
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 10810–10820
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

MoQAE: Mixed-Precision Quantization for Long-Context LLM Inference
via Mixture of Quantization-Aware Experts

Wei Tao♠♡, Haocheng Lu♠♡, Xiaoyang Qu♡∗, Bin Zhang♠♡, Kai Lu♠*,
Jiguang Wan♠, Jianzong Wang♡

♠Huazhong University of Science and Technology,
♡Ping An Technology (Shenzhen) Co., Ltd.

Correspondence: quxiaoy@gmail.com, kailu@hust.edu.cn

Abstract
One of the primary challenges in optimizing
large language models (LLMs) for long-context
inference lies in the high memory consump-
tion of the Key-Value (KV) cache. Existing
approaches, such as quantization, have demon-
strated promising results in reducing memory
usage. However, current quantization meth-
ods cannot take both effectiveness and effi-
ciency into account. In this paper, we pro-
pose MoQAE, a novel mixed-precision quan-
tization method via mixture of quantization-
aware experts. First, we view different quanti-
zation bit-width configurations as experts and
use the traditional mixture of experts (MoE)
method to select the optimal configuration. To
avoid the inefficiency caused by inputting to-
kens one by one into the router in the tradi-
tional MoE method, we input the tokens into
the router chunk by chunk. Second, we design
a lightweight router-only fine-tuning process
to train MoQAE with a comprehensive loss to
learn the trade-off between model accuracy and
memory usage. Finally, we introduce a routing
freezing (RF) and a routing sharing (RS) mech-
anism to further reduce the inference overhead.
Extensive experiments on multiple benchmark
datasets demonstrate that our method outper-
forms state-of-the-art KV cache quantization
approaches in both efficiency and effectiveness.

1 Introduction

In recent years, large language models (LLMs)
have become a cornerstone in many fields, in-
cluding natural language processing (Dubey et al.,
2024), computer vision (Lin et al., 2024a), time
series data (Tao et al., 2025a) and so on. As
these models continue to evolve, the need to han-
dle longer and more intricate texts has also grown
significantly. Some complicatrd tasks often re-
quire models capable of handling extended con-
texts that span thousands of tokens. Although the

*Xiaoyang Qu (email: quxiaoy@gmail.com) and Kai Lu
(email: kailu@hust.edu.cn) are the corresponding authors.

0 20000 40000 60000 80000 100000 120000
Context Length

0

20

40

60

80

100

120

M
em

or
y

U
sa

ge
 (G

B
)

K
V

 C
ac

he
 =

 W
ei

gh
t

Device Memory Limit(80GB)

Weight Memory
KV Cache Memory
Total Memory
Weight Dominates
KV Cache Dominates

Figure 1: The composition of LLM inference memory
under different context lengths on an NVIDIA A100
GPU with 80GB memory capacity.

newest LLM can handle up to 2 million input to-
kens (Team et al., 2024), the long-context inference
still presents substantial challenges in memory con-
sumption and computational efficiency. We have
plotted the composition of the memory usage of the
Llama2-13B model in relation to the context length
in Figure 1 (The part beyond the device memory
limit is our estimation). The memory occupied by
the weights is fixed, while the memory occupied
by the Key-Value (KV) cache is proportional to the
context length. When the context length is small,
the memory usage is still dominated by the weights.
However, as the context length increases, it quickly
shifts to being dominated by the memory usage of
the KV cache. Ultimately, when the context length
reaches 128k, the memory usage of the KV cache
can reach 100GB, far beyond the memory capacity
of most commodity GPUs. Obviously, during long-
context inference, the main bottleneck in memory
usage lies in the KV cache. Furthermore, the fre-
quent transfer of large KV caches between CPU
and GPU memory for computation exacerbates the
problem, leading to significant inference latency.

Researchers have proposed various methods to
optimize LLMs for long-context inference, includ-
ing pruning, knowledge distillation, and quanti-
zation. Among them, quantization is the easi-

10810

mailto:quxiaoy@gmail.com
mailto:kailu@hust.edu.cn

est method to implement and can reduce mem-
ory consumption the most. Some researchers pro-
pose uniform quantizing models to low bit-width,
which achieve great performance on memory re-
duction but can cause drastic accuracy degradation.
Other researchers design mixed-precision quantiza-
tion, which keeps the important tokens in high bit-
width to maintain the model accuracy. However,
these mixed-precision methods require complex
and time-consuming quantization search processes
to determine the bit-width configuration.

