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Abstract

The widespread usage of online Large Lan-
guage Models (LLMs) inference services has
raised significant privacy concerns about the po-
tential exposure of private information in user
inputs. Existing privacy protection methods
for LLMs suffer from either insufficient pri-
vacy protection with performance degradation,
or large inference time overhead. To address
these limitations, we propose PrivacyRestore, a
plug-and-play method to protect the privacy of
user inputs during LLM inference for the client-
server scenario. The server first trains restora-
tion vectors for each privacy span type offline
and then releases them to the clients. During
inference, the client aggregates restoration vec-
tors of all privacy spans in the user query into a
meta restoration vector which is later sent to the
server to restore information. Before transmis-
sion, the client removes all privacy spans in the
user query and applies d,-privacy mechanism
to the meta vector for privacy protection. We
prove that our method can inherently prevent
the linear growth of the privacy budget. We
conduct extensive experiments, covering the
medical and legal domains, and demonstrate
that PrivacyRestore effectively protects private
information and maintains acceptable levels of
performance and inference efficiency ! .

1 Introduction

Large language models (LLMs) have emerged as
powerful tools across various domains (Chen et al.,
2023b; Wu et al., 2023). However, the widespread
use of online LLM inference services has raised sig-
nificant privacy concerns. When interacting with
LLM:s deployed on cloud platforms, users’ inputs
may contain sensitive data, such as medical records
and legal case details. Potential threats may arise
when attackers intercept user queries during data
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transmission, and some advanced adversaries can
even hack the cloud service provider. For exam-
ple, in sensitive domains like medical diagnosis, if
a user’s input containing the user’s personal pro-
tected health information (PHI), such as “I was pre-
viously diagnosed with HIV, and lately I've been
experiencing fever and diarrhea...” is disclosed to
malicious attackers, it may cause privacy concerns.

In this paper, we focus on protecting the private
information contained in user inputs during LLM
inference. In this setting, the client submits inputs
to the server (also known as the service provider)
and there is a risk that inputs might be disclosed
by attackers. Current methods for protecting user
inputs can be mainly divided into two categories:
Secure Multi-Party Computation (SMPC) and Dif-
ferential Privacy (DP). SMPC-based methods (Hao
et al., 2022a; Li et al., 2023a; Liang et al., 2024)
utilize encryption protocols and algorithms to en-
able collaborative computation without revealing
original data to others. However, SMPC methods
have large inference time overheads, making them
impractical for real-time applications (Hao et al.,
2022b). DP based methods (Feyisetan et al., 2020,
2019; Xu et al., 2020; Bo et al., 2021) apply d,-
privacy (Chatzikokolakis et al., 2013; Alvim et al.,
2018) to words and achieve word-level text-to-text
privatization. Nevertheless, DP-based methods in-
evitably degrade the performance of downstream
tasks due to noise injection, which is known as
the privacy-utility trade-off. Additionally, as the
text length grows, word-level privatization will lead
to significant performance degradation. This phe-
nomenon is known as the linear growth of the pri-
vacy budget in word-level privatization (Mattern
et al., 2022b). Hence, there is a need to develop
privacy-preserving methods which can effectively
safeguard the privacy of user inputs while main-
taining high-quality outputs, without incurring pro-
hibitive computational costs.

We propose PrivacyRestore, which directly re-
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moves privacy spans in user inputs and restores
private information via activation steering (Li et al.,
2023c; Turner et al., 2023; Hernandez et al., 2023)
during model inference. Our method is based on
two key phenomena: (a) Users’ private informa-
tion mostly consists of sensitive attributes and
these attributes are commonly confined within
specific contiguous token sequences, referred to
as “privacy spans”. For eaxmple, in the context
of healthcare domain, the private information may
commonly refer to symptom descriptions. Consider
a medical record which states “I was previously
diagnosed with HIV, and lately I've been experienc-
ing fever and diarrhea...”, “HIV" and "fever and
diarrhea” should be protected as privacy spans. Di-
rectly removing these privacy spans (symptom de-
scriptions) can significantly hinder attackers from
reconstructing or inferring private information and
serves as an effective approach to preventing pri-
vacy leakage. (b) Most privacy spans are concen-
trated in a few majority categories, exhibiting a
long-tailed distribution. For instance, in medical
diagnosis applications, privacy spans typically re-
late to symptoms and disease descriptions. Most of
the symptoms and disease descriptions appearing
in user inputs are concentrated on high-frequency
types, such as “fever” and “cold”. We have con-
ducted experiments to demonstrate the long-tailed
distribution of privacy spans, as detailed in Ap-
pendix K.

PrivacyRestore operates in two stages: the prepa-
ration stage and the inference stage. In the prepa-
ration stage, the server first identifies the attention
heads where the activation steering occurs. Sec-
ond, each privacy span type is encoded to a vector,
known as the restoration vector. This stage is per-
formed entirely offline on the server side. Our
method is plug-and-play, requiring only the restora-
tion vectors to be trainable, while keeping the LLM
frozen. Once training is complete, these restora-
tion vectors will be released to the client side. In
the inference stage, according to the principle of
“Information Self-Determination Right” % (Jasper
M C, 2009; Alsenoy et al., 2014) , the users are
entitled to identify the privacy spans in their inputs
by themselves. After identification, a meta vec-
tor is constructed by estimating the importance of
each privacy span and calculating a weighted sum
of the corresponding restoration vectors. Then,

https://en.wikipedia.org/wiki/
Informational_self-determination

the user submits the incomplete input with the pri-
vacy spans removed, along with the meta vector,
to the server. The server uses the meta vector to
restore the removed privacy spans and generate
high-quality outputs.

To prevent the leakage of privacy spans via the
meta vector, d,-privacy mechanisms are applied
to the meta vector before transmission at the client
side. By applying d, -privacy to the meta vector in-
stead of words, our method inherently addresses
the linear growth issue of privacy budget en-
countered in word-level privatization (Mattern
et al., 2022a). To further prevent privacy leak-
age through generated outputs, the server should
employ sampling-based generation, enabling the
output to be protected by the Exponential Mecha-
nism (Utpala et al., 2023a; Mattern et al., 2022c;
McSherry and Talwar, 2007). Experimental results
demonstrate that our method can effectively pro-
tect private information and maintain satisfactory
performance and inference efficiency. The contri-
butions are summarized as follows:

* We propose a plug-and-play privacy protec-
tion method that removes privacy spans in the
input and restores private information via acti-
vation steering during inference.

* We propose Attention-aware Weighted Aggre-
gation to construct the meta vector and apply
the d,-privacy mechanism to the meta vec-
tor, inherently addressing the problem of the
linear growth of privacy budget.

* We construct three datasets, covering the med-
ical and legal fields, to evaluate our method.
Experimental results demonstrate its capabil-
ities of privacy protection. It also maintains
acceptable performance and inference effi-
ciency.

2 Related Works

In this section, we introduce the related works on
user input protection methods, which are currently
divided into two categories: SMPC-based methods
and DP-based methods.

SMPC-based methods. Secure Multi-Party
Computation (SMPC) uses encryption algorithms
to enable secure collaborative computations
between the client and server, without revealing
the original user inputs to the server.

However, SMPC incurs significant inference
time overhead, rendering it impractical for real-
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time LLM applications (Li et al., 2023a; Liang
et al., 2024; Hao et al., 2022a; Liu and Liu, 2023;
Zheng et al., 2023b; Gupta et al., 2023; Lu et al.,
2024).

DP-based methods. d,-privacy mechanisms, a
variant of DP, protect user inputs by injecting noise.
However, this approach can lead to performance
degradation.

Additionally, d,-privacy becomes less effective
as input length increases, due to the linear growth
of the privacy budget (Feyisetan et al., 2019; Mat-
tern et al., 2022b; Utpala et al., 2023b; Dwork et al.,
2016; Duchi et al., 2013).

Due to the limited space, a detailed introduction
of the above works can be found in Appendix B.

3 Threat Model

We consider a threat model involving two parties:
a server that holds the LLM weights and a client
holds user inputs containing privacy spans. Privacy
span is defined as a contiguous token sequence
that contains private information in user inputs,
and should be identified by the user itself according
to the principle of “Information Self-Determination
Right”. The server provides services through an
API while maintaining the confidentiality of the
LLM weights. Adversaries may intercept privacy
spans when users submit their inputs via the API.
Relying solely on encryption algorithms is insuffi-
cient to prevent privacy leakage, as encrypted in-
puts will be decrypted on the server and the server
itself may be vulnerable. Some advanced adver-
saries can even hack the server to steal those de-
crypted user inputs easily (Abrams, 2024; Toulas,
2024). Therefore, our goal is to protect the privacy
spans that exist in user inputs from attackers who
are capable of stealing user privacy during trans-
mission or even hacking the server to steal user
privacy.

4 Methodology

PrivacyRestore operates in two stages, i.e., the
preparation stage and the inference stage, as shown
in Figure 1:

(1) Preparation stage: This stage takes place
only on the server. Considering the long-tailed
distribution of privacy spans, we predefine a core
set of privacy span types that covers the majority
of them. Next, we identify the edited attention
heads required for activation steering during the
inference stage. Finally, we train the restoration

vector for each privacy span type in the prede-
fined core set. After training, all these vectors are
released to the clients. The preparation stage is
conducted offline, prior to the server beginning to
offer its services.

(2) Inference stage: This stage involves collabo-
ration between the client and server. According to
the principle of “Information Self-Determination
Right”, the users should identify all privacy spans
in their queries by themselves. Then, the client re-
moves all these privacy spans from the queries for
privacy protection. For restoration, the client con-
structs a meta vector according to the removed
privacy spans and applies d,-privacy to the meta
vector to prevent privacy leakage. The meta vec-
tor, along with the incomplete queries with privacy
spans removed, are sent to the server. The server
performs inference on the incomplete input and re-
stores information using the meta vector through
activation steering.

The preparation and inference stages descrip-
tions are provided in §4.1 and §4.2, respectively.
All notation definitions are shown in Appendix A.
Backgrounds about the d, -privacy mechanism and
activation steering are shown in Appendix C.

4.1 Preparation Stage

Edited Heads Identification. As indicated by
activation steering methods (Li et al., 2023c; Chen
et al., 2024), modifying all attention heads in LLMs
will degrade overall performance. Inspired by this,
we aim to identify the attention heads most relevant
to privacy spans.

As shown in the upper part of Figure 1, we
firstly utilize the probe technique (Alain and Ben-
gio, 2016; Tenney et al., 2019; Belinkov, 2022) to
identify the most relevant attention heads for each
privacy span type. We train a binary classifier for
each head, tailored to the privacy span type c, as
the probe. A probe with higher accuracy indicates
a stronger correlation between the head h and the
privacy span type c. Therefore, we select the top
K attention heads with the highest accuracies for
each privacy span type c in the predefined core set
C.

Using different top-K head sets for different pri-
vacy span types may suffer the risk of privacy leak-
age, as an attacker could infer the presence of a spe-
cific privacy span type based on the characteristics
of top-K head set. Hence, we propose a Common
Top-K Selector to combine all different top-K head
sets to construct a common top-K head set 1, as
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Figure 1: The PrivacyRestore consists of two stages. (1) Preparation Stage. This stage aims to identify the edited
heads and train the restoration vectors. We provide a more detailed training set example in Figure 4 in the Appendix.
(2) Inference Stage. In this stage, the client constructs a meta vector. The server uses the meta vector to restore

information during inference on the incomplete query.

the edited head set. To achieve this, we calculate
the average score of each head across all privacy
span types in C, selecting the highest K heads to
construct the common set. A head receives a pos-
itive score if it appears in the top-K head set of
a privacy span type c. The score is related to the
accuracy of the probe associated with the head.

Restoration Vectors Training. After identifying
the edited heads set Hy;, the next step is to train the
restoration vectors for each privacy span type in
the predefined core set C.

For each privacy span type ¢ € C, there is a
trainable restoration vector r for each head / in
the common top-K heads set H. The restoration
vectors constitute the only trainable parameters ©
in our method, while the LLM weights held by
the server remain fixed. Therefore, our method is
plug-and-play and parameter-efficient for training.

We fine-tune the restoration vectors using the
ORPO loss proposed by Hong et al. (2024), which
integrates the supervised fine-tuning process and
the preference alignment process. This loss func-
tion can guide the model in generating better an-
swers. In our method, we use ORPO loss to train
the restoration vectors ©, ensuring that the outputs
generated from inputs without privacy spans and
restored using the corresponding restoration vec-
tors, can closely resemble those generated from the

intact inputs.

More details of the probe technique, the com-
mon top-K head set construction and restoration
vectors training process are provided in Appendix
D, Appendix E and Appendix F, respectively. After
restoration vectors training, the server will release
all restoration vectors to clients.

4.2 Inference Stage

Meta Vector Construction. According to the
principle of “Information Self-Determination
Right”, users should identify the privacy spans in
their input by themselves, because the definition of
privacy varies from person to person. For each pri-
vacy span, the client employs a lightweight model
(e.g. BERT (Devlin et al., 2019)) to classify it into
a specific type within the predefined privacy span
type set C. For example, the privacy span “My
stools sometimes is black” will be classified into
the predefined privacy span type black stools. Due
to the long-tailed distribution of privacy spans, our
predefined type set can cover the majority of pri-
vacy spans. Even when encountering privacy spans
of out-of-set types, classifying these rare spans into
the types of the predefined set can still be effective,
as shown in §6.6.

Then the client should aggregate those restora-
tion vectors corresponding to the privacy spans
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into a single meta vector. Transmitting a single
meta vector enhances privacy protection compared
to multiple vectors, as it prevents potential infor-
mation leakage regarding the quantity of privacy-
sensitive segments.

