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Abstract
Large language models (LLMs) rely heavily on
sampling methods to generate diverse and high-
quality text. While existing sampling methods
like top-p and min-p have identified the detri-
mental effects of low-probability tails in LLMs’
outputs, they still fail to effectively distinguish
between diversity and noise. This limitation
stems from their reliance on probability-based
metrics that are inherently sensitive to tempera-
ture scaling. Through empirical and theoretical
analysis, we make two key discoveries: (1) the
pre-softmax logits exhibit a clear statistical sep-
aration between informative tokens and noise,
and (2) we prove the mathematical equivalence
of min-p and top-(1-p) under uniform distri-
bution over logits. These findings motivate
the design of top-nσ, a novel sampling method
that identifies informative tokens by eliminat-
ing noise directly in logit space. Unlike existing
methods that become unstable at high temper-
atures, top-nσ achieves temperature-invariant
token selection while preserving output diver-
sity. Extensive experiments across reasoning
and creative writing tasks demonstrate that our
method consistently outperforms existing ap-
proaches, with particularly significant improve-
ments in high-temperature settings.

1 Introduction

Large Language Models (LLMs) have revolution-
ized natural language processing (NLP), demon-
strating remarkable capabilities across various do-
mains, including code generation (Chen et al.,
2021), mathematical reasoning (Lewkowycz et al.,
2022), and complex problem-solving (Wei et al.,
2022). These advancements are largely driven by
the models’ text generation mechanisms, which
underpin their versatility in diverse applications.

The generation process of LLMs involves a fun-
damental trade-off between creativity and quality,
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Figure 1: Temperature sensitivity analysis of min-p sam-
pling (p = 0.1) by prompting LLaMA-3-8B with “Ran-
domly pick a digit between 0~9: ” (verbatim prompt).
Blue tokens represent valid digits (0-9), and red tokens
indicate noise. The sampling space is denoted by high-
lighted tokens and numbers below each token show their
sampling probabilities.

which is controlled by the temperature parameter
T . This parameter shapes the output’s sharpness
and influences how the model selects its next to-
kens (Ackley et al., 1985; Chen and Ding, 2023;
Bellemare-Pepin et al., 2024). Specifically, a lower
temperature causes the model to favor the most
probable outputs, which may limit exploration and
creativity. Conversely, a higher temperature en-
courages exploration and unconventional choices,
though this increased diversity may increase the
risk of errors and inconsistencies.

To empirically investigate the trade-off men-
tioned above, we employ the popular min-p sam-
pling (Nguyen et al., 2024) which claims to be
more stable under high temperature. This tech-
nique truncates tokens with probabilities below
p · pmax (where pmax denotes the maximum prob-
ability), and we set p = 0.1 in our analysis. We
prompt LLaMA-3-8B with “Randomly pick a digit
between 0~9: ” and visualize the output probability
distribution under different temperature settings in
Figure 1. Given T = 1.0, though min-p selects the
correct tokens, the model produces a highly skewed
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distribution that clearly favors certain digits. For
example, the probability of selecting 3 or 7 is more
than twice that of 9, which contradicts the explicit
randomness requirement in the prompt. When T
is increased to 1.5, the distribution becomes more
uniform, yet this method begins including invalid
tokens like 123 and \xa0, whose probabilities are
larger than the threshold 0.004 (i.e., 0.1× 0.04).

Notably, we know that a perfectly uniform dis-
tribution over the entire vocabulary is theoretically
achievable through infinite temperature scaling (i.e.,
T → ∞). However, existing methods fail to cor-
rectly identify valid tokens under such conditions,
as they rely on temperature-dependent probabil-
ity thresholds for token selection. This limitation
prompts a critical question: is it possible to develop
a criterion that simultaneously effectively identi-
fies valid tokens and remains invariant to temper-
ature scaling? If such a criterion exists, we could
achieve the ideal scenario illustrated in Figure 1.
Since temperature scaling operates directly on the
pre-softmax logits, it naturally motivates an inves-
tigation into their structural properties.

Intriguingly, through our empirical analysis (Sec-
tion 3.1), we discover that the logits naturally
are separated into two distinct components: a
Gaussian-distributed background and several
outliers. This clear statistical separation suggests
logits as a better foundation for token selection, in-
stead of probabilities. More importantly, we prove
the mathematical equivalence of top-p and min-
p under the uniform assumption in Section 3.2.
This equivalence provides valuable insight for the
underlying distribution of these outliers, which are
precisely the informative tokens to be preserved.

Building upon these findings, we propose top-
nσ, a novel sampling approach that operates di-
rectly on logits using standard deviation as the se-
lection criterion. Our method achieves temperature-
invariant control over token selection: as tempera-
ture increases, top-nσ only elevates the probabil-
ities of chosen tokens without introducing addi-
tional ones, allowing separated optimizations of to-
ken selection and distribution shaping. Our method
also eliminates the computational overhead of sort-
ing and softmax transformations, ensuring compu-
tational efficiency. Our main contributions include:

• Novel Logit-based Perspective: Through em-
pirical analysis, we discover that LLM’s pre-
softmax logits exhibit a natural separation be-
tween informative tokens and noise.

• Theoretical Understanding: We prove the
equivalence between min-p and top-(1-p) un-
der the assumption of uniform logit distribu-
tion. This reveals the deeper connection be-
tween these approaches and provides insights
into the distribution of informative tokens.

• Temperature-Invariant Dynamic Sampling:
We introduce a sampling method that selects
candidate tokens dynamically using logit stan-
dard deviation, making the selection totally
independent of temperature scaling.

• Comprehensive Validation: Through exten-
sive experiments across diverse datasets and
tasks, we demonstrate significant improve-
ments in both generation quality and diver-
sity compared to existing methods, especially
under high temperatures.

2 Related Work

2.1 Probability-based Methods

Probability-based sampling methods directly ma-
nipulate the raw probability distribution output
from LLMs, presenting the most widespread ap-
proaches. OpenAI (OpenAI, 2025), Anthropic (An-
thropic, 2025), and Google (Google AI, 2025) all
incorporate them as standard API parameters in
their inference services. These methods typically
begin with temperature scaling (Ackley et al., 1985)
to balance generation quality and diversity. Sub-
sequently, as the most straightforward approach,
top-k (Fan et al., 2018) restricts the sampling space
to the k most probable tokens. However, a fixed
value of k might exclude relevant tokens or include
irrelevant tokens. To address this limitation, top-p
(nucleus) sampling (Holtzman et al., 2019) dynami-
cally selects the smallest set of tokens whose cumu-
lative probability exceeds a threshold p. However,
top-p exhibits high sensitivity to temperature set-
tings, even slight increases in temperature will lead
to deteriorated output quality. More recently, min-p
sampling (Nguyen et al., 2024) filters out tokens
whose probabilities are below a fraction p of the
maximum probability, partially alleviating but not
fully resolving the challenges in high-temperature
settings, as discussed in Section 1.