Inspired by MoICE (Lin et al., 2024b), which
employs the experts in the mixture of experts
(MoE) module as the bases of rotary position em-
bedding (RoPE), we leverage the advantages of the
mixture of experts (MoE) approach’s fast training
and inference speed to propose MoQAE, a novel
mixed-precision KV cache quantization method via
mixture of quantization-aware experts. Our main
innovation is to creatively use MoE technology
to learn the quantization bit-width configuration.
Specifically, our contributions consist of three com-
ponents. (1) We treat each kind of quantization
bit-width configuration as an expert (which is also
the origin of the name "quantization-aware expert")
and leverage the router in the MoE method to se-
lect the most suitable quantization bit-width. That
is, we input a token into a router, which identi-
fies the most suitable expert for that token. The
quantization bit-width corresponding to that expert
is the bit-width to which we need to quantize the
token. We input tokens chunk-by-chunk instead
of using the token-by-token manner in traditional
MoE methods. (2) We design a lightweight fine-
tuning process. Instead of training the entire LLM,
we freeze the pre-trained LLM’s parameters and
perform minimal fine-tuning on the MoE routers
using a calibration dataset. During fine-tuning, we
introduce a comprehensive loss that balances model
accuracy and memory usage. (3) We propose a
routing-freezing (RF) and a routing sharing (RS)
mechanism. The RF mechanism freezes the quan-
tization strategy of initial chunks to keep model
accuracy, while the RS mechanism allows the quan-
tization strategy to be shared across different LLM
blocks.

2 Background

2.1 Preliminaries

LLM Inference. Modern LLM architectures are
predominantly based on a decoder-only structure,

where inference is divided into two distinct stages:
the prefill stage and the decoding stage. In the pre-
fill stage, all input tokens are processed by the LLM
to generate the first output token. Subsequently,
during the decoding stage, a sequence comprising
all input tokens and the tokens already generated is
processed by the LLM to generate the next output
token. This process repeats iteratively, with each
newly generated token appended to the sequence
for subsequent processing, until the entire output
sequence is completed. A significant drawback of
this approach is that, at each step, the key (K) and
value (V) matrices corresponding to the input to-
kens and all previously generated tokens must be re-
computed, leading to inefficiencies. To address this,
modern LLMs utilize a KV cache, which stores
the K and V matrices of both input and generated
tokens, eliminating redundant computations and
substantially reducing inference latency. However,
when processing long input texts, the size of the
KV cache grows dramatically, consuming a large
amount of GPU memory and making model deploy-
ment infeasible on resource-constrained hardware.
Moreover, the frequent transfer of the KV cache
between CPU and GPU memory becomes more
time-consuming as its size increases, turning the
KV cache into a bottleneck for inference latency.

Mixture of Experts. MoE is a model architec-
ture designed to divide computational tasks among
multiple experts (sub-models) and dynamically se-
lect a subset of experts to process a given input us-
ing a routing mechanism. Recently, MoE architec-
tures have been widely adopted in LLMs, such as
Switch Transformer (Fedus et al., 2022) and GLaM
(Du et al., 2022). Traditionally, MoE treats each
feed-forward network (FFN) layer in the LLM as
an expert, and a router dynamically activates only
a small subset of these FFN layers based on the
input, while the inactive layers remain idle. This
strategy has since been extended to self-attention
layers as well (Zhang et al., 2022). Compared to
dense models, MoE’s sparse activation mechanism
significantly reduces computational overhead while
maintaining excellent scalability in parameter size.
In this work, rather than viewing LLM layers as
experts, we innovatively treat the quantization bit-
width configurations of the KV cache in LLMs as
experts and propose quantization-aware experts.

2.2 Related Works
KV Cache Optimization. Researchers have pro-
posed various methods to optimize the KV cache in

10811

LLMs. Some (Zhang et al., 2023; Xiao et al., 2024;
Han et al., 2024; Liu et al., 2024a; Ge et al., 2024;
Pagliardini et al., 2023) have introduced pruning
techniques to eliminate the KV cache of less im-
portant tokens. For example, Zhang et al. propose
H2O (Zhang et al., 2023), which removes tokens
whose sum of vertical attention scores in the atten-
tion weight matrix is the lowest. StreamingLLM
(Xiao et al., 2024) proposes an “attention sink"
mechanism, and only keeps the initial tokens and
the most recent tokens. Others (Song et al., 2024;
Xue et al., 2024; He and Zhai, 2024; Kwon et al.,
2023; Dao et al., 2022; Yu et al., 2022; Cai et al.,
2024; Jin et al., 2023) have focused on memory
management strategies, addressing KV cache frag-
mentation from a system-level perspective. For
instance, vLLM (Kwon et al., 2023) constructs a
page table that maps the continuous logical pages
of the KV cache to non-contiguous physical mem-
ory pages, while also employing a copy-on-write
mechanism to reduce memory usage. Jin et al.
propose S3 (Jin et al., 2023), which predicts the
output sequence length during inference and allo-
cates KV cache memory space according to the
prediction result, avoiding memory waste caused
by over-allocating KV cache space. Additionally,
quantization (Liu et al., 2024b; Hooper et al., 2024;
Zhao et al., 2024; Frantar et al., 2023; Yang et al.,
2024; Kim et al., 2024) has been explored as a
promising approach to convert KV cache data from
high-precision to low-precision formats, thereby
saving memory. KIVI (Liu et al., 2024b) identi-
fies the presence of many outlier channels in the
key cache. Therefore, it proposes quantizing the
key cache on a per-channel basis, while the value
cache is quantized in the standard per-token man-
ner. Atom (Zhao et al., 2024) applies asymmetric
and 4-bit group quantization to the KV cache and
performs dequantization before the KV cache com-
putes with the query vector. Among these methods,
quantization stands out as one of the most effective
and straightforward solutions. However, traditional
quantization often incurs significant performance
degradation. In this paper, we propose a novel
mixed-precision quantization method that achieves
near-lossless model performance, addressing the
limitations of existing techniques while optimizing
KV cache memory usage.