While Equal Weighted Aggregation (EWA) of-
fers a straightforward solution for aggregation, it
may weaken the influence of critical privacy spans
and amplify the effect of irrelevant ones. There-
fore, we propose a novel method called Attention-
aware Weighted Aggregation (AWA) which es-
timates a weight for each privacy span and then
takes the weighted sum of corresponding restora-
tion vectors as the meta vector. Given computa-
tional constraints on client devices, we employ a
lightweight BERT model to evaluate privacy span
significance by calculating the mean attention score
w, across all attention heads and tokens within the
input query. This metric quantifies the relative im-
portance of each privacy-related span.

Considering that each privacy span type c will
have multiple restoration vectors rj across all
edited heads in Hj, we first concatenate these
restoration vectors from multiple heads to form
r¢ for privacy span type c. Then, we compute the
meta vector R by calculating the weighted sum of
the restoration vector r°, normalizing the summary,
and adding noise N for privacy protection. The
process is formulated as follows:

r¢ = Concat(r{,r5, ..., 1), (D
wg - T°¢

g ses,Ws _ )
”Zse&l Ws =T H2

R = Z+N, 3)

where s represents the privacy span of type ¢, S,
denotes all privacy spans in the user query g and Z
represents the normalization of the weighted sum,
which can also be viewed as the meta vector with-
out protection. The injected noise N is sampling
from the distribution p(N) x exp(—e||N]|), to
achieve the d, -privacy mechanism, where € is the
privacy hyperparameter (Feyisetan et al., 2020).

After construction, the meta vector K and the
incomplete query ¢ (with privacy spans removed)
are transmitted to the server for inference.

Privacy Restoration. We utilize the meta vector
‘R to restore the information in the removed privacy
spans during inference, as illustrated in the lower
right part of Figure 1. This operation is conducted
on the server side.

Following activation steering methods (Li et al.,
2023c; Chen et al., 2024), we apply the meta vec-
tor to the outputs of the edited attention heads to
achieve restoration. Let uy, represent the hidden
state of the last token on head h given the incom-
plete user query ¢ and R denotes a part of the
meta vector R for head h. Then the hidden state of
the last token on head h after restoration, denoted
as up, can be computed by:

Uy, = uy + |[up||2 - Ry, Vh € Hy. “)

During inference, if a head belongs to the common
top-K heads set H, its hidden state should be mod-
ified using Eq 4. To prevent privacy leakage from
the generated output, we employ sampling-based
generation, which is protected by the Exponential
Mechanism (Utpala et al., 2023a).

5 Privacy Guarantee Analysis

In this section, we analyze the privacy guarantees
and privacy budget of PrivacyRestore.

Our approach transmits only a privacy-free in-
complete query and a meta vector secured by d, -
privacy mechanism. Therefore, even if attackers
steal both the incomplete user query and the meta
vector during transmission or even hack the server,
they still cannot infer any user privacy. Further-
more, the confidentiality of the server’s LLM pa-
rameters and edited head set Hj, prevents attackers
from reconstructing the generation process using in-
tercepted elements, ensuring robust security against
privacy breaches. Then we analyze the privacy bud-
get of our method, as follows:

Theorem 5.1. PrivacyRestore fulfills d,-privacy
and provides a privacy budget of 2¢, where € de-
notes privacy hyperparameter. The privacy budget
of PrivacyRestore is independent of the length of
the protected text.

Pointed by Mattern et al. (2022b), directly ap-
plying d,-privacy mechanism to all tokens in the
user query, for privacy protection, suffers from the
linear growth problem of privacy budget. In con-
trast, our method ensures that the privacy budget
remains constant at 2¢, independent of the length
of protected text. We also provide empirical evi-
dence to demonstrate that our approach effectively
addresses the linear growth problem of the privacy
budget encountered in d, -privacy in §6.4. Detailed
proof of Theorem 5.1 is provided in Appendix H.

10825



6 Experiments

6.1 Experiments Setup

Datasets. To evaluate our method, we construct
three privacy-preserving datasets covering the
medical and legal domains: Pri-DDXPlus, Pri-
NLICE, and Pri-SLJA. The detailed process of
dataset construction and statistical information can
be found in Appendix J.

Metrics. The evaluation assesses both perfor-
mance and inference efficiency. For performance
evaluation, we use MC1/MC2 (Zhang et al., 2024),
ROUGE-L (Lin, 2004), and LLM-Judge (LLM-J)
(Zheng et al., 2023a) metrics. For inference effi-
ciency, we use the Throughput (TP) metric. The
details of these metrics and their corresponding cal-
culation processes are provided in Appendix L.1.

Compared Methods. To demonstrate the effec-
tiveness of our method, we compare our model
with the following baselines: No Protection, No
Restoration, d, -privacy (Feyisetan et al., 2020),
d,~privacy on privacy spans and Paraphrase
(Mattern et al., 2022b; Utpala et al., 2023b). A
detailed introduction to these baseline methods is
provided in Appendix L.2.

Settings of Privacy Hyperparameters. The hy-
perparameters related to privacy protection strength
are € for d,-privacy (on privacy spans) and Priva-
cyRestore, and 7 for paraphrase. For a fair com-
parison, we ensure all methods are under the same
privacy budget. We show the calculation process of
determining values of € and 7 for different methods
on different datasets in Appendix M.

6.2 Main Results

As shown in Table 1, we evaluate the perfor-
mance and inference efficiency of PrivacyRestore
and other compared methods across three privacy-
preserving datasets. Compared to d, -privacy and
paraphrase, d, -privacy on privacy spans solely ap-
ply d,-privacy mechanism to those privacy spans
and achieves higher scores in MC1/2, ROUGE-L
and LLM-J. The possible reason for this is that
both d,-privacy and paraphrase operate on the en-
tire user input, instead of specific privacy spans.
Injecting noise into the entire input creates larger
disturbances during inference compared to only
corrupting a limited number of privacy spans.
PrivacyRestore achieves best scores in MC1/2
and LLM-J compared to other privacy-preserving
methods. In terms of the ROUGE-L evaluation

metric, PrivacyRestore achieve the best result in
Pri-NLICE while ranking second in the other
two datasets. This discrepancy likely stems from
ROUGE-L’s dependence on n-gram overlap be-
tween the reference text and the generated output,
which does not fully reflect the quality of generated
outputs. As demonstrated by the examples in Fig-
ure § and Appendix W, PrivacyRestore often gener-
ates outputs with different sentence structures while
still providing accurate answers. Consequently, our
method achieves slightly lower ROUGE-L scores
but significantly higher LLM-J scores compared
to d,-privacy on privacy spans. Furthermore, the
ROUGE-L metric displays larger variance than the
LLM-J metric, potentially due to its sensitivity to
expression rather than the underlying meaning of
the generated output. Shown in Table 1, No Protec-
tion servers as the performance upper bound for
all privacy-preserving methods while No Restora-
tion servers as the performance lower bound. Our
method significantly outperforms No Restoration
and is even comparable to No Protection, strongly
validating the effectiveness of our approach.

Although PrivacyRestore incurs slight latency
from client-side privacy span identification and
meta-vector construction, its throughtput attain
nearly 70% of the best results, which is accept-
able. We provide further analysis and additional
experimental results in Appendix V.

6.3 Empirical Privacy Protection Results

In this section, we implement attack methods to
empirically show that our approach offers superior
privacy protection compared to baselines, both for
user inputs and model outputs.

Privacy Protection Evaluation on Inputs. In
this section, we implement the embedding inverse
attack (Li et al., 2023b; Morris et al., 2023) and
attribute inference attack (Li et al., 2022) to at-
tack the inputs of our method and other baselines,
including the meta vector and the privacy-free in-
complete user query. As shown in Figure 2, as
the privacy budget increases, the privacy protec-
tion capability of all privacy-preserving methods
decreases. However, PrivacyRestore consistently
outperforms others across all privacy budgets, as
indicated by its lower ROUGE-L and F1 scores.

Privacy Protection Evaluation on Outputs. We
use the sampling-based method to generate the out-
puts on the server. As demonstrated by Utpala
et al. (2023a); Mattern et al. (2022b), sampling-
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Datasets Methods ‘ MC1 1 MC21t ROUGE-L1 LLM-J71 TP 1
No Restoration (lower bound) | 33.5710.00 32.4910.01 25.1940.43 3214001 40.861001
Pri-DDXPlus No Protection (upper bound) 64.8810.01 61.48+10.03 100.0040.00 5584003 41.0840.09
dX-privacy 28.7910_02 30.261()_01 17.97:‘:0‘00 1.17:{:0.00 37.45:‘:0‘01
d-privacy on privacy spans 44714909 42.36410.00 29.17 1004 3314000 33.21+0.00
Paraphrase 27~92i0.56 28.56i0,07 18.04i0,01 1-23i0.00 35~42i0.67
PrivacyRestore 62.9710_00 60.1910_00 27~24:I:0.26 4.47:&0.00 26.0910_08
No Restoration (IOWCI‘ bound) 27«07;t1.98 28.63;&,23 16.90i0,51 1.61i0.03 41.08i0,01
Pri-NLICE No Protection (upper bound) 80.304938 77.6041 .03 100.004+0.00 5904004 41.444004
dX-privacy 29.081000 29.721000 15.68:‘:0‘02 1.41:{:0.00 38.301(]‘00
d-privacy on privacy spans 30.0040.09 31.4640.00 22.97 10.00 3.014000 35.731057
Paraphrase 28.4640.02 29~15i0.03 16.15i0,01 1.62i0.00 37.22 1907
PrivacyRestore 62.23;&1_70 57.94;&0_09 24042:!:0.81 3.67:{:0.01 3233:!:0.01
No Restoration (lower bound) 24-92i0.98 25-97i1.12 31~02i0.16 4-43i0.01 39. 14i0.09
Pri-SLJA No Protection (upper bound) 69.571061 67.5840.43 100.00-9.00 5441003 39.49.013
dX-privacy 16.66:‘:0‘37 17.57:‘:0‘04 23.35:{:0‘00 2.08i0.00 36.83:‘:0‘03
d-privacy on privacy spans 24231169 26.6341067 40.1040.00 4541000 36.1640.00
Paraphrase 16.21i0,02 17-52i0.02 24~90i0.01 2-07i0.01 31~31i0.05
PrivacyRestore 35-47:t1.48 35-41:t0.64 37.56;&),06 5.25:{:0.00 30-73:|:0.04

Table 1: Comparison of the performance and the inference efficiency between PrivacyRestore and other baselines
across three privacy-preserving datasets. All experiments are conducted over 3 runs, with the average results and
variances reported. The best results are highlighted in bold.
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Figure 2: Results of embedding inverse attack and at-
tribute inference attack for all baselines under different
privacy hyperparameters ¢ on Pri-DDXPlus.

based generation satisfies the Exponential Mech-
anism (McSherry and Talwar, 2007), which can
effectively prevent privacy leakage from the gener-
ated outputs. We implement the embedding inver-
sion and attribute inference attacks for the gener-
ated outputs under various generation temperatures
and also count the occurrence of privacy spans in
the outputs. As shown in Table 2, the attack per-
formance remains consistently low, demonstrating
that sampling-based generation effectively prevents
privacy leakage from the generated outputs. Imple-
mentation details of these attack methods can be
found in Appendix O and Appendix Q.

We also provide a biref theoretical proof of our
method’s output protection in Appendix I.

Temperature 0.75 1.0 1.25 1.5 1.75
EIA(ROUGE-L) 0.037 0.038 0.035 0.035 0.037
AIA(F1) 0.096 0.097 0.092 0.092 0.097
Occurrence 0.031 0.030 0.030 0.029 0.031

Table 2: Analysis of output privacy leakage from out-
puts on Pri-DDXPlus dataset. EIA denotes embedding
inverse attack. AIA indicates attribute inference attack.
Occurrence metric directly counts the frequency of pri-
vacy spans in the generated output. We primarily use a
temperature of 1.0 during generation in the other experi-
ments.

6.4 Privacy Protection for Long Text

In this section, we implement attack methods for
both the d,-privacy baseline and our PrivacyRe-
store approach under varying protected text lengths,
illustrating robust privacy and addressing the linear
growth of the privacy budget in d, -privacy.

For d, -privacy, we randomly select a proportion
of tokens to protect. Note that higher percentages
yield longer protected text. As shown in Figures
3(a) and 3(b), both prompt injection and attribute
inference attacks demonstrate better attack perfor-
mance with longer protected text. It is caused by
the linear growth problem of the privacy budget
encountered in d,-privacy, as raised by Mattern
et al. (2022b).

For PrivacyRestore, a proportion of privacy

spans is selected for protection, defined by the Pri-
vacy Span Ratio «, with larger o indicating more
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Figure 3: (a) and (b) present the results of d,-privacy method under the prompt injection attack and attribute
inference attack under varying d,-privacy percentages across three privacy-preserving datasets. (c) and (d) show the
results of PrivacyRestore for the embedding inverse attack and attribute inference attack under different privacy

span ratios « on the same three datasets.

spans. Shown in Figures 3(c) and 3(d), aside from
the embedding inverse attack on the Pri-NLICE
dataset, attack performance remains stable across
different « values. These results confirm that our
method provides strong privacy protection, even as
text length increases.

6.5 Ablation study

Attention-Aware Weighted Aggregation. To
assess the effectiveness of the Attention-Aware
Weighted Aggregation (AWA) component, we
compare its performance and inference efficiency
against Equal Weighted Aggregation (EWA). Un-
like AWA, EWA generates the meta vector by sum-
ming all restoration vectors equally. As shown
in Table 3, EWA results in lower MC1, MC2,
ROUGE-L, and LLM-J scores compared to AWA,
indicating that equal weighting will diminish per-
formance by amplifying irrelevant privacy spans.