2.2 Entropy-based Methods

In parallel with probability-based approaches,
researchers have explored sampling methods
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Figure 2: Distribution of logits and sorted token proba-
bilities of LLaMA3-8B-Instruct on an AQuA sample. A
vertical line at µ+ 5σ is drawn in the logit distribution
to depict the separation. Its corresponding threshold
in the probability plot shows which tokens have logits
exceeding this threshold.

grounded in information theory, particularly en-
tropy. These methods establish their own optimiza-
tion criteria. For example, mirostat sampling (Basu
et al., 2020) targets a constant perplexity through
cross-entropy regulation, η-sampling (Hewitt et al.,
2022) adjusts truncation thresholds based on token-
level entropy, and REAL (Chang et al., 2024) opti-
mizes for asymptotic entropy in the sampling pro-
cess. Despite their theoretical guarantees, these
entropy-based methods have not gained widespread
adoption. This is mainly due to their implemen-
tation complexity, additional computational over-
head, and the lack of substantial performance im-
provements over simpler probability-based alter-
natives, as reported in (Zhou et al., 2024; Nguyen
et al., 2024).

3 Insights

3.1 Limitation from Gaussian Intuition
Modern LLMs rely on the softmax function to pro-
duce output probabilities. Due to its exponential
nature, softmax aggressively pushes small logits
towards zero probabilities, making it impossible to
distinguish the underlying distribution of noise. To
better illustrate this effect, we examine the output
logits and probabilities of LLaMA-3-8B-Instruct
on an AQuA sample, as illustrated in Figure 2. We
observe that the majority of logits follow a Gaus-
sian distribution in the lower-value region, which
corresponds to the low-probability tails that are
commonly treated as noise in the probability distri-
bution. This pattern suggests the potential for more
meaningful truncation in the logit space.

Intuitively, given that the majority of logits ex-
hibit a Gaussian distribution, a natural first attempt
would be to identify informative tokens as statisti-

cal outliers using the conventional methods, e.g.,
the µ + 3σ rule (Kazmier, 2009). To formalize
this intuition, let us first review how LLMs gen-
erate token probabilities and how existing sam-
pling methods operate on them. Given an input
context x, an LLM first generates a logit vector
l = (l1, · · · , lV ) ∈ RV , where V is the vocabulary
size. These logits are firstly scaled by temperature
(l ← l/T ) and then transformed into probabili-
ties p = (p1, · · · , pV ) ∈ RV through the softmax
function

pi =
eli

s
, where s =

V∑

j=1

elj , 1 ≤ i ≤ V (1)

Fundamentally, all truncation sampling methods
operate by determining a probability threshold
p(t) ∈ [0, 1]. Tokens with probabilities above this
threshold form the sampling nucleus, and their cu-
mulative probability defines the nucleus mass. For-
mally, for a threshold p(t), the nucleus N is

N = {i | pi ≥ p(t)} (2)

Typical outlier detection approach (such as µ+
3σ) can be generalized as selecting tokens whose
logit values exceed µ + cσ, where µ is the mean
of logit values, c is a constant parameter and σ is
their standard deviation. Accordingly, Equation (2)
can be described as

N = {i | li ≥ µ+ cσ} (3)

To validate the feasibility of this criterion, we
examine how it aligns with the nuclei produced by
existing sampling methods. We introduce two crit-
ical measures: the Inner Boundary Z-score (ZIB)
and the Outer Boundary Z-score (ZOB). Specifi-
cally, for a logit value β, Zβ is defined as

Zβ =
β − µ

σ
(4)

where IB corresponds to the smallest logit value
within the nucleus (i.e., β = minli∈N li), and OB
corresponds to the largest logit value outside the
nucleus (i.e., β = maxli ̸∈N li). Any parameter c
between ZIB and ZOB will result in the same nu-
cleus. Ideally, if this Gaussian-based criterion truly
captures the underlying token distribution pattern,
we should observe nearly constant Z-scores across
different scenarios.

However, our empirical analysis reveals a dif-
ferent story. As shown in Figure 3(a), when ex-
amining LLaMA-3-8B-Instruct’s behavior on an
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Figure 3: Comparison of Z-scores and Top-based Sigma
Distances (TSDs) with their 95% confidence intervals
(CI) during generation on an AQuA sample. The region
between the IB curve and the OB curve represents the
nucleus boundary range.

AQuA sample using top-p as the reference sam-
pling method, the Z-scores exhibit substantial vari-
ations across different nucleus sizes. This incon-
sistency prompts us to rethink the fundamental as-
sumptions behind the µ+cσ criterion. Such a crite-
rion implicitly assumes that the specific distribution
of informative tokens is trivial. In fact, this assump-
tion fundamentally contradicts the core purpose
of sampling, which is precisely to preserve these
informative tokens. Due to their inherent scarcity,
statistically characterizing their distribution proves
challenging. Fortunately, we have discovered an
alternative approach to this problem.

3.2 Solution from Uniform Assumption

Our investigation starts from an empirical obser-
vation. The two popular methods min-p and top-p
with complementary parameters (e.g., min-0.1 vs.
top-0.9) are frequently compared and exhibit simi-
lar behaviors in low-temperature scenarios. While
this empirical connection was previously noted but
dismissed as coincidental by Nguyen et al. (2024),
it motivates us to investigate whether a deeper rela-
tionship exists or not.

To analyze this relationship rigorously, we need
to understand how these sampling methods operate.
Top-p (Holtzman et al., 2019) uses the nucleus
mass as the criterion. Formally, given p (typically
0.9), the probability threshold p(t) is the solution
to

∑
pi≥p(t) pi = p. Min-p (Nguyen et al., 2024)

scales the maximum probability by a fraction p
(typically 0.1) and uses the result as the threshold,
i.e., p(t) = pmax · p,where pmax = max1≤i≤V pi.

Since probabilities are transformed from logits
by softmax, the probability threshold p(t) can be
equivalently translated into a corresponding logit

threshold t = ln(s · p(t)), where s is the sum of
exponentials in Equation (1). The corresponding
logit threshold of min-p is thus t = M+ln p, where
M = ln(s · pmax) = max1≤i≤V li. However, the
solution of top-p is not apparent. To make this
problem tractable, we assume that the logits are
independently and identically distributed according
to some distribution f . This statistical perspective
leads to a series of useful lemmas.

Lemma 3.1. Assume V logits {l1, · · · , lV } inde-
pendently and identically distributed according to
f(x). For any threshold t, we have

∑

li>t

eli
P→ V

∫ +∞

t
exf(x) dx

The complete proof is provided in Appendix A.1.
It is conceptually simple and allows us to leverage
the overall distribution information instead of dis-
crete samples.

Lemma 3.2. Denote I(t) =
∫ +∞
t exf(x) dx, and

thus s = V · I(−∞). The nucleus mass of a given
logit threshold t is

pN =
∑

i∈N
pi =

I(t)
I(−∞)

(5)

Lemma 3.2 is particularly useful for solving the
logit threshold of top-p if I has a closed-form so-
lution in elementary functions. Remarkably, we
discover a surprising equivalence between the two
methods, presented in Theorem 3.3.