Mixed-Precision Quantization. To mitigate the
performance degradation caused by quantization,
researchers have proposed mixed-precision quan-
tization methods (Hooper et al., 2024; Yang et al.,

2024; Zhang et al., 2024b; Kim et al., 2024; Lin
et al., 2024c; Tao et al., 2025b). These approaches
assign higher bit-widths to tokens of greater impor-
tance and lower bit-widths to less critical tokens,
thereby maintaining model performance more ef-
fectively. In the beginning, researchers apply mixed
precision quantization to the weights and activation
values of LLM. For example, SqueezeLLM (Kim
et al., 2024) divides the weights of LLM into a
dense matrix and a sparse matrix, and then uses
INT8 quantization on the sparse matrix while keep-
ing the precision of the dense matrix at FP16. AWQ
(Lin et al., 2024c) proposes an activation-aware
weight quantization, which finds 1% of salient
weights through the distribution of activation val-
ues and reorders the weights to ensure hardware
efficiency. Gradually, as the problems on the KV
cache became increasingly prominent, mixed pre-
cision quantization has also been extended to the
KV Cache. For example, MiKV (Yang et al., 2024)
uses the same method as H2O to determine im-
portant tokens, but uses lower-bit quantization in-
stead of evicting them. KVQuant (Hooper et al.,
2024) retains high precision of the outlier value
(value in large magnitude) in the KV cache during
quantization, and designs a new data type nuqX to
represent the KV cache after mixed precision quan-
tization. However, most of these methods require
a prohibitively long search time to determine the
quantization bit-width. In this paper, we propose
a novel mixed-precision quantization method via
quantization-aware experts. This approach adopts
the efficient routers in the MoE method to quickly
and effectively learn the optimal quantization con-
figuration for the KV cache.

3 Method

3.1 Overview

Figure 2 shows the overview of MoQAE. The input
text is first divided into several equal-length chunks,
which are then processed by the LLM. In each
block of the LLM, we use a quantization search
module to determine the quantization strategy (i.e.
quantization bit-width configuration) for the input
chunks. Subsequently, these chunks are quantized
using the bit-width configuration just determined,
and proceeds with the formal calculation in the
block (attention and feed-forward computations).
Finally, the output chunk is passed to the next block,
where the process is repeated. Notably, we apply
a routing-freezing mechanism to the first chunk,

10812

Figure 2: The overview of MoQAE. We use the router in MoE technology to learn the optimal quantization strategy.

preventing it from entering the router and fixing
its bit-width to FP16. Additionally, we adopt a
routing sharing mechanism between blocks, allow-
ing different blocks to use the same quantization
strategy.

3.2 Quantization-Aware Experts
In the quantization search module, we introduce a
router and several attention-aware experts. These
experts represent different quantization bit-width
configurations, such as FP16, INT4, INT2, and so
on. The input text is divided into several equal-
length chunks, and for the residual part that do
not meet the chunk size, we directly retain their
precision as FP16. Within each block of the LLM,
the chunks are first passed into a router, where the
router network is implemented using an MLP with
the function:

P = f(CW1 · CW2)W3 (1)

Here, C ∈ RN×D is the input chunk, f() is
the activation function, W1,W2 ∈ RD×M and
W3 ∈ RD×M are weight matrices, where D is the
embedding dimension size within each attention
head, N is the chunk size, M is the expert amount.
The output P ∈ RN×M reflects the probabilities
of all the chunks about selecting which expert.

For each token in the chunk, the expert with
the highest selection probability is chosen as the
selected expert for that token. Subsequently, we

find out the expert that is selected the most times
within the chunk and denote it as the quantization
strategy for the entire chunk. The equation is as
follows:

R = argmax
1≤k≤M

(
N∑

i=1

I

(
argmax
1≤j≤M

pij = k

))
(2)

Where R ∈ {1, 2, ...,M} is the quantization strat-
egy, pij means the probability of selecting expert j
for chunk i, I () operator means that the result is
1 if the condition is satisfied otherwise 0. Finally,
we integrate all the selected experts, generating the
quantization strategy for all the chunks, and the
input text will be quantized with this quantization
strategy.

3.3 Fine-Tuning Process
To accelerate the training process, we design an
efficient training method: freezing the parameters
of the LLM itself and fine-tuning only the router’s
parameters. Additionally, our fine-tuning is con-
ducted on a subset of the original dataset called the
calibration dataset.