Datasets Methods | MC11 MC2+ ROUGE-L1 LLM-J1 TPt

) EWA | 5384 SLI2 26.32 429 2635
Pri-DDXPlus - yyoq 6297  60.19 27.24 447 2609
) EWA | 4692 45389 2278 312 3275
Pri-NLICE  ywa 6223 5794 24.42 367 3233
) EWA | 3088 3070 30.96 410 3100
Pri-SLIA AWA 3547 3541 37.56 525 3073

Table 3: Comparison of the performance and the infer-
ence efficiency between Equal Weighted Aggregation
(EWA) and Attention-aware Weighted (AWA) Aggrega-
tion. The best results are highlighted in bold.

Other Ablation Studies. Furthermore, we eval-
uate PrivacyRestore’s performance with varying
numbers of edited heads (/') and with an alterna-
tive LLM backbone (Llama-13b-chat) in Appendix
U. The results in Table 15 and Figure 7 clearly
demonstrate the effectiveness of our method.

6.6 Extension Analysis of PrivacyRestore

In this section, we analyze the extension PrivacyRe-
store to other more extreme scenarios.

Encountering Out-of-Set Privacy Spans. Due
to the long-tailed distribution of privacy spans
shown in Appendix K, the core set covers most
spans. We further evaluated our method when en-
countering out-of-set spans. Specifically, we in-
clude only a subset of privacy span types in our
core set. Table 11 shows that our method still
demonstrates superior performance, compared to
No Restoration baseline. More implementation
details are shown in Appendix S.

Users Unable to Determine Privacy Spans. Our
method follows the principle of “Information Self-
Determination Rights” allowing users to determine
their own privacy spans. Even when users cannot
or choose not to specify these spans, our method
remains effective by integrating with existing text
sanitization techniques (Kan et al., 2023; Chen
et al., 2023a). As shown in Table 14, our method
can maintains superior performance, and details of
implementation are provided in Appendix T.

7 Conclusion

We propose PrivacyRestore which protects the pri-
vacy within user inputs during inference in online
LLM inference services. PrivacyRestore achieves
privacy protection by directly removing privacy
spans in the user input and then restoring informa-
tion via activation steering. PrivacyRestore pro-
vides a practical and efficient solution for protect-
ing privacy while maintaining satisfactory perfor-
mance and inference efficiency. We demonstrate
that PrivacyRestore inherently addresses the lin-
ear growth problem of the privacy budget found

10828



in d,-privacy. We curate three privacy-preserving
datasets covering medical and legal fields, and Pri-
vacyRestore achieves strong performance and in-
ference efficiency across all datasets. Additionally,
we implemented various attack methods, and the
attack results demonstrate PrivacyRestore’s robust
privacy protection capabilities.
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Limitations

This section aims to highlight the limitations of our
work and provide further insights into the research
in this area.

One limitation is that we only evaluate our
method in the medical and legal domains and ad-
ditional domains could be explored to validate its
effectiveness.

Another limitation is that more attack methods
could be explored to assess the privacy protection
of our approach. While we have implemented most
of the current advanced attack methods, to the best
of our knowledge, there may be others yet to be
tested. Additionally, more advanced attack method-
ologies may emerge in the future, which will also
need to be evaluated.
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potential privacy risks. Our methodology does not
access or reconstruct the original identifiable data
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tiple LLMs in this study, such as ChatGPT, Qwen
and GPT-4. The findings may be influenced by
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Appendix Overview

The appendix is divided into two parts: Ap-
pendix A-I provide backup theoretical explana-
tions of PrivacyRestore, while Appendix J-X
present additional experimental results on Priva-
cyRestore from different aspects.

A Notations

Here we present all notations used in our paper in
Table 4.

B Related Works

In this section, we introduce the related works on
user input protection methods, which are currently
divided into two categories: SMPC-based methods
and DP-based methods.

Here, we provide a more detailed introduction
to Secure Multi-Party Computation (SMPC) and
Differential Privacy (DP).

B.1 Secure Multi-Party Computation (SMPC)

Secure multi-party computation (SMPC) methods
utilize multi-party encryption algorithms to enable
collaborative computation among multiple parties
while protecting the privacy of their data.

However, most nonlinear operations in LLMs
cannot directly support secure multi-party compu-
tation.

To address this challenge, current SMPC
methods focus on two optimization directions:
model structure-oriented optimization and protocol-
oriented optimization.

The model structure-oriented approach aims
to replace SMPC-unfriendly nonlinear operations
with SMPC-friendly alternatives.

For instance, MPC-Former (Li et al., 2023a) ap-
proximates nonlinear operations in Transformer
using polynomials and maintains performance
through model distillation.

MERGER (Liang et al., 2024) integrates pre-
vious techniques to natural language generation
(NLG) tasks by bypassing embedded computa-
tion and reorganizing linear operations in Trans-
former modules, further enhancing computational
efficiency and model performance.

In contrast, the protocol-oriented approach fo-
cuses on designing efficient SMPC operators for
nonlinear operations in LLMs while preserving the
original model structure.

Recent works (Hao et al., 2022a; Liu and Liu,
2023; Zheng et al., 2023b; Gupta et al., 2023) have

improved the efficiency of nonlinear operations
in privacy-preserving LLMs inference by utilizing
various SMPC protocols, such as confusion circuit
and function secret sharing.

Although SMPC-based methods can be applied
to protect user inputs during model inference, they
still suffer from large inference time overhead.

For example, inference on the RoOBERTa-Base
model takes 168.43 seconds (Hao et al., 2022b),
making current SMPC methods impractical for on-
line LLM inference services.

B.2 Differential Privacy (DP)

Differential Privacy (DP), as introduced by Dwork
et al. (2016), is designed to protect individual pri-
vacy by preventing attackers from identifying spe-
cific participants in a dataset.

Several variants of DP have been developed to
enhance privacy protection across various settings,
adapting the core principles of DP to different types
of data and threat models.

Notable examples include Centralized Differ-
ential Privacy (CDP), Local Differential Privacy
(LDP), and d,-privacy.

CDP (Dwork et al., 2016) operates under the
assumption that all data has been stored in a central
repository.

It guarantees that attackers cannot distinguish
between any two adjacent repositories based on
query results.

In contrast, LDP (Duchi et al., 2013) provides
a stronger guarantee, ensuring that attackers can-
not distinguish between any two adjacent inputs.
Mattern et al. (2022b) and Utpala et al. (2023b)
propose using paraphrasing techniques to achieve
LDP on user inputs.

dy-privacy (Feyisetan et al., 2019), a relaxed
version of LDP, incorporates metrics that measure
the similarity between inputs, allowing for more
flexible control over the privacy budget. The formal
definition of d,-privacy Mechanism is provided in
Appendix C.1.

As proposed by Mattern et al. (2022b), applying
d-privacy to all tokens in user inputs, known as
word-level privatization, suffers from the linear
growth problem of the privacy budget.

This means that as the length of the protected
text increases, the privacy protection performance
of d,-privacy decreases.
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Notations Definitions
c A privacy span type.
C All possible privacy span types.
S A single privacy span.
Sy All privacy spans in user query q.
h A single edited head.
Hy, The common top-K heads set.
Ha The set of all heads.
% The top-K heads set of the privacy span type c.
Ly, The score list of the head h across all privacy spans.
K The number of selected edited heads.
Fr The probe of privacy span type c on head h.
o5 The parameters of the probe F7.
uy, The output hidden state on head h.
uy, The output hidden state after restoration on head h.
Ty The restoration vector for privacy span type c on head h.
© All restoration vectors for all privacy spans on all edited heads.
A The tradeoff hyperparameter of ORPO loss.
Ws The weight of privacy span s.
n The number of tokens in the user query.
np The number of heads in the lightweight model.
Attny (z,y) The attention score of y attending to « on head h.
Zn, Z, Any two normalized weighted sums of restoration vectors on head h.
R The meta vector.
R The part of the meta vector for head h.
N The added noise on the normalized weighted sums for meta vector construction.
I The user inputs in the training set.
Iy ={I,...,In} | All user inputs in the training set.

Yo=A{y1, - ym}
m

I, I
{i1yeeyin}
{e1,...,en}

O ={o1,...,0n}

all = {I1y ey I}

L ML

SO T ST )

QU QL Q.
&5 Q??

[

The labels indicating whether the corresponding input contains the privacy span of type c.
The size of training set.

Any two user inputs.

The tokens of the input I.

Corresponding token embeddings of the input I.

The possible output sets for I, with each one representing a single output.
The incomplete user input with all privacy spans removed in the training set.
All user inputs with privacy spans removed in the training set.

The output given the complete input I.

The output given the incomplete input I.

The user query during inference.

The incomplete user query with all privacy spans removed during inference.
The privacy hyperparameter.

The generation temperature.

The privacy hyperparameter.

The number of tokens associated with the privacy spans in the user query.
The proportion of privacy spans selected for protection.

Any distance function used by d,-privacy.

The distance between token embeddings.

The distance between normalized weighted sums.

Table 4: Definitions of all notations used in our paper.
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C Preliminaries for Methodology

The d,-privacy mechanism and activation steer-
ing technique are two crucial components of our
method. Here, we provide a more detailed illustra-
tion of these techniques for a better understanding
of our method.

C.1 d,-privacy Mechanism

d-privacy mechanism (Feyisetan et al., 2019) is
a variant of the differential privacy mechanism de-
signed to protect the privacy and incorporate a dis-
tance measure into the privacy budget. The detailed
definition of d,-privacy is as follows:

Definition C.1. (d, -privacy mechanism). A ran-
domized mechanism M : 1T — O fulfills e-d,-
privacy if for all adjacent inputs I,I' € T and all
possible outputs O C O, the following condition
holds:

P(M(I) € O) < exp(edy (I, 1")P (M(I') € O)

where d, is a distance function defined on 1.

Numerous prior works have applied the d,-
privacy mechanism (Chatzikokolakis et al., 2013;
Alvim et al., 2018) to word embeddings to achieve
word-level privatization (Feyisetan et al., 2020,
2019; Xu et al., 2020; Bo et al., 2021). In our
approach, we employ the d, -privacy mechanism to
protect the meta vector, preventing privacy leakage
from the meta vector.

To implement the d,-privacy mechanism on the
meta vector/token embeddings, noise must typi-
cally be added to it, as shown below:

R =
P(N)

Z+ N, )
o< exp(—e[|N]]), (6)

where Z is the unprotected meta vector/token em-
beddings, A is the added noise, R is the protected
meta vector/token embeddings and e is the privacy
parameter of the mechanism. According to Feyise-
tan et al. (2019), to sample the noise N from its
distribution, we can compute it as follows:

v € {veR": ||| =1} 7
ln—le—el

P() o Ty’ (3)

N = 1-v, )

where n is the size of the meta vector and ¢ is the
privacy parameter.

C.2 Activation Steering Technique

Activation steering methods (Li et al., 2023c;
Turner et al., 2023; Hernandez et al., 2023) control
the behavior of LLM by modifying their activations
during the inference stage. It serves as a crucial
part of our methodology to restore information con-
tained within the removed privacy spans during
LLM inference. Typically, the attention mecha-
nism (Vaswani et al., 2017) in LLM is responsible
for capturing contextual information, and it can be
expressed as:

Wy -1,

q = (10)

T
Softmax(ﬂ) -V,
Vi
where i is the input hidden state, u is the output
hidden state, W, is the query weight matrix, K is
the key of the context and V' is the value of the
context and dy, is the dimension of the key. Acti-
vation steering methods add some steering vectors
into the output hidden state and, in our methods,
we add the meta vector into the output hidden state
to restore information, which can be expressed as:

(11)

u =

u=u+R, (12)

where R is the meta vector.

D Selecting the Most Relevant Heads

In this section, we provide the implementation de-
tails of the probe technique (Alain and Bengio,
2016; Tenney et al., 2019; Belinkov, 2022) to iden-
tify the most relevant attention heads for each type
of privacy span.

Let I,y = I,...,I,, represent the user inputs
in the training set, where m is the size of the
training set. For a given privacy span type c, let
Y. =1, ..., ym represent the corresponding labels,
where y; = 1 if and only if the input I; contains a
privacy span of type c.

For each user input I;, we record the hidden state
of the last token on each attention head. We then
train a binary classifier for each head, tailored to
the privacy span type c, as the probe. The probe
takes the hidden state of the last token as input
and predicts whether the input contains the privacy

span of type c. The probe is formulated as:
Fh(un) = o (0 - un), (13)

where 7 (+) is the probe of privacy span type c on
head h, uy, is the hidden state of the last token on
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head h, 0; are the parameters of the probe, and o (-)
indicates the sigmoid function.

A probe F7(-) with higher accuracy indicates
a stronger correlation between the head h and the
privacy span type c. Therefore, we only select the
top K attention heads, with the highest accuracies,
as the most relevant heads for the privacy span type
c.

E The Algorithm of Common Top-K
Selector

In this section, we present the detailed implemen-
tation of Common Top-K Selector algorithm, as
shown in Algorithm 1.

Firstly, we initialize an empty score list Ly, for
each head. Secondly, each privacy span type c has
its corresponding top-K heads set Hj. For each
head h in H{, we append Score(h,Hj) into its
score list Lj,. Score(h, H{,) is defined as the rank
of head i among H{, in ascending order based on
the accuracy of the probe associated with the head
h and privacy span type c. Thirdly, we calculate
the average value of each score list Ly, as the score
of the corresponding head h. Finally, we sort all
heads in the LLM by the scores and pick up top-K
heads as the common top-K head set .

Algorithm 1 Common Top-K Selector
Input: S is the set of privacy spans; H,, is the set
of all heads; H denotes the set of top-K heads
corresponding to the privacy span type c;
Score(h, Hj,) return the rank of head h among Hj,
in ascending order based on the accuracy of the
probe associated with the head h and privacy span
type c. The score of the head with lowest accuracy
is 1. The score of the head with highest accuracy
is K.

