of recursive
summarization.

Ethics Statement

We follow the new ACL Policy on AI Writing As-
sistance and use AI purely for language assistance
in the paper. After careful consideration, we be-
lieve that our paper complies with the ACL ethics
policy and does not introduce any additional ethical
concerns.

Limitations

The question classifier may make incorrect clas-
sifications, leading to the use of inappropriate re-
trieval methods, which can degrade performance.
For long documents that exceed the model’s input
limit, the table of contents generated by the ToC
generator may be incomplete, limiting the ability
to summarize the document information effectively.
In addition, due to constraints in computational re-
sources and time, we only conduct experiments us-
ing the larger-scale GPT-4 model on the QASPER
dataset, while smaller language models are used for
the other datasets. Further evaluation with larger
models on a broader range of datasets is needed in
future work.

Acknowledgments

We would like to thank the anonymous review-
ers for their insightful and constructive feedback,
which helped us improve the clarity, completeness,
and overall quality of our work.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Charu C Aggarwal, Alexander Hinneburg, and Daniel A
Keim. 2001. On the surprising behavior of distance
metrics in high dimensional space. In Database the-
ory—ICDT 2001: 8th international conference Lon-
don, UK, January 4–6, 2001 proceedings 8, pages
420–434. Springer.

Joshua Ainslie, Tao Lei, Michiel de Jong, Santiago
Ontañón, Siddhartha Brahma, Yury Zemlyanskiy,
David Uthus, Mandy Guo, James Lee-Thorp, Yi Tay,
et al. 2023. Colt5: Faster long-range transform-
ers with conditional computation. arXiv preprint
arXiv:2303.09752.

10956



Stefanos Angelidis and Mirella Lapata. 2018. Sum-
marizing opinions: Aspect extraction meets senti-
ment prediction and they are both weakly supervised.
arXiv preprint arXiv:1808.08858.

Manoj Ghuhan Arivazhagan, Lan Liu, Peng Qi, Xinchi
Chen, William Yang Wang, and Zhiheng Huang.
2023. Hybrid hierarchical retrieval for open-domain
question answering. In Findings of the Association
for Computational Linguistics: ACL 2023, pages
10680–10689.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
arXiv preprint arXiv:2310.11511.

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Steven Bird. 2006. Nltk: the natural language toolkit.
In Proceedings of the COLING/ACL 2006 Interactive
Presentation Sessions, pages 69–72.

Shuyang Cao and Lu Wang. 2022. Hibrids: Atten-
tion with hierarchical biases for structure-aware
long document summarization. arXiv preprint
arXiv:2203.10741.

Chi-Min Chan, Chunpu Xu, Ruibin Yuan, Hongyin Luo,
Wei Xue, Yike Guo, and Jie Fu. 2024. Rq-rag: Learn-
ing to refine queries for retrieval augmented genera-
tion. arXiv preprint arXiv:2404.00610.

Zihang Dai. 2019. Transformer-xl: Attentive language
models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan,
Noah A Smith, and Matt Gardner. 2021. A dataset of
information-seeking questions and answers anchored
in research papers. arXiv preprint arXiv:2105.03011.

Yang Deng, Wenxuan Zhang, Weiwen Xu, Ying Shen,
and Wai Lam. 2023. Nonfactoid question answer-
ing as query-focused summarization with graph-
enhanced multihop inference. IEEE Transactions
on Neural Networks and Learning Systems.

Jacob Devlin. 2018. Bert: Pre-training of deep bidi-
rectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

Mengxing Dong, Bowei Zou, Yanling Li, and Yu Hong.
2023. Colisa: inner interaction via contrastive learn-
ing for multi-choice reading comprehension. In Eu-
ropean Conference on Information Retrieval, pages
264–278. Springer.

Tianyu Gao, Howard Yen, Jiatong Yu, and Danqi Chen.
2023. Enabling large language models to generate
text with citations. arXiv preprint arXiv:2305.14627.

Mandy Guo, Joshua Ainslie, David Uthus, Santiago On-
tanon, Jianmo Ni, Yun-Hsuan Sung, and Yinfei Yang.
2021. Longt5: Efficient text-to-text transformer for
long sequences. arXiv preprint arXiv:2112.07916.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In International confer-
ence on machine learning, pages 3929–3938. PMLR.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Gautier Izacard and Edouard Grave. 2020. Distilling
knowledge from reader to retriever for question an-
swering. arXiv preprint arXiv:2012.04584.

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju
Hwang, and Jong C Park. 2024. Adaptive-rag: Learn-
ing to adapt retrieval-augmented large language mod-
els through question complexity. arXiv preprint
arXiv:2403.14403.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535–547.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR conference on research
and development in Information Retrieval, pages 39–
48.

