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Abstract

Complex instruction-following with elaborate
constraints is imperative for Large Language
Models (LLMs). While existing methods have
constructed data for complex instruction align-
ment, they all rely on a more advanced model,
especially GPT-4, limiting their application.
In this paper, we propose a Multi-granularity
Self-Contrastive Training (MuSC) framework,
to improve the complex instruction alignment
without relying on a stronger model. Our
method is conducted on both coarse and fine
granularity. On coarse-granularity, we con-
struct constraint-aware preference data based
on instruction decomposition and recombina-
tion. On fine-granularity, we perform token-
aware preference optimization with dynamic
token-level supervision. Our method is evalu-
ated on open-sourced models, and experiment
results show our method achieves significant
improvement on both complex and general
instruction-following benchmarks, surpassing
previous self-alignment methods'.

1 Introduction

Large Language Models (LLMs) have made re-
markable advancements and are being wildly ap-
plied across various domains (Zhao et al., 2024; Wu
et al., 2024a; He et al., 2024c; Liu et al., 2025; He
et al., 2024b; Zhang et al., 2025). The instruction-
following ability is fundamental and important,
as it enables LLMs to generate appropriate re-
sponses to given instructions and solve correspond-
ing tasks (OpenAl et al., 2024). While recent LLMs
perform comparatively well on simple instructions,
their response quality to complex instructions with
elaborate constraints often falls under expectation,
with some of the constraints omitted (He et al.,
2024a; Jiang et al., 2024b), which hinders their
application in more real-world complex scenarios.
* Equal contribution. D<] Corresponding Author.

'Codes are openly available at https://github.com/
HuihuiChyan/MuSC.

Complex Instruction
Please write a sentence to (@)describe the night, (@)with more words
ends with t, @ no word starts with n, @ totally 10 words.

@@ Homogeneous Pref Data @ @ Constraint-aware Pref Data

Write a sentence with @@@@ Write a sentence with @@@@

(€3 Stars glint, moonlight soft, {£3: Stars glint, moonlight soft,
shadows drift, hearts rest quietly. shadows drift, hearts rest quietly.

Write a sentence with @@@@ Write a sentence with @(:'(:’@

{€: Stars glint, moonlight soft, '¥:Nocturnal breeze, stars glint,
shadows faint, hearts rest quietly. nature rests, nurturing the quiet charm.

@ @ Holistic Pref Supervision

Stars glint, moonlight soft, shadows
drift, hearts rest quietly.

@ @ Token-aware Pref Supervision

Stars glint, moonlight soft, shadows
drift, hearts rest quietly.

Stars glint, moonlight soft, shadows
faint, hearts rest quietly.

Nocturnal breeze, stars glint, nature
rests, nurturing the quiet charm.

: L g
Self-Reward = & MuSC =)
Figure 1: An illustrative comparison between our

method and Self-Reward. Note that Self-Reward can-
not create effective contrast for complex instruction-
following, resulting in suboptimal optimization.

To enhance the complex instruction following,
the core challenge is the scarcity of high-quality
complex instruction data (Lou et al., 2024). Most
existing instruction datasets are constructed based
on existing NLP datasets or question-answering
websites with simple constraints (Wang et al., 2023;
Taori et al., 2023; Lian et al., 2023; Longpre et al.,
2023). To cope with the scarcity of complex in-
struction data, previous work such as Evol-Instruct
(Xu et al., 2024), Conifer (Sun et al., 2024a), and
Self-Correct (Palmeira Ferraz et al., 2024) have
been proposed to construct complex instructions
and responses. However, these methods typically
rely on a high-performance proprietary model (e.g.,
GPT-4) to distill the complex instruction-following
ability, which is expensive and can not be scaled
up in real-world applications.

Recently, the research community has paid at-
tention to self-alignment, to break the data bottle-
neck without relying on a stronger model (Wang
et al., 2024; Zhang et al., 2024a). Self-Reward
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(Yuan et al., 2024) proposes to utilize the model
itself to both generate responses and evaluate the
results, which can be incorporated into DPO train-
ing. ISHEEP (Liang et al., 2024) proposes an au-
tomatic loop to self-assess and self-filter instruc-
tion data. Despite their effectiveness, these meth-
ods are targeted at general instruction-following
ability. The self-alignment of complex instruction-
following ability remains unexplored.

