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Abstract

Rich user-item interactions are essential for
building reliable recommender systems, as they
reflect user preference patterns. However, mi-
nor language news recommendation platforms
suffer from limited interactions due to a small
user base. A natural solution is to apply well-
established English recommender systems to
minor language news recommendation, but the
linguistic gap can lead to inaccurate modeling
of minor language news content. Therefore,
enabling few-shot minor language news rec-
ommender systems to capture both content in-
formation and preference patterns remains a
challenge. Based on the observation that pref-
erence patterns are similar across languages,
we propose a minor language news recommen-
dation model by cross-lingual preference pat-
tern transfer, named PPT. Our model adopts
the widely used two-tower architecture and em-
ploys the large language model as the backbone
of the news encoder. Through cross-lingual
alignment, the strong English capability of the
news encoder is extended to minor languages,
thus enhancing news content representations.
Additionally, through cross-lingual news aug-
mentation, PPT simulates interactions of minor
language news in the English domain, which
facilitates the transfer of preference patterns
from the many-shot English domain to the few-
shot minor language domain. Extensive experi-
ments on two real-world datasets across 15 mi-
nor languages demonstrate the superiority and
generalization of our proposed PPT in address-
ing minor language news recommendation.

1 Introduction

In today’s fast-paced world, online news platforms
in various languages play a crucial role in keep-
ing individuals informed. With the daily surge of
news articles, it is important to develop person-
alized news recommender systems to help users
navigate the overwhelming flow of information.

*Both authors are corresponding authors.
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Figure 1: The process of learning preference patterns.
The number denotes the cosine similarity. Note that the
shorter the distance, the higher the similarity.

A widely adopted paradigm for news recommen-
dation is to separately represent users and news
as embeddings and then predict user interest in
candidate news (Wu et al., 2023). User embed-
dings are derived from clicked news embeddings,
while news embeddings incorporate both content
information and preference patterns. Content in-
formation can be directly extracted by the news
encoder, whereas preference patterns need to be
learned by training on user-news interactions. Fig-
ure 1 illustrates the process of learning preference
patterns. After training, the similarity between
News1 and News2 increases while the similarity
between News3 and News4 decreases. News1 and
News2 differ significantly in terms of content (a
baseball coach overcomes illness to win vs. a coun-
try singer welcomes daughter), which causes low
initial similarity. However, both News1 and News2
convey positive emotions, and baseball and country
music share a common cultural foundation (Cusic,
2003; Vignola, 2005). As a result, they are more
likely to appeal to the same user. This preference
pattern is learned through training and leads to an
increase in similarity. As for News3 and News4,
although they are both crime news articles about
shooting incidents, readers tend to prefer local or
regional news (Schrøder, 2019), a pattern that is
also learned by training. Consequently, their simi-
larity decreases since News3 occurred in Arlington,
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Texas, and News4 in New Hampshire.
Therefore, the accuracy of recommender sys-

tems relies heavily on interactions, as evidenced by
the analysis in Appendix B.1. English news plat-
forms with a large global user base have rich inter-
actions (many-shot), whereas minor language plat-
forms with limited users face interaction scarcity
(few-shot). For example, the average number of his-
torical interactions per user on the Norwegian news
platform Adressa (Gulla et al., 2017) is only 8.71,
far less than the average of 25.27 on English Mi-
crosoft News (Wu et al., 2020). In such cases, mi-
nor language news recommendation performance
is primarily constrained by insufficient preference
patterns rather than the news encoder’s ability to
capture content. An intuitive method is to train
the model in the English domain and directly ap-
ply it to the minor language domain (Guo et al.,
2023), but this method performs poorly due to the
linguistic gap. Translating minor language news
into English is a natural attempt. However, our pre-
liminary experiments show that while translation
improves performance to some extent, the semantic
shifts caused by translation distort content repre-
sentation and hinder preference pattern transfer,
which results in inferior performance. Thus, a key
challenge in minor language news recommendation
lies in ensuring that news embeddings capture both
content information and preference patterns.

Inspired by the observation that preference pat-
terns are similar across languages (Schrøder, 2019;
Guo et al., 2023), we propose a few-shot minor
language news recommendation model based on
cross-lingual Preference Pattern Transfer, named
PPT. Specifically, PPT employs a Large Language
Model (LLM)-based news encoder to learn accu-
rate preference patterns in the many-shot English
domain. Then, these patterns are transferred to the
few-shot minor language domain by cross-lingual
news augmentation. Additionally, through cross-
lingual alignment, PPT extends the LLM-based
news encoder’s strong English encoding ability to
minor languages for content representation, thus
capturing both content and preference patterns.

Our contributions can be summarized as follows:
(1) Based on the observation that preference pat-
terns are learned by training, we identify the key
challenge in minor language news recommendation
as the difficulty of learning preference patterns due
to limited interactions. (2) To address the challenge
of interaction scarcity, we propose PPT, a minor
language news recommendation model based on

cross-lingual preference pattern transfer, which in-
corporates both news content and preference pat-
terns. (3) We conduct extensive experiments on two
real-world news recommendation datasets across a
total of 15 minor languages. The consistent supe-
rior performance of PPT demonstrates its effective-
ness and generalization.

2 Related Work

2.1 Basic English Recommendation

Deep Neural-based Models. With the develop-
ment of deep learning, many deep neural-based
methods have been proposed, such as NRMS (Wu
et al., 2019b), NAML (Wu et al., 2019a), and
LSTUR (An et al., 2019). These methods follow
the two-tower architecture, employing deep neural
networks as news and user encoders. However, lim-
ited by the size of networks, they struggle to fully
capture the semantic information.

LLM-based Models. Given LLMs’ power-
ful text comprehension capabilities, recent studies
have explored their use as encoders. Models like
NoteLLM (Zhang et al., 2024) and ONCE (Liu
et al., 2024) enrich news content using LLMs and
encode it with LLMs. While models like KAR
(Xi et al., 2024) and LLMRec (Wei et al., 2024)
utilize LLMs to encode the textual descriptions of
both items and users to obtain embeddings. How-
ever, since most LLMs are primarily pre-trained
on English corpora, they excel at encoding En-
glish but struggle with minor languages (Qin et al.,
2025). Consequently, directly employing LLMs as
encoders for minor language news recommenda-
tion results in unsatisfactory performance.

2.2 Cross-Lingual Recommendation

Cold-Start Models. Minor language recommenda-
tion can be considered a special case of cold-start
recommendation (Narducci et al., 2016). Inspired
by cross-domain recommender systems like CATN
(Zhao et al., 2020) and CDRIB (Cao et al., 2022),
the cold-start problem can be mitigated by bridging
two domains through overlapping users. However,
in the context of cross-lingual news recommen-
dation, overlapping users are almost non-existent
(Banks, 2011). A few-shot cross-lingual recom-
mender system by sharing encoders does not rely
on overlapping users (Guo et al., 2023). However,
this method was proposed before the emergence
of LLMs and, therefore, failed to leverage LLMs’
strong English encoding capabilities. Additionally,
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it did not analyze the process of preference pattern
transfer and is limited to the study between English
and Norwegian only, thus lacking generalization.

Multilingual Pre-trained Language Models
(mPLMs). Using mPLMs is a natural approach for
cross-lingual recommendation. xMIND is a multi-
lingual news recommendation dataset introduced in
(Iana et al., 2024), where the authors encoded news
articles by an mPLM, XLM-RoBERTa (Conneau,
2019). However, while mPLMs help reduce the
language gap, their small scale limits their encod-
ing capabilities, and they struggle with languages
excluded from pre-training corpora.

In contrast, our proposed PPT leverages an LLM-
based news encoder to capture content information
and extend its strong encoding capability in English
to minor languages by cross-lingual alignment.
With cross-lingual news augmentation, PPT fur-
ther transfers preference patterns from the English
domain to the minor language domain, thus inte-
grating content and preference patterns to improve
minor language recommendation performance.

