GainRAG: Preference Alignment in Retrieval-Augmented Generation
through Gain Signal Synthesis

Yi Jiang, Sendong Zhao", Jianbo Li, Haochun Wang, Bing Qin
Research Center for Social Computing and Interactive Robotics,
Harbin Institute of Technology, China
{yjiang,sdzhao, jbli,hcwang,qinb}@ir.hit.edu.cn

Abstract

The Retrieval-Augmented Generation (RAG)
framework introduces a retrieval module to dy-
namically inject retrieved information into the
input context of large language models (LLMs),
and has demonstrated significant success in var-
ious NLP tasks. However, the current study
points out that there is a preference gap be-
tween retrievers and LLMs in the RAG frame-
work, which limit the further improvement of
system performance. Some highly relevant pas-
sages may interfere with LLM reasoning be-
cause they contain complex or contradictory
information; while some indirectly related or
even inaccurate content may help LLM gener-
ate more accurate answers by providing sugges-
tive information or logical clues. To solve this,
we propose GainRAG, a novel approach that
aligns the retriever’s and LLM’s preferences by
defining a new metric, “gain”, which measure
how well an input passage contributes to correct
outputs. Specifically, we propose a method to
estimate these gain signals and train a middle-
ware that aligns the preferences of the retriever
and the LLM using only limited data. In addi-
tion, we introduce a pseudo-passage strategy
to mitigate degradation. The experimental re-
sults on 6 datasets verify the effectiveness of
GainRAG'.

1 Introduction

Large Language Models (LLMs) (Achiam et al.,
2023; Touvron et al., 2023) perform well in pro-
cessing natural language tasks, but their knowledge
is fixed in model parameters and is difficult to up-
date dynamically over time (Ji et al., 2023; He
et al., 2022). To tackle this issue, the Retrieval
Augmented Generation (RAG) framework adds a
retrieval module that brings in relevant external
knowledge and integrates it into the input context

*Corresponding author
"The source code is publicly available at https: //github.
com/liunian-Jay/GainRAG

Passages w/ Answers: Correct vs. Incorrect Outputs recallincorrect
recall»correct
47.84% 52.16%

2WikiMultiHopQA

38.63% 61.37%
HotpotQA
nonc—correct
Correct Outputs: Passages w/ vs. w/o Answers
recall>correct

89.14%
2WikiMultillopQA

10.86%

73.37%
HotpotQA

26.63%

Figure 1: We analyze the preference gap between re-
trieved passages and LLMs on 2 datasets: HotpotQA
and 2Wiki2MultiHopQA. The top shows the proportion
of correct and incorrect generations when the retrieved
passage contains the gold answer. The bottom shows
the proportion of whether the passage used contains the
golden answer when the LLM response is correct.

of the LLMs. This approach has shown impressive
results across various natural language processing
tasks (Gao et al., 2023; Lewis et al., 2020). Pre-
vious work is devoted to solving two problems,
namely, retrieving more relevant information in
retrieval and effectively utilizing context to gener-
ate the correct answer in generation. However,
they fail to address the preference gap between
the retriever and the LLMs. Recent studies have
highlighted that while retrieved passages may be
relevant, they are not necessarily preferred for gen-
eration. In other words, only passages that align
with the LLM’s preferences can provide meaning-
ful gain and enhance generation performance.
Specifically, existing retrievers are usually de-
signed based on human-defined relevance criteria,
such as whether a passage directly contains the
answer to a question (Ke et al., 2024). However,
this approach does not fully align with the way
LLMs process information. Some highly relevant
passages may actually disrupt LLMs reasoning by
introducing complexity or contradictions, while
some seemingly unrelated or even partially incor-
rect content can help by offering useful hints or

10746

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1074610757

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

https://github.com/liunian-Jay/GainRAG
https://github.com/liunian-Jay/GainRAG

(=" Workflow of GainRAG ===================== ~= I," Signal Synthesis TTTmTTTTIITTTT S
: : : lngt(leIIX) (1 + a)logit(y|cy, x) i
: ‘®\ H ! Context mm) I I I I ~a logit(ylx) !
1
H pseudo-passage 1 => I
! i é logit(y|x) I | !
: @)\ é E | Question i i
A e - - — @i " B i |
1 eee oo 1
: ® ® (o o o] ® : : P — > gt (y|c,, %) i :
: LLM i (1 + a)logit(ylcy,x) 1
1 [ontext -alogit(y|x) 1
— | I S 1
N e e N T W
(== Distillation Fine-Tuning ========== == === s e e e e e s ~
1 1
1 . C 1
! q Py min KL(P||Q) Qo é 0= 1
' selector | '
I Selector | = | 2P| @uasssssnsnas tﬂl 1
B,) , (7 “ o o5
1 > e !
i LLM c H
1Ck| =]+~ q Py Qx k|l=|+,4 E
\

Figure 2: Illustration of the GainRAG framework. The GainRAG workflow, preference signal synthesis, and selector

distillation fine-tuning are shown respectively.

logical cues (Dong et al., 2024; Cuconasu et al.,
2024). Therefore, retrieval should shift its focus
from traditional “relevance” to “gain”—prioritizing
information that helps LLMs generate more accu-
rate results.