1: Initialize an empty score list Lj, = [ ] for each
head h in H,.
for ¢ in Cdo

for h in H{ do

Append Score(h, Hf,) into Ly,.

end for
end for
for h in H, do

score;, = average(Ly,)
end for
Sort ‘H, according to scorey, and select top K
heads to obtain common top-K head set 7.

R R A A

Output: H is the common top-K head set.

F Details of the Training Process

In our method, we use the ORPO loss (Hong et al.,
2024) to train the restoration vectors, which are
employed to restore information in the removed
privacy spans. The training objective is to ensure
that, despite receiving incomplete inputs with all
privacy spans removed, the model can still generate
high-quality outputs similar to those produced from
intact inputs by utilizing these restoration vectors.
Assuming that © is the trainable restoration vec-
tors, I denotes the input with privacy spans re-
moved, I = {f ITREE ,fm} represents the train-
ing set of incomplete inputs, a is the initial output
give the complete input, a is the output given the
incomplete input with privacy spans removed, then
the training loss of our method can be express as:

ratio(a|I; ©) = M,
1 —"P(a|l;©)
Loreo = Y —logP(all;©)
Ielan
— Alogo | log 7&“10((1‘{; ©) )
ratio(a|l; ©)
(14)

where ) is the hyperparameter that controls the
weight of the loss term and the P(a|I; ©) is the
probability of the model generating the initial out-
put a given the intact input after being restored by
©, and P(a|l; ©) is the probability of generating
a. After training the restoration vectors using the
above loss, these vectors can effectively restore the
information in the missing privacy spans and guide
the model to generate outputs similar to those pro-
duced from intact inputs, even though no privacy
spans are present in the input indeed.

We also provide a training example for better
understanding of our training process. As shown
in the loss function in Equation 14, each training
sample will contain the incomplete input without
privacy spans I, the intact input I, the output a
given intact input [ and the output given the incom-
plete input I. An example of a training sample is
presented in Figure 4.

G Usage of the Lightweight Model on the
Client Side

As shown in Section 4.2, our method utilizes the
lightweight model (e.g. Bert-based-uncased (De-
vlin et al., 2019)) to classify the privacy spans in
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Complete input I : I have a history of chronic pancreatitis,
diabetes, and obesity. My family has a history of pancreatic
cancer. | experienced a persistent cough, frequent diarrhea,
nausea, abdominal pain, pale stools, dark urine, and I've
noticed that I've been losing weight unintentionally. I'm
concerned about these symptoms and wondering if they could
be related to my existing medical conditions or if there might
be something else going on. What is the likely diagnosis?

Incomplete input without privacy spans I: I experienced the
symptoms of cough, nausea. I'm concerned about these
symptoms and wondering if they could be related to my
existing medical conditions or if there might be something
else going on. What is the likely diagnosis?

The output a given complete input I: Based on the
symptoms and medical history provided, the likely diagnosis
for the patient is pancreatic cancer.\n\nPancreatic cancer is a
common cause of abdominal pain, weight loss, and
gastrointestinal symptoms, including cough, diarrhea, nausea,
and pale or dark urine. ...

The output @ give incomplete input I: Thank you for the
question. Based on the symptoms provided, the likely
diagnosis for a person presenting with cough and nausea is a
respiratory tract infection, such as GG or

[PRICHOHE . \n\n YGRS is an inflammation of the bronchial

tubes ...

Figure 4: A training sample in our framework. Text
highlighted with a yellow background represents the
privacy spans in user inputs. Text highlighted with a
green background indicates the correct diagnosis. Text
highlighted with a red background denotes the incorrect
diagnosis.

the user query and compute the importance score
of these privacy spans for conducting the following
Attention-aware Aggregation (AWA). The detailed
implementations are as follows:

G.1 For Classifying Privacy Span Types

Each privacy span type can be expressed in various
forms within the user query, for example,“‘fever”
may be represented as“elevated body temperature”.
After the user identifies the privacy spans in the
query, we should classify these spans into those
predefined types from the set C.

Firstly, we use a lightweight Bert-based-uncased
model on the client side to first extract the vector
representation of the privacy span. Specifically, we
compute the mean of the hidden states from the
last layer across all tokens within the privacy span
to obtain the vector representation. We construct
a multi-layer perceptron (MLP) classifier, consist-
ing of an input layer, two hidden layers, and an
output layer. The MLP classifier takes the vector
representation of the privacy span as input, and the
output label corresponds to the privacy span type.
During the training process, we will fix the Bert-
based uncased model while only training the MLP

classifier.

G.2 For Computing the Importance Score of
Privacy Spans

Each privacy span in the user query should have a
distinct importance weight and we also utilized the
Bert-base-uncased model to assess the importance
weights for the privacy spans. To be specific, we
compute the average received attention of privacy
span s across all attention heads and all tokens in
the user query as the importance score ws. Assume
s is the privacy span s, q is the user query, and then
the importance weight of the privacy span w; is
calculated as:
n np

Ws = :Lnlh Z ZAttnh(S, qt),

t=1 h=1

(15)

where n is the number of tokens in the query, np
is the number of attention heads in the lightweight
model, ¢, is the ¢-th token of ¢, and Attny(s, ¢;)
denotes the attention score of ¢; attending to the
privacy span s. Higher w; indicates that privacy
span s receives more attention from other tokens in
the user query g, reflecting greater importance.

H Proof of Theorem 5.1

As shown in Figure 1, during the inference stage,
only the meta vector and the incomplete query with
privacy spans removed are transmitted from the
client to the server. The incomplete query does not
contain any privacy-sensitive information and is
secure for the user. The meta vector contains infor-
mation about all privacy spans and could be vulner-
able to adversaries attempting to reverse-engineer
these spans, requiring privacy protection.

PrivacyRestore protects the meta vector by
adding noise A/ which is sampling from the dis-
tribution p(N) o exp(—e||N||), before transmis-
sion, as shown in Eq 3. Next, we will demonstrate
that injecting noise in this manner adheres to the
definition of d, -privacy and effectively protects
the user privacy contained in the meta vector.

Assume Z represents the meta vector before
adding noise, R denotes the meta vector after
adding noise, as shown in Eq 2 and 3. The process
of adding noise can be represented by M. Then,
the possibility that Z becomes R after adding noise
Nis

PM(Z)=R)=P(Z+N =R)
=PWN=R-2)

exp(—el[R = Z])).

(16)
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Then for any two meta vectors before adding noise,
Z and Z', we have:

PIM(Z) =R] _ exp(—€|R — Z]|)
PM(Z") =R]  exp(—¢||R - Z|)
= exp(e(||R — Z'|| (17)
— IR = Z|]))

< exp(e|| 2’ — Z1]).

According to the definition of d,-privacy in Ap-
pendix C.1, the mechanism M satisfies d, -privacy.
In other words, by adding noise A/, adversaries can-
not infer the initial meta vector Z from the meta
vector after adding noise R, even if R is inter-
cepted. Moreover, the privacy budget of our meth-
ods is €||Z" — Z||. And considering that Z is the
normalization of the weighted sum of restoration
vectors, as shown in Eq. 2, then we have:

P[M(Z) = R]

W < eXP(fﬂzl —Z||)

(18)
< exp(2e)

Thus, the privacy budget of our method is 2¢, inde-
pendent of the input length n and solely depends on
the hyperparameter €. In summary, PrivacyRestore
fulfills d,-privacy and provides a privacy budget
2e which is independent of the input length and in-
herently addresses the problem of the linear growth
of privacy budget.

I Brief Proof of Output Protection

It has been proved by Appendix A of Utpala et al.
(2023a) and Section 4.2 of Mattern et al. (2022c¢)
that sampling-based generation can prevent the pri-
vacy leakage via the generated output via the Ex-
ponential Mechanism. Here, we provide a brief
proof that sampling-based generation adheres to
the Exponential Mechanism (McSherry and Talwar,
2007), ensuring security for the generated output.

Assume that () is the user query, V is the whole
token vocabulary, v € RV is the output logit, u;
is the logit for the token ¢ in V and M denotes
the sampling based generation. Recall that, during
sampling-based generation, the logit u should be
processed by the softmax layer and then be sampled
to obtain the output. If 7" is the sampling tempera-
ture and Pr[M(Q) = t] indicates the probability
of generating the token ¢, then the softmax layer
can be expressed by:

exp(uy/T)

PriM(Q) =t] =
M@=t S exp(u;/T)

19)

Let recall the Exponential Mechanism (McSherry
and Talwar, 2007), assuming u is the utility func-
tion and Aw is the sensitivity of u, then M satisfy
the Exponential Mechanism if and only if

exp(eu(Q,t)/2Au)
SV expleu(Q, 5)/2Au)
x exp(eu(@,t)/2Au)

PriM(Q) =t] =

(20)
By Comparing 19 and 20, we can find that the
sampling from softmax layer follows the defini-
tion of Exponential Mechanism, where u(Q, t)
and wu, are different expressions of the same thing.
Furthermore, according to the fact that the privacy
budget of Exponential Mechanism is ¢, we can
conclude that the privacy budget of sampling-
based generation is 2Aw /7. The privacy budget
decreases with the increasing temperature, indi-
cating that higher temperatures will bring better
privacy protection.

J Datasets

Based on the existing benchmarks, such as DDX-
Plus (Tchango et al., 2022) and NLICE (Al-Ars
et al.,, 2023) for medical diagnosis, and SLJA
(Deng et al., 2023) for legal judgment, we construct
three privacy-preserving datasets, Pri-DDXPlus,
Pri-NLICE and Pri-SLJA, to evaluate the perfor-
mance of various privacy-preserving methods. In
this section, we will introduce the detailed con-
struction process of these three privacy-preserving
datasets and provide some statistical information
about them.

J.1 Construction Process

The total construction process of these privacy-
preserving datasets consists of four stages: Ex-
traction of Privacy Spans, Rewriting Queries
for Diversity, Assigning Options and Filtering
Dataset. The details of these four stage are as
follows:

Extraction of Privacy Spans: We used GPT-
4 (Achiam et al., 2023) to classify symptoms in
DDXPlus and NLICE, as well as case details in
SLIJA, into five levels ranging from non-sensitive
to highly sensitive. The assessment prompt tem-
plate is shown in Appendix Y.1. A higher level
indicates that the symptom or case detail is more
sensitive. We define all symptoms and case details
with a sensitivity level greater than 3 as privacy
spans.
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Rewriting Queries for Diversity: The symptom
descriptions and case details in the original DDX-
Plus, NLICE, and SLJA datasets are highly fixed.
However, in real-world scenarios, these descrip-
tions are typically more diverse. To address this
gap, we utilized GPT-4 (Achiam et al., 2023) to
rewrite the user queries in these datasets, ensur-
ing more varied descriptions and differing question
formats while preserving the original meaning of
the queries. The rewrite prompt template is pro-
vided in Appendix Y.2. Here, we provide a rewrite
example that demonstrates how rewriting the user
query significantly increases the diversity of query
descriptions, as shown in Figure 5.

[Queries Before Rewriting]

I have a history of antipsychotic medication usage, nausea,
stimulant drug use. I presents the symptoms of involuntary
eye movement, jaw pain, muscle spasms, muscle spasms in
neck, ptosis, shortness of breath. What is the likely diagnosis?

[Queries After Rewriting] (Varying Format)

I've been taking antipsychotic medication for a while now. I've
been feeling really nauseous, and I also used a stimulant drug
recently. Lately, I've been having these strange symptoms like
my eyes moving involuntarily, and my jaw hurts a lot. I've
also been getting muscle spasms in my neck and elsewhere,
and my eyelids droop sometimes. On top of that, I've been
feeling short of breath. What could be causing all of these
symptoms?

Figure 5: A rewrite example displays the diversity en-
hancement in medical queries. Text highlighted with
green background indicates medical history, while yel-
low background denotes symptoms.

Assigning Options: To evaluate the performance
of different privacy-preserving methods, we assign
each sample a correct answer along with three ran-
domly selected incorrect options. For DDXPlus
and NLICE, we randomly select three diagnosis
results to combine with the correct diagnosis as the
choices. In the SLJA dataset, we randomly select
three legal judgments to pair with the correct one
as the options.

Filtering Dataset: The initial dataset is exten-
sive, and we observed that for most samples, remov-
ing all privacy spans often yields outputs similar
to those obtained when privacy spans are provided.
Privacy preserving for these samples is meaning-
less because users can directly hide those privacy
spans and obtain approximate result outputs. In
real-world scenarios, sensitive privacy spans often
play a crucial role in medical diagnoses and le-
gal judgments, making privacy preservation highly
valuable. Our dataset is designed to benchmark

various privacy-preserving methods and must in-
clude samples where privacy spans are crucial for
generating outputs. We utilize the KL divergences
to measure the importance scores of samples. We
calculate the KL divergence between the model
output distributions with and without the privacy
symptoms included. A higher KL divergence in-
dicates that the absence of sensitive privacy spans
may lead to different or incorrect outputs. We se-
lected only samples with high KL divergence to
construct the privacy-preserving datasets. As a re-
sult, we curated three privacy-preserving datasets:
Pri-DDXPlus and Pri-NLICE for medical diagno-
sis, and Pri-SLJA for legal judgment.

J.2 Statistical Information

We show the statistics of the obtained Pri-DDXPlus,
Pri-NLICE and Pri-SLJA datasets in Table 5. We
tally the number of user queries, privacy span types,
and privacy spans count. In Pri-DDXPlus and Pri-
NLICE, the privacy spans are the symptoms, and
the answers are the diagnoses. In Pri-SLJA, the
privacy spans are the case details, and the answers
are the legal judgments.

Pri-DDXPlus commonly contains more sample
instances and more privacy span types compared
to Pri-NLICE and Pri-SLJA.