We further design a novel loss in the fine-tuning
process. The goal of this loss is to achieve a trade-
off between the accuracy of the LLM and memory
usage during long-context inference. The design
details of this loss are as follows:

On one hand, to optimize the model’s accuracy,
we incorporate the model’s negative log-likelihood

10813

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Layer 0

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Layer 1

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Layer 5

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Layer 10
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

A
tte

nt
io

n
W

ei
gh

t

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

A
tte

nt
io

n
W

ei
gh

t

Figure 3: Attention weights of the first few tokens in
different layers of Llama2-7b.

loss Lnll as part of the final loss. However, we
cannot directly apply Lnll because it does not
involve operators directly related to the router’s
weights, making it unable to train the router’s
weights. Therefore, we define a new loss called
Lmodel, which is obtained by multiplying Lnll by
the mean value of the expert selection probabilities
output by the router. To reflect the varying impor-
tance of different experts to the model’s accuracy,
we apply a penalty term to each component of this
product. Lmodel is ultimately computed as follows:

Lmodel =
1

N

N∑

i=1

I

(
argmax
1≤k≤M

pik = j

)
·
pij · Lnll

Bj

(3)

where pik means the probability of selecting expert
k for chunk i, 1/Bj is the penalty term for expert
j and Bj means the corresponding bit-width of
expert j. We choose 1/Bj as the penalty term
because data with lower bit-width leads to higher
model loss.

On the other hand, to ensure that our method
also optimizes memory usage, we introduce the
memory loss Lmem. The purpose of Lmem is to
encourage the router to preferentially select experts
that represent lower bit-widths, thereby reducing
the model’s GPU memory usage. We also calculate
Lmem as the weighted sum of the mean value of
the expert selection probabilities, but the penalty
term is applied in an inverted manner:

Lmem =
1

N

N∑

i=1

I

(
argmax
1≤k≤M

pik = j

)
·
16pij
Bj

(4)

Figure 4: The routing sharing mechanism.

Here we choose 16
Bj

as the penalty term. This is
because data with higher-bitwidth leads to more
memory consumption.

Finally, our loss is defined as follows:

L = λLmodel + (1− λ)Lmem (5)

where λ is a pre-defined hyperparameter that con-
trols the trade-off between model accuracy and
memory usage. We will discuss the impact of λ on
model performance in Section 4.3.

3.4 Routing Freezing and Routing Sharing

Previous researchers (Xiao et al., 2024) have
demonstrated that the token at the initial position
of an LLM plays a crucial role in the model’s per-
formance, significantly influencing its accuracy. In
our research, we also explore this by conducting an
experiment to investigate the attention weights of
initial tokens of different layers within the LLM. As
depicted in Figure 3, we observe that the attention
weights for tokens at the initial positions are rela-
tively higher than those for tokens in subsequent
positions (except for the first two layers). This find-
ing strongly suggests that tokens at the beginning
of the sequence are highly influential, playing a crit-
ical role in determining the model’s output. These
initial tokens seem to capture essential contextual
information, which is then propagated through the
rest of the sequence.

In response to these observations, we introduce
a routing freezing mechanism to ensure that the
critical tokens at the initial position are not compro-
mised during the quantization process. Specifically,
we prevent the first chunk of tokens from being
passed into the router and restrict it to selecting the
FP16 quantization configuration. This approach
guarantees that the tokens at the start of the se-
quence are preserved with higher precision and are

10814

Table 1: The perplexity of MoQAE and baseline methods on Wikitext2 dataset, lower is better. AvB means average
bit-width. Most of the data is cited from CQ (Zhang et al., 2024a).

Bit Range Methods AvB LLama-7B ↓ LLama-13B ↓ LLama2-7B ↓ LLama2-13B ↓ Mistral-7B ↓
=16bits FP16 16 5.68 5.09 5.11 4.57 5.07

4∼16bits

INT4 ① 4.00 7.40 6.82 7.31 6.59 5.91
INT4-gs128 ① 4.16 7.16 6.67 6.87 6.20 5.76
NF4 ② 4.00 7.27 6.74 7.09 6.45 5.85
NF4-gs128 ② 4.16 7.16 6.66 6.86 6.20 5.77
KVQuant-4b ③ 4.00 7.13 6.65 6.70 6.11 5.75
KVQuant-4b-1% ③ 4.32 7.09 6.62 6.65 6.06 5.72
CQ-2c8b ④ 4.00 7.11 6.64 6.67 6.09 5.74
Atom-4b-gs128 ⑤ 4.00 6.16 5.46 5.98 5.26 5.67
QoQ-4b ⑥ 4.00 5.93 5.28 5.88 5.32 5.62
QoQ-4b-gs128 ⑥ 4.00 5.89 5.25 5.89 5.24 5.66
AWQ ⑦ 4.00 6.33 5.59 6.51 5.43 6.24
AWQ-gs128 ⑦ 4.00 5.93 5.36 5.92 5.27 5.66
MiKV ⑧ 5.50 6.25 5.58 5.89 5.33 5.78
MoQAE-λ0.5 4.13 5.76 5.15 5.22 4.65 5.14

2∼4bits

INT2① 2.00 10892 100870 4708 4220 477
INT2-gs128① 2.14 43.49 56.25 113.49 97.04 50.73
NF2 ② 2.00 2850.1 4680.3 13081.2 4175.6 1102.3
NF2-gs128 ② 2.14 248.32 118.18 420.05 499.82 191.73
KVQuant-2b ③ 2.00 10.28 9.05 15.16 43.77 8.40
KVQuant-2b-1% ③ 2.32 7.38 6.83 7.06 6.38 6.08
CQ-4c8b④ 2.00 7.52 6.96 7.23 6.52 6.17
Atom-2b-gs128⑤ 2.00 37.37 41.77 - - -
MoQAE-λ0.3 3.50 8.17 6.44 6.26 7.03 6.03

not quantized to lower bit-widths, thus protecting
the model’s accuracy.