3 Methodology

The overview of PPT is illustrated in Figure 2. We
adopt the widely used two-tower architecture. Both
the news encoder and user encoder are shared and
jointly trained in the English and minor language
domains. This design enables effective preference
pattern transfer through cross-lingual news aug-
mentation and alignment.

3.1 Problem Definition

We aim to enhance minor language news recom-
mendation by leveraging the rich interactions in the
English domain. The problem studied in this paper
is formulated as follows. Let E denote the English
domain and M the minor language domain. The
user and news sets in E and M are represented
as UE ,UM and DE ,DM , respectively. Each news
d ∈ D is represented as a token sequence of its
title, denoted as [w1, ..., wlen(d)]. For a given user
u ∈ U , the set of clicked news history is denoted as
Hu = {d1, ..., dlen(u)}. Our goal is to predict the
probability that a user uM in the minor language
domain will click on a candidate news dMc .

3.2 Base Recommendation Model

3.2.1 News Encoder
Considering the great success of LLMs in natural
language processing, particularly in English tasks,

we develop an LLM-based news encoder, which
comprises an LLM, a linear layer, and an additive
attention layer. Through LLM’s inherent strong en-
coding capability and the training on interactions,
the news encoder effectively captures both news
content and preference patterns. LLM in PPT de-
faults to LLaMA-2-7b (Touvron et al., 2023).

LLM maps the token sequence of news d into a
continuous embedding space, and obtains the out-
put embedding sequence Eo ∈ Rlen(d)×kl through
multiple Transformer layers, where kl is the dimen-
sion of LLM’s embedding space. Given the strong
inherent text comprehension capability of LLMs,
all LLM parameters are frozen, and more details
about fine-tuning can be found in Appendix B.3.

Linear Layer is trained to map Eo from the
LLM’s large kl-dimensional space to a much
smaller ks-dimensional space, denoted as Z ∈
Rlen(d)×ks . Thus reducing both storage require-
ments and computational costs.

Additive Attention Layer assigns different
weights to each token and calculates the weighted
sum as the final news embedding ed ∈ Rks :

ai = qT tanh(W × Zi + b), (1)

αi =
exp(ai)∑len(d)

j=1 exp(aj)
, (2)

ed =

len(d)∑

i=1

αiZi, (3)

where αi is the attention score of the ith token,
while q, W and b are the trainable parameters.

3.2.2 User Encoder
The user embedding is inferred from the clicked
news history Hu. Since different clicked news arti-
cles contribute unequally to user representation, we
use the same computational method as the additive
attention layer in News Encoder to derive a more
informative user embedding by emphasizing the
selection of significant clicked news embeddings.
The user embedding eu is defined by:

eu = Attention(NewsEncoder(Hu)) (4)

3.2.3 Training and Inference
The click probability score is computed as the in-
ner product of the user embedding and the can-
didate news embedding, ŷudc = eTu edc . Dur-
ing training, we employ negative sampling tech-
niques and set the number of negative samples
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Figure 2: An overview of our proposed PPT.

to 4. Denote the total five candidate news as
[d+, d−1 , d

−
2 , d

−
3 , d

−
4 ], and their corresponding pre-

diction scores as [ŷud+ , ŷud−1
, ŷud−2

, ŷud−3
, ŷud−4

].
The recommendation loss function LRec is the
Cross-Entropy Loss of all positive samples S:

pud+ =
exp(ŷud+)

exp(ŷud+) +
∑4

j=1 exp(ŷud−j
)
, (5)

LRec =
∑

d+∈S
− log(pud+) (6)

3.3 Cross-Lingual News Augmentation

The gap between embeddings of different lan-
guages hinders preference pattern transfer. While
mPLMs can partially reduce this gap, their small
scale prevents them from matching the encoding
performance of state-of-the-art LLMs, especially in
English. To address this, we propose cross-lingual
news augmentation to leverage the LLM-based
news encoder’s strong English encoding capability
and facilitate preference pattern transfer.

First, we translate each English news dE into
its minor language counterpart dTM by the open-
source NLLB-3.3B (Costa-jussà et al., 2022) ma-
chine translation system:

dTM = NLLB(dE), (7)

thus, each news in the English domain is aug-
mented into a set Ad = {dE , dTM}. Then, we
randomly select one element from Ad for news en-
coding during the training phase. When dTM is
selected, it simulates interactions between minor

language news and users in the English domain,
which enables the transfer of preference patterns
from the English domain to the minor language
domain. Notably, user embeddings will not be dis-
torted since dTM originates from dE and has sim-
ilar semantic information. The subsequent cross-
lingual alignment further ensures this.

3.4 Cross-Lingual Alignment

News alignment for Ad helps bridge the gap be-
tween languages and extend the LLM’s strong en-
coding capability from English to minor language.
Instead of using the MSE loss as in (Guo et al.,
2023), we use the Normalized Temperature-scaled
Cross Entropy Loss (NT-Xent Loss) (Chen et al.,
2020) for news alignment. By pulling positive
pairs (news in the same Ad) closer and pushing
negative pairs apart, NT-Xent Loss can enhance
cross-lingual embedding consistency and improve
generalization. The loss is formulated as:

pi =
exp(sim(eEdi , e

TM
di

)/τ)

N∑
j=1,j ̸=i

∑
edj∈Adj

exp(sim(eEdi , edj )/τ)

, (8)

LNews
Align =

1

N

N∑

i=1

− log pi, (9)

where N is the number of news sets in one batch,
and τ is the temperature hyperparameter. sim de-
notes the cosine similarity. By minimizing LNews

Align

to align news embeddings in different languages,
we improve the LLM-based news encoder’s ability
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to encode minor language news and mitigate the
impact of translation quality for encoding dTM .

Similarly, we also introduce the NT-Xent Loss
LUser
Align to align user embeddings eEu and eTM

u , thus
further ensuring cross-lingual alignment.

The overall loss function consists of the recom-
mendation losses and the alignment losses:

L = αLE
Rec + βLM

Rec + γLNews
Align + σLUser

Align (10)

where α, β, γ, and σ are the trade off hyperpa-
rameters, and Appendix B.2 provides the analysis.

4 Experiments

4.1 Experimental Setting
Datasets. We employ the widely used news rec-
ommendation dataset MIND(Wu et al., 2020) from
Microsoft News1 as the many-shot English domain
and evaluate on two minor language news recom-
mendation datasets xMIND(Iana et al., 2024) and
Adressa(Gulla et al., 2017). xMIND, derived from
MIND, covers 14 minor languages (see Table 1),
with further details provided in Appendix A. To
prevent user overlap and simulate the scenario of
limited interactions on minor language news plat-
forms, we include only warm-start users in MIND
and cold-start users in xMIND. Warm-start users
are defined as those with more than five clicked
news, while the rest are classified as cold-start
users. Adressa is a Norwegian news recommenda-
tions dataset collected from Adresseavisen2, a news
website in Norway. Detailed statistics for all exper-
imental datasets are shown in Table 2. Our goal is
to enhance the minor language news recommenda-
tion by transferring preference patterns from the
many-shot English domain (MIND) to the few-shot
minor language domains (xMIND and Adressa),
thus assisting non-English-speaking countries in
developing their own online news platforms.

Code Language Code Language

SWH Swahili THA Thai
SOM Somali RON Romanian
CMN Traditional Chinese FIN Finnish
JPN Japanese KAT Georgian
TUR Turkish HAT Haitian Creole
TAM Tamil IND Indonesian
VIE Vietnamese GRN Guarani

Table 1: The 14 languages included in xMIND.

1https://news.microsoft.com/source/
2https://www.adressa.no/

MIND xMIND Adressa

News 50,323 24,195 29,799
Users 37,021 22,232 19,640
Impressions 130,019 39,928 19,640
Avg. History 38.66 2.96 8.71

Table 2: Statistics of experimental dataset.