Theorem 3.3. For logits following a uniform dis-
tribution U(M − a,M), if a → ∞, then min-p
sampling is equivalent to top-(1− p) sampling.

Proof. For li ∼ U(M − a,M), the logit threshold
of min-p is simple as

t = ln(s · pmax · p) = ln(eM · p) = M + ln p (6)

For the threshold of top-p, as derived in Ap-
pendix A.2, for any finite value of a, the logit
threshold of top-(1− p) under U(M − a,M) dis-
tribution is

t = M − ln

[
1

1− (1− p)(1− e−a)

]
(7)

Taking a→∞, we obtain

t = M + ln p (8)

This is exactly the same threshold as min-p sam-
pling.
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Theorem 3.3 provides significant insights into
the empirical observations of similarity between
min-p and top-(1-p) sampling, rather than being
merely coincidental. More importantly, this theo-
rem provides us with a new perspective from the
top rather than the mean, which motivates our top-
sampling algorithm. While the overall distribution
is indeed Gaussian, for informative tokens that sig-
nificantly deviate from the mean statistically, a uni-
form distribution denoising technique may preserve
them better. Typically, for a uniform distribution
U(M − a,M) with known maximum M but un-
known minimum, we can truncate nσ downward to
preserve the desired samples. To validate whether
this new perspective is meaningful in practice, we
conducted Top-based Sigma Distance (TSD) ex-
periments as following. Similar to Equation (4),
TSDβ is defined as

TSDβ =
M − β

σ
(9)

where M is the maximum of logits. Similarly,
two variants are of particular interests: TSDIB and
TSDOB. As illustrated in Figure 3(b), TSD val-
ues exhibit a relatively stable pattern across dif-
ferent nucleus sizes, indicating superiority against
Z-scores. Specifically, within the region defined
by TSDIB and TSDOB, there appears to be a con-
sistent central value around 1.0, which we don’t
observe on Z-scores. This advantage motivates
the design of our top-nσ algorithm, which begins
from the maximum value and extends downward,
using the standard deviation of the distribution to
dynamically adjust the boundary.

4 Algorithm

4.1 Algorithm Description
Our method introduces a statistical threshold to fil-
ter candidate tokens before sampling. Algorithm 1
outlines the main steps of our method. The algo-
rithm operates directly on logits, capturing a region
that extends nσ below the maximum value and
masking out all other logits (Lines 4~5), where a
threshold multiplier n controls the size of the sam-
pled region. Finally, the logits are transformed via
softmax into probabilities for the next token sam-
pling. We further analyze its theoretical range and
connections to existing methods in Section 4.2. Fur-
thermore, we demonstrate that our method main-
tains a consistent nucleus size across different tem-
perature settings in Section 4.3, ensuring robust
sampling behavior.

Algorithm 1 Top-nσ Sampling

1: Input: Input context x, temperature T , thresh-
old multiplier n

2: Output: Next token
3: Compute logits l = LLM(x)
4: Calculate M = max(l′) and σ = std(l′)

5: Filter logits: li =

{
li if li > M − nσ

−∞ otherwise
6: Scale logits: l′ = l/T
7: p = softmax(l′)
8: Sample next token from distribution p

4.2 Range of n

While the precise distribution of overall logits re-
mains unknown, we propose a tractable analyti-
cal framework based on the discussions in Sec-
tion 3.2. We model the logit as a random variable
L = αX + (1− α)Y , where X ∼ U(M − a,M)
represents the informative component and Y ∼
N(µn, σ

2
n) captures the noise component with mix-

ing factor α ∈ (0, 1). Since the actual mix-
ing mechanism between components is inherently
unidentifiable, we opt for a clean separation as-
sumption where all logits in [M − a,M ] are sam-
ples from X .

This separation assumption leads to an impor-
tant property: σu =

√
Var(X) ≤ σ, where σ is the

standard deviation of the overall logit distribution.
By the law of total variance (Weiss et al., 2006),
Var(L) = E[Var(L|I)] + Var(E[L|I]), where I
indicates whether a logit belongs to the informa-
tive component X or not. Under our separation
assumption, Var(L|I = 1) = Var(X), and there-
fore Var(X) must be less than or equal to the total
variance Var(L) = σ2.

The goal of the truncation algorithm is to pre-
serve the uniform component X while eliminating
the normal component Y . The optimal truncation
is clearly M − a, but a is unknown. Since the vari-
ance of a uniform distribution is a2/12, we have

a = 2
√
3σu = 2

√
3
σu
σ
σ (10)

This indicates the optimal truncation parameter
should be n = 2

√
3σu

σ ≈ 3.46k, where k = σu
σ .

Unfortunately, determining σu is impossible, as
we cannot definitively attribute each sample to ei-
ther distribution. Given that σu ≤ σ under our as-
sumption, we can derive an upper bound n ≤ 3.46.
Since informative tokens and noisy tokens are typi-
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cally far apart, k tends to be small, suggesting that
3.46 is a rather loose upper bound.

To complement our theoretical analysis, we can
gain practical intuition for choosing n by exam-
ining the widely-adopted min-p sampling method.
Since min-p truncation is equivalent to removing
tokens with logits below M − ln(1/p), we can
establish a direct correspondence by n = ln(1/p)

σ .
For example, with a reference logit standard devia-
tion σ = 2.2 (see Appendix F for details), a min-p
threshold of 0.1 corresponds to n ≈ 1.05. In prac-
tice, we use n = 1.0 as the default setting, which
provides an effective quality-diversity trade-off.

4.3 Temperature Invariance

A key advantage of our method is its temperature
invariance, as stated in the following theorem.

Theorem 4.1. For any temperature T > 0, the
nucleus of top-nσ remains invariant.

This temperature invariance follows from the
fact that temperature scaling affects both the max-
imum value and standard deviation of the logits
proportionally by 1/T , thereby preserving the rel-
ative selection criterion for each token (see Ap-
pendix A.3 for details).

This invariance distinguishes our method from
other common sampling approaches. While top-k
sampling also maintains temperature invariance, it
relies on a fixed k value that cannot adapt to vary-
ing token distributions across different contexts. In
contrast, methods like top-p and min-p sampling
have temperature-dependent selection sets: as tem-
perature increases, their sampling nuclei tend to in-
clude more noise tokens due to the flattening effect
on probability distributions. Our method combines
the benefits of temperature invariance with adap-
tive token selection, better aligning with human
language patterns where grammatical consistency
is maintained even as vocabulary choices vary.

5 Experiments

5.1 Setup

Models. We evaluate our proposed top-nσ using
LLaMA-3 (Dubey et al., 2024), specifically with
LLaMA-3-8B-Instruct and LLaMA-3-70B-Instruct.
We also report the results of Qwen2.5 (Yang
et al., 2024) in Appendix D. Besides, we use
vLLM (Kwon et al., 2023) for inference.