To examine and validate this preference gap,
we retrieve 100 relevant passages for each sam-
ple on two multi-hop question-answering datasets.
Each passage is used to enhance the sample query
for evaluation. As shown at the top of Fig. 1, we
find that even when the retrieved passage contains
the correct answer, nearly half of the samples still
generate incorrect responses, indicating that while
these passages are relevant, they are not particu-
larly beneficial for generation. As shown at the
bottom of Fig. 1, in most cases where the gener-
ation is correct, the passages used do not directly
contain the answer. Instead, some passages that
indirectly provide answers or clues may be less
relevant but more beneficial, as they align better
with the LLM’s preferences.

Existing work aligns the retriever with the
LLM’s preferences mainly by fine-tuning the re-
triever or training both together. For example, Re-
plug (Shi et al., 2023b) aligns the retriever with
LLM preferences by training the retriever directly,
while RA-DIT (Lin et al., 2023) uses dual training.
However, this approach requires a large amount
of high-quality data and is difficult to implement
in real-world industrial settings. There are also
some training middleware to align language model
preferences, such as BGM (Ke et al., 2024) and

DPA-RAG (Dong et al., 2024), but their perception
and measurement of LLM preferences are coarse,
capturing only basic patterns without a detailed
understanding of nuanced differences.

To address the above challenges, we introduce a
middleware between the retriever and the LLM to
solve the problem of inconsistent preferences be-
tween the two, that is, the most profitable passages
can be selected from the large number of passages
retrieved by the retriever. Specifically, we intro-
duce a method to quantify LLM’s preference based
on based on perplexity and contrastive decoding.
This enables passage gain calculation and mitigates
the LLM’s overconfidence bias. Secondly, we use
this to synthesize a small number of samples to dis-
till the preference perception ability to the selector.
Finally, we introduce a pseudo-passage strategy to
prevent situations where all retrieved passages are
not profitable. Together with the selector, it miti-
gates degradation and enables efficient integration
of internal and external knowledge.

In general, our contributions can be summarized
as follows:

* We analyze the preference gap between re-
trievers and LLMs, quantifying the LLM’s
preference for passages by defining “gain” and
introducing GainRAG to address this gap.

* We provide a selector and introduce a pseudo-
passage strategy that work together to not
only avoid degeneration and triviality, but also

10747

achieve efficient integration of internal and ex-
ternal knowledge.

* We train with very few samples and validate
on 6 datasets. The results show excellent per-
formance and generalization of GainRAG.

2 Related Works

2.1 Retrieval-augmented Generation

In recent years, in order to solve the problems of
outdated knowledge in the model and hallucination
of large language models, retrieval-augmented gen-
eration has been introduced (Fan et al., 2024; Gao
et al., 2023), and many efforts have been made in
two aspects: “how to retrieve more relevant infor-
mation” including retriever fine-tuning (Nian et al.,
2024) and query optimization (Ma et al., 2023;
Wang et al., 2023) and “how to better use the re-
trieved information to generate answers” including
special fine-tuning (Wang et al., 2024; Zhang et al.,
2024) and decoding strategies (Shi et al., 2023a).

2.2 Retriever-LLM Preference Alignment

The misalignment between the preferences of the
retriever and LLM results in retrieved information
being “relevant” but not always “useful”. There are
many existing works that have made efforts to solve
this problem. Replug (Shi et al., 2023b) and Al-
tas (Izacard et al., 2022) use LLM to supervise and
guide the fine-tuning of the retriever. RA-DIT (Lin
et al., 2023) uses dual training allows the language
model to guide the training of the retriever and the
language model to adapt to the retrieved informa-
tion. However, these methods usually require a
large amount of data, which makes the resources
expensive and huge. DPA-RAG (Dong et al., 2024)
synthesizes data and trains the reranker and LLM
to align the preferences of the two. BGM (Ke et al.,
2024) trains an intermediate to complete the rear-
rangement and selection of information from the
coarsely ranked retriever. These methods simply
do not clearly define and quantify this preference,
which may lead to deviations in alignment. Differ-
ent from them, we propose a method to quantify the
preference, so that a small amount of data can be
synthesized through LLM to fine-tune the selector
and achieve alignment between the two.

2.3 Bridge Between Retriever and LLM

Many existing works achieve RAG optimization
by providing a bridge between the retriever and

LLM. Rerankers (Glass et al., 2022) such as BGE-
reranker (Xiao et al., 2024) are the most common
middleware, which can find more accurate passages
from the information recalled by the retriever. Com-
pressors such as RECOMP (Xu et al., 2024) and
rewriters (Ma et al., 2023; Wang et al., 2023) are
also commonly used bridges, which compress the
retrieved passages to achieve denoising and solve
the problem of context overload. Similar to them,
GainRAG we proposed introduces a preference se-
lector to select the optimal passage, which achieves
score perception and avoids excessively long con-
text.

3 Methodology

In this section, we introduce GainRAG (Fig. 2),
starting with the synthesis and motivation of the
gain signal, followed by selector training, and con-
cluding with the GainRAG workflow.

3.1 Preliminaries

Before discussing GainRAG, we first provide a for-
mal definition of the RAG problem. Given a query
q and a corpus of documents D, RAG systems typ-
ically follow a retrieval-then-reading framework.
In this approach, the retriever selects relevant pas-
sages C' = {c1, c2,,c;} C D from the entire cor-
pus D, and the generator model (LLM) utilizes
these passages C' to generate the answer a. This
process can be represented as:

C =R(q,D,k),

i = G(P(0.C)). M

where R denotes the retrieval function that selects
k relevant passages, P represents the prompt tem-
plate that combines ¢ and C', and G is the generator,
i.e., the LLM, which generates the final answer a.