Evaluation Metrics. Following state-of-the-art
methods, we evaluate performance using widely
adopted ranking metrics, including UAUC (User
Area Under the Curve) (Zhou et al., 2018), MRR
(Mean Reciprocal Rank) (Voorhees et al., 1999),
and nDCG@K (normalized Discounted Cumula-
tive Gain), where K is set to 1, 5, and 10, respec-
tively (Järvelin and Kekäläinen, 2002).
Baselines. To evaluate performance, we compare
PPT against several variants of DIRE (Liu et al.,
2024) and a few-shot cross-lingual news recom-
mendation method, Cross-Lingual-NRMS (Guo
et al., 2023). In our experiments, DIRE-LLaMA
represents DIRE with LLaMA-2-7b (Touvron et al.,
2023) as the news encoder, while DIRE-XLM-
RoBERTa (Conneau, 2019) represents using XLM-
RoBERTa-base. ENG denotes the English dataset
MIND with warm users, and ML denotes the Mi-
nor Language dataset with cold users. Following
the Translate-then-align method in (Zhang et al.,
2021), we further enhance some baselines through
machine translation, denoted as Trans. .
• DIRE-XLM-RoBERTa (ML+ML) (Liu et al.,

2024), using XLM-RoBERTa-base as the news
encoder. Trained on the Minor Language dataset
and tested on the Minor Language dataset.

• DIRE-LLaMA (ML+ML) (Liu et al., 2024), us-
ing LLaMA-2-7b as the news encoder. Trained
on the Minor Language dataset and tested on the
Minor Language dataset.

• DIRE-LLaMA (Trans. ML+Trans. ML) (Liu
et al., 2024), using LLaMA-2-7b as the news
encoder. Trained on the Minor Language dataset
translated into English and tested on the Minor
Language dataset translated into English.

• DIRE-XLM-RoBERTa (ENG+ML) (Liu et al.,
2024), using XLM-RoBERTa-base as the news
encoder. Trained on the English dataset and
tested on the Minor Language dataset.

• DIRE-LLaMA (ENG+ML) (Liu et al., 2024),
using LLaMA-2-7b as the news encoder.
Trained on the English dataset and tested on the
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Minor Language dataset.

• DIRE-LLaMA (ENG+Trans. ML) (Liu et al.,
2024), using LLaMA-2-7b as the news encoder.
Trained on the English dataset and tested on the
Minor Language dataset translated into English.

• Cross-Lingual-NRMS (Guo et al., 2023), a few-
shot news recommendation method by sharing
encoders, which uses NRMS (Wu et al., 2019b)
as the base recommendation model.

Implementation Details. We use LLaMA-2-7b
(Touvron et al., 2023) as the default backbone.
All experiments are conducted on a Linux server
equipped with eight NVIDIA Tesla A40s. PPT is
trained using the Adam optimizer with a learning
rate of 1e-5. The maximum number of training
epochs is set to 20, with an early stopping patience
of 5. The hyperparameter τ in LNews

Align and LUser
Align

is set as 0.05. The trade off hyperparameters of
the overall loss function L in Equation 10 are set
as α = 3, β = 1, γ = 1, and σ = 1, respectively.
The small embedding dimension ks after the linear
layer of the new encoder is set to 64. We repeat
each experiment five times with different random
seeds and report the mean results.

4.2 Overall Performance

Table 3 presents the average recommendation per-
formance of PPT and baselines on xMIND across
14 minor languages. Performance for each minor
language is provided in Appendix B.4. From the
results, we can draw the following findings:
• On average, PPT significantly outperforms all

baselines across five metrics, with gains of at
least 3.38%, 6.85%, 12.48%, 7.70%, and 5.55%.
The strong English comprehension capability of
the LLM-based news encoder enables PPT to
learn accurate preference patterns in the many-
shot English domain. Cross-lingual news aug-
mentation transfers these patterns to the few-
shot minor language domain, while cross-lingual
alignment extends the encoder’s English encod-
ing ability to minor languages for content under-
standing. As a result, PPT effectively captures
both content information and preference patterns,
thus achieving remarkable minor language news
recommendation performance.

• Among the baselines, DIRE-LLaMA (Trans.
ML+Trans. ML) and DIRE-LLaMA (ENG
+Trans.ML) perform relatively better. Both
models are trained and tested on English news,

thus fully leveraging LLM’s strong English en-
coding capability. However, DIRE-LLaMA
(Trans.ML+Trans.ML) is trained in the few-
shot domain, so it fails to fully learn prefer-
ence patterns. On the other hand, although
DIRE-LLaMA (ENG+Trans. ML) is trained in
the many-shot English domain, semantic shifts
caused by imperfect translations can undermine
the modeling of content information. As a result,
both translation-based models still suffer from
ineffective preference pattern transfer or inferior
news content representation.

• DIRE-LLaMA (ENG+ML) performs poorly,
which suggests that training in the many-shot
English domain and inferring in the minor lan-
guage domain is ineffective for preference pat-
tern transfer. This can be attributed to the
gap between English and minor languages in
the LLM’s embedding space. As for DIRE-
XLM-RoBERTa (ML+ML) and DIRE-XLM-
RoBERTa (ENG+ML), which use the multilin-
gual language model XLM-RoBERTa-base as
the news encoder, their performance remains
unsatisfactory due to the inferior encoding ca-
pability of mPLMs compared to LLMs and the
ineffective preference pattern transfer.

To further analyze the performance across
xMIND’s 14 minor languages individually, we
present the nDCG@10 results for all languages
in Figure 3. As expected, PPT achieves the best
performance across most languages, except for
KAT, where PPT ranks second to DIRE-LLaMA
(ENG+Trans.ML). This can be attributed to KAT
being a low-resource language with only 3.9 mil-
lion speakers (Iana et al., 2024) and using the
unique Georgian script rather than the Latin script
adopted by English and most other languages.
This results in a larger gap between KAT and
ENG, which makes KAT news recommendation
more challenging. Among the baselines, the
translation-based DIRE-LLaMA models, which
benefit from LLM’s strong English encoding capa-
bility, perform well in most languages. However,
their performance is limited by translation quality
(see Appendix B.8). For instance, they perform
poorly in CMN, whose translation quality is low
(BLEU=0.1127).

Considering that xMIND and MIND both orig-
inate from Microsoft News, we further evalu-
ate PPT on a more challenging dataset, Adressa,
which is from the Norwegian online news plat-
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Model UAUC MRR nDCG@1 nDCG@5 nDCG@10

DIRE-XLM-RoBERTa (ML+ML) 56.95 29.70 14.47 30.51 36.80
DIRE-LLaMA (ML+ML) 55.36 29.20 14.44 29.97 36.08

DIRE-LLaMA (Trans. ML+Trans. ML) 57.45 30.64 15.78 31.65 37.62
DIRE-XLM-RoBERTa (ENG+ML) 55.42 29.52 14.70 30.07 36.39

DIRE-LLaMA (ENG+ML) 49.56 26.18 11.49 26.32 32.43
DIRE-LLaMA (ENG+Trans. ML) 56.94 30.66 15.52 31.67 37.71

Cross-Lingual-NRMS 56.56 30.55 15.26 31.55 37.86
PPT 59.39 32.76 17.75 34.11 39.96

Improvement over the best baseline 3.38% 6.85% 12.48% 7.70% 5.55%

Table 3: Average performance comparison on xMIND. The best results are highlighted in bold, and the second-best
results are underlined.
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Figure 3: Performance comparison across all languages
on xMIND.

form Adresseavisen. As shown in Table 4, PPT
still performs best across all metrics. This demon-
strates PPT’s ability to transfer preference patterns
in more practical scenarios (from Microsoft News
to Adresseavisen). The consistent superior perfor-
mance also shows PPT’s generalization.