Additionally, we propose a routing sharing mech-
anism to optimize the inference process further.
Our insight is inspired by CLA (Brandon et al.,
2024), which demonstrates the feasibility of shar-
ing key and value heads across different attention
layers to reduce computational overhead. As illus-
trated in Figure 4, in this mechanism, we partition
the different blocks within the LLM into several
groups. In each group, the other blocks share the
quantization strategy of the first block. The routers
in other blocks are also removed. By the routing
sharing mechanism, we can effectively reduce the
memory usage caused by too many routers and the
latency caused by router computation in most of
the blocks. Although sharing routing strategies be-
tween different blocks may lead to a slight loss in
model accuracy (since the quantization strategy of
the KV cache in one block may not be applicable to
the next block), this loss is not very severe (We will
prove it in Section 4.3). At the same time, the rout-
ing sharing mechanism can significantly reduce
memory usage and computation latency. There-
fore, we believe that this loss is acceptable. We
also explore the impact of the group size on model

performance in Section 4.3.

4 Evaluation

4.1 Experimental Setup
Benchmarks.

We benchmark MoQAE on six widely-
used open-source models: Llama-7B, Llama-
13B(Touvron et al., 2023a), Llama2-7B, Llama2-
13B (Touvron et al., 2023b), Llama3-8B (Dubey
et al., 2024), and Mistral-7B (Jiang et al., 2023).
To assess performance, we evaluate the perplex-
ity of MoQAE on the WikiText2 (Merity et al.,
2017) dataset. We also adopt LongBench (Bai et al.,
2024) to further evaluate the long-context genera-
tion performance of our method and the baselines.
We choose eight subsets from four different task
types in LongBench as our practical datasets. They
are single document QA task (Qasper), summariza-
tion task (QMSum, MultiNews), few-shot learn-
ing task (TREC, TriviQA, SAMSum), and code
completion task (LCC, RepoBench-P). F1 score is
used as the evaluation metric for Qasper and Trivi-
aQA, while ROUGE score is used for QMSum, and
MultiNews, and similarity score is used for LCC
and RepoBench-P. Only TREC uses classification
score as the evaluation metric. The maximum con-

10815

Table 2: The performance of MoQAE and baseline methods on LongBench datasets, higher is better.

Method Qasper ↑ QMSum ↑ MultiNews ↑ TREC ↑ TriviaQA ↑ SAMSum ↑ LCC ↑ RepoBench-P ↑
FP16 9.52 21.28 3.51 66.00 87.72 41.69 66.66 59.82
KIVI-2b ⑧ 9.26 20.53 0.97 66.00 87.42 42.61 66.22 59.67
CQ-4c8b ④ 9.58 20.87 1.93 66.00 87.72 41.13 66.57 59.75
MiKV ⑧ 9.14 20.63 0.85 65.88 87.21 41.44 66.18 59.55
MoQAE 9.79 21.23 3.47 66.00 87.89 41.37 66.53 59.94

1 0 2 4 2 0 4 8 3 0 7 2 4 0 9 61 0

2 0

3 0

4 0

5 0

Me
mo

ry
Us

age
 (G

B)

C o n t e x t L e n g t h

 F P 1 6 K V Q u a n t - 4 b - 1 % A t o m - 4 b - g s 1 2 8 K I V I - 4 b M i K V �
 	 � � � � � � � �
 	 � � � � � � �

Figure 5: The memory usage of MoQAE and baseline methods under different context lengths.

text length is 2048 for Llama, 4096 for Llama-2,
Llama-3, and 8192 for Mistral, respectively.

Baselines. We compare MoQAE with the FP16
full precision model and nine other state-of-the-art
KV cache quantization methods as the baselines:
① INT, which means uniform integer quantization.
② NF, which means NormalFloat quantization. ③