3.2 Gain signal to quantify preference

To make the passage used meet the preferences of
the LLM, we need to quantify the benefit of a pas-
sage for the LLM to answer a question. To achieve
this goal, we introduce contrastive decoding (Li
et al., 2022) and calculate the perplexity (Li et al.,
2023) after contrastive decoding.

Perplexity In instruction tuning, the model is
trained to maximize the likelihood of a response
given the instruction. Thus, perplexity (PPL) serves
as an indicator of difficulty (Li et al., 2023, 2024).
Specifically, the PPL of a given sample (g, a) is

10748

defined as

N
PPL(a | q) —exp< Zlogp a; q7a1,...7a11)>.

2
Similarly, we can also use perplexity to measure
how difficult it is for the LLM to generate the cor-
rect answer a for question ¢ given c in RAG.

N
PPL(a | ¢,c) = exp(if j;logp(aj | q,¢,a1,...,
3
Contrastive Perplexity The indicator PPL(a |
q, ¢) indicates the difficulty of the LLM to gener-
ate answers through query ¢ and context c, but it
cannot distinguish whether the answer generation
is driven by context c or the LLM’s internal knowl-
edge. Therefore, directly using PPL for passage
screening is biased. Inspired by CAD (Shi et al.,
2023a), we introduce contrastive perplexity, which
calculates perplexity using contrastive decoded log-
its (Li et al., 2022) to measure the gain of context
c for answering a. This mitigates bias from the
model’s internal knowledge, enabling a more ac-
curate quantification of the gain from context c to
query q. Given our modeling of the internal prior
p(at | q,a<t), the probability distribution of the
LLM output is adjusted as:

ag ~ ﬁ(at | ¢ dq, a’<t)
p(at ‘ ¢ dq, a<t) ¢
xplat | e,q,act) | "
plat | g,a<t)

where p is the original probability distribution from
the LLM, p is the distribution adjusted via con-
trastive decoding, a¢ is the generated sequence,
and « is a hyperparameter controlling the degree
of adjustment. After rearranging the formula,

a; ~ softmax (1 + «) logity(at | ¢, q, a<t)
— alogity(ar | ¢,a<t)].
Therefore, the gain of passage c on the correct

answer a generated by the LLM for question ¢ can
be quantified as M(c, a | ¢), formally,

4

M(c,a | q) = exp <—
j=1

Q)
3.3 Selector between LLM and Retriever

To effectively align the retriever’s output with with
the preferences of the LLM, we introduce a mid-
dleware, the selector, to identify the most benefi-
cial passages. This selector leverages the context-
gain-aware approach to refine passage selection,

N
1 -
N E log p(a; q,c,al,...,aj_1)>.

ensuring that the information fed into the LLM
maximally enhances its performance.

The selector is formulated as a gain estimation
problem, where gain estimates are distilled into a
learnable function f(q,c;0) — 0, where 0 is the
trainable parameter of the model. We employ the
BGE pre-trained model as the foundation for the
selector, defining its function mapping as:

s f(a,en)],

V = [f(a,c0),.. (©)
where V denotes the predicted gain values for the
retrieved passages C' with respect to query ¢. This
formulation enables the selector to effectively rank
passages, ensuring that the most relevant and gain-
ful content is utilized by the LLM.

3.4 Pseudo-passage Strategy

While increasing the number of retrieved passages
raises the likelihood of finding useful information,
passage selection can still become degenerate, that
is, all retrieved passages do not provide any useful
information, or augmenting with each retrieved
passage may be worse than LLLM direct response.

To address this challenge, we introduce the
pseudo-passage strategy. Concretely, before select-
ing any external passages, we generate a pseudo-
passage cg by prompting the LLM with the query.
Formally, we define:

Co = g(PU (Q))a (7

where Py refers to the prompt template used to gen-
erate the pseudo-passage. This pseudo-passage cg
is then added to the selector’s candidate list along-
side the truly retrieved passages.

This strategy reduces over-reliance on poten-
tially unhelpful retrieved passages and ensures that
the selection of passages is always gain-oriented.
Consequently, the pseudo-passage strategy not only
mitigates degradation but also promotes the col-
laborative and efficient integration of internal and
external knowledge of the LLM, ultimately leading
to more robust performance.

3.5 Training of the LLM Preference Selector

As shown in Fig. 2, we train a middleware, i.e.,
selector, to align the preferences of the LLM by
selecting the most beneficial passage.

Data Construction Starting with a set of QA
pairs, for each {q,a} pair, we first retrieve k
relevant passages C' = {ci,...,c;}, and then

10749

calculate the gain to construct the training set
{(gnaicl o) | o] = M(ca; |)} Addi-
tionally, to mitigate degradation, we generate and
add a pseudo-passage cg to the set. Algorithm 1

summarizes this process.

Training Loss To make the selector aware of
the relative gains of different c on the same ¢, we
refer to Shi et al. (2023b); Lin et al. (2023) and
use distillation loss. Note that due to the long-tail
distribution of V" and the large values at the tail, the
label V' we actually use is a simple transformation,
that is, v = —log(v + 1). The distillation loss is
calculated as follows,

P = softmax(V),

Q = softmax(V)

P,
L=KL(P || Q) =3 Ploz ;-

V:[vl,...,vk],

V =[01,..., 0]

®)

3.6 GainRAG Inference Workflow

After obtaining the selector, it acts as a middleware
to align preferences between the retriever and the
LLM.