Benchmarks. We conduct experiments on two
distinct task categories:

• Reasoning: We evaluate four question-
answering datasets spanning elementary to
doctoral-level mathematics: AQuA (Ling
et al., 2017), MATH500 (Lightman et al.,
2023; Hendrycks et al., 2021), GSM8K
(Cobbe et al., 2021), and GPQA-main (Rein
et al., 2024). Each problem is transformed
into an open-ended generation task.

• Creative Writing: Following (Nguyen et al.,
2024), we adopt a diverse collection of 500
samples. Detailed experimental settings can
be found in Appendix B.

Baselines. We evaluate top-nσ against top-k
(Fan et al., 2018) (k = 20), top-p (Holtzman
et al., 2019) (p = 0.9), min-p (Nguyen et al.,
2024) (p = 0.1), η-sampling (Hewitt et al., 2022)
(η = 9 × 10−4), and mirostat (Basu et al., 2020)
(τ = 5.0). The hyperparameter values are adopted
from previous work (Hewitt et al., 2022; Nguyen
et al., 2024), practical guidelines (Siml, 2024)
and our empirical tests (discussed in Appendix C).
These values keep fixed across different tempera-
tures to demonstrate stability. For top-nσ, we prove
a theoretical bound n ∈ (0, 2

√
3), with n = 1.0

as an effective default value. We omit the reason-
ing results of η-sampling and mirostat as they are
designed for a diverse generation.

Metrics. We use Exact Match (EM) for reason-
ing tasks and win rate against greedy decoding us-
ing DeepseekV3 (Liu et al., 2024) as judge through
Alpaca2.0 framework (Li et al., 2023) (see Ap-
pendix B for details).

5.2 Main Results
5.2.1 Reasoning
Table 1 compares the performance of different sam-
pling methods across temperature settings (e.g., 0.7-
4.0) on four representative datasets. Additionally,
we present greedy decoding as a non-stochastic
sampling baseline in Table 2. A direct comparison
between greedy decoding and stochastic sampling
methods reveals that neither consistently outper-
forms the other; their relative efficacy is signif-
icantly influenced by the choice of temperature
in stochastic sampling, which is absent in greedy
decoding. While conventional stochastic meth-
ods achieve competitive performance occasionally,
their effectiveness is highly sensitive to tempera-
ture settings, requiring careful parameter tuning
for each specific application scenario. The results
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Table 1: Performance comparison (%) of different sampling methods on LLaMA3-8B-Instruct and LLaMA3-70B-
Instruct across different temperature settings.

Dataset Method LLaMA3-8B-Instruct LLaMA3-70B-Instruct
0.7 1.0 1.5 2.0 3.0 4.0 0.7 1.0 1.5 2.0 3.0 4.0

AQuA

Top-k 52.76 51.57 40.94 20.47 3.15 0.39 75.59 70.87 72.05 64.57 28.35 3.54
Top-p 51.18 50.00 36.61 0.00 0.00 0.00 75.20 77.95 70.87 32.28 0.00 0.00
Min-p 50.39 51.18 47.24 37.80 11.42 0.00 74.80 74.41 73.62 73.23 63.78 22.83

Top-nσ 54.33 52.76 48.82 51.97 49.21 50.00 76.77 76.38 72.44 73.23 74.41 76.38

GSM8K

Top-k 75.51 71.87 56.03 29.11 2.50 0.45 92.19 90.98 90.37 84.76 50.27 10.92
Top-p 76.65 75.59 66.34 0.00 0.00 0.00 91.51 90.90 90.60 53.90 0.00 0.00
Min-p 76.72 74.15 71.34 63.68 25.47 0.91 91.28 90.90 91.58 91.05 85.29 52.08

Top-nσ 76.19 75.97 75.28 75.28 74.53 73.24 92.34 91.28 91.74 91.74 91.28 91.89

GPQA-main

Top-k 31.47 32.81 27.68 20.09 6.25 0.67 41.07 39.51 38.84 36.38 18.97 5.36
Top-p 32.59 33.26 16.52 0.00 0.00 0.00 37.50 38.39 40.18 2.01 0.00 0.00
Min-p 32.14 32.59 29.24 29.46 11.38 0.45 39.29 38.62 40.63 41.29 35.04 9.82

Top-nσ 31.70 31.47 29.02 30.80 31.47 29.91 36.38 38.39 40.85 39.51 40.63 41.74

MATH500

Top-k 23.20 21.40 14.00 5.20 1.20 0.40 46.40 40.60 40.00 33.60 10.00 1.20
Top-p 25.40 22.20 13.20 0.00 0.00 0.00 47.60 45.60 40.40 6.20 0.00 0.00
Min-p 24.80 23.60 19.00 16.00 4.20 0.00 46.60 42.60 42.20 40.60 28.00 11.20

Top-nσ 26.80 25.00 24.80 23.40 22.80 23.20 45.80 44.80 45.80 43.00 47.60 46.80

Table 2: Performance (%) of Greedy Sampling on
LLAMA8-8B-Instruct and LLAMA3-70B-Instruct mod-
els. This table is presented separately because of space
limitations.

Dataset 8B 70B

AQuA 49.61 73.62
GSM8K 78.77 92.12
GPQA-main 32.81 41.07
MATH500 25.60 47.40

demonstrate that top-nσ sampling not only outper-
forms or matches the peak performance of other
methods at optimal temperatures but also maintains
consistent performance across all temperature set-
tings. This robustness is particularly valuable for
real-world applications, where optimal temperature
parameters are typically unknown a priori and may
vary across different tasks or user requirements. In
contrast, methods that are sensitive to temperature
settings provide weaker performance guarantees, as
their accuracy can fluctuate significantly depending
on the chosen temperature parameter. Furthermore,
by minimizing the impact of temperature on accu-
racy, top-nσ enables flexible control over output
diversity without compromising accuracy.

5.2.2 Creative Writing
To examine whether the performance of top-nσ
sacrifices diversity for accuracy or not, we evaluate
it on creative writing tasks following Nguyen et al.
(2024). As shown in Table 3, top-nσ achieves the
highest win rates against greedy decoding (56.40%
for 8B and 53.80% for 70B), demonstrating its abil-

Table 3: Win rates (%) against greedy decoding on
AlpacaEval Creative Writing using LLaMA-3-8B/70B-
Instruct.