Tomáš Kočiskỳ, Jonathan Schwarz, Phil Blunsom, Chris
Dyer, Karl Moritz Hermann, Gábor Melis, and Ed-
ward Grefenstette. 2018. The narrativeqa reading
comprehension challenge. Transactions of the Asso-
ciation for Computational Linguistics, 6:317–328.

Jiarui Li, Ye Yuan, and Zehua Zhang. 2024. En-
hancing llm factual accuracy with rag to counter
hallucinations: A case study on domain-specific
queries in private knowledge-bases. arXiv preprint
arXiv:2403.10446.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang,
Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. 2024a.
Deepseek-v2: A strong, economical, and efficient
mixture-of-experts language model. arXiv preprint
arXiv:2405.04434.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024b. Lost in the middle: How language
models use long contexts. Transactions of the Asso-
ciation for Computational Linguistics, 12:157–173.

Ye Liu, Kazuma Hashimoto, Yingbo Zhou, Semih
Yavuz, Caiming Xiong, and Philip S Yu. 2021. Dense
hierarchical retrieval for open-domain question an-
swering. arXiv preprint arXiv:2110.15439.

10957



Leland McInnes, John Healy, and James Melville. 2018.
Umap: Uniform manifold approximation and pro-
jection for dimension reduction. arXiv preprint
arXiv:1802.03426.

Sewon Min, Kenton Lee, Ming-Wei Chang, Kristina
Toutanova, and Hannaneh Hajishirzi. 2021. Joint
passage ranking for diverse multi-answer retrieval.
arXiv preprint arXiv:2104.08445.

Fengran Mo, Chen Qu, Kelong Mao, Yihong Wu, Zhan
Su, Kaiyu Huang, and Jian-Yun Nie. 2024. Align-
ing query representation with rewritten query and
relevance judgments in conversational search. In
Proceedings of the 33rd ACM International Confer-
ence on Information and Knowledge Management,
pages 1700–1710.

Andrew A Neath and Joseph E Cavanaugh. 2012. The
bayesian information criterion: background, deriva-
tion, and applications. Wiley Interdisciplinary Re-
views: Computational Statistics, 4(2):199–203.

Richard Yuanzhe Pang, Alicia Parrish, Nitish Joshi,
Nikita Nangia, Jason Phang, Angelica Chen, Vishakh
Padmakumar, Johnny Ma, Jana Thompson, He He,
et al. 2021. Quality: Question answering with long
input texts, yes! arXiv preprint arXiv:2112.08608.

Wenjun Peng, Guiyang Li, Yue Jiang, Zilong Wang, Dan
Ou, Xiaoyi Zeng, Derong Xu, Tong Xu, and Enhong
Chen. 2024. Large language model based long-tail
query rewriting in taobao search. In Companion
Proceedings of the ACM on Web Conference 2024,
pages 20–28.

Ansh Radhakrishnan, Karina Nguyen, Anna Chen,
Carol Chen, Carson Denison, Danny Hernandez, Esin
Durmus, Evan Hubinger, Jackson Kernion, Kamilė
Lukošiūtė, et al. 2023. Question decomposition im-
proves the faithfulness of model-generated reasoning.
arXiv preprint arXiv:2307.11768.

N Reimers. 2019. Sentence-bert: Sentence embed-
dings using siamese bert-networks. arXiv preprint
arXiv:1908.10084.

Justin Reppert, Ben Rachbach, Charlie George, Luke
Stebbing, Jungwon Byun, Maggie Appleton, and An-
dreas Stuhlmüller. 2023. Iterated decomposition: Im-
proving science q&a by supervising reasoning pro-
cesses. arXiv preprint arXiv:2301.01751.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the pa-
rameters of a language model? arXiv preprint
arXiv:2002.08910.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Re-
trieval, 3(4):333–389.

Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh
Khanna, Anna Goldie, and Christopher D Man-
ning. 2024. Raptor: Recursive abstractive pro-
cessing for tree-organized retrieval. arXiv preprint
arXiv:2401.18059.

Kunal Sawarkar, Abhilasha Mangal, and Shivam Raj
Solanki. 2024. Blended rag: Improving rag
(retriever-augmented generation) accuracy with se-
mantic search and hybrid query-based retrievers.
arXiv preprint arXiv:2404.07220.

M Seo. 2016. Bidirectional attention flow for machine
comprehension. arXiv preprint arXiv:1611.01603.

Shamane Siriwardhana, Rivindu Weerasekera, Elliott
Wen, Tharindu Kaluarachchi, Rajib Rana, and
Suranga Nanayakkara. 2023. Improving the domain
adaptation of retrieval augmented generation (rag)
models for open domain question answering. Trans-
actions of the Association for Computational Linguis-
tics, 11:1–17.