KVQuant (Hooper et al., 2024), which keeps out-
lier value in high bit-width. KVQuant-[x]b-1%
means 1% of the tokens is kept as FP16 precision.
④ CQ (Zhang et al., 2024a), which couples mul-
tiple key/value channels together to exploit their
inter-dependency. CQ-[x]c[y]b means that each
group has x channels and there are y bits in a quan-
tized code for a group. ⑤ Atom (Zhao et al., 2024),
which uses asymmetric uniform quantization with
the granularity of attention head. ⑥ QoQ (Lin et al.,
2025), which scales queries and keys to decrease
the loss caused by quantizing the outlier values in
the key cache. ⑦ AWQ (Lin et al., 2024c), which
applies uniform 4-bit quantization to the KV cache.
⑧ MiKV (Yang et al., 2024), which employs mixed-
precision quantization by computing the attention
score sum of each token and quantizing those with
low attention score sum to lower bit-width while

keeping the rest at higher bit-width. ⑨ KIVI (Liu
et al., 2024b), which uses per-channel quantization
to the key cache and per-token quantization to the
value cache. The quantization bit-width for each
token is assigned based on their saliency. Among
them, ①, ②, ④, ⑤, ⑥, ⑦, ⑨ are uniform quantiza-
tion; ③, ⑧ are mixed-precision quantization. The
suffix “gs" in the method name indicates the group
size, while other method names that do not contain
"gs" means that those methods do not use group
quantization.

Implementation. We conduct our experiments
on an NVIDIA H20-NVLink GPU containing 96
GB of memory, along with a 25-core AMD EPYC
7T83 CPU and 100GB of RAM. Chunks size is
set as 32, and λ is set as 0.5. Group size in the
routing sharing mechanism is set as 3. The router
consists of a 2-layer MLP with a hidden dimension
of expert amount. We use SiLU as the activation
function and top-1 expert selection as the routing
mechanism. The memory usage of the parameters
of the router is about 1.6KB. As for training, we
use 5% of the full training set as the calibration
dataset. We use AdamW as the optimizer, with
learning rate 3e-4 and batch size 8.

10816

1 0 2 4 2 0 4 8 3 0 7 2 4 0 9 6

4 0

6 0

8 0

1 0 0
De

cod
ing

 La
ten

cy
(m

s)

C o n t e x t L e n g t h

 F P 1 6 K V Q u a n t - 4 b - 1 % A t o m - 4 b - g s 1 2 8 K I V I - 4 b M i K V �
 	 � � � � � � � �
 	 � � � � � � �

Figure 6: The decoding latency of MoQAE and baseline methods under different context lengths.

0 20 40 60 80 100 120 140

87.65

87.70

87.75

87.80

87.85

87.90

87.95

0

100

200

300

400

500

600

T
ra

in
in

g
T

im
e

(s
)

F1
 S

co
re

Chunk Size

 F1 Score
 Training Time

Figure 7: The impact of chunk size on model perfor-
mance and training time.

4.2 Performance

We first evaluate the perplexity on Wikitext2
dataset. The results are shown in Table 1. We
additionally test the case where λ is 0.3. As can
be seen from the table, simple quantization to ex-
tremely low bit-widths (2 bits) results in significant
accuracy loss. Even with meticulously designed
quantization methods, as the bit-width decreases,
the model’s accuracy rapidly declines. Compared
to other methods, MoQAE is able to reduce the
model’s average bit-width to a relatively low level
while maintaining model accuracy well. Among
methods with 4-16 bits, MoQAE-λ0.5 achieves the
least perplexity with similar average bit-width with
baseline methods. The perplexity of MoQAE-λ0.5
is only 0.08 more than the FP16 models on aver-
age. MoQAE-λ0.3 also outperforms methods with
2-4bits on most models.

We also compare the performance of MoQAE
and other methods on LongBench datasets. As
shown in Table 2, MoQAE achieves the best perfor-
mance on most of the datasets. The performance of

Table 3: The impact of chunk size on decoding latency.

Chunk Size 8 16 32 64 128

Decoding Latency/ms 24.85 24.26 23.86 23.59 23.01

MoQAE is only a little worse than baseline meth-
ods on SAMSum and LCC datasets.

Furthermore, we evaluate the memory usage and
decoding latency of MoQAE and other methods
under different context lengths with batch size 8.
We test MoQAE under two kinds of λ. As shown
in Figure 5 and Figure 6, MoQAE-λ0.1 achieves
the least memory usage and decoding latency over
all the context lengths.

Compared with the state-of-the-art (SOTA) quan-
tization methods, MoQAE can reduce the memory
usage by 0.79GB and reduce the decoding latency
by 0.44ms, on average. The efficiency of MoQAE-
λ0.5 is worse than MoQAE-λ0.1, but it still re-
duces the memory usage of FP16 model by 2.99GB
on average and outperforms most of the baseline
methods on decoding latency on decoding latency.

4.3 Ablation Study

We explore the impact of chunk size on model per-
formance. The results are shown in Figure 7 and
Table 3. As the chunk size increases, the training
time decreases significantly and so does the decod-
ing latency decreases. The model accuracy shows a
trend of first decreasing and then increasing slightly.
This is because when the chunk size becomes larger,
some important token information will be wrapped
in more unimportant token information within a
chunk. Such a chunk may be misidentified as INT2

10817

Table 4: The impact of λ on model performance.

λ 0.1 0.3 0.5 0.7 0.9

F1 Score 87.32 87.64 87.89 87.91 87.92
Average Bits 3.45 3.65 4.2 10.40 12.12
Memory Usage/GB 14.01 14.04 15.95 15.33 15.88

Table 5: The impact of our RF and RS mechanism. “gs”
means group size in the RS mechanism.