K Long-Tailed Distribution of Privacy
Spans

In this section, we present the long-tail distribu-
tion of privacy spans, where most privacy spans
are concentrated in the majority categories. Here,
a privacy span refers to a specific description of a
user’s private information, such as the description
of symptoms, e.g., “I’ve been having a persistent
cough”. The corresponding privacy span type in-
dicates the category of the private information,
such as the symptom type, e.g., “cough”.
Considering that we have three privacy-
preserving datasets covering the medical and legal
domains, we analyze the frequency of each pri-
vacy span type separately for each domain. For
the medical domain, we plot the distribution of
medical privacy spans in the Pri-DDXPlus and Pri-
NLICE medical dataset, as shown in Figure 6(a).
We observe that most medical privacy spans are
concentrated on the top types, such as “pain” and
“fever”. For the legal domain, we plot the dis-
tribution of legal privacy spans in Pri-SLJA legal
dataset, as shown in Figure 6(b). We also observe

10839



Datasets Dataset Split \ User inputs Privacy Span Type Privacy Spans Count
All 7759 149 46179
. Train 5901 149 35583
Pri-DDXPlus . 309 60 1659
Test 1549 78 8937
All 4062 64 18241
. Train 3282 64 14933
Pri-NLICE oy 130 58 552
Test 650 64 2756
All 3901 142 10418
. Train 3117 142 7980
Pri-SLIA Dev 130 95 417
Test 654 142 2021

Table 5: The statistics of Pri-DDXPlus, Pri-NLICE and Pri-SLJA. Average privacy symptoms indicate the average

privacy spans occur in one query.
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(a) Medical Privacy Spans Distribution

1600 ‘

Medium Types

Top Types

Tail Types

| |

seized by to sell

the police, drugs,
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property - force -
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(b) Legal Privacy Spans Distribution

Figure 6: Frequency distribution of privacy spans, highlighting the long-tail distribution where a small number of

categories dominate the majority of occurrences.

that most legal privacy spans are concentrated on
the top types, such as “a person with full criminal
responsibility”.

Therefore, the privacy spans in both the medical
and legal domains exhibit a long-tailed distribution,
indicating that most privacy spans are concentrated
in the majority types.

L. Experimental Setup Details

L.1 Evaluation Metrics

To fully evaluate the performance of different
privacy-preserving methods, we focus on two as-
pects: inference performance and inference effi-
ciency. We use MC1, MC2, ROUGE-L, and
LLM-J to assess inference performance, and
Throughput (TP) to evaluate inference efficiency.
The details of these metrics and their calculation
methods are introduced as follows:

MC1/MC2: We employ MC1 and MC2 3 (Zhang
et al., 2024) to measure the model’s accuracy in
selecting the correct answer among 4 options. We
assign each sample in Pri-DDXPlus, Pri-NLICE,
and Pri-SLJA with four options, including one cor-
rect answer and three incorrect ones. The details of
the calculation process are as follows:

As for calculating MC1: For each user input,
we select the option with the highest probability as
the model’s choice. MCl is defined as the model’s
accuracy, which is calculated as the proportion of
correctly answered inputs.

As for calculating MC2: For each user input, we
compute the normalized probability of the correct
answer among the four options. The average of
these normalized probabilities across all inputs is
calculated as the MC2 score.

ROUGE-L: We utilize ROUGE-L (Lin, 2004) to
assess the generation ability of different privacy-
preserving methods. ROUGE-L primarily mea-

3The code is available at https://github.com/
sylinrl/TruthfulQA
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sures the n-gram overlap between the reference
text and the generated text. To evaluate the per-
formance of these privacy-preserving methods, the
reference text is the initial output without any pri-
vacy protection from the backbone LLM, while the
generated text is the output with privacy protection.

LLM-Judge (LLM-J): As ROUGE-L primarily
focuses on n-gram overlap between generated text
and reference texts, which may not fully capture the
semantic meaning or overall quality of the gener-
ated content, we further use the LLM-Judge (LLM-
J)(Zheng et al., 2023a) metric to assess the gen-
eration ability. Specifically, we use the advanced
LLM (i.e., GPT-4 (OpenAl, 2023)) to assess the
quality of outputs considering relevance, clarity,
and accuracy. The assessment prompt is shown in
Appendix Y.4. The LLM-J score ranges from 1 to
10, with higher scores indicating better quality.

Throughput (TP): For inference efficiency, we
use Throughput (TP), defined as the number of to-
kens generated per second, to evaluate the inference
efficiency. To ensure a fair comparison between dif-
ferent methods, we uniformly use sampling-based
generation, as it effectively prevents privacy leak-
age from the generated outputs, as shown in Ap-
pendix I. We set the sampling temperature to 1.0
and the maximum generation length to 1024,

L.2 Compared Methods

Here, we provide a more detailed introduction to all
the compared methods, used to protect user privacy
during LLM inference, including No Restoration,
No Protection, d,-privacy (Feyisetan et al., 2020),
d-privacy on privacy spans, and Paraphrase (Mat-
tern et al., 2022b; Utpala et al., 2023b). The details
are as follows:

No Restoration (lower bound): This method
involves transmitting user queries with privacy-
sensitive spans removed, without attempting to re-
store the missing content on the server. As a result,
this method serves as the performance lower bound
among all privacy-preserving approaches. The de-
graded quality of the responses highlights the need
for effective restoration techniques to bridge the
gap between privacy protection and utility.

No Protection (upper bound): In this method,
user queries are transmitted directly to the server
without any privacy protection or modifications.
Since no information is removed or altered, the
model operates on fully intact queries, achieving

the best possible performance. Consequently, this
method establishes the upper bound for all privacy-
preserving techniques. The ROUGE-L score for
No Protection is always 100.00, as the reference
outputs for evaluation are from this method.

d-privacy: As proposed by Feyisetan et al.
(2020), we can directly apply d,-privacy mech-
anism to all tokens in the user query by injecting
noise into the tokens’ embeddings and replacing
the initial tokens with their nearest counterparts.
This prevents attackers from recovering the origi-
nal tokens, thereby protecting privacy.

d-privacy on privacy spans: Instead of apply-
ing d, -privacy mechanism to the entire input, the
client can only employ d,-privacy only to the pri-
vacy spans in the user query, as the other parts of
the query contain no privacy-sensitive information.
This approach allows for a more appropriate and
concise allocation of the privacy budget.

Paraphrase: According to Mattern et al.
(2022b); Utpala et al. (2023b), the above methods,
both applying d,-privacy mechanism to tokens
and achieving word-level privatization, suffer
from the linear growth problem of the privacy
budget. They proposed to use generative models
to paraphrase original inputs and achieve privacy
protection similar to d,-privacy. Due to the client’s
computational resource limitations and to ensure
a fair comparison with our method, we use the
FLAN-T5-Base model (Chung et al., 2024) on
the client side for paraphrasing in the Paraphrase
baseline, as its model size is comparable to that of
BERT-Base, which is used in our method.

L.3 Implementation Details

We use Llama2-chat-7b (Touvron et al., 2023) as
the LLM backbone on the server side, and BERT-
base (Devlin et al., 2019) on the client side for
weight estimation, as described in Section 4.2.

During restoration vector training, the LLM pa-
rameters remain fixed, and we train the restoration
vectors for 5 epochs with a batch size of 1. The
optimal number of edited heads K is 175 for Pri-
DDXPlus/Pri-SLJA and 125 for Pri-NLICE. The
search process is shown in Section U.1.

During generation, we use a sampling-based de-
coding strategy with a temperature of 1.0 and a
maximum generation length of 1024. This is be-
cause sampling-based generation can effectively
prevent privacy leakage from the generated outputs,
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as shown in Appendix I. To evaluate the genera-
tion capabilities, we utilize GPT-4 (OpenAl, 2023)
to assess the generated outputs. The prompts are
detailed in Appendix Y.3.

For the paraphrase baseline method, we employ
the flan-t5-base model (Chung et al., 2024) on the
client side, as its model size is comparable to BERT-
base. Following Mattern et al. (2022b), we clip the
final output logits between 0 and 1 during para-
phrasing. As a result, the privacy budget for para-
phrasing becomes 2n/7, where n represents the
maximum length of the user query and 7 is the
generation temperature.

M Settings of Privacy Hyperparameter e

According to Feyisetan et al. (2019) and the defi-
nition of d,-privacy in Appendix C.1, when apply-
ing the d, -privacy mechanism to protect a single
token, the privacy budget is ed, and d. is the maxi-
mum distance between any two token embeddings.
As proposed by Mattern et al. (2022b), with the
length of input text increases, the privacy budget of
d-privacy mechanism also grows linearly. Then,
assuming that the the maximum length of the user
query is n and the maximum length of privacy
spans in the user query is ngy,, the privacy bud-
get of d,-privacy is ne and the privacy budget
of d,-privacy on privacy spans is ng,¢. In addi-
tion, as pointed by Mattern et al. (2022b); Utpala
et al. (2023b), the privacy budget of paraphrase
method is 2n /7, where 7 is the generation temper-
ature used during paraphrasing, and n represents
the maximum length of user queries.

The privacy budget of PrivacyRestore is 2e,
according to Theorem 5.1. To ensure the same
privacy budget for a fair comparison, we need to
determine the values of different hyperparameters
for different methods on different datasets, such as
€ for d,-privacy (on privacy spans), PrivacyRestore
and 7 for paraphrase.

Firstly, We set the privacy hyperparameter € to
75.00 for PrivacyRestore. Next, we compute the
maximum of the users’ inputs lengths n, privacy
spans lengths n,,, and distances between word
embeddings d. across three privacy-preserving
datasets. Then, we calculate the corresponding
€ for d, -privacy (on privacy spans) and 7 for para-
phrase to control the overall privacy budget at
150, as detailed in Table 6.

N Additional Baselines

In addressing the challenge of safeguarding user
privacy during LLM inference, recent studies have
explored innovative approaches that leverage small
language models to either anonymize or substitute
private information within user queries. To evaluate
the efficacy of our approach, we implemented two
baselines from recent studies on the Pri-DDXPlus
dataset. (a). LLM-anonymization, proposed by
Staab et al. (2024), which uses a language model
to anonymize text by repeatedly removing personal
attributes identified by an adversarial inference
model. (b). IncogniText, introduced by Frikha
et al. (2024), which anonymizes text by iteratively
using an adversarial model to identify private at-
tribute inferences and an anonymization model to
rewrite the text, misleading potential attackers into
predicting incorrect private attribute values while
preserving text utility.

As shown in Table 7, our method significantly
outperforms LLM-anonymization and IncogniText
on Pri-DDXPlus dataset, strongly validating the
effectiveness of our approach.

O Details of Privacy Protection
Evaluation

In this section, we provide more details on our
implementation of embedding inverse attack (Li
et al., 2023b; Morris et al., 2023) and attribute
inference attack (Li et al., 2022) to evaluate the
privacy protection performance of different privacy-
preserving baselines and our method. Lower attack
performance indicates stronger privacy protection
provided by these methods.

Embedding Inverse Attack: As proposed by Li
et al. (2023b); Morris et al. (2023), embedding in-
version attacks aim to recover user privacy from
the embeddings of user inputs. Specifically, a gen-
erative model (e.g., GPT-2 model (Radford et al.,
2019)) is used to generate the user’s private infor-
mation based on the given embedding. We imple-
ment embedding inversion attacks for the privacy-
preserving baselines and our method to evaluate
their privacy protection performance. The imple-
mentation details are as follows:

We use the gpt2-medium model (Radford et al.,
2019) as the generative model, employing greedy
search during generation and setting the maximum
generation length to 256. For PrivacyRestore, the
client transmits the incomplete user query and the
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Datasets dy-privacy d-privacy on privacy spans Paraphrase PrivacyRestore  Privacy
n de € Nsp de € n T € Budget
Pri-DDXPlus  106.00  1.64 0.86 49.00 1.64 1.86 106.00 1.41 75.00 150
Pri-NLICE ~ 72.00 1.39 1.50 38.00 1.39 2.84 72.00 2.08 75.00 150
Pri-SLJA 193.00 145 0.54 42.00 1.45 2.46 193.00 0.78 75.00 150

Table 6: The settings of privacy hyperparameters for different baselines across all privacy-preserving datasets.

Methods ‘ MC1 1 MC2 1 ROUGE-L+ LLM-J 1

LLM-anonymization | 52.09(}10.88) 49.94(/10.25) 25.22(]2.02) 2.61(}1.86)
IncogniText 55.26(}7.71)  53.73(}6.46) 25.94(11.30) 3.85(]0.62)
PrivacyRestore 62.97 60.19 27.24 447

Table 7: Comparison of the performance and the
inference efficiency between PrivacyRestore, LLM-
anonymization and IncogniText methods across Pri-
DDXPlus dataset. The downward arrow in the table
indicates the performance gap of two baseline methods
compared with PrivacyRestore.

meta vector. The incomplete user query does not
contain any user privacy after removing the privacy
spans and is secure for the user. The meta vector
contains the information of privacy spans and we
perform embedding inverse attack on the meta vec-
tor. We use a fully-connected layer to transform the
meta vector’s dimension to the dimension of hidden
state of GPT-2 model. Then we directly input the
transformed meta vector as the input embedding.
We fine-tune the GPT-2 model and the fully con-
nected layer simultaneously, on the training set for
20 epochs, using a learning rate of le-5. For d, -
privacy (on privacy spans) and paraphrase, the
client only transmits the garbled user query after ap-
plying the d,-privacy mechanism or paraphrasing.
We then perform the embedding inverse attack on
the garbled user query to recover the privacy spans.
Here, we do not need to transform the dimension
and can directly input the garbled user query as the
input context for the GPT-2 attack model. Then at-
tack model can recover the privacy spans according
to the garble user query. We finetune the GPT-2
model on the training set for 20 epochs using the
learning rate of le-5.