To validate that PPT effectively bridges the gap
between English and minor languages by prefer-
ence pattern transfer, we apply UMAP (McInnes
et al., 2018) to project the news embeddings from
both English and the minor language before and
after training into a two-dimensional space, as vi-
sualized in Figure 4. Before training, the initial En-
glish and SWH news embeddings are two separate
clusters, which exhibits a clear gap. After train-
ing, the news embeddings of the two languages
become closer and intermixed. This indicates that
our proposed cross-lingual strategies effectively re-
duce the lingual shift and facilitate the transfer of
preference patterns from the English domain to the
minor language domain.

To verify the effectiveness of each loss, we an-
alyze the loss trends over training steps, as illus-
trated in Figure 5. The results show that as the
training progresses, all losses show a decreasing
trend and gradually converge, demonstrating that
PPT effectively optimizes each loss function.

The above experiments focus on few-shot rec-
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Figure 4: The visualization of English and minor lan-
guage (take SWH of xMIND as example) news embed-
dings before and after training.

ommendation. To further validate PPT’s general-
ization, we also evaluate its performance under a
more challenging zero-shot setting (β set to 0). The
experimental results are provided in Appendix B.6.
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Figure 5: The loss trend.

4.3 Ablation Studies

In this section, we examine the impact of cross-
lingual news augmentation and alignment. The
average results on 14 minor languages of xMIND
are presented in Table 5, and more detailed studies
for each language can be found in Appendix B.5.
The following observations can be drawn:
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Model UAUC MRR nDCG@1 nDCG@5 nDCG@10

DIRE-XLM-RoBERTa (ML+ML) 59.06 64.11 58.39 60.97 69.64
DIRE-LLaMA (ML+ML) 58.32 63.69 59.15 60.72 70.05

DIRE-LLaMA (Trans. ML+Trans. ML) 58.65 64.00 59.28 60.96 70.29
DIRE-XLM-RoBERTa (ENG+ML) 58.08 63.62 59.04 59.88 69.73

DIRE-LLaMA (ENG+ML) 52.89 61.42 50.86 56.76 67.38
DIRE-LLaMA (ENG+Trans. ML) 57.75 63.40 58.07 59.82 69.64

Cross-Lingual-NRMS 59.18 64.15 58.72 61.00 69.97
PPT 60.37 65.78 60.05 62.24 71.64

Improvement over the best baseline 2.01% 2.54% 1.30% 2.03% 1.92%

Table 4: Performance comparison on Adressa. The best results are highlighted in bold, and the second-best results
are underlined.

w/o UAUC MRR nDCG@1 nDCG@5 nDCG@10

/ 59.39 32.76 17.75 34.11 39.96
Cross-Lingual News Augmentation 59.19 32.61 17.67 33.94 39.76

Cross-Lingual Alignment 58.47 32.04 17.17 33.30 39.09
Both Augmentation & Alignment 58.01 31.36 16.64 32.43 38.40

Table 5: The impact of cross-lingual news augmentation and alignment. w/o denotes without.

• The full PPT achieves the best performance
across all metrics. In the "w/o news augmen-
tation" and "w/o alignment" settings, the perfor-
mance declines, which indicates that both cross-
lingual strategies contribute positively. Addition-
ally, they complement each other in mitigating
the lingual shift and transferring preference pat-
terns from the many-shot English domain to the
few-shot minor language domain.

• The "w/o both augmentation& alignment" set-
ting yields the worst performance, as it only in-
volves training in the English and minor lan-
guage domains without any cross-lingual en-
hancements. Consequently, there remains a sig-
nificant gap between English and minor lan-
guages, which prevents effective preference pat-
tern transfer and accurate news content represen-
tation.

To further validate the effectiveness of cross-
lingual news augmentation and alignment, Figure 6
presents the percentage improvement of PPT over
various w/o settings across 14 minor languages in
xMIND. For most minor languages, either cross-
lingual news augmentation or alignment can im-
prove performance. Additionally, incorporating
both cross-lingual augmentation & alignment con-
sistently improves performance across all 14 minor
languages, highlighting the effectiveness of our
cross-lingual strategies in reducing the lingual shift
and transferring preference patterns.

SW
H

SO
M

CMN JPN TU
R

TA
M VIE TH

A
RON FIN KA

T
HAT IND

GRN

Languages

Aug.

Align

Both

w/
o

0.76 0.86 2.55 0.63 -1.49 2.53 -1.87 0.95 -0.70 0.93 2.81 -0.39 0.05 0.08

2.47 -1.22 6.25 2.71 0.37 2.72 0.18 4.32 0.10 0.27 1.12 3.15 8.15 1.20

7.58 5.48 4.16 2.34 3.41 9.17 2.91 4.63 1.35 1.91 3.08 0.91 9.89 1.04 0.0

2.5

5.0

7.5

Figure 6: Relative percentage improvements of com-
plete PPT over various w/o settings. Aug. denotes cross-
lingual news augmentation, Align denotes cross-lingual
Alignment, and Both denotes both Aug. and Align.

4.4 Experiments with the Language Models

PPT defaults to using LLaMA-2-7b as the back-
bone for the LLM-based news encoder. However,
PPT is compatible with any other language model.
In this section, we validate the advantages of us-
ing LLMs like LLaMA-2-7b over other traditional
PLMs such as BERT-base and even mPLMs like
XLM-RoBERTa-base.

As shown in Table 6, PPT with LLaMA-2-7b
achieves significantly better results. More de-
tailed results are provided in Appendix B.7. While
LLaMA’s multilingual capability is weaker than
XLM-Roberta due to its primary training on En-
glish texts (Engländer et al., 2024), LLaMA’s En-
glish encoding capability is stronger because of
its larger parameter size and training on extensive
English corpora. By cross-lingual augmentation
and alignment, LLaMA’s strong English encoding
capability is extended to minor languages, thus
achieving remarkable performance. These find-
ings highlight the potential of LLMs in developing
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Pre-trained Model UAUC MRR nDCG@1 nDCG@5 nDCG@10

LLaMA-2-7b 59.39 32.76 17.75 34.11 39.96
BERT-base 55.07 29.56 14.03 30.39 36.57

XLM-RoBERTa-base 57.02 30.44 15.03 31.52 37.83

Table 6: Average performance with different pre-trained model.

online news platforms for non-English-speaking
countries and even advancing other minor language
tasks. This ensures that LLMs can benefit a global
audience rather than just English speakers.

5 Conclusion

Minor language online news platforms struggle to
learn preference patterns due to insufficient user-
news interactions, which makes the personalized
recommendation challenging. To solve this prob-
lem, we propose a minor language news recom-
mendation model based on cross-lingual preference
pattern transfer, named PPT. Specifically, we de-
velop an LLM-based news encoder and extend its
strong English encoding capability to minor lan-
guages via cross-lingual alignment. Additionally,
we simulate interactions of minor language news in
the English domain by cross-lingual news augmen-
tation, thus further facilitating preference pattern
transfer. Extensive experimental results on two real-
world datasets across 15 minor languages show that
PPT consistently outperforms the baselines, which
demonstrates PPT’s superiority and generalization.