In this paper, to address the above limitations, we
propose a novel Multi-granularity Self-Contrastive
Training framework (MuSC) in Figure 1, which
mainly comprises the following components:

1) Coarse-grained Contrast: Constraint-
aware Preference Data Construction. To im-
prove the model’s comprehension of constraint-
level distinctions, we construct preference pairs
that reflect the disparities in constraint fulfillment.
We achieve this by breaking down each complex
instruction into atomic constraints and selectively
omitting a subset to form negative instructions. The
chosen response, derived from the original instruc-
tion, is paired with the rejected response, generated
from the negative instruction, as a contrastive pair.
Notably, no external models are utilized in this
construction process.

2) Fine-grained Contrast: Token-aware Pref-
erence Optimization. For complex instructions,
the responses often involve multiple tokens that
contribute differently to fulfilling the instruction’s
constraints. Therefore, we introduce a token-aware
optimization framework that integrates dynamic
token-level weights based on the model’s confi-
dence. By focusing on tokens that deviate from
the constraints, this approach effectively identifies
and corrects tokens where the model fails to sat-
isfy the instruction’s requirements, leading to more
contextually appropriate responses.

Moreover, we need to mention that our MuSC
can be applied on both pre-existing complex in-
struction datasets, or newly generated instruction
datasets created by data synthesis methods (e.g.,
Self-Instruct (Wang et al., 2022)).

Our contribution can be summarized as follows:

* We propose a novel Multi-granularity Self-
Contrastive Training (MuSC) framework,
which creates effective contrast on both coarse
and fine granularity, to enhance the complex
instruction following abilities.

* For coarse-grained contrast, we construct
constraint-aware preference data with instruc-

tion decomposition-recombination. For fine-
grained contrast, we adopt dynamic token-
level weight with confidence guidance for bet-
ter preference optimization.

* We evaluate our framework on open-source
LLMs, and achieve significant improvements
on both complex and general instruction fol-
lowing benchmarks, without the help of a
larger model or human supervision.

2 Related Work

Complex Instruction-Following. As one of the
cores of LLM intelligence, how to improve the
model’s instruction-following capability is impor-
tant. The earliest works, such as Alpaca (Taori
et al., 2023), Vicuna (Chiang et al., 2023), and
Camel (Wang et al., 2023), used instruction data
generated by proprietary models to supervise fine-
tuning of open-source models, significantly enhanc-
ing their instruction-following capabilities. How-
ever, these methods mainly focus on general in-
struction following, while complex instruction fol-
lowing still remains challenging. To cope with this
challenge, a lot of methods (Yin et al., 2023; Lou
et al., 2023; He et al., 2024a; Sun et al., 2024b;
Chen et al., 2024b; Dong et al., 2024) have been
proposed to construct complex instruction data.
The earliest work is Evol-Instruct (Xu et al., 2024),
which proposed to utilize GPT-4 to expand the
instructions from both depth and width, thereby
generating complex instructions and corresponding
constraints. Conifer (Sun et al., 2024a) proposed
a progressive learning strategy designed to help
smaller models incrementally enhance their abili-
ties.

Self-Alignment. Self-alignment refers to align-
ing the model to human preference without relying
on a more advanced model or external supervi-
sion. As an early study, Self-Rewarding (Yuan
et al., 2024) proposed the model itself to both gen-
erate responses and evaluate the results. Follow-
ing this work, many works (Liu et al., 2024; Chen
et al., 2024b,a; Pang et al., 2024; Meng et al., 2024)
are conducted to obtain supervision data by the
model itself. Meta-Rewarding (Wu et al., 2024b)
advanced the concept by improving the model’s
instruction and evaluation capabilities simultane-
ously. Liu et al. (2024) employed diverse prompts
to guide the model to generate various responses.
Despite the progress these methods have made,
they all target general instruction following. For
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Constraint-aware Preference Data Construction

1. Instruction Decomposition

00oa
Can you plese write a poem for me? | want
the poem with four lines, and each line
contains 5 words. It should depict a night
scene, but without any references to the
moon or star

0o
2. Constraint Dropout @

Instruction: Please write a poem.