To evaluate the attack’s performance, we com-
pute the ROUGE-L score between the generated
output of the attack model and ground true privacy
spans in the user query, where higher scores indi-
cate better attack effectiveness.

Attribute Inference Attack: According to Li
et al. (2022), attribute inference attack attempts to
infer user’s private attribute even when the user
query is protected by some privacy-preserving

methods. In our scenario, we use attribute infer-
ence attacks to infer the privacy spans in the user
query. The implementation details are as follows:

Following Li et al. (2022), we construct a multi-
layer perceptron (MLP) as the classifier, with the
output dimension corresponding to the entire vo-
cabulary size. We use the classifier to predict the
token IDs of the privacy spans in the user query.
Since the query contains multiple privacy spans,
and each span consists of multiple tokens, this clas-
sification task is a multi-label classification. For
PrivacyRestore, we also perform attribute infer-
ence attacks on the meta vector, so the input dimen-
sion of the classifier corresponds to the dimension
of the meta vector. We finetune the classifier on
the training set for 20 epochs using the learning
rate of le-5. For d, -privacy (on privacy spans)
and paraphrase, we perform attribute inference
attack on the garbled user query. We utilize GPT-2
model (Radford et al., 2019) to process the query
and obtain the last token’s hidden state as the vec-
tor representation. Classification is then performed
on this hidden state. We finetune the classifier and
the GPT-2 model jointly, on the training set for 20
epochs using the learning rate of le-5.

To evaluate the attack’s performance, we cal-
culate the F1 score of the classification, where a
higher F1 score indicates a more successful attack.

P More Privacy Protection Evaluation
Results

P.1 Concatenated Text Attack

In Section 6.3, the implementation of embedding
inverse attack follows previous work (Li et al.,
2023b), which merely takes meta vectors derived
from privacy spans as input. This approach, how-
ever, may overlook the contextual information in
the incomplete user query. Therefore, we propose
the Concatenated Text Attack by firstly using em-
bedding inverse attack to transform the meta vec-
tor to the text format and then concatenate it with
the incomplete user query to add more contextual
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information for recovering privacy spans. The im-
plementation details are as follows:

We finetune two attack models: one to transform
the meta vector into text format, and the other to
recover privacy spans from the concatenated text.
For the first model, we finetune a GPT-2 model,
where the input is the meta vector and the output is
the privacy spans, similar to the embedding inverse
attack process. Then we concatenate the generated
output from the first model with the incomplete
user query as the input to the second model. As
for the second model, we also finetune a GPT-2
model which aims to utilized the incomplete user
query to improve the quality of the generated output
from the first attack model. For both attack models,
we finetune them on the train set for 20 epochs
using the learning rate of 1e-5. We also utilized the
ROUGE-L scores between the recovered results
and the privacy spans as the evaluation metric.

The experimental evaluation of the Concatenated
Text Attack is presented in Table 8. The experiment
results show that, although unifying the vector for-
mat of the meta vector and the text format of in-
complete user query, the attack performance for
our method is still poor, demonstrating the effec-
tiveness of our method.

€ values 1 20 40 75 125 175

Pri-DDXplus  0.0112 0.0107 0.0130 0.0093 0.0115 0.0024
Pri-NLICE 0.0566 0.0486 0.0427 0.0467 0.0423 0.0350
Pri-SLJA 0.0027 0.0011 0.0022 0.0024 0.0021 0.0028

Table 8: ROUGE-L Scores for Concatenated Text At-
tack Across Different € Values

P.2 Simulating Activation Steering Attack

We assume the attacker is aware that the meta vec-
tor will be used for activation steering on the server
for information restoration. The attacker can also
simulate activation steering while recovering the
privacy spans in the user query. Considering the
LLM weights on the server are kept secret, the at-
tack only can conduct the activation steering on the
other generative model, such as GPT-2 (Radford
et al., 2019) model. The implementation details are
as follows:

First, due to the heterogeneity between the at-
tack model (GPT-2) and the LLM on the server
(Llama-2-7b), we use a fully connected layer to
transform the meta vector’s dimension to fit in the
attack model. Specifically, since the meta vector is

applied to the head output and its initial dimension
matches the head output of the LLM, the fully con-
nected layer adjusts it to the head output dimension
of the attack model (GPT-2). Next, we input the
incomplete user query into the attack model and
use the adjusted meta vector to perform activation
steering, prompting the model to generate the pri-
vacy spans in the query. We fine-tune the GPT-2
model and the fully connected layer jointly for 20
epochs with a learning rate of le-4. We utilized the
ROUGE-L scores between the recovered results
and the privacy spans as the evaluation metric.

As shown in Table 9, the Simulating Activation
Steering Attack demonstrated limited performance
across various e values on all three datasets. This
weakness may be attributed to that the meta vector
are trained offline for the server’s LLMs. Although
we have used fully connected layer to transform the
dimension of the meta vector, applying the meta
vector to the attack model still leads to incompati-
bility.

€ values 1 20 40 75 125 175

Pri-DDXplus  0.0023  0.0329 0.0321 0.0329 0.0310 0.0365
Pri-NLICE 0.0165 0.0123 0.0118 0.0170 0.0283 0.0315
Pri-SLJA 0.0161 0.0818 0.0862 0.0861 0.1048 0.1059

Table 9: ROUGE-L Scores for Simulating Activation
Steering Attack Across Different € Values

P.3 Hidden State Attack

Hidden State Attack(Carlini et al., 2021) attempts
to perform a training data extraction attack to re-
cover individual training examples by querying the
language model. We have implemented a Hidden
State Attack employing the LLaMA-7B architec-
ture as the designated attack model. The objective
of this attack was to infer private information from
steered hidden states, specifically targeting the first,
sixteenth, and final layers of the network. The effi-
cacy of the attack was quantitatively assessed using
the ROUGE-L metric, which measures the lexical
similarity between the output generated by the at-
tack model and the original user query containing
sensitive private information.

As indicated by the empirical results presented
in TablelO, the attack directed at the final layer
demonstrated a marginal improvement in perfor-
mance when compared to attacks executed on the
first and sixteenth layers. This observation can be
attributed to the fact that hidden states within the fi-
nal layer are fully restored, in contrast to the earlier
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layers where only partial restoration is achieved.
Nevertheless, it is crucial to emphasize that the per-
formance of all conducted attacks remained notably
weak. This outcome underscores the robustness of
our proposed methodology in safeguarding user pri-
vacy. Furthermore, it is pertinent to state that our
method does not introduce privacy vulnerabilities
at the model level, as noise has been incorporated
into the meta vector, thereby obfuscating sensitive
information.

¢ values 0.01 0.86 2.01
0.0023 0.0329 0.0321

Hidden State Attack on 1st layer

Hidden State Attack on 16th layer 0.0165 0.0123 0.0118
0.0818 0.0862

Hidden State Attack on final layer 0.0161

Table 10: ROUGE-L Scores for Hidden State Attack on
Different Layers Across Different ¢

Q Analysis of Output Privacy Protection

In this section, we evaluate the privacy leakage
in the generated output of our method by imple-
menting Embedding Inversion Attacks (EIA) and
Attribute Inference Attacks (AIA). We also directly
count the frequency of privacy span occurrences in
the generated outputs. The details of these attack
methods are as follows:

Embedding Inverse Attack for the generated
output. Embedding inversion attacks (Li et al.,
2023b; Morris et al., 2023) directly utilize the gen-
erative model (e.g., GPT-2) to generate privacy
spans in the user query based on the attacked em-
bedding. Although the generated output is in text
format rather than embedding format, we still in-
put it into the GPT-2 model to generate the privacy
spans from the user query.

To be specific, we utilize the GPT-2 model (Rad-
ford et al., 2019) as the generative model and set
the maximum generation length to 256. The input
of the GPT-2 attack model is the generated output
and the target output is the privacy spans in the
user query. We finetune the GPT-2 model on the
training set for 20 epochs using the learning rate of
le-5. To evaluate attack performance, we compute
the ROUGE-L score between the output generated
by the attack model and the ground truth privacy
spans in the user query.

Attribute Inference Attack for the generated
output. Attribute inference attack (Li et al., 2022)
attempts to steal user privacy by performing classi-

fication on the generated output, where the target
labels corresponding to the token IDs of those pri-
vacy spans. Since each user query contains multi-
ple privacy spans and each privacy span contains
multiple tokens, this classification task is naturally
a multi-label classification task.

First, we use the GPT-2 model (Radford et al.,
2019) to process the text input and obtain the hid-
den state of the last token as its vector represen-
tation. Next, following Li et al. (2022), we con-
struct a multi-layer perceptron (MLP) model as the
classifier. The classifier’s input is the vector rep-
resentation, and the output dimension corresponds
to the vocabulary size. We finetune the GPT-2
model along with the MLP on the training set for
20 epochs, using a learning rate of le-5. To eval-
uate the attack performance, we compute the F1
score of the classification results, where a higher
F1 score indicates a more successful attack.

R Details of Privacy Protection
Robustness for Long Queries

In this section, we will provide more implementa-
tion details and experiment results analysis when
evaluating the privacy protection robustness of d, -
privacy and our method.

R.1 Different Protected Text Length for
d-privacy

As shown in Section 6.4, we randomly select a pro-
portion of token in user query to simulate the pro-
tected text and larger proportion indicates longer
protect text. The proportion of selected token is de-
noted as the d, -privacy Percentage. As presented
by Feyisetan et al. (2019, 2020), the d,-privacy
mechanism protects input by injecting noise into
the token embeddings and replacing the original
tokens with their nearest neighbors. To attack the
garbled query, we implement two types of attacks:
prompt injection attack (Suo, 2024) and attribute
inference attack (Li et al., 2022), both commonly
used for attacking text inputs. The details of im-
plementation of these two attack methods are as
follows:

For prompt injection attack, following Suo
(2024), we add extra instructions before and after
the garbled query, to prompt the LLM in the server
to output the protected text instead of following the
initial user query. And then we intercept the output
returned by the LLM on the server for user pri-
vacy. The template for the additional instructions
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is provided in Appendix Y.5. To evaluate the attack
performance, we calculate the ROUGE-L score be-
tween the returned output and the protected text.
A higher ROUGE-L score indicates greater over-
lap between the returned output and the protected
text, signifying more successful attack results. For
attribute inference attack, inspiring by Li et al.
(2022), We firstly utilize GPT-2 model (Radford
et al., 2019) to process the garbled query and obtain
the last token’s hidden state. Next, we construct
a multi-layer perceptron (MLP) as the classifier
to classify the hidden states, with the target labels
being the token IDs of the protected text. This is
a multi-label classification task. We finetune the
classifier and the GPT-2 model on the training set
for 20 epochs using the learning rate of 1e-5. The
attack performance is evaluated using the classifi-
cation F1 score.

As shown in Figure 3(a) and Figure 3(b), the
attack performance of prompt injection attack and
attribute inference attack across all three datasets
are all grows with the larger d,, -privacy percentage.
These experiment results reflect the linear growth
problem of privacy budget in d, -privacy.

R.2 Different Protected Text Length for
PrivacyRestore

For PrivacyRestore, we randomly choose a propor-
tion of privacy spans in the user query as the pro-
tected text and the proportion is denoted as the Pri-
vacy Span Ratio «. Larger « indicate the longer
protected text. Considering that, in our method,
the client only transmits the incomplete query with
the meta vector and the incomplete query contains
no privacy information, then we implement em-
bedding inverse attack (Li et al., 2023b; Morris
et al., 2023) and attribute inference attack (Li et al.,
2022) on the meta vector across different « values.
The details of implementation of these two attack
methods are as follows:

For embedding inverse attack, we firstly fully-
connected layer to transform the meta vector’s di-
mension to the dimension of hidden state of GPT-2
attack model. Then we directly input the trans-
formed meta vector as the input embedding to the
attack model, prompting it to generate the privacy
spans in the user query. We finetune the fully-
connected layer with the GPT-2 attack model on
the training set for 20 epochs using the learning
rate of le-5. The attack performance is assess by
the ROUGE-L score between the generated output
from the attack model and the protected text. For

attribute inference attack, we construct a multi-
layer perceptron (MLP) as the classifier to classify
the meta vector, with the target labels being the
token IDs of the protected text. This is also a multi-
label classification task. We finetune the classifier
on the training set for 20 epochs using the learning
rate of le-5. The attack performance is evaluated
using the classification F1 score.

As shown in Figure 3(c) and 3(d), the ROUGE-
L score for the embedding inverse attack remains
nearly stable across different o values in the Pri-
SLJA and Pri-DDXPlus datasets. What’s a little
strange is the ROUGE-L score in the Pri-NLICE
dataset shows a slight increase. The possible rea-
son is that higher ratio indicating more privacy
spans and resulting longer reference string when
compute the ROUGE-L score. Since ROUGE-L
measures the overlap between the generated output
and the reference string, a longer reference string
may slightly boost the score. The F1 score for
the attribute inference attack remains stable across
all three datasets. The stable performance in both
attack scenarios provides empirical support for The-
orem 5.1. Our method effectively and inherently
solves the linear growth problem of the privacy
budget, achieving robust and stable privacy protec-
tion performance regardless of the length of the
protected text, even with long protected text.

S Details of Evaluation of Handling
Out-of-Set Privacy Spans

In this section, we will evaluate our method when
handling those out-of-set privacy spans. As shown
in Figure 6, most of privacy spans focus on the ma-
jority categories. Our core set of predefined privacy
spans easily covers the majority of categories, even
though it cannot cover all privacy span types. To
evaluate the performance of our method when the
core set cannot cover all privacy span types, we
assume that the core set contains only the top 5, 40,
80, 100, or 120 privacy span types and assess our
method. Additionally, we provide results when the
core set covers all 149 privacy span types in the
Pri-DDXPlus dataset.