Specifically, when a query ¢ comes, we first
prompt the LLM to generate the internal informa-
tion about this query and use the retriever to retrieve
several relevant passages. Formally,

co =9(q), 9
[Cla"'ack] = R(q7Da k;)’ (10)

After getting all the passages, we use the selector
to predict the gain of these passages for ¢ and select

Algorithm 1 Gain Signal Construction
Input: Original Dataset D, = {(q,a),. ..}, Cor-
pus D
Output: Enriched dataset D, = {(¢,¢,v),...}
1: Initialize D, < 0
2: for (¢,a) € D, do

> Initialize

co + G(Po(q)) > Generate
pseudo-passage
4: [c1,...,¢ck] < R(q,D, k) > Retrieve

relevant passages

5: force {c;|i=0...k}do
6: Compute v = M(c,a | q)
7: Add (g, ¢,v) to D,

8: end for

9: end for

10: return D, > Return the enriched dataset

Algorithm 2 GainRAG Inference Workflow
Input: Query g, Corpus D
Output: Answer a

1: ¢co < G(Po(q)) v Generate pseudo-passage

2: [e1,y ..., c6) < R(q, D, k)

3 V] > Initialize score list

4: for i <~ 0to k do > Iterate through all
passages

5: Vi] < f(g,¢;) > Compute score for ¢;

6: end for

7: 1* < argmax V

8: " < c;. > Select the best passage c*

9: a <+ G(q,c*) > Predict the answer

10: return a > Return the final answer

the passage with the highest gain. Formally,

max

c* = arg
ce{co 1, Ck }

fla,c) (1)

Finally, we use the selected optimal passage for
enhanced generation to obtain the predicted answer.
In terms of formula,

a=G(g,c). (12)

Algorithm 2 summarizes this process.

4 Experiments

In this section, we report our experimental details
and results, and provide an experimental analysis
of GainRAG.

4.1 Implementation Details

Training Data We randomly selecte 20k samples
from the HotpotQA training set and about 4k from
the WebQuestions training set. For each sample,
we gathere 21 relevant passages: 20 retrieved us-
ing the most common retriever Contriever (Izacard
et al., 2021) and 1 generated internally. We then
applie Algorithm 1 to add relevant passages and fil-
ter out samples where the passage with the highest
gain is incorrectly generated, resulting in about 10k
samples. The decoding « is set to 0.5 according to
CAD (Shi et al., 2023a).

Training Details We use LLama3-8b to generate
preference values and BGE-reranker-base (Xiao
et al., 2024) for the selector’s initial weights, train-
ing for 2 epochs. All experiments are conducted on
a single A100 with 80G memory.

Inference Details During inference, we use Con-
triever (Izacard et al., 2021) as the retriever and

10750

Method HotpotQA 2WikiMultiHopQA WebQuestions
EM F1 Avg EM F1 Avg EM F1 Avg
w/o retrieval
Naive 2240 2244 2242 2680 2044 23.62 4439 3590 40.14
GenRead 31.00 30.50 30.75 30.60 2524 27.92 47.69 3142 39.55
w/ retrieval
Standard RAG 31.80 33.23 3251 2340 21.81 2261 3504 3326 34.15
Self-RAG 30.60 18.83 24.71 34.00 1733 25.67 42.18 23.14 32.66
Rerank 35.80 37.45 36.62 2420 2294 2357 3750 3555 36.52
GainRAG 39.60 41.99 40.79 3140 28.92 30.16 4251 39.17 40.84

Table 1: EM/F1/Avg(EM,F1) of different methods experimented on datasets HotpotQA, 2WikiMultiHopQA,
WebQuestions. The best and second best scores are highlighted in bold and underlined, respectively.

SQuAD NaturalQA TriviaQA

Method EM Fl Ay EM FlI Ayg EM Fl A
w/o retrieval

Naive 18.50 21.57 20.03 3125 29.02 30.13 6020 59.96 60.08

GenRead 21.13 2090 21.01 3848 3277 3562 64.15 5894 61.55
w/ retrieval

Standard RAG 29.53 3246 30.99 38.14 36.82 3748 62.16 61.87 62.02

Selff-RAG ~ 27.69 1478 2123 3560 39.78 37.69 61.65 3521 4843

Rerank 2936 31.84 30.60 30.86 30.60 30.73 65.55 65.09 65.32

GainRAG ~ 34.65 37.55 36.10 41.97 4127 41.62 6729 66.73 67.01

Table 2: EM/F1/Avg(EM,F1) of different methods experimented on datasets SQuAD, NaturalQA, TriviaQA. The
best and second best scores are highlighted in bold and underlined, respectively.

LLama3-8B as the generator. We set the initial
retrieval setting k to 100 because 100 has a high
coverage, as shown in Appendix B analysis ex-
periment. For all datasets, we use 21M English
Wikipedia (Karpukhin et al., 2020) dump as the
source passages for the retrieval. Prompts for the
experiments can be found in Appendix D

Task Type Datasets # Samples
. 2WikiMultiHopQA 500
Multi-HopQA HotpotQA 500
WebQuestions 2032
OpenQA NaturalQA 3610
SQuAD 10570
TriviaQA 11313

Table 3: Description of tasks and evaluation datasets.