Karen Sparck Jones. 1972. A statistical interpretation
of term specificity and its application in retrieval.
Journal of documentation, 28(1):11–21.

Simeng Sun, Kalpesh Krishna, Andrew Mattarella-
Micke, and Mohit Iyyer. 2021. Do long-range lan-
guage models actually use long-range context? arXiv
preprint arXiv:2109.09115.

Qingyue Wang, Liang Ding, Yanan Cao, Zhiliang Tian,
Shi Wang, Dacheng Tao, and Li Guo. 2023. Re-
cursively summarizing enables long-term dialogue
memory in large language models. arXiv preprint
arXiv:2308.15022.

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng,
Chen Chen, and Jundong Li. 2024. Knowledge edit-
ing for large language models: A survey. ACM Com-
puting Surveys, 57(3):1–37.

Jeff Wu, Long Ouyang, Daniel M Ziegler, Nisan Sti-
ennon, Ryan Lowe, Jan Leike, and Paul Christiano.
2021. Recursively summarizing books with human
feedback. arXiv preprint arXiv:2109.10862.

Yumo Xu and Mirella Lapata. 2020. Coarse-to-fine
query focused multi-document summarization. In
Proceedings of the 2020 Conference on empirical
methods in natural language processing (EMNLP),
pages 3632–3645.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023. Large language mod-
els are versatile decomposers: Decomposing evi-
dence and questions for table-based reasoning. In
Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 174–184.

Shiyue Zhang, David Wan, and Mohit Bansal. 2022.
Extractive is not faithful: An investigation of broad
unfaithfulness problems in extractive summarization.
arXiv preprint arXiv:2209.03549.

Tianjun Zhang, Shishir G Patil, Naman Jain, Sheng
Shen, Matei Zaharia, Ion Stoica, and Joseph E Gonza-
lez. 2024. Raft: Adapting language model to domain
specific rag. arXiv preprint arXiv:2403.10131.

10958



Zihan Zhang, Meng Fang, Ling Chen, Mohammad-Reza
Namazi-Rad, and Jun Wang. 2023. How do large
language models capture the ever-changing world
knowledge? a review of recent advances. arXiv
preprint arXiv:2310.07343.

A Prompt

The prompts used in this study, depicted in Figures
7 to 12, are designed to guide the model through a
range of specific tasks effectively.

• Problem Decomposition: Figure 7 shows a
prompt that decomposes the user’s question
into sub-questions based on the table of con-
tents.

• Table of Contents Generation: Figure 8
prompts the model to create a structured table
of contents for the document.

• Classification of Problem Types: Figure 9
valuate whether a user’s question is complex
and requires information from multiple sec-
tions of a document to be fully answered.

• Non-Multiple-Choice Question and An-
swer: Figure 10 answers questions concisely
(e.g., QASPER, NarrativeQA) using the pro-
vided context.

• Multiple-Choice Question and Answer: Fig-
ure 11 selects the best answer from multiple
options based on context (e.g., QuALITY).

• Summary Generation: Figure 12 generates
a concise summary of the given context, cap-
turing key details.

B Complete Experimental Results

Tables 10 and 11 show the complete experimental
results compared with DPR and RAPTOR.

C Sample Output

We present a detailed sample output in Table 12.

10959



Figure 7: Prompt for Problem Decomposition

Figure 8: Prompt for Table of Contents Generation

Figure 9: Prompt for Classification of Problem Types

Figure 10: Prompt for Non-Multiple-Choice Question and Answer Tasks

10960



Figure 11: Prompt for Multiple-Choice Question and Answer Tasks

Figure 12: Prompt for Summary Generation

Model
Total Extractive Abstractive Boolean

GPT-4o-mini
DeepSeek-V2-

Lite-Chat
GPT-4o-mini

DeepSeek-V2-
Lite-Chat

GPT-4o-mini
DeepSeek-V2-

Lite-Chat
GPT-4o-mini

DeepSeek-V2-
Lite-Chat

DPR 33.0 31.3 29.6 25.7 13.0 13.9 86.3 85.4
RAPTOR 34.5 34.6 24.4 23.6 17.2 17.7 87.2 86.8
w/o global 43.8 38.6 40.4 32.4 23.5 21.0 86.2 86.2
w/o classify 37.2 33.7 28.0 24.0 22.9 20.2 90.1 87.4
w/o contents 44.1 38.1 40.5 32.1 22.7 20.6 87.3 84.1
DTCRS 44.5 38.3 41.3 32.5 23.6 21.1 88.2 85.3

Table 10: Complete results on QASPER using GPT-4o-mini and DeepSeek-V2-Lite-Chat.