Cl:  The poem is four-line.

—>| C2: Each line with 5 words.

C3: Depict a night scene.

Please write a poem. C4: Not refer to moon or star.

Cl:  The poem is four-line.

C2: Each line with 5 words.

Instructiongrp: Please write a poem.

C3: Depict a night scene. C2: Each line with 5 words.

ld rop a% constraints ...
[}

3. Instruction Recombination ¢’ 4. Response Generation 5@)\

New instruction:  ¢1 €2 €3 c4 Output:

Please write a four-line poem, witn Moonlight glows on still lakes,
each line containing 5 words, Wind stirs in shadowed wakes,
depicting a night scene without any Owis call through ancient trees,
references to the moon or star. Whispers ride the midnight breeze.

—

. LW
(e 2 Output: y¥

Ouput:
. Clouds drift on still lakes,

S Stars reflect in shach_/ed wakes,
Owils call through ancient trees.

New Instructiongrop: @) (3
Please write a poem with each line
—> con-taining 5 words, depicting a

. night scene.
— C4: Not refer to moon or star. C3) [Depict dmight seens,
k I Input: x* Output: y* /
. . . . o N
) —— t Instruction: Please write a four-line poem,with... chosen [V )
Pre-existing concal Ouput: Moonlight glows on still lakes, Wind .
A x* : Please write a four-line poem, e 7
Complex Quries with each line containing 5 words, stirs |ntsthadomxﬂ_wakes,_d0milhs Cal_l[;h.mﬁfg o mg(at’|st’) LLM my
gy — depicting a night scene without WAIEIEHE trees, ISHEIS rice the NRICEIANT breeze. 'lo W
@ Ne= Treflat ISt
Bk \o— any references to the moon or star.
N e < »~(Ent: 0.5 0.5 0.2 0.1 ]
PANS ¥" : Moonlight glows on still Calibrate Confidence ?,‘@1 0.1 0.4 0.2 Token-A
lakes, Wind stirs in shadowed il 9 . . - - o .n- ware
or wakes, Owls call through ancient Alignment
trees, Whispers ride the midnight
breeze. .
Self-Instruct : »(riez o8 o1 o1 .. W
Complex Queries ! : Clouds drift on still lakes, Calibrate Confidence \_ (=005 5 ‘\ o mo(atst)
Stars re-flect in shadowed wakes, *L ne: N et . iy ttog 1l a2e @
. Trre At St [V ]
Owils call through ancient trees. - 3 ) ‘
\ Instruction: Please write a four-line poem,with... L)
Ouput: Clouds drift on still lakes, Stars reflect in reiected LLM 7y
concat | shadowed wakes, Owls call through ancient trees. !

Constraint-aware Preference Data

Token-aware Preference Optimization

Figure 2: The pipeline of our proposed MuSC. The process starts with constraint-aware preference data construction,
which includes instruction decomposition, constraint dropout, instruction recombination and response generation.
Next, the token-aware DPO is performed based on calibrated confidence to achieve token-level alignment.

complex instructions with multiple constraints, the
response will be lengthy and multi-facet, resulting
in challenges for the self-evaluation process.

3 Approach

The pipeline of MuSC is shown in Figure 2.

3.1 Constraint-aware Preference Data

Reinforcement-learning methods, such as PPO
(Schulman et al., 2017) and DPO (Rafailov et al.,
2024b), have achieved notable success in LLM op-
timization. Research has shown that learning from
negative samples is significantly more efficient than
learning solely from positive samples (Yang et al.,
2024b). However, these methods are limited by
the need for high-quality preference data, which is
particularly scarce for complex instructions.

To construct effective preference data for com-
plex instruction following, we propose a novel data
construction method, with the following steps':

1. Instruction Decomposition: A complex in-
struction is typically a combination of mul-
tiple atomic constraints. We decompose the

'Please refer to Appendix A.1 for implementation details.

complex instruction into individual atomic
constraints, denoted as Cons.

. Constraint Dropout: From the decomposed
constraints Cons, we randomly eliminate a%
of the constraints to form Consg;.,.

. Instruction Recombination: We recombine
both the original and the dropped constraints
Cons and Consg.p, to create chosen and re-
jected instructions: Ins and Insg;.p.