6 Limitations

The main limitations of this paper are as follows:
(1) Due to limited computational resources, we do
not fine-tune the LLM of the news encoder. Various
LLM fine-tuning strategies like LoRA could be fur-
ther tested to assess their effectiveness in helping
PPT better learn and transfer preference patterns.
(2) While we conducted extensive offline experi-
ments on a total of 15 languages across two minor
language datasets, real-world online validation re-
mains lacking. In future work, we plan to fine-tune
LLMs and seek opportunities for practical online
A/B testing to further demonstrate PPT’s poten-
tial in improving minor language recommendation
performance through preference pattern transfer.
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A Details of xMIND

xMIND is a multilingual news recommendation
dataset that covers 14 minor languages. Table 7
presents the detailed information of all languages.
We conduct experiments across all 14 minor lan-
guages spanning six scripts and five macro-areas.
The results demonstrate PPT’s superiority and gen-
eralization.
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Code Language Script Macro-area Total speakers (M)

SWH Swahili Latin Africa 71.6
SOM Somali Latin Africa 22.0
CMN Traditional Chinese Han Eurasia 1,138.2
JPN Japanese Japanese Eurasia 1,234.5
TUR Turkish Latin Eurasia 90.0
TAM Tamil Tamil Eurasia 86.6
VIE Vietnamese Latin Eurasia 85.8
THA Thai Thai Eurasia 60.8
RON Romanian Latin Eurasia 24.5
FIN Finnish Latin Eurasia 5.6
KAT Georgian Georgian Eurasia 3.9
HAT Haitian Creole Latin North America 13.0
IND Indonesian Latin Papunesia 199.1
GRN Guarani Latin South America 6.7

Table 7: Details of 14 languages of xMIND.

B Additional Experimental Results

B.1 The Relationship between Performance
and Interactions.

As many studies have demonstrated, sufficient in-
teractions are crucial for building recommender
systems. To validate this, we evaluate on MIND
using varying history sequence lengths. As shown
in Table 8, the performance consistently declines
as the history shortens, indicating the importance
of interactions. A particularly sharp decline is ob-
served when the length is reduced from 20 to 5,
highlighting the difficulty of capturing accurate
preference patterns under sparse interactions. Thus,
building recommender systems for minor language
news platforms with limited interactions remains a
significant challenge.

Lengths UAUC MRR n@1 n@5 n@10

40 67.32 34.75 20.37 36.36 42.37
30 66.37 34.58 20.19 36.20 42.25
20 64.91 34.27 19.73 35.89 39.90
10 62.77 33.62 18.82 35.29 39.18
5 60.31 32.86 17.51 34.27 40.07

Table 8: Effect of the history sequence length.

B.2 Hyperparameter Sensitivity Analysis.

The hyperparameters in the loss function L are used
to balance the proportions of each loss component.
In our paper, we set α = 3, β = 1, γ = 1, σ = 1,
which achieves satisfactory performance. This con-
figuration fully leverages the rich user-news interac-
tions in the English domain, effectively incorporat-
ing preference patterns into news representations.
To study the influence of hyperparameters, Table
9 presents the hyperparameter sensitivity analysis.

Results indicate that even with all hyperparameters
set to 1, PPT still outperforms the best baseline.
Actually, the ratio between α and β has the greatest
impact, where α is the weight of the recommenda-
tion loss in the English domain and β is the weight
of the recommendation loss in the minor language
domain. A low ratio weakens preference patterns
learning from the English domain, while a high
ratio hinders adaptation to the minor language do-
main. Setting the ratio around 3 provides a good
balance.

In conclusion, although hyperparameters do in-
fluence performance, setting α to approximately
three times β is sufficient to achieve strong perfor-
mance. The results also demonstrate PPT’s robust-
ness to hyperparameters.

B.3 Effect of Fine-tuning LLMs
As mentioned in the main text, considering the
strong inherent text comprehension capability of
LLMs, we do not fine-tune the LLM in our study.
To further verify that fine-tuning is indeed unnec-
essary, we also experimented with using LoRA to
fine-tune the last layer of the LLM in our study.
As shown in Table 10, fine-tuning the LLM does
not improve performance significantly. This can be
attributed to the nature of our task, cross-lingual
news recommendation, which requires training in
both English and minor language domains. Since
LLMs are less effective at understanding minor lan-
guage texts, fine-tuning them on minor language
interactions may degrade their ability to capture
content information. Therefore, PPT freezes the
LLM to preserve its content encoding capabilities
and apply a trainable linear layer and an additive
attention layer to learn user preference patterns
and transfer them from the English domain to the
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Hyperparameter UAUC MRR n@1 n@5 n@10

α = 1, β = 1, γ = 1, σ = 1 58.17 31.58 16.83 32.68 38.72
α = 2, β = 1, γ = 1, σ = 1 58.91 32.17 17.32 33.57 39.50
α = 3, β = 1, γ = 1, σ = 1 59.39 32.76 17.75 34.11 39.96
α = 4, β = 1, γ = 1, σ = 1 59.17 32.60 17.43 33.81 39.76
α = 5, β = 1, γ = 1, σ = 1 58.93 32.29 17.33 33.62 39.58
α = 3, β = 2, γ = 1, σ = 1 58.75 32.06 17.17 33.60 39.44
α = 3, β = 1, γ = 2, σ = 1 59.57 32.80 17.83 33.99 39.87
α = 3, β = 1, γ = 1, σ = 2 59.28 32.55 17.68 33.85 39.83
α = 3, β = 1, γ = 2, σ = 2 59.11 32.23 17.44 33.73 39.72
α = 3, β = 2, γ = 1, σ = 2 58.70 31.91 17.00 32.97 39.04
α = 3, β = 2, γ = 2, σ = 1 58.66 31.97 17.02 33.11 39.15

Table 9: Hyperparameter sensitivity analysis. The setting adopted in our paper is highlighted in bold.

minor language domain through proposed cross-
lingual strategies. This enables PPT to efficiently
capture both news content and preference patterns
for minor language news recommendation while
conserving computing resources.

F/T UAUC MRR n@1 n@5 n@10

32/0 59.39 32.76 17.75 34.11 39.96
31/1 59.46 32.77 17.88 34.04 40.02

Table 10: Effect of fine-tuning the LLM. F/T denotes
the number of Frozen/Tuning layers.

B.4 Performance Comparison Across All 14
Minor Languages of xMIND

Table 16 presents the performance comparison
across all 14 minor languages on xMIND. Addition-
ally, to further illustrate PPT’s robustness and supe-
rior performance across different minor languages,
we also provide line charts comparing PPT with the
baselines on various metrics in Figure 7 (the results
of nDCG@10 have already been presented in Fig-
ure 3). The results indicate that PPT consistently
achieves the best performance across nearly all met-
rics for all minor languages on xMIND. The only
exception is KAT, where PPT does not perform
optimally on any of the five metrics. As discussed
in the main text, we attribute this to KAT being a
low-resource language and using the specialized
Georgian script rather than the Latin script widely
adopted by English and most other languages. This
makes it particularly challenging for LLMs, which
are primarily trained on English corpora, to encode
KAT texts, resulting in a significant gap between
KAT and ENG and leading to PPT’s inferior per-
formance in this case.

B.5 Ablation Study Across All 14 Minor
Languages of xMIND

Table 17 shows the impact of cross-lingual augmen-
tation and alignment on each individual minor lan-
guage on xMIND. The results indicate that in most
cases, both news augmentation and alignment can
further improve performance. This demonstrates
that these two strategies effectively reduce lingual
shift and enable the transfer of preference patterns
learned from the many-shot English domain to the
few-shot minor language domain.

B.6 Zero-Shot Performance

For newly established news platforms, a limited
user base can make the more challenging zero-shot
recommendation problem. We evaluate the perfor-
mance of zero-shot minor language news recom-
mendation on xMIND by setting the hyperparam-
eter β to 0 in PPT’s loss function. In other words,
the training set excludes any interaction data from
the minor language domain.

As shown in Table 11, PPT’s recommendation
performance in the zero-shot setting is slightly
lower than that in the few-shot setting on xMIND.
For some languages, such as VIE and HAT, zero-
shot recommendation performance even outper-
forms few-shot performance. We speculate that
this is due to the lack of user-news interactions in
minor language datasets, which makes historical
clicks an unreliable reflection of user preferences.