As shown in Table 11, our approach outperforms
the No Restoration baseline, with performance
gains increasing as the predefined span set expands.
Notably, even when limited to the top 100 types,
our method achieves significant improvements
across multiple metrics. These findings highlight
the robustness and efficiency of our method in han-
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Methods? MC11 MC2t RL1 LLM-Jt
No Restoration (lower bound) 33.57 32.49 25.19 3.21
Predefine only top 5 38.21 36.17 25.82 3.57
Predefine only top 40 44.28 42.00 25.89 3.83
Predefine only top 80 45.83 43.53 26.59 3.95
Predefine only top 100 54.93(121.36) 52.15(1 19.66) 26.37(1 1.18) 4.19(1 0.98)
Predefine only top 120 58.42 55.40 26.87 4.27
Predefine only all (top 149) 62.97(129.40) 60.19(1 27.70) 27.24(1 2.05) 4.47(1 1.26)

Table 11: Performance comparison across different predefined privacy span type sets C in Pri-DDXPlus

dling those out-of-set privacy spans when our pre-
defined cores set cannot cover all privacy spans.

T Details of Extension for Users Unable
to Determine Privacy Spans

In this section, we evaluate the performance of
combining PrivacyRestore with existing text sani-
tization techniques (Kan et al., 2023; Chen et al.,
2023a) to address the situation where users cannot
or are unwilling to determine privacy spans them-
selves. In our main setting, we follow the principle
of “Information Self-Determination Right” and as-
sume that the user should determine the privacy
spans in their queries by themselves. However, we
also consider the situation when the user cannot or
is unwilling to identify the privacy spans. Thanks
to our method is totally orthogonal to the exist-
ing Text Sanitization techniques (Kan et al., 2023;
Chen et al., 2023a), we can use text sanitization
technique to identify and remove privacy spans au-
tomatically and restore information during LLM
inference by our method.

Specifically, the pipeline of combining text sani-
tization technique and our method consists of three
stages: Privacy Spans Identification, User Query
Sanitization and PrivacyRestore. The details of
these three stages are as follows:

Privacy Spans Identification: Following Kan
et al. (2023); Chen et al. (2023a), we construct a
classifier based on the BERT-base-uncased model
(Devlin et al., 2019). The input to the classifier is
the user query, and the target labels are the types of
privacy spans in the query. Considering that each
query contain multiple privacy spans and this is a
multi-label classification task. We use the classifier
to identify the types of privacy spans present in
the user query. We finetune the classifier on the
training set for 10 epochs using the learning rate
of le-4. To evaluate the identification performance,
we compute the precision, recall and F1 score of
the classification.

As shown in Table 12, the classification results
of our classifier are superior, achieving an F1 score
of 99.66.

Recall F1

Precision

Privacy Spans Identification  99.16..2;

Table 12: Privacy Spans Identification accuracy. The
results of the three experiments are presented, with the
variance displayed in subscript.

User Query Sanitization: After identifying all
privacy spans in the user query, we need to re-
move all these privacy spans from the user query to
achieve sanitization. Inspiring by Kan et al. (2023);
Chen et al. (2023a), we finetune a Qwen-2.5-0.5B
model (Yang et al., 2024) to conduct the text saniti-
zation. Specifically, the model takes the user query
and the identified privacy span types as input and
outputs a sanitized version of the user query with
the privacy spans removed. We finetune the Qwen-
2.5-0.5B model on the train set for 15 epochs using
the learning rate of le-5.

To evaluate the efficacy of the text sanitization,
we conducted both Attribute Inference Attacks
(AIA) and Embedding Inversion Attacks (EIA) on
the sanitized queries. As shown in Table 13, the
performance of both attack methods are very low,
demonstrating that our sanitization method can ef-
fectively protect the user privacy.

EIA (ROUGE-L) _ AIA (F1)
No Protection 0.40 0.70
Sanitized Results 0.06(J 0.34) 0.07(J 0.63)

Table 13: Attack results on sanitized queries. EIA refers
to the embedding inverse attack, with the evaluation
metric being ROUGE-L. AIA denotes the attribute in-
ference attack, evaluated using the F1 score.

PrivacyRestore: Following the text sanitization,
we use PrivacyRestore to restore the information
during LLM inference on the server. We present the
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MC11 MC2t RL1T LLM-Jt
No Restoration 33.57 32.49 25.19 3.21
TS only 29.63() 3.94)  30.85( 1.64) 25.45(10.26) 3.46(71 0.25)
PR+PS 62.97(129.40) 60.19(1 27.70) 27.24(12.05) 4.47(1 1.26)
PR+TS 62.87(129.30) 59.97(1 27.48) 26.47(1 1.28) 4.28(1 1.07)

Table 14: The performance of combining our method
with text sanitization technique. TS only indicates only
use sanitization methods without combining PrivacyRe-
store. PR+PS indicates PrivacyRestore when the user
can determine privacy spans by themselves. PR+TS
denotes combining PrivacyRestore and text sanitization
to address the situation when the user cannot identify
privacy spans by themselves. Three methods are com-
pared with No Restoration baseline (lower bound).

performance results of our method when user can
determine privacy spans (PR+PR), combining our
method with text sanitization (PR+TS), only using
text sanitization (T'S only) and the No Restoration
baseline in Table 14.

As the experiment results show, even in scenar-
ios where users are unable to identify privacy spans,
the combination of our method with text sanitiza-
tion (PR+TS) results in a significant enhancement
in performance compared to the No restoration
baseline (lower bound) and only using text sanitiza-
tion (only TS). The utility performance achieved is
notably superior, suggesting that our method is ef-
fective in preserving privacy while simultaneously
optimizing utility. Moreover, the performance met-
rics of combining our method with text sanitiza-
tion are comparable to those when the user can
determine privacy spans themselves (PR+PS). This
comparison further underscores the robustness of
combining our method with text sanitization and
validates the efficacy of our approach in real-world
applications, even when users cannot determine
privacy spans themselves.

U Details to Ablation Study

In this section, we conduct additional experiments
to analyze the impact of the number of edited heads
and evaluate the performance of our method across
varying LLM backbones.

U.1 Hyperparameter Analysis of the Number
of Edited Heads

We evaluate the performance of our methods us-
ing different numbers of edited heads, K, across
the development sets of three privacy-preserving
datasets. For simplicity, we compute MC2 to repre-
sent classification performance, LLM-J to measure

generation performance, and TP to indicate infer-
ence efficiency.

As shown in Table 15, according to the MC2
score, the optimal value of K is 175 for the Pri-
DDXPlus and Pri-SLJA datasets, and 125 for the
Pri-NLICE dataset. The performance degradation
as K increases can be attributed to the cumulative
effect of multiple edited heads. As more heads
are modified, the activations progressively deviate
from their initial values, potentially compromising
the LLM’s general capabilities. Moreover, through-
put increases with larger K because we need to
inject the meta vector for each head in H, using Eq
4 on the server. Consequently, more heads indicate
more injections, which increases the inference time
on the server.

U.2 Varying LLM Backbone

We evaluate the performance of PrivacyRestore
and other privacy-preserving baselines on a larger
model, Llama-13b-chat.

As shown in Figure 7, PrivacyRestore outper-
forms the other baselines in terms of both MC2 and
LLM-J values across all three privacy-preserving
datasets. Notably, the performance of all privacy-
preserving methods on the larger model, Llama-
13b-chat, is worse than on the smaller model,
Llama-7b-chat. This suggests that as model size
increases, the model becomes more sensitive to the
injected disturbances introduced by these privacy-
preserving methods, leading to performance degra-
dation.

V Inference Efficiency Analysis

In this section, we provide a detailed analysis of the
computational efficiency of our proposed method,
specifically addressing its performance in terms of
training time and inference throughput. Concerns
regarding the computing resource requirements and
time costs associated with training recovery vec-
tors, building meta vectors, and other operations in
practical applications have been noted. To address
these, we have conducted a series of experiments
to evaluate the efficiency of our approach, with
a particular focus on its suitability for large-scale
deployments.

Table 16 presents a comprehensive overview of
the performance metrics. The evaluation was con-
ducted on three distinct datasets: Pri-DDXplus, Pri-
NLICE, and Pri-SLJA. We report the total training
time, the number of trainable parameters specific to
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Datasets

Metrics ‘K:75 K=100 K=125 K=150 K =175 K =200

MC2 1 52.20 56.17 59.39 58.96 62.95 62.64
Pri-DDXplus LLM-J 1 4.51 4.38 4.45 4.33 4.71 4.55
TPt 24.31 21.51 19.72 20.07 22.68 2191
MC2 1 37.15 51.01 58.97 51.89 58.11 58.45
Pri-NLICE LLM-J 1 3.27 3.66 3.80 3.44 3.40 3.62
TP 1 20.05 19.14 18.23 16.08 15.89 15.48
MC2 1 28.75 30.65 35.07 3241 35.13 32.08
Pri-SLJA LLM-J 1 5.21 541 5.00 5.33 5.15 5.28
TP 1 36.28 35.25 34.62 32.97 30.51 29.87

Table 15: The performance of PrivacyRestore on the development set using various numbers of edited heads K.
MC2 reflects classification capability, while LLM-J indicates generation performance. The TP assesses inference
efficiency. We report results across three datasets to identify the optimal K for each datasets. The best results are

highlighted in bold.
Dataset Train PrivacyRestore Params PrivacyRestore Initial TP
Time Params Ratio TP TP  Ratio
Pri-DDXplus ~ 8h 26M 4% 26.09 41.08 64%
Pri-NLICE 7h &M 1% 32.33 41.44  T78%
Pri-SLJA 10h 26M 4% 30.73 3949 7%

Table 16: Experimental Results on Inference Efficiency of PrivacyRestore under different datasets. The table
shows training time, trainable parameters (and their ratio to full model), inference throughput of our method, initial
throughput, and the ratio of our method’s throughput to the initial one.

our method, the ratio of these trainable parameters
to the full model parameters, the inference through-
put achieved using our method, the initial inference
throughput (baseline), and the percentage of our
method’s inference throughput relative to the initial
throughput.

The experimental results demonstrate that our
method maintains a low computational overhead
during the training phase. For instance, the training
times for Pri-DDXplus, Pri-NLICE, and Pri-SLJA
were 8 hours, 7 hours, and 10 hours, respectively.
These durations are considered acceptable, partic-
ularly given that our approach focuses on train-
ing only the restoration vectors. Crucially, these
restoration vectors constitute a small fraction of the
total model parameters, ranging from just 1% (for
Pri-NLICE with 8M trainable parameters) to 4%
(for Pri-DDXplus and Pri-SLJA with 26M trainable
parameters). This targeted training strategy signifi-
cantly reduces the computational burden compared
to retraining an entire model, making it highly effi-
cient.

In the inference stage, our method demonstrates
commendable performance by retaining a substan-
tial portion of the original inference throughput.
Specifically, the inference throughput achieved by

our method was 26.09 for Pri-DDXplus, 32.33 for
Pri-NLICE, and 30.73 for Pri-SLJA. When com-
pared to the initial inference throughputs of 41.08,
41.44, and 39.49, respectively, our method sustains
between 64% and 78% of the original throughput.
This indicates that while introducing the restoration
mechanism, the impact on inference speed is man-
aged effectively. For example, with Pri-NLICE,
our method achieved 78% of the initial through-
put while only requiring the training of 1% of the
model parameters. Similarly, for Pri-SLJA and
Pri-DDXplus, we achieved 77% and 64% of the
initial throughput, respectively. Furthermore, the
method retains a high percentage (65%-80%) of the
original inference throughput, indicating minimal
overhead during the inference phase. These charac-
teristics collectively demonstrate that our approach
is not only effective but also computationally ef-
ficient, rendering it well-suited and feasible for
deployment in large-scale applications where both
training and inference costs are critical considera-
tions. The results affirm that the method remains
low-cost and efficient across both training and in-
ference stages.
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Percentage of Spans Removal MC1 MC2 LLM-J

No More Spans Removed 62.97 60.19 27.24
1% More Spans Removed 62.13 59.51 27.21
5% More Spans Removed 59.13 55.05 27.16

10% More Spans Removed 5745 5485 2651
30% More Spans Removed 50.87 48.43 2542
50% More Spans Removed 4247 41.73 2390

Table 17: Performance of PrivacyRestore under varying
percentages of additional span removal. The table dis-
plays the MC1, MC2, and LLM-J scores across varying
percentages of removed non-privacy spans.

W Example Outputs of PrivacyRestore

We provide some example outputs of our method
in Figure 8. As shown in these examples, applying
d-privacy to privacy spans results in outputs with
higher ROUGE-L scores but lower LLM-J scores
compared to our method. After analyzing these
outputs in detail, the high ROUGE-L scores from
d-privacy on privacy spans likely result from a
greater overlap with the initial output. However, the
overlapping sections consist mainly of meaningless
sentence structures and lack diagnostic information.
Moreover, the final diagnosis is incorrect, leading
to lower LLM-J scores. In contrast, PrivacyRestore
generates outputs with a different structure but pro-
vides the same, correct diagnosis. As a result, our
method achieves slightly lower ROUGE-L scores
but significantly higher LLM-J scores compared to
d-privacy on privacy spans.

X Privacy Spans Over-Removal

To highlight the efficiency of PrivacyRestore in
mitigating the impact of user errors during privacy
span removal, we conducted a series of experiments
to evaluate its robustness under adverse conditions.
Recognizing that users may inadvertently remove
longer spans than necessary, our study simulated
scenarios where, in addition to the essential privacy
spans, an extra 1%, 5%, 10%, 20%, 30%, and even
50% of non-privacy text was removed from the
Pri-DDXPlus dataset.