Method F1 Score Decoding Latency/ms

FP16 87.72 9.7
MoQAE w/o RF 87.88 20.6
MoQAE w/o RS 87.92 31.7
MoQAE (gs=2) 87.92 25.7
MoQAE (gs=4) 87.81 16.1
MoQAE 87.89 20.7

quantization by the router, resulting in the loss of
important information. When the chunk size is
large, since we fix the first chunk to FP16, more
important information is saved, which slightly im-
proves the model accuracy.

We further conduct ablation experiments on the
hyperparameter λ. As shown in Table 4, with the
increase of λ, the model accuracy increases (The
accuracy reaches the upper limit after λ is greater
than 0.5) while average bits and memory usage de-
creases. This result demonstrates that λ can effec-
tively balance model accuracy and memory usage.
We also test the impact of routing freezing and rout-
ing sharing mechanisms. When routing freezing is
removed from MoQAE, as can be seen from Table
5, both accuracy and inference latency are slightly
reduced. This is because the first chunk of some
blocks may change from the original fixed FP16
to other lower bit-widths. When routing sharing
is removed, the decoding latency is significantly
improved, while the accuracy is slightly increased.
This is because after removing routing sharing, we
need to perform more router calculations, but the
calculated bit-width configuration will also be more
accurate. At the same time, we test the impact of
different group sizes in the routing sharing mecha-
nism. It can be seen that as the group size increases,
the decoding latency is significantly reduced, but
the accuracy also slightly decreases.

5 Conclusion

In this paper, we introduce MoQAE, a novel mixed-
precision quantization method based on mixture of
quantization-aware experts. First, we treat differ-

ent quantization bit-width configurations as experts
and apply the traditional MoE method to select the
optimal configuration. To avoid the inefficiency
of inputting tokens one by one in the conventional
MoE method, we feed the tokens into the router
chunk by chunk. Second, we propose a lightweight
router-only fine-tuning process and design a novel
loss that enables the model to learn the trade-off be-
tween model accuracy and memory usage. Finally,
we introduce the RS and RF mechanisms, which
further reduces the inference overhead caused by
the routers. Extensive experiments on benchmark
datasets show that our method outperforms SOTA
mixed-precision quantization techniques in terms
of both efficiency and effectiveness.

6 Limitations

Since our method introduces additional routers in
LLM, the parameters of these routers will occupy
a part of the memory, and the calculation of the
router will also slow down the inference time of the
model. Although we have adopted methods such as
chunk input and routing sharing to optimize, these
overheads still exist.

In addition, in order to ensure the accuracy of
the attention calculation results, since softmax has
high precision requirements when calculating the
attention weight, we will dequantize the quantized
key vector to FP16 and calculate it with the FP16
query vector. This dequantization operation will
also cause additional delays.

7 Acknowledgements

This work was sponsored by the Key Research
and Development Program of Guangdong Province
under Grant No.2021B0101400003, the National
Key Research and Development Program of China
under Grant No.2023YFB4502701, the National
Natural Science Foundation of China under Grant
No.62172175, the China Postdoctoral Science
Foundation under Grant No.2024M751011, the
Postdoctor Project of Hubei Province under Grant
No.2024HBBHCXA027.

References

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. 2024. Longbench:
A bilingual, multitask benchmark for long context
understanding. In Proceedings of the 62nd Annual

10818

Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 3119–3137.

William Brandon, Mayank Mishra, Aniruddha
Nrusimha, Rameswar Panda, and Jonathan Ragan-
Kelley. 2024. Reducing transformer key-value
cache size with cross-layer attention. In The Thirty-
eighth Annual Conference on Neural Information
Processing Systems.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
Jason D Lee, Deming Chen, and Tri Dao. 2024.
Medusa: Simple llm inference acceleration frame-
work with multiple decoding heads. In Proceed-
ings of the 41st International Conference on Machine
Learning, pages 5209–5235.

Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. Flashattention: fast and
memory-efficient exact attention with io-awareness.
In Proceedings of the 36th International Conference
on Neural Information Processing Systems, pages
16344–16359.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. 2022.
Glam: Efficient scaling of language models with
mixture-of-experts. In International Conference on
Machine Learning, pages 5547–5569. PMLR.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of
Machine Learning Research, 23(120):1–39.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan
Alistarh. 2023. Gptq: Accurate post-training quan-
tization for generative pre-trained transformers. In
The Eleventh International Conference on Learning
Representations.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang,
Jiawei Han, and Jianfeng Gao. 2024. Model tells
you what to discard: Adaptive kv cache compression
for llms. In The Twelfth International Conference on
Learning Representations.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong,
Yu Chen, Heng Ji, and Sinong Wang. 2024. Lm-
infinite: Zero-shot extreme length generalization for
large language models. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 3991–4008.