8B 70B

Method T =1.0 T =1.5 T =1.0 T =1.5

Top-k 53.40 51.00 50.40 51.00
Mirostat 49.50 2.20 51.50 5.20
η-sampling 55.10 9.40 52.00 34.00
Top-p 53.40 7.00 49.80 34.04
Min-p 53.60 54.00 51.40 50.90
Top-nσ 56.40 52.90 53.80 50.50

T =3.0 T =10.0 T =3.0 T =10.0

Top-nσ 55.40 55.40 51.30 53.40

ity to maintain both creativity and coherence. The
robust performance of top-nσ opens up a unique
opportunity to explore the impact of extremely high
temperatures in LLM sampling. While conven-
tional wisdom suggests that higher temperatures
lead to increased diversity (Bellemare-Pepin et al.,
2024; Nguyen et al., 2024), this hypothesis has re-
mained untested due to the instability of traditional
sampling methods at high temperatures. With top-
nσ’s temperature invariance, we are finally able to
push the boundaries to T = 3.0 and even T = 10.0.
Intriguingly, our results reveal that the benefits of
temperature scaling eventually saturate, with win
rates stabilizing around 55.40% and 53.40% for 8B
and 70B models, respectively. This finding com-
plements our understanding about the relationship
between temperature and diversity, suggesting that
further temperature increases may not yield addi-
tional benefits.
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Figure 4: Repeated sampling performance of LLaMA-
3-8B-Instruct on GSM8K with N (up to 100) repetitions
and majority voting. Top-nσ achieves both higher accu-
racy and better stability across different N values.

5.3 Test-time Scaling Analysis

Recent work has demonstrated the effectiveness of
test-time scaling techniques in enhancing model
capabilities without additional training (Snell et al.,
2024; Brown et al., 2024; Zhang et al., 2024).
Among these techniques, majority voting with re-
peated sampling (Brown et al., 2024) stands out
as one of the simplest yet effective approaches.
However, the effectiveness of such techniques is
constrained by underlying sampling methods. Tra-
ditional sampling at lower temperatures typically
leads to higher single-shot accuracy but limited
output diversity, reducing the potential gains from
majority voting. Conversely, sampling at higher
temperatures can provide more diverse outputs but
often at the cost of quality.

To demonstrate how top-nσ enhances these scal-
ing techniques by overcoming this diversity-quality
trade-off, we conduct experiments on LLaMA-3-
8B-Instruct using a 128-sample subset of GSM8K
benchmark (following the same experimental setup
as Brown et al. (2024)), comparing different sam-
pling methods across varying numbers of sampling
repetitions (up to 100). We use the Majority@N
score, where we generate N independent responses,
extract their answers in a standardized format, and
select the most frequent one as the final prediction.
For each method, we explore temperature settings
ranging from 0.5 to 3.0 and report the performance
curve with the optimal temperature.

As shown in Figure 4, while conventional meth-
ods show unstable performance with fluctuations
and drops in the intermediate stage when repe-
titions increase, top-nσ maintains robust perfor-
mance improvements and reaches higher final ac-
curacy (~93%). Notably, top-nσ achieves its best
performance at relatively higher temperatures, suc-
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Figure 5: Parameter sensitivity analysis of top-nσ sam-
pling on GSM8K. The heatmap shows accuracy (%)
under different combinations of n (0.3-3.0) and tem-
perature (0.5-3.0). The method maintains stable per-
formance (~78%) with moderate n values but degrades
when n ≥ 2.0, especially under high temperatures.

cessfully maintaining output quality while provid-
ing the diversity necessary for effective majority
voting

5.4 Sensitivity Analysis of n

To provide practical guidance for implementing
top-nσ sampling and validate our theoretical anal-
ysis, we conduct a sensitivity study of the key hy-
perparameter n. Specifically, we investigate how
different combinations of n and temperature affect
model performance on GSM8K using Llama-3-
8B-Instruct, with n ranging from 0.3 to 3.0 and
temperature from 0.5 to 3.0. We are particularly
interested in the critical threshold of n where per-
formance significantly degrades under high tem-
peratures, as the model’s learned probability dis-
tribution has minimal impact in this regime, and
therefore such degradation indicates the quality of
the nucleus. This critical threshold can be used to
verify our theoretical bounds.

As shown in Figure 5, we observe that the
method exhibits robust performance when n is
within a moderate range (0.3-1.0), maintaining an
accuracy of approximately 77-78% across differ-
ent temperature settings. However, as n increases
beyond 1.5, we witness a noticeable performance
degradation, with accuracy dropping to around 70%
and falling below 60% when n reaches 2.0. This
empirical observation aligns well with our theo-
retical bound of n = 2

√
3σu/σ ≤ 3.46. The

observed critical threshold around n = 1.5 sug-
gests that σu ≈ 0.43σ, which is reasonably con-
sistent with our theoretical expectation given that
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informative tokens are typically far from the noisy
tokens. While this alignment is not exact due to
the unknown true token distribution, it provides a
practical validation of our theoretical analysis.

5.4.1 Re-examining the Gaussian Distribution
In Section 3.2, we theoretically established why
directly employing a Gaussian-based denoising ap-
proach is problematic. Now, experimental data pro-
vides further evidence. As depicted in Figure 2, the
maximum logit surpasses µ + 10σ. Furthermore,
Figure 5 illustrates a steep decline in performance
when n > 3. This suggests that for a µ+kσ denois-
ing strategy, k would need to exceed 7, significantly
higher than the conventional value of 3. Fundamen-
tally, this discrepancy arises because the crucial
logits/tokens we wish to retain are not the majority
noise, despite the latter’s Gaussian appearance.

6 Conclusion

Based on empirical and theoretical analysis of
LLM’s output logits, we propose top-nσ, which
achieves temperature-invariant sampling and pre-
serves output diversity. The significance of our
analysis extends beyond sampling strategies, as it
reveals fundamental characteristics and limitations
of softmax-based approaches in practice. The ob-
served separation between informative and noise
components in logits can be valuable for any sce-
nario involving softmax operations, opening up
promising directions for future research, such as
leveraging these properties in model training to
improve their robustness and effectiveness.

Limitations

Several limitations deserve attention in our work.
First, a static n might not capture the precise bound-
ary especially when the model is not confident. We
have a more detailed discussion about σ and the
sampling process in Appendix F. However, we still
have not been able to draw any definitive conclu-
sion. We concede that the assumption of a uniform
distribution may be overly idealized, and the actual
distribution is anticipated to be more intricate. Nev-
ertheless, the theoretical characteristics afforded by
the uniform distribution served as a valuable inspi-
ration for our algorithm. Second, our evaluation
primarily focused on reasoning tasks and creative
writing, leaving its effectiveness in other domains
to be verified, like code generation. Third, while
we analyzed and improved token-level sampling be-
havior, the impact of our method on sequence-level

generation remains poorly understood, suggesting
the need for further investigation into how local
sampling decisions affect global generation qual-
ity. Finally, top-nσ aims to eliminate Gaussian
noise in logits. In other words, it attempts to pre-
serve the model’s own output as much as possible
without modification. This may potentially retain
the model’s inherent hallucinations and biases. For
domain-specific fine-tuned models, top-nσ will am-
plify their bias on OOD (out-of-distribution) data
(due to enhanced background noise)*. This might
be beneficial for researchers as it helps identify
OOD problems, but it will amplify the issues that
fine-tuned models face with OOD data.
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A Theoretical Analysis

A.1 Proof of Theorem 3.1
Proof. We rewrite

∑
li>t e

li to
∑

1≤i≤V eliI(li >
t), where I(·) is the indicator function, its value is
1 if the condition holds, 0 otherwise.