Model
ROUGE-L BLEU-1 BLEU-4 METEOR

GPT-4o-mini
DeepSeek-V2-

Lite-Chat
GPT-4o-mini

DeepSeek-V2-
Lite-Chat

GPT-4o-mini
DeepSeek-V2-

Lite-Chat
GPT-4o-mini

DeepSeek-V2-
Lite-Chat

DPR 26.5 21.3 21.4 15.2 1.3 0.5 14.4 15.0
RAPTOR 25.0 25.4 21.2 17.9 1.1 1.0 14.1 18.3
w/o global 26.9 27.9 21.5 18.9 1.3 1.3 14.7 19.7
w/o classify 26.2 25.3 21.4 17.3 1.2 0.7 15.1 17.7
w/o contents 26.7 21.4 21.4 15.2 1.1 0.6 14.3 15.2
DTCRS 26.0 28.1 21.1 19.1 1.3 0.9 14.2 20.1

Table 11: Complete results on NarrativeQA using GPT-4o-mini and DeepSeek-V2-Lite-Chat.

10961



Question How do they show genetic relationships between languages?
Reference Answer By doing hierarchical clustering of word vectors
Method Predicted Answer Predicted Evidence
RAPTOR The researchers show genetic rela-

tionships between languages by an-
alyzing the hierarchical clustering
of language vectors. In particular,
they present a subset of Germanic
languages in a figure (fig:germanic),
where the clustering closely mirrors
the established genetic relationships
within the Germanic language fam-
ily. This suggests that the language
vectors, while not explicitly designed
to detect genealogical relationships,
capture meaningful linguistic similar-
ities, reflecting genetic relationships
within the language family. However,
the model struggles with more distant
relationships, such as connecting Ger-
manic languages to Celtic languages,
indicating that the model is more suc-
cessful at capturing closer, more evi-
dent linguistic relationships.
Therefore, the genetic relation-
ships between languages are demon-
strated through clustering, where the
model’s learned language vectors
show a strong correlation with known
language family trees, like those of
the Germanic languages.

However, our purpose is not to de-
tect genealogical relationships... The
only supervision... is a language iden-
tifier as a one-hot encoding
In this paper, we examine a lan-
guage model that utilizes a predic-
tive distribution... Our focus is
on investigating the implications
of moving beyond the training cor-
pus’s language points
By means of cross-entropy... Figure
FIGREF12 plots the interpolation re-
sults...
The project aims to address chal-
lenges in data-driven language
modeling... Previous work by Am-
mar et al. (2016) employed one-hot
The research focuses on develop-
ing... distinguishing it from previ-
ous studies, such as Johnson et al.
(2016)...

DTCRS Hierarchical clustering of language
vectors.

However, our purpose is not to de-
tect genealogical relationships... The
only supervision... is a language iden-
tifier as a one-hot encoding
By means of cross-entropy... Fig-
ure FIGREF12 plots the interpola-
tion results...
In the figure English is (weakly)
grouped with the West Germanic lan-
guages... Generating Text: Since our
language model is conditioned on a
language vector...

Table 12: Comparison of RAPTOR and DTCRS Results.

10962



D Inference Parameters

Table 13 shows the temperatures for all steps that
require reasoning with an LLM.

Process Step Temperature

Question Type Classification 0
Table of Contents Generation 0
Question Decomposition 0
Question Answering 0
Summary Generation 0.3

Table 13: Temperature settings for different process
steps.

E UMAP Parameter Settings and Effects

Key UMAP parameters include n_neighbors,
n_components, and metric, which control
the number of neighbors for manifold learning, the
target dimension for reduction, and the distance
metric, respectively. In our main experiments, we
set n_neighbors to 10, metric to cosine, and
determine n_components as:

n_components = min
(
dim, len(embeddings)− 2

)

where dim is set to 10, and len(embeddings)
denotes the number of text chunk embeddings.

We further evaluated the impact of different
UMAP parameters on QASPER, as shown below:

n_neighbors dim Predicted F1 Score

10 10 58.5
50 10 56.3
50 50 60.0
100 100 60.8

Table 14: Effects of different UMAP parameters on
QASPER performance.

F Evaluation Script

We use the NLTK library (Bird, 2006) to compute
ROUGE-L, BLEU, and METEOR scores, where
the evaluation parameters for the ROUGE-L score
are shown in Table 15. For questions with multi-
ple reference answers, we select the one with the
highest score.

Parameter Value

max_n 4
limit_length True
length_limit 100
length_limit_type words
apply_avg True
apply_best True
alpha 0.5
weight_factor 1.2
stemming True

Table 15: Parameter settings for ROUGE-L.

10963