Additionally, since Adressa and MIND originate
from two entirely different news platforms, we also
evaluate the zero-shot performance on Adressa to
further validate the effectiveness of PPT in a more
challenging real-world scenario. As shown in Table
12, the performance drop from few-shot to zero-
shot is relatively small, and PPT with zero-shot still
beats all few-shot baselines. This demonstrates that
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Figure 7: Performance across 14 minor languages.
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Few-shot Zero-shot

Language UAUC MRR n@1 n@5 n@10 UAUC MRR n@1 n@5 n@10

SWH 60.82 34.02 19.44 35.29 41.04 60.44 33.49 18.38 35.09 40.71
SOM 58.46 32.50 17.35 33.91 39.83 58.59 32.63 17.46 34.02 39.83
CMN 60.32 33.26 18.39 34.51 40.29 59.44 32.36 17.37 33.40 39.49
JPN 59.41 32.70 18.16 33.88 39.85 57.92 31.26 16.20 32.39 38.63
TUR 60.18 32.98 18.29 34.27 40.35 59.65 32.34 16.72 33.91 39.80
TAM 58.78 32.05 17.47 33.21 39.28 55.40 30.28 15.59 31.15 37.10
VIE 57.84 32.03 16.50 33.71 39.29 58.83 32.96 18.06 34.65 40.13
THA 57.88 31.17 15.85 32.49 38.42 56.61 30.18 15.33 31.11 37.31
RON 61.39 33.98 18.07 35.77 41.30 60.72 33.85 18.33 35.61 41.05
FIN 60.79 33.89 19.30 35.36 41.10 59.67 32.72 17.76 33.93 40.05
KAT 54.59 29.03 13.47 29.89 36.19 52.47 27.80 12.56 28.49 34.55
HAT 60.29 34.05 19.00 35.75 41.23 60.76 34.49 19.19 36.07 41.50
IND 61.34 34.35 19.39 35.92 41.67 61.13 33.56 18.04 35.21 40.99
GRN 59.33 32.59 17.80 33.58 39.65 59.01 32.84 18.11 34.14 39.89

Avg. 59.39 32.76 17.75 34.11 39.96 58.62 32.20 17.08 33.51 39.36

Table 11: Performance comparison between few-shot and zero-shot on xMIND. The better results are highlighted in
bold.

PPT can achieve strong performance even with-
out any user-news interactions from the minor lan-
guage domain during training, highlighting its real-
world applicability and generalization capability.

Shot UAUC MRR n@1 n@5 n@10

Few 60.37 65.78 60.05 62.24 71.64
Zero 59.97 65.06 59.46 61.56 71.05

Table 12: Performance comparison between few-shot
and zero-shot on Adressa. The better results are high-
lighted in bold.

B.7 Effect of Pre-trained Language Models

Table 18 shows the impact of different PLMs on
each minor language on xMIND. LLaMA-2-7b (the
default PLM in our paper) consistently achieves
the best performance, which demonstrates that PPT
effectively bridges the gap between ENG and mi-
nor language while transferring preference patterns
from the English domain to the minor language
domain. Although LLaMA-2-7b is primarily de-
signed for English tasks, its minor language com-
prehension capability can be enhanced by our pro-
posed cross-lingual strategies, thus highlighting
the immense potential of LLMs for minor language
applications.

To further verify the effectiveness of our pro-
posed cross-lingual strategies, we conduct the ab-
lation study with XLM-RoBERTa-base and BERT-
base on xMIND, as shown in Table 13. The re-
sults demonstrate that cross-lingual augmentation
and alignment do achieve effective performance

improvements with different LLM-based news en-
coders, which highlights PPT’s generalization.

BERT-base

w/o UAUC MRR n@1 n@5 n@10

/ 55.07 29.56 14.03 30.39 36.57
Aug. 54.77 29.35 13.89 30.12 36.23

Align. 54.12 28.80 13.50 29.68 35.62
Both 53.60 28.21 13.15 29.01 35.20

XLM-RoBERTa-base

w/o UAUC MRR n@1 n@5 n@10

/ 57.02 30.44 15.03 31.52 37.83
Aug. 56.73 30.22 14.82 31.20 37.49

Align. 55.98 29.67 14.41 30.74 36.88
Both 55.58 29.23 14.11 30.06 36.36

Table 13: Ablation Study with different backbone PLMs
on xMIND. The best results are highlighted in bold. Aug.
denotes cross-lingual augmentation, and Align. denotes
cross-lingual alignment. w/o denotes without.

B.8 Effect of Translation Quality

Some of the baselines used for performance com-
parison require translating minor languages into
English. Therefore, we computed the BLEU met-
ric between English news titles translated from
xMIND and the original English news titles in
MIND to analyze the impact of translation quality
on recommendation performance.

As shown in Table 14, minor languages that
use the Latin script, such as HAT, SWH, and
IND, generally exhibit higher translation quality,
whereas those using non-Latin scripts, such as
CMN, THA, and JPN, tend to have lower trans-
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lation quality. By comparing the translation qual-
ity in Table 14 with the recommendation perfor-
mance in Table 16, we observe a general positive
correlation between translation quality and the per-
formance of translation-based baselines, namely
DIRE-LLaMA (Trans. ML+Trans. ML) and DIRE-
LLaMA (ENG+Trans. ML). This suggests that
these baselines not only lack effective preference
pattern transfer but are also heavily constrained by
translation quality, resulting in inferior recommen-
dation performance. In contrast, while PPT also
utilizes translation during news augmentation, it
effectively mitigates the semantic shift caused by
poor translation quality through cross-lingual align-
ment and achieves strong performance across all
languages.

Language BLEU Language BLEU

SWH 0.3914 THA 0.1595
SOM 0.2469 RON 0.3267
CMN 0.1127 FIN 0.2121
JPN 0.1628 KAT 0.1919
TUR 0.2545 HAT 0.4199
TAM 0.2850 IND 0.3587
VIE 0.3108 GRN 0.2651

Table 14: Translation quality from minor language to
English.

In our paper, the default translation model is
the open-source NLLB-200-3.3B model. To fur-
ther study the effects of translation quality, Table
15 compares the average performance of different
translation models on xMIND. It can be observed
that the choice of translation models has a lim-
ited impact on performance. Even when using the
smallest model, NLLB-200-distilled-600M, PPT
still outperforms all baselines, demonstrating its
robustness to translation quality.

Translation Model BLEU UAUC

NLLB-200-distilled-600M 0.2020 59.13
NLLB-200-distilled-1.3B 0.2317 59.31

NLLB-200-3.3B 0.2336 59.39

Table 15: The effects of Translation Models. BLEU is
calculated by back-translation.
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SWH THA

Model UAUC MRR n@1 n@5 n@10 UAUC MRR n@1 n@5 n@10

DIRE-XLM-Roberta (ML+ML) 56.67 29.29 14.47 29.79 36.02 56.86 29.05 13.56 29.57 36.00
DIRE-LLaMA (ML+ML) 56.10 30.09 15.28 30.90 37.02 53.56 28.68 12.71 29.79 35.68

DIRE-LLaMA (Trans. ML+Trans. ML) 57.80 31.22 15.65 32.43 38.37 57.64 30.25 15.64 31.99 38.06
DIRE-XLM-Roberta (ENG+ML) 57.51 31.66 17.63 32.28 38.25 55.76 29.26 14.53 29.88 36.06

DIRE-LLaMA (ENG+ML) 47.49 25.25 10.82 25.10 31.10 55.37 29.08 13.05 30.41 36.27
DIRE-LLaMA (ENG+Trans. ML) 58.26 31.03 15.40 32.26 38.38 57.66 30.58 15.46 31.73 37.85

Cross-Lingual-NRMS 58.01 31.67 16.71 32.64 39.04 54.93 29.04 13.66 30.04 36.37
PPT 60.82 34.02 19.44 35.29 41.04 57.88 31.17 15.85 32.49 38.42