And,

∑

1≤i≤V

eliI(Xi > t) = V ·
∑

1≤i≤V

eliI(li > t)

V

(11)
By the Weak Law of Large Numbers, we can

assert the second term converges to E[eLI(L >
t)] in probability, where L denotes the random
variable whose realizations are {li}Vi=1.

Since

E[eLI(L > t)] =

∫ +∞

−∞
exI(x > t)f(x) dx

=

∫ +∞

t
exf(x) dx (12)

We finally conclude:

∑

li>t

eli
P→ V

∫ +∞

t
exf(x) dx (13)

A.2 Threshold Calculation
For data following uniform distribution U(M −
a,M), where M is the maximum value and a is
the range of distribution support, we first utilize the
shift invariance of softmax (c is any constant):

Softmax(X) =
exi

∑
j e

xj
=

exi−c

∑
j e

xj−c

= Softmax(X − c) (14)

By setting c = M , we can reduce our analysis
to U(−a, 0). The probability density function is

f(x) =

{
1
a −a ≤ x ≤ 0

0 otherwise
(15)

Computing the integral as
∫ +∞

t
exf(x) dx =

∫ 0

t

ex

a
dx =

1

a
(1− et) (16)

After solving the equation and transforming it
back to the original scale, we obtain

t = M − ln

[
1

1− p(1− e−a)

]
(17)
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A.3 Proof of Temperature Invariance

Here we provide the proof for Theorem 4.1.

Proof. Consider any token i and temperature T >
0. Let li be the original logit. After temperature
scaling, we have l′i = li/T for all tokens. For any
given token i:

M ′ = max
j

(l′j) =
M

T

σ′ =

√
1

N

∑

j

(l′j − µ′)2

=

√√√√ 1

N

∑

j

(
lj
T
− µj

T
)2 =

σ

T

Token i is selected if and only if l′i ≥M ′ − nσ′.
Substituting li, M and σ for l′i, M

′ and σ′:

l′i ≥M ′ − nσ′ ⇐⇒ li
T
≥ M

T
− nσ

T
⇐⇒ li ≥M − nσ

This final condition is independent of T . There-
fore, for any token i, its inclusion in the selected
set is determined by the same condition regardless
of temperature.

B Experimental Details

B.1 Implementation

One of the major advantages of top-nσ is its
remarkable simplicity — the core algorithm can
be integrated into any inference framework with
merely two lines of code. To demonstrate this, we
provide a reference implementation based on the
Huggingface framework (Wolf et al., 2020), shown
in Code 1.

Our experiments were primarily conducted us-
ing vLLM (Kwon et al., 2023). While the core im-
plementation remains straightforward, it is worth
noting that vLLM did not support custom sam-
plers during our experimental phase, which neces-
sitated some intricate adaptations. For the sake of
reproducibility and transparency, we have made
our vLLM implementation and the corresponding
evaluation code available†.

We note that since the initial development of this
approach, independent implementations of top-nσ

†https://anonymous.4open.science/r/top_nsigma_
anon-D2A3/readme.md

sampling have emerged in several popular open-
source LLM inference frameworks and applica-
tions‡. This independent adoption by the open-
source community provides additional validation
of our method’s practical utility.

B.2 Evaluation Framework
To ensure fair comparison among all algorithms
and guarantee reproducibility, we developed a cus-
tom evaluation framework. The evaluation pipeline
consists of the following key components and
steps:

1. Dataset-specific Preprocessing: For each
dataset, we implement a dedicated preproces-
sor that:

• Converts raw data into a standardized
format with questions and output format
specifications.

• For multiple-choice questions, structure
the data to include questions, options,
and output format controls.

• Handles dataset-specific requirements
and constraints.

2. Input Processing:

• Applies template-based formatting to en-
sure consistent model inputs.

• Incorporates necessary control tokens
and format specifications.

3. Algorithm Execution:

• Loads and configures models with appro-
priate parameters.

• Processes the formatted inputs through
the models.

• Collects raw outputs.

4. Output Processing and Evaluation:

• Extracts answers through predefined out-
put pattern matching.

• Normalize the answers.
• Computes evaluation metrics based on

extracted answers.

This standardized pipeline ensures fair evaluation
across different models and datasets. While we
utilize vllm’s seed option and set random, numpy,

‡https://github.com/ggml-org/llama.cpp/pull/11223
https://github.com/aphrodite-engine/aphrodite-
engine/pull/825
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1 from transformers import LogitsProcessor
2 import torch
3

4 class TopNSigma(LogitsProcessor):
5 def __init__(self , nsigma: float , device: str):
6 self.n = torch.tensor(nsigma , device=device)
7

8 def __call__(self , input_ids: torch.Tensor , logits: torch.Tensor) -> torch.
Tensor:

9 M, std = logits.max(dim=-1, keepdim=True).values , logits.std(dim=-1, keepdim
=True)

10 logits[logits < M - self.n * std] = float(’-inf’)
11 return logits

Code 1: TopNSigma Logits Processor Implementation

pytorch and cuda’s seeds to ensure reproducibility,
it is important to note that reproducibility may still
be affected by GPU’s precision error§.

B.2.1 Reasoning

We use a prompt template to instruct LLaMA to
follow user’s instructions (raw python string).

<|begin_of_text|><|start_header_id|>system<|
end_header_id|>\n\nYou are a helpful expert
problem solver. Please strictly follow the
user’s instructions, especially the output
format.<|eot_id|><|start_header_id|>user<|
end_header_id|>\n\nPlease answer the
following question:\n\n{question}<|eot_id
|><|start_header_id|>assistant<|
end_header_id|>\n\n

where {question} is a placeholder subject to
different datasets. It not only contains the question,
but also an output format instruction for extraction.
For example, we use the following instructions
(placed directly after the question) for GSM8K test:

Your response *must* end with "The final answer
is (answer)". No units. For example:\n(
Question and your reasoning)\nThe final
answer is 33.

And the corresponding output regular expression
is:

The final answer is .*?(\d+\.?\d*|\.\d+)[\s\S
]*?(?<!\.)\.$

We use slightly different prompts for different
datasets because desired answer formats are differ-
ent and the Exact Match metric is very sensitive
to the format. We tried our best to mitigate this
issue through prompt engineering, complex regular
expressions and output normalization.

§https://github.com/vllm-project/vllm/pull/2514

Metrics. We use Exact Match (EM) metric for
the four reasoning benchmarks. EM reports the
ratio of identical extracted answers and targets.

Datasets. The detailed statistics is provided in
Table 4.