4.2 Datasets and Evaluation Metrics

Eval Datasets To verify the effectiveness and gen-
eralization of GainRAG, we use the open domain
question answering datasets WebQuestion (Berant
etal., 2013), NaturalQA (Kwiatkowski et al., 2019),
TriviaQA (Joshi et al., 2017) and SQuAD (Ra-
jpurkar, 2016), as well as the complex multi-hop
question answering datasets HotpotQA (Ho et al.,

2020a) and 2WikiMultiHopQA (Ho et al., 2020b).
The statistics are shown in Table 3. Its detailed
description can be found in Appendix A.
Evaluation Metrics We calculate exact match
(EM) and F1 scores. Following Asai et al. (2023);
Mallen et al. (2022), we apply a non-strict EM
metric, which considers a model’s generation cor-
rect if it includes the golden answer, rather than
requiring an exact match. F1 measures the overlap
between the predicted and golden answers. Note
that in our study, longer responses tend to increase
EM scores due to higher matching probabilities,
but often lower F1 scores due to irrelevant content.
Therefore, the average of both metrics may be a
more balanced evaluation.

4.3 Baselines

We selected several of the most common meth-
ods for comparison. 1) StandardRAG, which is
the most classic “retrieve-then-read” paradigm. 2)
GenRead (Yu et al., 2022): Its retriever can be
seen as itself since it uses self-generated context to
answer questions. It has almost no preference for
misalignment, but there may be insufficient infor-
mation. 3) Self-RAG (Asai et al., 2023): Through
adaptive retrieval and self-criticism, it alleviates

10751

Method HotpotQA 2WikiMultiHopQA WebQuestions NaturalQA

EM F1 Avg EM F1 Avg EM F1 Avg EM F1 Avg
Standard RAG 31.80 33.23 32.51 2340 21.81 22.61 35.04 3326 34.15 38.14 36.82 3748
w/o all 3580 3745 36.62 2420 2294 2357 3750 3555 36.52 30.86 30.60 30.73
w/o pseudo 37.80 40.65 39.23 27.20 24.88 26.04 41.24 3897 40.11 41.25 40.94 41.09
w/o distillation 34.20 35.85 35.02 29.60 26.68 28.14 43.21 36.66 39.94 3241 3139 31.90
GainRAG 39.60 41.99 40.79 3140 2892 30.16 42.51 39.17 40.84 41.97 41.27 41.62

Table 4: Ablation studies, including:

w/o all (removing all modules i.e., the ordinary reranker), w/o pseudo

(removing the strategy for generating pseudo-passage, w/o distillation (removing the distillation fine-tuning.)

the preference misalignment problem to a certain
extent. 4) Rerank (Glass et al., 2022; Xiao et al.,
2024): Itis a supplement to the classic RAG. It adds
middleware between the retriever and the LLM.
Following the “retrieve-rerank-read”, we use the
BGE-Reranker-base model. For fairness, Rerank
has the same settings as ours. StandardRAG and
Self-RAG also only use top-1. The rest of the set-
tings follow the settings of their original papers.

4.4 Main Results

Experimental results are presented in Table 1 and
Table 2, and we can get the following analysis:

1) Our method achieves state-of-the-art perfor-
mance on almost all datasets. Despite using only a
small subset of HotpotQA and WebQuestions for
data synthesis, it generalizes well across datasets,
demonstrating the robustness of GainRAG.

2) In WebQuestions, RAG methods generally
underperform compared to those without external
knowledge, suggesting that retrieval is not always
beneficial. In cases of preference misalignment,
retrieved passages can even be harmful. However,
our approach still achieves the best average perfor-
mance.

3) The reranking method outperforms other base-
lines, proving that middleware integration is both
simple and effective. By leveraging a small amount
of data to mitigate preference misalignment, our
method significantly surpasses standard reranker.

4.5 Ablation Study

In order to verify the effectiveness of each mod-
ule, we conducted ablation experiments on several
datasets. The results, shown in Table 4, confirm
that every module plays a crucial and irreplaceable
role. The key findings are:

1) Without distillation fine-tuning, performance
drops significantly, highlighting the importance of
preference alignment. However, due to the exis-
tence of the pseudo-passage strategy, the perfor-

Recall@] vs. Avg(EM, F1) Changes

6.0%
? ARecall@1

4.5% 1l AAvg(EM, F1)

3.0%

0.0%
HotpotQA 2WikiMultiHopQA WebQuestions

-1.5%

-3.0%

Figure 3: Illustration of gain. Changes in recall of the
gold answer and downstream performance after using
GainRAG.

mance can still be significantly improved over the
common methods.

2) When pseudo passage strategy is absent, per-
formance drops on some datasets significantly but
not all. It shows that it plays a significant role
when there is a degenerate solution, that is, when
the correct preferred passage cannot be retrieved.

3) Pseudo passages and preference perception
fine-tuning are complementary and essential. To-
gether, they prevent degenerate solutions and im-
prove passage selection, aligning preferences be-
tween the retriever and the LLM.

4.6 Effect of Preference Selection

In order to explore why GainRAG improves the
response performance of downstream LLMs, we
removed the pseudo-passage strategy and calcu-
lated the changes in Recall@1 and downstream
generation metrics.

As shown in Fig. 3, we find that there are three
general cases. 1) Our selector sometimes signifi-
cantly improves the Recall@1, which further im-
proves downstream performance. 2) Our selector
does not significantly improve the Recall@1, but
the downstream performance are significantly im-

10752

proved. 3) Our selector reduces the Recall@1, but
the downstream performance are significantly im-
proved.