SOM RON

Model UAUC MRR n@1 n@5 n@10 UAUC MRR n@1 n@5 n@10

DIRE-XLM-Roberta (ML+ML) 57.29 29.80 14.86 30.35 36.79 57.59 29.53 13.77 30.44 36.61
DIRE-LLaMA (ML+ML) 55.25 28.57 14.31 29.43 35.21 57.13 29.75 15.24 30.23 36.62

DIRE-LLaMA (Trans. ML+Trans. ML) 57.66 31.13 15.35 32.44 38.29 58.41 31.26 16.49 32.55 38.12
DIRE-XLM-Roberta (ENG+ML) 54.60 28.56 13.69 29.32 35.56 55.49 30.41 15.60 29.99 36.87

DIRE-LLaMA (ENG+ML) 46.29 25.18 10.30 24.72 31.30 46.26 23.65 9.87 23.26 29.42
DIRE-LLaMA (ENG+Trans. ML) 56.49 30.10 15.22 30.88 37.14 56.76 30.77 15.75 31.31 37.60

Cross-Lingual-NRMS 55.69 30.27 14.85 31.38 37.77 58.50 31.63 15.53 33.12 39.20
PPT 58.46 32.50 17.35 33.91 39.83 61.39 33.98 18.07 35.77 41.30

CMN FIN

Model UAUC MRR n@1 n@5 n@10 UAUC MRR n@1 n@5 n@10

DIRE-XLM-Roberta (ML+ML) 57.53 29.51 12.84 30.72 37.07 58.97 30.58 15.49 31.69 37.82
DIRE-LLaMA (ML+ML) 56.01 29.26 14.48 30.04 36.27 54.19 27.14 11.96 27.48 34.08

DIRE-LLaMA (Trans. ML+Trans. ML) 56.55 29.58 15.26 30.07 36.06 58.01 30.08 15.46 30.74 37.13
DIRE-XLM-Roberta (ENG+ML) 56.43 30.55 15.98 31.15 37.23 54.06 26.61 11.17 27.10 33.87

DIRE-LLaMA (ENG+ML) 54.58 29.59 13.84 30.68 36.55 45.77 25.14 11.11 24.42 30.58
DIRE-LLaMA (ENG+Trans. ML) 55.71 29.74 14.75 30.51 36.45 55.57 30.51 16.44 31.18 37.37

Cross-Lingual-NRMS 57.65 31.14 15.84 32.06 38.25 58.06 31.71 16.54 32.77 38.89
PPT 60.32 33.26 18.39 34.51 40.29 60.79 33.89 19.30 35.36 41.10

JPN KAT

Model UAUC MRR n@1 n@5 n@10 UAUC MRR n@1 n@5 n@10

DIRE-XLM-Roberta (ML+ML) 56.63 29.87 15.36 30.12 36.57 54.11 26.95 12.41 27.27 33.68
DIRE-LLaMA (ML+ML) 56.79 29.47 15.09 30.46 36.60 53.26 28.40 12.84 29.66 35.54

DIRE-LLaMA (Trans. ML+Trans. ML) 56.39 29.74 14.91 30.52 36.65 55.60 29.15 14.92 29.01 35.92
DIRE-XLM-Roberta (ENG+ML) 56.00 29.85 14.62 30.70 36.69 52.09 26.46 12.28 26.14 33.11

DIRE-LLaMA (ENG+ML) 54.95 27.55 12.10 28.51 34.80 51.60 26.34 10.95 26.99 33.29
DIRE-LLaMA (ENG+Trans. ML) 58.04 31.69 16.81 32.97 38.71 55.11 29.79 14.57 30.86 36.89

Cross-Lingual-NRMS 56.45 30.37 15.65 31.43 37.55 51.96 27.17 11.56 27.51 34.38
PPT 59.41 32.70 18.16 33.88 39.85 54.59 29.03 13.47 29.89 36.19

TUR HAT

Model UAUC MRR n@1 n@5 n@10 UAUC MRR n@1 n@5 n@10

DIRE-XLM-Roberta (ML+ML) 58.57 31.81 16.83 32.91 38.97 57.42 31.34 15.66 32.82 38.59
DIRE-LLaMA (ML+ML) 55.80 29.02 14.07 29.84 35.95 55.77 30.17 15.46 31.15 36.90

DIRE-LLaMA (Trans. ML+Trans. ML) 58.31 32.07 17.27 33.37 39.07 58.80 31.65 17.31 32.58 38.44
DIRE-XLM-Roberta (ENG+ML) 57.05 30.60 16.05 31.44 37.70 55.52 29.67 14.23 30.50 36.59

DIRE-LLaMA (ENG+ML) 48.40 25.67 12.15 25.06 31.57 45.78 23.96 8.74 24.10 30.09
DIRE-LLaMA (ENG+Trans. ML) 57.04 30.11 15.57 30.65 36.93 57.85 31.43 15.62 32.87 38.58

Cross-Lingual-NRMS 57.28 30.88 15.74 31.53 38.22 57.22 31.82 16.35 33.13 38.88
PPT 60.18 32.98 18.29 34.27 40.35 60.29 34.05 19.00 35.75 41.23

TAM IND

Model UAUC MRR n@1 n@5 n@10 UAUC MRR n@1 n@5 n@10

DIRE-XLM-Roberta (ML+ML) 54.21 28.46 13.49 29.12 35.56 56.97 29.49 14.57 30.04 36.68
DIRE-LLaMA (ML+ML) 55.59 28.32 13.53 28.62 35.25 53.98 29.05 14.94 29.61 35.84

DIRE-LLaMA (Trans. ML+Trans. ML) 57.36 30.19 15.26 31.44 37.48 57.37 30.92 15.43 32.20 37.85
DIRE-XLM-Roberta (ENG+ML) 53.12 27.45 11.78 28.01 34.42 57.57 31.47 16.79 32.50 38.40

DIRE-LLaMA (ENG+ML) 53.48 27.93 11.85 28.99 34.79 45.85 25.01 10.80 24.69 30.61
DIRE-LLaMA (ENG+Trans. ML) 56.83 30.63 14.66 32.21 37.87 58.72 31.66 15.96 32.87 39.06

Cross-Lingual-NRMS 55.92 29.93 15.00 30.60 37.18 58.52 31.88 16.69 33.19 39.48
PPT 58.78 32.05 17.47 33.21 39.28 61.34 34.35 19.39 35.92 41.67

VIE GRN

Model UAUC MRR n@1 n@5 n@10 UAUC MRR n@1 n@5 n@10

DIRE-XLM-Roberta (ML+ML) 58.53 31.14 16.03 32.16 38.49 55.89 29.00 13.29 30.14 36.37
DIRE-LLaMA (ML+ML) 55.01 30.72 16.77 31.56 37.23 56.58 30.19 15.52 30.78 36.90

DIRE-LLaMA (Trans. ML+Trans. ML) 57.33 31.14 16.25 32.28 38.02 57.01 30.51 15.71 31.45 37.27
DIRE-XLM-Roberta (ENG+ML) 56.66 30.74 15.59 31.73 37.68 53.98 30.00 15.92 30.20 36.97

DIRE-LLaMA (ENG+ML) 47.46 24.53 11.28 24.11 30.38 50.58 27.63 14.05 27.40 33.31
DIRE-LLaMA (ENG+Trans. ML) 57.53 31.54 16.22 32.79 38.61 55.52 29.68 14.79 30.28 36.50

Cross-Lingual-NRMS 54.82 29.84 14.26 31.20 37.15 56.88 30.38 15.29 31.09 37.65
PPT 57.84 32.03 16.50 33.71 39.29 59.33 32.59 17.80 33.58 39.65

Table 16: Performance comparison across all 14 minor languages. The best results are highlighted in bold. n@K
denotes nDCG@K, similarly hereinafter.
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SWH THA