Shown in Table 17, although removing longer
spans than necessary can impact performance, the
degradation is minimal. Even with an extra 30%
of spans removed, our method still achieves robust
scores—50.87 in MC1, 48.43 in MC2, 25.42 in
ROUGE-L, and 3.65 in LLM-J.

10850



[ d, - privacy

d, - privacy on privacy spans

Paraphrase [} PrivacyRestore

59.65

60

(a) MC scores

0
Pri-DDXPlus Pri-NLICE
Datasets

0
Pri-DDXPlus Pri-NLICE
Datasets

Pri-SLJA

(b) LLM-J scores

Pri-SLJA

Figure 7: The MC2 and LLM-J results of PrivacyRestore and other privacy-preserving baselines on larger model,
Llama-13b-chat, across three datasets.

o« A person with a history of antipsychotic medication usage, nausea, stimulant drug use presents with the
\.'_ symptoms including involuntary eye movements, jaw pain, muscle spasms, muscle spasms in neck, ptosis,
== | shortness of breath. What is the most likely diagnosis?
As a medical doctor, I must emphasize that a definitive diagnosis requires a
comprehensive physical examination and a detailed review of the patient’s medical
history. However, based on the symptoms described, here are some potential diagnoses to [ )
consider: Initial Output
1. Dystonia: Dystonia is a movement disorder characterized ...
As a medical doctor, I must first acknowledge that I cannot provide a definitive diagnosis
without conducting a thorough medical examination and reviewing the patient's |é )
complete medical history. However, based on the symptoms you have provided, here are
some possible diagnoses that could be considered: + dx—pﬁvacy on
LLM-J: 2 privacy spans
ROUGE-L | SSRGS The patient's symptoms of fatigue, weight gain, ...
43.37
Thank you for the question. The symptoms of muscle spasms can be caused by a variety
of conditions. Based on the symptoms provided, the likely diagnosis for this person with 'é )
a history of nausea and muscle, including:
LLM-J: 8 + PrivacyRestore
ROUGE-L: | L. DYSIHia: A movement disorder characterized by ...
21.71
.« The patient experiences a history of active cancer, deep vein thrombosis, hormone intake, immobility for
\.'_ >3 days, surgery within last month who also presents the symptoms of coughing up blood, loss of
— consciousness, pain, shortness of breath, swelling. What is the likely diagnosis?

Y,
®

As a medical doctor, considering the symptoms presented by this patient, the most likely
diagnosis is (PE).

PE is a life-threatening condition that occurs when a blood clot (thrombus) forms in the
lungs, ...

Thank you for the question. Based on the symptom of swelling in the patient, there are
several possible diagnoses that I would consider. However, I will provide the most likely
diagnosis based on current medical knowledge and standard practices.

B

Initial Output

B

+ dy-privacy on

LLM-J: 2 The most likely diagnosis for this patient who presenting with swelling is S .- privacy spans
ROUGE-L:
24.33
Based on the information provided, I will provide the most likely diagnosis and possible
causes.
@ Likely diagnosis: Pllliionary embolisi Iél
RL (;Jll;/(l_‘:i E The patient's symptoms of shortness of breath, chest pain, and swelling are consistent + PrivacyRestore
21 33- ! with a pulmonary embolism ...

Figure 8: Example Outputs of PrivacyRestore and d,, on privacy spans in Pri-DDXPlus dataset. Text highlighted
with a yellow background represents the privacy spans in user inputs. Text highlighted with a green background
indicates the correct diagnosis. Text highlighted with a red background denotes the incorrect diagnosis. Underscored
text marks sections that overlap with the initial output.
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Y Prompt Template Details

Y.1 Classification of Privacy Spans.

Y.1.1 Medical Datasets
(Pri-DDXPlus/Pri-NLICE).

Prompt template shown in Figure 9 is for GPT and
is used to classify symptoms in Pri-DDXPlus/Pri-
NLICE dataset into sensitive and non-sensitive cat-
egories. GPT grades the symptoms on a scale
of one to five based on sensitivity, with levels
greater than three considered private spans in the
Pri-DDXPlus/Pri-NLICE dataset.

Y.1.2 Legal Dataset (Pri-SLJA).

Prompt template shown in Figure 10 is for GPT
and is used to classify the case details in Pri-SLJA
dataset into sensitive and non-sensitive categories.
GPT grades the symptoms on a scale of one to five
based on sensitivity, with levels greater than three
considered private spans in the Pri-SLJA dataset.

Y.2 Rewriting of User Queries.
Y.2.1 Medical Datasets
(Pri-DDXPlus/Pri-NLICE).

The prompt template shown in Figure 11 is de-
signed for GPT and is utilized to rewrite medi-
cal queries in the Pri-DDXPlus and Pri-NLICE
datasets.

Y.2.2 Legal Dataset (Pri-SLJA).

The prompt template shown in Figure 12 is de-
signed for GPT and is utilized to rewrite medical
queries in the Pri-SLJA dataset.

Y.3 Generation Prompts.

Y.3.1 Medical Datasets
(Pri-DDXPlus/Pri-NLICE).

Prompt template shown in Figure 13 is for Llama
model and is used during model generation for the
Pri-DDXPlus/Pri-NLICE datasets.

Y.3.2 Legal Dataset (Pri-SLJA).

Prompt template shown in Figure 14 is for Llama
model and is used during model generation for the
Pri-SLJA datasets.

Y.4 Evaluation of Generated Output.

Y.4.1 Medical Datasets
(Pri-DDXPlus/Pri-NLICE).

Prompt template shown in Figure 15 is for GPT
and evaluates the quality of generated output

based on relevance, clarity, and accuracy, for Pri-
DDXPIlus/Pri-NLICE dataset. Scores range from 1
to 10, with higher values indicating better output.

Y.4.2 Legal Dataset (Pri-SLJA).

Prompt template shown in Figure 16 is for GPT
and evaluates the quality of generated output based
on relevance, clarity, and accuracy, for Pri-SLJA
dataset. Scores range from 1 to 10, with higher
values indicating better output.

Y.5 Prompt Injection Attack.

Prompt template shown in Figure 17 is for Llama
model and is used to carry out a prompt injection
attack, translating the garbled text back into the
original text.
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You are a privacy expert with extensive medical knowledge. Given a potential symptom or antecedent, please categorize
symptom or antecedent into five grades based on the level of privacy they entail.

Utilize the classification guidelines provided below to categorize the symptom or antecedent:

Degrade 1: public information, symptoms that are common, widely known, and do not reveal any personal or sensitive
information. Examples include sneezing, headache, or minor injuries.

Degrade 2: non-sensitive personal information, symptoms that may be personal but not necessarily sensitive or revealing.
These may include common illnesses like cold or flu, allergies, or minor digestive issues.

Degrade 3: potentially sensitive information, symptoms that could be indicative of underlying health conditions but are not
immediately sensitive or stigmatizing. Examples include chronic conditions like diabetes, hypertension, or asthma.

Degrade 4: sensitive personal information, symptoms that may be stigmatizing or have social implications if disclosed
publicly. This could include mental health issues like depression or anxiety, reproductive health concerns, or substance abuse.

Degrade 5: highly sensitive information, symptoms that are highly personal, stigmatizing, or potentially life-altering if
disclosed publicly. This category includes sexually transmitted infections, HI\VV/AIDS, certain types of cancer, or rare and
serious medical condition.
Output your evaluation in the following format:

#thereason: your analysis here [note: this should be step-by-step analysis following the steps: (a) Give an overview of the given
symptom or antecedent. (b) Evaluate the degree of the given symptom or antecedent according to classification guidelines.]
#thescore: your degrade here. [note: provide your degrade in based on your analysis and the classification criteria. Please note
that only the degrade is required to be written in here]

Symptom: [INSERT YOUR SYMPTOMS HERE].

Figure 9: Prompt template for classifying symptoms

You are a privacy expert with extensive legal knowledge, please categorize the given case element into five levels based on the
degree of privacy involved.

Utilize the classification guidelines provided below to categorize the case element:

Degrade 1: public legal information: Information that is publicly available and does not reveal personal or sensitive legal
details. Examples include general legal concepts, publicly available case laws, or minor regulatory matters.

Degrade 2: non-sensitive personal legal information: Legal information that may involve a specific individual but is not
particularly sensitive or revealing. Examples include minor legal infractions like parking tickets, common civil disputes, or
routine contracts such as lease agreements.

Degrade 3: potentially sensitive legal information: Legal information that could imply more personal aspects but is not
immediately sensitive or damaging. Examples include employment disputes, divorce filings, or personal injury claims without
reputational impact.

Degrade 4: sensitive personal legal information: Information that could be stigmatizing or have significant social, financial, or
reputational consequences. Examples include legal matters involving bankruptcy, criminal records (misdemeanors), or family
law issues like child custody disputes.

Degrade 5: highly sensitive legal information: Legal details that are highly personal, stigmatizing, or potentially life-altering
if disclosed. This includes serious criminal cases (e.g., felonies, sexual offenses), immigration status disputes, or legal
proceedings involving whistleblowing or confidential corporate matters.

Output your evaluation in the following format:

#thereason: your analysis here [note: this should be step-by-step analysis following the steps: (a) Give an overview of the given
case element. (b) Evaluate the degree of the given case element according to classification guidelines.]

#thescore: your degrade here. [note: provide your degrade in based on your analysis and the classification criteria. Please note
that only the degrade is required to be written in here]

Case element: [INSERT CASE ELEMENTS HERE].

Figure 10: Prompt template for classifying case details
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[INST] <<SYS>>

You are a language model specialized in the medical domain. You will be given a simple, fixed-format description of a patient's
symptoms or medical query. Your task is to rephrase this description into a more detailed, realistic, and complex version that
reflects how patients typically describe their conditions to healthcare professionals. Feel free to add any relevant details that
may be implied or missing, such as symptom duration, severity, or additional context that could aid in a more accurate
assessment. Additionally, ensure that the transformed query is presented in a variety of formats, using different phrasing,
structures, and levels of specificity to reflect natural variations in how patients might express their concerns. The output should
sound realistic and diverse, while staying true to the initial medical context.

<</SYS>>

[INSERT USER INPUT HERE] [/INST]

Figure 11: Prompt template for rewriting queries in medical datasets

[INST] <<SYS>>

You are a language model specialized in the legal domain. You will be given a simple, fixed-format description of a legal fact
pattern or query. Your task is to rephrase this description into a more detailed, realistic, and nuanced version that reflects how
individuals or legal professionals typically articulate such situations in legal consultations or documents. Feel free to add any
relevant details that may be implied or missing, such as background context, the sequence of events, or potential legal
implications that could provide a more comprehensive understanding. Additionally, ensure that the transformed query is
presented in a variety of formats, using different phrasing, structures, and levels of specificity to reflect natural variations in
how legal issues might be expressed. The output should sound realistic and diverse while staying true to the initial legal context.
<</SYS>>

[INSERT USER INPUT HERE] [/INST]

Figure 12: Prompt template for rewriting queries in legal datasets

[INST] <<SYS>>
You are a medical doctor answering real-world medical entrance exam questions. Based on your understanding of basic and
clinical science, medical knowledge, and mechanisms underlying health, disease, patient care, and modes of therapy, answer
the following diagnosis question. Base your answer on the current and standard practices referenced in medical guidelines.
<</SYS>>

[INSERT USER INPUT HERE] [/INST]

Figure 13: Pri-DDXPlus/Pri-NLICE prompt template for model generation

[INST] <<SYS>>

You are the world’s best legal judgment machine, tasked with rendering a verdict in a legal case. Below are four paragraphs
describing the case, though some information may be missing.

Subject refers to the individual with criminal responsibility who committed the crime;

Subjective Element consists of intention and negligence, representing the psychological state of the subject concerning the
criminal behavior and its outcomes;

Object refers to the social relationships protected by criminal law that have been infringed upon by the criminal acts;
Objective Elements include the specific details of the crime, such as time, location, actions, and consequences.

Using these four components, generate a judgment to sentence the subject of the crime.

<</SYS>>

[INSERT USER INPUT HERE] [/INST]

Figure 14: Pri-SLJA prompt template for model generation
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You are a neutral legal evaluator. You will be provided with a legal question containing the description of a case and the Al assistant's
judgment of the case.

Your task is to assess whether the Al assistant's judgment is useful and accurately points out the crime. Consider factors such as the relevance,
clarity, and accuracy of the judgment.

Rate the response on a scale from 1 to 10, where 1 indicates poor quality and 10 indicates excellent quality.

Start your answer with the rating score by strictly following the format: “[[rating]] . After assigning a rating, provide a brief explanation for
your score, justifying your evaluation.

[User Question]

[INSERT QUESTION HERE].

[The Start of Assistant Response]
[INSERT GENERATED OUTPUT HERE].
[The End of Assistant Response]

Rating:

Figure 15: Pri-DDXPlus/Pri-NLICE evaluation prompt template

You are a neutral medical evaluator. You will be provided with a medical question from a patient and the Al assistant's response to the question.
Your task is to assess whether the Al assistant's response is useful and accurately addresses the diagnosis. Consider factors such as the
relevance, clarity, and accuracy of the information provided.

Rate the response on a scale from 1 to 10, where 1 indicates poor quality and 10 indicates excellent quality.

Start your answer with the rating score by strictly following the format: “[[rating]] . After assigning a rating, provide a brief explanation for
your score, justifying your evaluation.*

[User Question]

[INSERT QUESTION HERE].

[The Start of Assistant Response]
[INSERT GENERATED OUTPUT HERE].
[The End of Assistant Response]

Rating:

Figure 16: Pri-SLJA evaluation prompt template

INST]<<SYS>>

You are a text generating machine. Given input with garbled characters, output normal text without garbled characters. ONLY
generate translated normal text.

<</SYS>>

[INSERT USER INPUT HERE]

Translated normal text:[/INST]

Figure 17: Prompt injection attack template
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