. Response Generation: Based on Ins and
Insgrop, We generate the chosen response
Resp and the rejected response Resp g;.op.

Previous research has suggested that the con-
struction of effective preference pairs for optimiza-
tion is non-trivial (Ivison et al., 2024). Our data
construction pipeline is guided by three principles:

* Negativity: The rejected response should de-
viate from the instruction by omitting some
constraints. Our method generates the rejected
instruction based on corrupted constraints, en-
suring that the rejected response deviates from
the original complex instruction.

Consistency: The rejected response should re-
side within the model’s decoding space (Guo
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et al., 2024). In our method, the rejected in-
struction is simply a recombination of the orig-
inal instructions, ensuring the response falls
within the decoding space, which is crucial
for the optimization process.

* Contrastiveness: Chosen and rejected re-
sponses should be with a rational edit dis-
tance, to form an effective contrast (Jiang
et al., 2024a). By reconstructing both cho-
sen and rejected instructions using the same
method, we ensure that the derived samples
do not deviate too far from each other.

With constructed data satisfying both negativity,
consistency and contrastiveness, we form a solid
foundation for effective alignment. Moreover, our
method does not require a stronger model or human
supervision, ensuring its scalability.

Our self-construction method can be applied in
different scenarios. On one hand, it can be directly
applied on pre-existing complex instruction dataset.
On the other hand, if there is no existing complex
queries, we can adapt the Self-Instruct (Wang et al.,
2022) method by first generating constraints and
then generating instructions. In that case, the de-
composition step can be omitted.

3.2 Token-aware Preference Optimization

A well-known issue with DPO is its uniform treat-
ment of all tokens in both chosen and rejected ex-
amples (Wu et al., 2023; Cao et al., 2024; Li et al.,
2024). However, different tokens within responses
carry varying significance. Especially in scenarios
involving complex instructions, the responses tend
to be lengthy and multi-facet. On one hand, not
all tokens in the rejected response are erroneous
and should be disapproved. On the other hand, cho-
sen response may also contain tokens that fail to
meet specific constraints, therefore should not be
unanimously approved.

Despite previous researchers have explored fine-
grained supervision signals, the signals either come
from a stronger model (Cao et al., 2024; Li et al.,
2024) or human annotation (Wu et al., 2023; Light-
man et al., 2023). However, in our case, it is diffi-
cult for the model to provide accurate supervision
for its own response, especially when dealing with
multifaceted instructions and the evaluation is at
token-level. Therefore, we propose Confidence-
Guided Token-aware DPO, which obtains token-
level supervision based on model confidence.

3.2.1 Preliminary: Token-level DPO

Direct Preference Optimization (DPO) (Rafailov
et al., 2024b) proposes a direct optimization ob-
jective that satisfies the optimal preference policy
without using a reward model:

Lppo(Te; Tref) =
7o (Yuw | @)
—E 0~ 10ga<,3log
( Y ,yl) D [ Wref(yw | x)

mo(y | =)
e ) Y

where 7y and ..y represent the policy model and
the reference model, respectively.

Subsequently, based on the theories of Levine
(2018), Rafailov et al. (2024a) derived the form
of DPO in token-level Markov Decision Process?2,
where dynamic weight can be easily integrated for

different tokens>, with the loss function as follows:
Lrppo(me, D) =

N-1

wy. o, mo(a[st’)

—E(r,,m)~plogo(B e log ———— I~

() ; C e (alsy)
M-1 o
mo(aylsy)

- B rilog —— 1), 2)
tz:; ! Wref(aé’si‘)

where 7% and 7! represent the winning and losing
trajectories, with IV and M as the token numbers,
and r; represents the weight for the ¢-th token.

3.2.2 Calibrated Confidence as Token Weight

While Section 3.2.1 provide theoretical support for
token-level DPO, it is non trivial to derive token-
level supervision. In this work, we propose to use
the calibrated confidence as supervision.