B.2.2 Creative Writing
The pipeline of Creative Writing is slightly differ-
ent, since there is no ground-truth answer. For each
model, the text generated by greedy decoding is
set as the reference answer, and texts generated by
each method would be compared with the refer-
ence, judged by DeepseekV3 (we set the temper-
ature as 0.0 to guarantee reproducibility). We use
the Alpaca (Li et al., 2023) as the LLM-as-a-judge
framework.

Metrics. We report win rate for the creative writ-
ing benchmark. For each instruction, we compare
responses generated by each method against those
produced by standard greedy decoding. The LLM
judge (DeepseekV3) receives a pair of responses
(A, B) and outputs a binary preference, indicating
which response better satisfies the given instruction.
The win rate is then calculated as the number of
wins divided by the total number of comparisons.

Datasets. The dataset is a collection of 500
writing prompts, same as Nguyen et al. (2024).

C Hyperparameters

The selection of appropriate hyperparameters is cru-
cial for fair comparison among different sampling
methods. Our selection criteria are based on three
perspectives: (1) widely adopted parameters in the
literature and production, (2) authors’ recommen-
dations from original papers, and (3) empirically
optimal values from our experiments.
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Table 4: Dataset Statistics

Dataset Description Samples
AQuA AQuA (Ling et al., 2017) is an algebraic word problems dataset.

We use its test split for the experiment.
254

GSM8K GSM8K (Cobbe et al., 2021) (Grade School Math 8K) is a dataset
of high-quality linguistically diverse grade school math word prob-
lems. We use its test split for the experiment.

1319

GPQA-main GPQA (Rein et al., 2024) is a multiple-choice, Q&A dataset of
very hard questions written and validated by experts in biology,
physics, and chemistry.

448

MATH500 MATH (Hendrycks et al., 2021) is a new dataset of 12,500 chal-
lenging competition mathematics problems. Each problem in
MATH has a full step-by-step solution which can be used to teach
models to generate answer derivations and explanations. We use a
500 subset (Lightman et al., 2023) of it.

500

It is worth noting that for most sampling meth-
ods, extreme parameter settings can achieve ro-
bustness to temperature variations. For instance,
using an extremely small p value (e.g., 0.1) in top-p
sampling can maintain consistency across different
temperatures. However, such settings essentially
reduce the sampling method to greedy decoding,
thereby compromising the method’s ability to gen-
erate diverse outputs. Similarly, top-nσ sampling
with an extremely small n (e.g., 0.1) exhibits com-
parable behavior, but this deviates from practical
scenarios and results in a significant loss of diver-
sity. Therefore, in our experimental setup, we avoid
such extreme parameter settings that could poten-
tially skew the comparison or lead to degenerate
sampling behaviors.

For top-nσ, n is typically less than 1.5. Its pre-
cise lower bound remains unclear as it is difficult to
measure the diversity loss. We recommend n = 1.0
as the default setting. Although smaller values of
n can achieve better accuracy in our experiments
(as shown in Figure 5), we choose this value for
its simplicity and good balance in maintaining di-
versity. As part of our hyperparameter recommen-
dations, we suggest different values of n based
on the intended use case. For scenarios requiring
more rational and focused outputs, we recommend
smaller values such as n = 0.8. Conversely, for
applications emphasizing diversity, larger values
like n = 1.3 are more appropriate. It is impor-
tant to note that unlike probability-based metrics,
top-nσ operates on logits, making the impact of n
exponential rather than linear. For instance, with
σ = 2.2, n = 1.0 corresponds to min-p sam-

pling with p = 0.1, while n = 2.0 corresponds
to p = 0.01 in min-p sampling, which is too loose
to be practically useful.

For min-p sampling, the value of p typically
ranges from 0.05 to 0.1. We adopt p = 0.1 based
on our empirical results and its widespread adop-
tion in combination with temperature T = 1.5,
which has proven to be highly effective in practice.

For top-k sampling, parameter recommendations
from various sources are inconsistent, with k rang-
ing from 10 to 300. This parameter is inherently
related to the vocabulary size, making some earlier
recommendations potentially obsolete due to the
evolution of model vocabularies. Our experiments
with k ∈ {10, 20, 50, 180, 300} reveal dramatic
variations in performance. Small k values make
the sampling relatively insensitive to temperature
changes but tend to approximate greedy decoding.
Conversely, large k values exhibit high temperature
sensitivity, leading to rapid degradation at higher
temperatures. As a result, we choose k = 20 as
a compromise. This also explains why top-k is
rarely used alone in practice despite occasionally
achieving good performance.

For η-sampling, we experimented with η = 2×
10−4 and η = 9 × 10−4. At lower temperatures,
η = 9 × 10−4 shows better performance, while
at higher temperatures, both values lead to rapid
quality degradation. Therefore, we report results
using η = 9× 10−4.

For mirostat, we set a relatively high target en-
tropy of 5.0 to evaluate its performance in diverse
text generation. Similar to η-sampling, even slight
temperature increases cause mirostat to deteriorate
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rapidly.

D Expanded Experiments using Qwen2.5

We further extended our experiments to the
Qwen2.5 series models (Yang et al., 2024) to val-
idate the generalizability of our findings across
different model architectures. The results (Table 5
and Table 6) largely align with Llama’s. For rea-
soning tasks, in the low-temperature regime (T ≤
1.5), top-nσ either outperforms other methods or
achieves comparable results across all datasets. In
the high-temperature regime (T ≥ 2.0), top-nσ
consistently exhibits superior performance across
all test scenarios.

For creative writing tasks, top-nσ also exhibits
similar behavior. It is worth noting that top-nσ with
T = 1.0 demonstrates compelling performance,
consistently achieving optimal or near-optimal re-
sults across all evaluated models.

E Combination with other samplers

In practice, multiple samplers are often combined
to meet complex decoding requirements. The typ-
ical sampling process involves passing a logits
vector as an intermediate value through multiple
samplers, each performing its specific logic. For
instance, a top-k sampler retains the top k logits
while setting all others to −∞. Since top-nσ sam-
pling requires standard deviation calculations, it
must be positioned as the first sampler when used
in combination with other sampling methods to
avoid computing standard deviations of −∞ val-
ues. This constraint is crucial for implementations
that set discarded tokens to −∞. However, for
implementations that directly discard tokens (e.g.,
CPU implementations) rather than setting them to
−∞, the positioning of top-nσ sampling becomes
more flexible and is not strictly required to be first.
Nevertheless, we recommend placing it early in the
sampling pipeline to ensure meaningful standard
deviation calculations based on a more complete
token distribution.

Top-nσ focuses on reflecting the model’s inher-
ent capabilities rather than introducing human pri-
ors. Therefore, we recommend using it as an alter-
native to top-p and min-p sampling, which serve
similar purposes. Additionally, the community has
developed many specialized samplers addressing
specific issues, such as DRY (Don’t Repeat Your-
self)¶ which focuses on reducing repetition. These

¶https://github.com/oobabooga/text-generation-

samplers typically modify the target distribution
by introducing human priors, making them orthog-
onal to top-nσ’s objectives. As a result, they can
complement each other to enhance overall perfor-
mance.