Case 1 is intuitive, while Cases 2 and 3 demon-
strate that our selector’s impact goes beyond just
relevance, highlighting the benefits of selection
based on gain. This further confirms the effective-
ness of our approach.

NaturalQA 14.59% 74.84% 10.57% 22.0%

WebQuestions 15.20% 76.27% 8.53% 18.5%

2WikiMQA | 23.51% 60.56% 15.94% 50.2%

HotpotQA | 20.20% 68.69% 11.11% 19.8%

‘Win % mTie % = Lose % Pseudo Usage %

Figure 4: Tllustration of the pseudo-passages generated
for each dataset to avoid degenerate solutions.

4.7 What is the Effect of Pseudo-passage?

To examine the role of pseudo-passages in mitigat-
ing performance degradation, we analyze their us-
age across different datasets. Specifically, we count
the overall use of pseudo-passages, as shown in the
right part of Fig. 4. In addition, we replace these
cases with non-pseudo-passage with the largest
gain and performed a Win-Tie-Lose comparison,
as shown in the left part of Fig. 4.

In many cases, internally generated passages
are selected, with internal knowledge used in 50%
of the cases on 2WikiMultiHopQA. This is con-
sistent with the comparative experiment, which
shows that GenRead significantly improves per-
formance on 2WikiMultiHopQA, highlighting the
value of LLM-generated passages for this dataset.
Additionally, the Win-Tie-Lose comparison reveals
that the number of winning cases after replacing
pseudo-passages with the highest-gain passages far
outweighs the losing cases, further demonstrating
the effectiveness of pseudo-passages in alleviating
degradation.

4.8 Synthetic Signal Analysis

To explore the effect of contrastive decoding debi-
asing, we use the ordinary PPL synthetic signal to
fine-tune the selector under the same settings. Its
performance and changes are shown in Table 5.
We find that contrastive debiasing is crucial, as
removing it weakens preference perception for in-
dividual passages. This is because this strategy en-
hances the model’s perception of gain rather than

just relevance, thereby alleviating over-reliance on
LLM internal knowledge.

Datasets EM /F1/ Avg(EM,F1)

HotpotQA 38.2 (| 1.40) / 41.38 (1 0.61) / 39.79 (| 1.00)
OWIkiMQA 29.4 (] 2.00)/27.12 (| 1.80) / 28.26 (. 1.90)

Table 5: Performance degradation after removing con-
trastive decoding

4.9 In-Depth Comparison with the Reranker

To explore the impact of the number of selector
choices on performance and compare it with the
reranker, we set the selector to the interval [1,5]
and observe the performance changes, as shown in
Fig. 5. The results reveal the following:

1) Increasing K significantly boosts the recall
rate, as expected, since more passages increase the
likelihood of including the gold answer.

2) For our selector, selecting the top passage
is usually sufficient. Even for general rerankers,
increasing K does not improve downstream gener-
ation performance, and longer contexts even add
overhead and may be harmful.

3) While the recall rate increases, down-
stream generation performance remains largely un-
changed, highlighting the scientificity and rational-
ity of selection. This further supports the observa-
tion that simply including the gold answer does not
guarantee correct generation.

Changes in Recall with k (ours) o, Changes in Recall with k (Reranker)

-

% " 60%
/
40% / 40%
HotpotQA
~e—2WikiMultiHopQA

~<WebQuestions
—-NaturalQA

~+HotpotQA
20% ~s-2WikiMultillopQA 20%
—<WebQuestions
—#NaturalQA
k=1 k2 k=3 k=4 k=5 k1 k=2 k3 k4 k=5

Changes in Avg with k (ours) 60% Changes in Avg with k (Reranker)

s ———— NI ?7—@

HotpotQA

——2WikiMultiHopQA
¢ WebQuestions —<WebQuestions
—#NaturalQA 0% —#NaturalQA

k=1 k=2 k=3 k=4 k=5 1 k=2 k=3 k4 k5

20% HotpotQA 20%
~e-2WikiMultiHopQA

0%

Figure 5: As the number of passages increases, the
changes in recall and downstream generation perfor-
mance. The left part is the change of our selector, the
right side is the BGE-reranker, and the upper and lower
parts are recall and Avg(EM, F1) respectively.

10753

5 Conclusion

This work analyzes the preference gap between
retrievers and LLMs and proposes GainRAG to ad-
dress this misalignment. We define and quantify
preferences, then fine-tune a selector with signals
from a small number of samples. By adding a selec-
tor and using a pseudo-passage strategy to prevent
degradation, GainRAG effectively integrates inter-
nal and external knowledge of LLMs, achieving
superior performance.

Acknowledgements

This work was supported in part by the National
Natural Science Foundation of China [62206079];
and the Key R&D Program of Heilongjiang
Province [2023ZX01A11]. We also appreciate the
support from China Mobile Group Heilongjiang
Co., Ltd. @ on our research, the research is jointly
completed by both parties.

Limitations

GainRAG selects passages with gain by calculating
the gain score. However, this selection may not be
the optimal solution. Whether there are some com-
binations of passages that make the gain stronger
remains to be verified. And we only used a very
small amount of training data to show the effect.
In the future, large-scale data training experiments
are still needed to verify whether it will get better
performance. In addition, for the signal generation
of large-scale data, whether a small model can be
used as a generator when generating signals to ac-
celerate the experiment is also a need for further
experimental verification.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
arXiv preprint arXiv:2310.11511.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
conference on empirical methods in natural language
processing, pages 1533-1544.