Model UAUC MRR n@1 n@5 n@10 UAUC MRR n@1 n@5 n@10

/ 60.82 34.02 19.44 35.29 41.04 57.88 31.17 15.85 32.49 38.42
Cross-Lingual News Augmentation 60.21 33.57 19.25 34.86 40.73 57.49 30.87 15.37 32.24 38.06

Cross-Lingual Alignment 60.22 33.17 18.56 34.36 40.05 55.90 29.76 14.68 30.95 36.83
Both Augmentation & Alignment 58.17 31.09 16.21 31.85 38.15 55.83 29.73 14.60 30.74 36.72

SOM RON

Model UAUC MRR n@1 n@5 n@10 UAUC MRR n@1 n@5 n@10

/ 58.46 32.50 17.35 33.91 39.83 61.39 33.98 18.07 35.77 41.30
Cross-Lingual News Augmentation 58.92 32.38 17.24 33.88 39.49 61.27 34.49 19.30 35.90 41.59

Cross-Lingual Alignment 57.60 32.98 17.59 34.87 40.32 61.08 34.15 19.22 35.57 41.26
Both Augmentation & Alignment 56.73 30.48 15.09 31.54 37.76 61.01 33.35 18.06 34.81 40.75

CMN FIN

Model UAUC MRR n@1 n@5 n@10 UAUC MRR n@1 n@5 n@10

/ 60.32 33.26 18.39 34.51 40.29 60.79 33.89 19.30 35.36 41.10
Cross-Lingual News Augmentation 59.80 32.27 17.70 33.35 39.29 60.64 33.65 19.07 34.59 40.72

Cross-Lingual Alignment 57.08 31.07 16.48 32.39 37.92 60.52 33.81 19.00 35.30 40.99
Both Augmentation & Alignment 58.11 31.81 17.59 33.02 38.68 60.23 33.27 19.00 34.50 40.33

JPN KAT

Model UAUC MRR n@1 n@5 n@10 UAUC MRR n@1 n@5 n@10

/ 59.41 32.70 18.16 33.88 39.85 54.59 29.03 13.47 29.89 36.19
Cross-Lingual News Augmentation 59.08 32.31 17.73 33.91 39.60 53.59 28.74 13.46 29.22 35.20

Cross-Lingual Alignment 59.07 31.53 15.79 32.96 38.80 53.23 29.19 15.01 29.78 35.79
Both Augmentation & Alignment 59.60 31.87 16.89 33.00 38.94 53.82 28.80 14.47 29.22 35.11

TUR HAT

Model UAUC MRR n@1 n@5 n@10 UAUC MRR n@1 n@5 n@10

/ 60.18 32.98 18.29 34.27 40.35 60.29 34.05 19.00 35.75 41.23
Cross-Lingual News Augmentation 60.09 33.08 18.17 35.02 40.96 60.30 34.27 19.06 36.00 41.39

Cross-Lingual Alignment 60.12 33.18 18.41 34.35 40.20 59.43 33.08 18.09 34.55 39.97
Both Augmentation & Alignment 58.43 31.98 17.80 33.00 39.02 59.11 33.79 19.04 35.38 40.86

TAM IND

Model UAUC MRR n@1 n@5 n@10 UAUC MRR n@1 n@5 n@10

/ 58.78 32.05 17.47 33.21 39.28 61.34 34.35 19.39 35.92 41.67
Cross-Lingual News Augmentation 58.26 31.29 16.99 31.88 38.31 61.28 34.51 19.21 36.18 41.65

Cross-Lingual Alignment 57.57 31.23 16.58 32.15 38.24 59.66 31.14 16.05 32.21 38.53
Both Augmentation & Alignment 57.10 28.95 14.57 29.64 35.98 58.71 30.29 15.03 31.36 37.92

VIE GRN

Model UAUC MRR n@1 n@5 n@10 UAUC MRR n@1 n@5 n@10

/ 57.84 32.03 16.50 33.71 39.29 59.33 32.59 17.80 33.58 39.65
Cross-Lingual News Augmentation 58.50 32.67 17.04 34.60 40.04 59.19 32.38 17.84 33.59 39.62

Cross-Lingual Alignment 58.32 32.08 16.98 33.47 39.22 58.77 32.19 17.89 33.34 39.18
Both Augmentation & Alignment 56.57 31.28 16.48 32.58 38.18 58.69 32.28 18.15 33.35 39.24

Table 17: The ablation study across all 14 minor languages. The best results are highlighted in bold.
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SWH THA

Model UAUC MRR n@1 n@5 n@10 UAUC MRR n@1 n@5 n@10

LLaMA-2-7b 60.82 34.02 19.44 35.29 41.04 57.88 31.17 15.85 32.49 38.42
BERT-base 55.34 30.09 14.36 30.90 37.11 51.46 27.96 14.36 27.68 34.18

XLM-RoBERTa-base 56.40 30.34 15.06 31.50 37.52 56.90 30.68 15.60 31.51 37.80

SOM RON

Model UAUC MRR n@1 n@5 n@10 UAUC MRR n@1 n@5 n@10

LLaMA-2-7b 58.46 32.50 17.35 33.91 39.83 61.39 33.98 18.07 35.77 41.30
BERT-base 54.05 28.73 12.65 29.89 35.85 55.58 30.07 14.16 31.30 37.15

XLM-RoBERTa-base 55.76 29.75 14.33 30.74 36.87 57.96 30.74 15.37 31.72 38.17

CMN FIN

Model UAUC MRR n@1 n@5 n@10 UAUC MRR n@1 n@5 n@10

LLaMA-2-7b 60.32 33.26 18.39 34.51 40.29 60.79 33.89 19.30 35.36 41.10
BERT-base 54.32 29.01 13.43 29.72 35.96 56.11 31.62 16.54 33.06 38.67

XLM-RoBERTa-base 58.60 30.87 15.34 31.90 38.33 58.12 30.78 17.57 31.71 38.28

JPN KAT

Model UAUC MRR n@1 n@5 n@10 UAUC MRR n@1 n@5 n@10

LLaMA-2-7b 59.41 32.70 18.16 33.88 39.85 54.59 29.03 13.47 29.89 36.19
BERT-base 54.37 27.77 12.39 28.13 34.91 51.86 27.50 11.70 27.63 34.39

XLM-RoBERTa-base 58.39 31.39 15.27 33.05 39.01 54.30 28.91 13.07 28.20 36.07

TUR HAT

Model UAUC MRR n@1 n@5 n@10 UAUC MRR n@1 n@5 n@10

LLaMA-2-7b 60.18 32.98 18.29 34.27 40.35 60.29 34.05 19.00 35.75 41.23
BERT-base 55.74 29.11 13.19 29.99 36.38 58.15 31.64 15.44 32.98 38.94

XLM-RoBERTa-base 57.94 31.43 15.60 32.84 38.94 57.35 30.64 14.33 32.24 38.15

TAM IND

Model UAUC MRR n@1 n@5 n@10 UAUC MRR n@1 n@5 n@10

LLaMA-2-7b 58.78 32.05 17.47 33.21 39.28 61.34 34.35 19.39 35.92 41.67
BERT-base 53.45 28.27 13.08 28.70 35.06 58.06 31.26 15.29 32.67 38.62

XLM-RoBERTa-base 56.70 30.35 14.71 31.48 37.65 57.90 29.74 14.34 31.11 37.43

VIE GRN

Model UAUC MRR n@1 n@5 n@10 UAUC MRR n@1 n@5 n@10

LLaMA-2-7b 57.84 32.03 16.50 33.71 39.29 59.33 32.59 17.80 33.58 39.65
BERT-base 55.71 29.68 13.83 30.98 36.87 56.82 31.13 16.01 31.83 37.87

XLM-RoBERTa-base 56.74 30.12 14.19 31.41 37.74 55.17 30.41 15.65 31.83 37.72

Table 18: Performance with different pre-trained model across all 14 minor languages on xMIND. The best results
are highlighted in bold.
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