F Disscussions about σ and sampling
process

Given that top-nσ directly employs the standard
deviation of logits as a measurement criterion, it
is crucial to investigate the correlation between
standard deviation and the sampling process. In-
tuitively, one might expect that when the model
exhibits uncertainty, the standard deviation of its
logits would increase, and conversely, decrease
when the model is more confident. However, our
empirical studies refute this hypothesis.

We demonstrate this by testing an AQuA exam-
ple using Llama-3-8B-Instruct, shown below:

<|begin_of_text|><|start_header_id|>system<|
end_header_id|>You are a helpful expert
problem solver. Please strictly follow the
user’s instructions, especially the output
format.<|eot_id|><|start_header_id|>user<|
end_header_id|>Given the following problem,
reason and give a final answer to the
problem.

Question: A car is being driven, in a straight
line and at a uniform speed, towards the
base of a vertical tower. The top of the
tower is observed from the car and, in the
process, it takes 10 minutes for the angle
of elevation to change from 45◦ to 60◦.
After how much more time will this car reach
the base of the tower?

Choices:
(A)5(√3 + 1)
(B)6(√3 + √2)
(C)7(√3 - 1)
(D)8(√3 - 2)
(E)None of these<|eot_id|><|start_header_id|>

assistant<|end_header_id|>

To facilitate the analysis, we visualize three met-
rics throughout the generation process in Figure 6:
the standard deviation of logits, the number of to-
kens within one standard deviation (1σ) of the max,
and the top-3 candidate tokens. For experimental
clarity, we employed greedy decoding where the
highest-probability token is selected at each step.
For simplicity, we interpret the number of tokens
within one standard deviation as a proxy for model
confidence — fewer tokens within this range indi-
cate a more concentrated distribution, suggesting
higher confidence.

webui/pull/5677
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(a) Logits dynamics for tokens 0-20
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(b) Logits dynamics for tokens 20-40
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(c) Logits dynamics for tokens 40-60

Figure 6: Visualization of logits dynamics during the generation process. Each subplot shows the standard deviation
of logits, number of tokens within 1σ of max, and top-3 next tokens at different generation steps. In most steps
the model is highly confident with only one candidate. Notably, multiple tokens tend to fall within one standard
deviation primarily during the generation of connective words or punctuation marks, while the overall relationship
between standard deviation and model confidence remains inconclusive.
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Table 5: Performance comparison of different sampling methods on Qwen2.5 models

Qwen2.5-14B-Instruct Qwen2.5-32B-Instruct
Dataset Method 0.7 1.0 1.5 2.0 3.0 4.0 0.7 1.0 1.5 2.0 3.0 4.0

AQuA

Top-k 83.46 81.10 75.20 55.91 14.96 1.57 85.43 81.10 75.98 47.64 12.60 0.79
Top-p 81.89 82.28 72.05 11.42 0.00 0.00 86.22 84.65 81.89 9.45 0.00 0.00
Min-p 80.32 80.32 82.68 77.56 36.22 1.57 87.01 86.22 80.71 82.28 33.07 2.76

Top-nσ 82.28 83.86 78.74 78.74 77.56 77.56 85.04 85.04 83.07 83.46 81.10 83.86

GSM8K

Top-k 91.05 91.05 88.40 77.56 12.59 1.44 93.03 92.42 91.74 81.43 13.42 1.36
Top-p 92.04 90.37 90.37 34.04 0.00 0.00 92.95 92.87 91.96 39.65 0.00 0.00
Min-p 91.58 91.13 90.75 88.55 68.46 7.88 92.95 92.80 93.18 91.66 76.65 11.83

Top-nσ 91.05 91.21 90.45 90.67 89.01 89.84 93.03 93.18 92.42 93.03 92.49 93.33

GPQA-main

Top-k 43.08 38.39 35.49 31.03 18.97 6.25 41.52 44.42 36.16 29.02 15.18 4.46
Top-p 39.96 39.73 22.77 0.00 0.00 0.00 43.75 42.41 33.04 0.22 0.00 0.00
Min-p 39.73 39.73 40.18 34.82 16.52 0.45 43.97 41.74 43.97 36.16 23.66 1.79

Top-nσ 39.29 42.86 40.85 38.17 38.84 34.60 43.75 43.97 41.74 42.63 43.97 43.75

MATH500

Top-k 74.20 75.00 62.80 30.60 3.40 1.20 77.00 75.20 66.80 30.40 4.60 1.00
Top-p 74.80 74.80 66.00 9.00 3.20 3.20 77.20 78.40 64.20 2.80 1.40 2.20
Min-p 73.80 76.00 72.80 65.40 15.20 1.00 76.60 74.60 71.00 68.00 17.00 1.40

Top-nσ 76.00 74.00 72.40 72.60 70.00 69.20 79.00 78.20 76.20 76.40 74.00 71.80

Table 6: Win rates (%) against greedy decoding on
AlpacaEval Creative Writing using Qwen2.5-14B/32B-
Instruct. We omitted the experimental results of top-p,
mirostat, and η-sampling at temperature 1.5, as previ-
ous experiments on LLaMA have demonstrated their
inherent instability at elevated temperatures.

14B 32B

Method T =1.0 T =1.5 T =1.0 T =1.5

Top-k 55.80 53.40 50.00 44.20
Mirostat 47.00 - 47.60 -
η-sampling 49.00 - 50.10 -
Top-p 53.00 - 52.60 -
Min-p 55.60 57.40 53.40 53.60
Top-nσ 56.40 57.80 54.40 53.40

T =3.0 T =10.0 T =3.0 T =10.0

Top-nσ 57.20 51.80 52.10 52.43

Through this lens, our analysis reveals several
interesting patterns:

• The standard deviation of logits typically fluc-
tuates between 1.8 and 2.5. We thus pick 2.2
as a typical value.

• There appears to be no strong correlation be-
tween the standard deviation and model confi-
dence. We observe cases where high standard
deviation coincides with high confidence, as
well as cases showing the opposite pattern.

• Notably, the model exhibits lower confi-
dence when generating connective words (e.g.,
“Let”, “and”) and punctuation marks. This ob-
servation is reasonable since connective words
are often interchangeable with other connec-
tive words (e.g., “in” vs. “at”), and similarly,

different punctuation marks can often be sub-
stituted for one another (e.g., semicolons vs.
periods) while maintaining grammatical cor-
rectness.

This lack of a clear pattern suggests that the
relationship between logits distribution and model
confidence may be more complex than initially
anticipated.

Based on our preliminary observations, we can
only conclude that the distribution of noisy tokens
appears to be statistically independent of that of
informative tokens. The underlying mechanisms
driving this phenomenon and its potential implica-
tions remain unclear. Given the exploratory nature
of this analysis and its inconclusive results, we
present these findings in the appendix rather than
the main text. We hope these initial observations,
though incomplete, may stimulate future research
to better understand the relationship between logits
statistics and model behavior during the sampling
process.
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