Florin Cuconasu, Giovanni Trappolini, Federico Sicil-
iano, Simone Filice, Cesare Campagnano, Yoelle
Maarek, Nicola Tonellotto, and Fabrizio Silvestri.
2024. The power of noise: Redefining retrieval for
rag systems. In Proceedings of the 47th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 719-729.

Guanting Dong, Yutao Zhu, Chenghao Zhang, Zechen
Wang, Zhicheng Dou, and Ji-Rong Wen. 2024. Un-
derstand what llm needs: Dual preference alignment
for retrieval-augmented generation. arXiv preprint
arXiv:2406.18676.

Wengqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang,
Hengyun Li, Dawei Yin, Tat-Seng Chua, and Qing
Li. 2024. A survey on rag meeting llms: Towards
retrieval-augmented large language models. In Pro-
ceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 6491—
6501.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Michael Glass, Gaetano Rossiello, Md Faisal Mahbub
Chowdhury, Ankita Naik, Pengshan Cai, and Alfio
Gliozzo. 2022. Re2g: Retrieve, rerank, generate. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2701-2715.

Hangfeng He, Hongming Zhang, and Dan Roth. 2022.
Rethinking with retrieval: Faithful large language
model inference. arXiv preprint arXiv:2301.00303.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020a. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning
steps. arXiv preprint arXiv:2011.01060.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020b. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning
steps. arXiv preprint arXiv:2011.01060.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Unsupervised dense in-
formation retrieval with contrastive learning. arXiv
preprint arXiv:2112.09118.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lu-
cas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and
Edouard Grave. 2022. Few-shot learning with re-
trieval augmented language models. arXiv preprint
arXiv:2208.03299, 1(2):4.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea

10754

Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput-
ing Surveys, 55(12):1-38.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaga: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601-1611.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Zixuan Ke, Weize Kong, Cheng Li, Mingyang Zhang,
Qiaozhu Mei, and Michael Bendersky. 2024. Bridg-
ing the preference gap between retrievers and 1lms.
arXiv preprint arXiv:2401.06954.

Jaehyung Kim, Jachyun Nam, Sangwoo Mo, Jongjin
Park, Sang-Woo Lee, Minjoon Seo, Jung-Woo Ha,
and Jinwoo Shin. 2024. Sure: Summarizing re-
trievals using answer candidates for open-domain
qa of llms. arXiv preprint arXiv:2404.13081.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:453—
466.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459-9474.

Ming Li, Yong Zhang, Shwai He, Zhitao Li, Hongyu
Zhao, Jianzong Wang, Ning Cheng, and Tianyi
Zhou. 2024. Superfiltering: Weak-to-strong data
filtering for fast instruction-tuning. arXiv preprint
arXiv:2402.00530.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang
Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou, and
Jing Xiao. 2023. From quantity to quality: Boosting
Ilm performance with self-guided data selection for
instruction tuning. arXiv preprint arXiv:2308.12032.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang,
Jason Eisner, Tatsunori Hashimoto, Luke Zettle-
moyer, and Mike Lewis. 2022. Contrastive decoding:
Open-ended text generation as optimization. arXiv
preprint arXiv:2210.15097.

Xi Victoria Lin, Xilun Chen, Mingda Chen, Weijia Shi,
Maria Lomeli, Rich James, Pedro Rodriguez, Jacob
Kahn, Gergely Szilvasy, Mike Lewis, et al. 2023.
Ra-dit: Retrieval-augmented dual instruction tuning.
arXiv preprint arXiv:2310.01352.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,
and Nan Duan. 2023. Query rewriting in retrieval-
augmented large language models. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 5303-5315.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi
Das, Hannaneh Hajishirzi, and Daniel Khashabi.
2022. When not to trust language models: Inves-
tigating effectiveness and limitations of paramet-
ric and non-parametric memories. arXiv preprint
arXiv:2212.10511,17.

Jinming Nian, Zhiyuan Peng, Qifan Wang, and Yi Fang.
2024. W-rag: Weakly supervised dense retrieval
in rag for open-domain question answering. arXiv
preprint arXiv:2408.08444.

P Rajpurkar. 2016. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Weijia Shi, Xiaochuang Han, Mike Lewis, Yulia
Tsvetkov, Luke Zettlemoyer, and Scott Wen-tau
Yih. 2023a. Trusting your evidence: Hallucinate
less with context-aware decoding. arXiv preprint
arXiv:2305.14739.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Min-
joon Seo, Rich James, Mike Lewis, Luke Zettle-
moyer, and Wen-tau Yih. 2023b. Replug: Retrieval-
augmented black-box language models. arXiv
preprint arXiv:2301.12652.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Harsh Trivedi, Niranjan Balasubramanian, Tushar
Khot, and Ashish Sabharwal. 2022. Interleav-
ing retrieval with chain-of-thought reasoning for

knowledge-intensive multi-step questions. arXiv
preprint arXiv:2212.10509.
Liang Wang, Nan Yang, and Furu Wei. 2023.

Query2doc: Query expansion with large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 9414-9423.