Jiaao He and Jidong Zhai. 2024. Fastdecode: High-
throughput gpu-efficient llm serving using heteroge-
neous pipelines. arXiv preprint arXiv:2403.11421.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh,
Michael W Mahoney, Yakun S Shao, Kurt Keutzer,
and Amir Gholami. 2024. Kvquant: Towards 10
million context length llm inference with kv cache
quantization. Advances in Neural Information Pro-
cessing Systems, 37:1270–1303.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Yunho Jin, Chun-Feng Wu, David Brooks, and Gu-Yeon
Wei. 2023. S3: Increasing gpu utilization during
generative inference for higher throughput. Advances
in Neural Information Processing Systems, 36:18015–
18027.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen
Dong, Xiuyu Li, Sheng Shen, Michael W Mahoney,
and Kurt Keutzer. 2024. Squeezellm: dense-and-
sparse quantization. In Proceedings of the 41st In-
ternational Conference on Machine Learning, pages
23901–23923.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611–626.

Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning,
Peng Jin, and Li Yuan. 2024a. Video-llava: Learning
united visual representation by alignment before pro-
jection. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 5971–5984.

Hongzhan Lin, Ang Lv, Yang Song, Hengshu Zhu, Rui
Yan, et al. 2024b. Mixture of in-context experts en-
hance llms’ long context awareness. Advances in
Neural Information Processing Systems, 37:79573–
79596.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. 2024c.
Awq: Activation-aware weight quantization for on-
device llm compression and acceleration. Proceed-
ings of Machine Learning and Systems, 6:87–100.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang,
Guangxuan Xiao, Chuang Gan, and Song Han. 2025.
Qserve: W4a8kv4 quantization and system co-design
for efficient llm serving. In Proceedings of Machine
Learning and Systems.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyril-
lidis, and Anshumali Shrivastava. 2024a. Scis-
sorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time.
Advances in Neural Information Processing Systems,
36.

10819

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and
Xia Hu. 2024b. Kivi: a tuning-free asymmetric 2bit
quantization for kv cache. In Proceedings of the
41st International Conference on Machine Learning,
pages 32332–32344.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In International Conference on Learning Repre-
sentations.

Matteo Pagliardini, Daniele Paliotta, Martin Jaggi, and
François Fleuret. 2023. Faster causal attention over
large sequences through sparse flash attention. arXiv
preprint arXiv:2306.01160.

Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen.
2024. Powerinfer: Fast large language model serving
with a consumer-grade gpu. In Proceedings of the
ACM SIGOPS 30th Symposium on Operating Systems
Principles, pages 590–606.

Wei Tao, Xiaoyang Qu, Kai Lu, Jiguang Wan, Guokuan
Li, and Jianzong Wang. 2025a. Madllm: Multivari-
ate anomaly detection via pre-trained llms. arXiv
preprint arXiv:2504.09504.

Wei Tao, Bin Zhang, Xiaoyang Qu, Jiguang Wan, and
Jianzong Wang. 2025b. Cocktail: Chunk-adaptive
mixed-precision quantization for long-context llm
inference. In 2025 Design, Automation & Test in
Europe Conference (DATE), pages 1–7. IEEE.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al.
2024. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv
preprint arXiv:2403.05530.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming lan-
guage models with attention sinks. In The Twelfth
International Conference on Learning Representa-
tions.

Zhenliang Xue, Yixin Song, Zeyu Mi, Le Chen, Yubin
Xia, and Haibo Chen. 2024. Powerinfer-2: Fast large
language model inference on a smartphone. arXiv
preprint arXiv:2406.06282.

June Yong Yang, Byeongwook Kim, Jeongin Bae,
Beomseok Kwon, Gunho Park, Eunho Yang, Se Jung
Kwon, and Dongsoo Lee. 2024. No token left be-
hind: Reliable kv cache compression via importance-
aware mixed precision quantization. arXiv preprint
arXiv:2402.18096.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. 2022. Orca: A
distributed serving system for {Transformer-Based}
generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 22), pages 521–538.

Tianyi Zhang, Jonah Yi, Zhaozhuo Xu, and Anshumali
Shrivastava. 2024a. Kv cache is 1 bit per channel:
Efficient large language model inference with cou-
pled quantization. Advances in Neural Information
Processing Systems, 37:3304–3331.

Xiaofeng Zhang, Yikang Shen, Zeyu Huang, Jie Zhou,
Wenge Rong, and Zhang Xiong. 2022. Mixture of
attention heads: Selecting attention heads per token.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4150–4162.

Zhenyu Zhang, Shiwei Liu, Runjin Chen, Bhavya
Kailkhura, Beidi Chen, and Atlas Wang. 2024b. Q-
hitter: A better token oracle for efficient llm inference
via sparse-quantized kv cache. Proceedings of Ma-
chine Learning and Systems, 6:381–394.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Ré, Clark Barrett, et al. 2023.
H2o: Heavy-hitter oracle for efficient generative
inference of large language models. Advances in
Neural Information Processing Systems, 36:34661–
34710.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn
Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy,
Tianqi Chen, and Baris Kasikci. 2024. Atom: Low-
bit quantization for efficient and accurate llm serv-
ing. Proceedings of Machine Learning and Systems,
6:196–209.

10820