Yuhao Wang, Ruiyang Ren, Junyi Li, Wayne Xin
Zhao, Jing Liu, and Ji-Rong Wen. 2024. Rear: A
relevance-aware retrieval-augmented framework for
open-domain question answering. arXiv preprint
arXiv:2402.17497.

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muen-
nighoff, Defu Lian, and Jian-Yun Nie. 2024. C-pack:
Packed resources for general chinese embeddings. In
Proceedings of the 47th international ACM SIGIR
conference on research and development in informa-
tion retrieval, pages 641-649.

10755

Fangyuan Xu, Weijia Shi, and Eunsol Choi. 2024. Re-
comp: Improving retrieval-augmented lms with con-
text compression and selective augmentation. In The
Twelfth International Conference on Learning Repre-
sentations.

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong
Xu, Mingxuan Ju, Soumya Sanyal, Chenguang
Zhu, Michael Zeng, and Meng Jiang. 2022. Gen-
erate rather than retrieve: Large language mod-
els are strong context generators. arXiv preprint
arXiv:2209.10063.

Tianjun Zhang, Shishir G Patil, Naman Jain, Sheng
Shen, Matei Zaharia, Ion Stoica, and Joseph E Gonza-
lez. 2024. Raft: Adapting language model to domain
specific rag. arXiv preprint arXiv:2403.10131.

A Dataset

Here, we introduce in detail the datasets we used,
which are seven datasets on four tasks.

2WikiMultiHopQA (Ho et al., 2020b) and Hot-
potQA (Ho et al.,, 2020a): Both datasets are
multi-hop question answering datasets based on
Wikipedia. Considering the limitation of exper-
imental cost, we used the sub-sampling set pub-
lished by Trivedi et al. (2022); Kim et al. (2024),
which is obtained by extracting 500 questions from
the validation set of each dataset.

WebQuestions (Berant et al., 2013): Con-
structed from questions posed by the Google Sug-
gest API, where the answers are specific entities
listed in Freebase.

NaturalQA (Kwiatkowski et al., 2019): A
dataset designed to support comprehensive QA sys-
tems. It consists of questions from real Google
search queries. The corresponding answers are text
spans from Wikipedia articles, carefully identified
by human annotators.

SQuAD (Rajpurkar, 2016): It is a dataset for
evaluating reading comprehension, created by an-
notators who generate questions based on the doc-
uments they read. It is widely used for training and
testing open-domain QA systems.

TriviaQA (Joshi et al., 2017): A compilation
of trivia questions paired with answers, both origi-
nally pulled from online sources.

B Coverage Study

To analyze the performance of the original retriever,
we conducted experiments on four datasets. Specif-
ically, we used the retriever to retrieve [1, 5, 10,
20, 50, 100] paragraphs respectively and calculated
the recall, EM coverage, and F1 coverage. For EM
coverage, we used each paragraph to enhance the

query separately, and as long as there is one correct
response, it is considered to be covered. For EM
coverage, we used each paragraph to enhance the
query separately, took the response with the largest
F1 value, and calculated the average of the overall
dataset.

As shown in Fig. 6,Fig. 7 and Fig. 8, as K in-
creases, the recall and coverage will steadily in-
crease. When retrieving 100, the coverage is large
enough and far exceeds that of the current state-of-
the-art RAG method.

Changes in Recall with K

100%

80%

60%

40%
—+—HotpotQA

—e—2WikiMultiHopQA
——WebQuestions

20%

—¥—NaturalQA
R@1 R@5 R@10 R@20 R@50 R@100

0%

Figure 6: Illustration of the change in recall as the num-
ber of retrievals K increases

100% Changes in EM Coverage with K

80%
60%

40%

HotpotQA
—e—2WikiMultiHopQA

—<—WebQuestions

20%

—#—NaturalQA
c@1 c@s C@10 C@20 C@s0 C@100

0%

Figure 7: Illustration of the change in EM coverage as
the number of retrievals K increases

100% Changes in F1 Coverage with K
80%
60%

40%

HotpotQA
—e—2WikiMultiHopQA
——WebQuestions

—#—NaturalQA

20%

0%

c@1 c@s C@10 C@20 C@50 C@100

Figure 8: Illustration of the change in F1 coverage as
the number of retrievals K increases

10756

C Training Details

We use LLama3-8b as our generator for generating
preference values and BGE-reranker-base (Xiao
et al., 2024) for initializing the selector. We train
selection for 2 epochs. During fine-tuning, we
set train-group-size to 16 and batch-size to 8. In
addition, during training, we randomly select 16
out of 21 passages to ensure generalization. The
rest of the settings follow the official fine-tuning
script (Xiao et al., 2024). Regarding the training
data, we randomly selected 20,000 samples from
the Hotpot training set and all 3,778 samples from
the WebQuestion training set. After filtering, we
finally obtained 14,084 training data. All experi-
ments are conducted on a single A100 with 80G
memory.

D Prompt Templates

All the prompt templates used by our proposed
GainRAG are shown in Table 6.

Task Task Instruction

Generation {passage} \n ### Instruc-
tion: \n Answer the ques-
tion below concisely in a few
words. \n\n ### Input: \n
{query}

Pseudo-Passage Please provide background
for the question below in 100
words. Do not respond with
anything other than back-
ground. If you do not know
or are unsure, please gener-
ate “N/A” directly. Question:

{query}

Table 6: Full list of instructions used during zero-shot
evaluations and pseudo-passage generation. Where
query and passage are the paragraph to be used and
the question to be answered.

10757