Given an instruction x, we obtain the entropy of
probability distribution over target vocabulary of
size V' at each decoding step as the weights:

1%
Ent(y;|z*,0) = =Y p(y})logp(yy), (3)

v=1

where p(y;) represents the conditional distribution
p(yt|z, y<t,0), and 6 represents model parameters.
If the majority of the probability mass is concen-
trated on a limited number of vocabulary words,
it indicates that the model is confident and the to-
ken is more likely to be aligned with the instruc-
tion (Fomicheva et al., 2020). Conversely, if the
probabilities resemble a uniform distribution, the
resulting token is expected to be misaligned.
%Please refer to Appendix C.1 for more details.

3Please refer to Appendix C.2 for the mathematical proof
of the dynamic token weight in preference optimization
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While there are other attributes that could also
impact the confidence score (such as fluency), in
this work, we want to focus our optimization on
instruction alignment. Therefore, we apply calibra-
tion to the entropy to derive the token-level supervi-
sion for chosen and rejected samples respectively:

. Ent(y;|2", ) /Ent(y; |2, §), for y; in y*,
"7 1 Ent(y|z!, 0) /Ent(y;|z*, 0), for y, in o/,

ry = min(F,rt), (4)

where the chosen sample (z%,y") refers to
(Ins,Resp), and the rejected sample (2!, y') refers
to (INSgrop, RESPgyep ), and I is an upper-bound to
avoid extreme cases to disrupt training, and we set
I" as 2 in this work.

The rationale is straightforward: for a given to-
ken in the response, if it exhibits high confidence
under z* and low confidence under !, this sug-
gests that the token aligns well with % but does not
fit 2!, potentially reflecting the dropped constraint.
Therefore, the token requires a larger weight if it is
in the rejected response (or a smaller weight if it is
in the chosen response).

Calibrated confidence guided token-aware DPO
allows for more targeted optimization, focusing on
tokens that highlight the constraint mismatch on
complex instructions, instead of unanimously opti-
mizing all tokens, thereby improving the efficiency
of complex instruction alignment.

4 Experiments

4.1 Set-up

Models. We conduct experiments on two mod-
els: LLaMA-3-8B-Instruct (Dubey et al., 2024)
and Qwen2-7B-Instruct (Yang et al., 2024a). Both
models have undergone alignment to possess fun-
damental instruction-following ability.

Setting. The experiments are carried out in two
distinct settings:

1. Pre-Existing Instructions (Prelnst): We
leverage pre-existing complex instructions as
a starting point for the model. We randomly
select 2,000 instructions from the dataset of
WizardLM (Xu et al., 2024).

2. Self-Generated Instructions (SelfInst): In
this setting, we generate instructions using
the Self-Instruct method (Wang et al., 2022),
based on 10 high-quality samples from Qin

et al. (2024) as in-context examples. Com-
pared with Prelnst, this setting is more chal-
lenging as we need to construct the complex
instructions from scratch.

Evaluation. We mainly perform evaluations
on three complex instruction-following bench-
marks: CFBench (Zhang et al., 2024b), Follow-
Bench (Jiang et al., 2024b) and ComplexBench
(Wen et al., 2024). We also conduct evaluations
on one general instruction benchmark: AlpacaE-
val2 (Dubois et al., 2024). Note that all bench-
marks require GPT-4 for judgment, and we use
GPT-40-0513* as the evaluator for all of them.

Baselines. We mainly compared our method
against the following self-alignment methods:

e Self-Reward (Yuan et al., 2024): This method
leverages the model to first generate multiple
responses and then construct rewards.

» Self-Reward + BSM: Based on Self-Reward,
this method performs fine-grained evaluation
based on BSM (Saha et al., 2024).

* Self-Correct (Palmeira Ferraz et al., 2024):
This method generates initial output and then
corrects it to construct preference data.

* ISHEEP (Liang et al., 2024): This method
self-creates additional instruction-output pair,
which are filtered for supervised fine-tuning.

4.2 Main Results

As demonstrated in Table 1, our proposed MuSC
achieves significant improvement across both com-
plex and general instruction-following benchmarks.
The improvement is consistent among different set-
tings, verifying its scalability. By creating pref-
erence data with both constraint-aware and token-
aware contrast, the model effectively learns to ad-
dress all constraints lying in the instructions.

The results of Self-Reward underperform our
method, even with the help of branched evaluation
(Saha et al., 2024). This is because of the limited
evaluation capability of the model, especially when
evaluating its own response to complex instructions.
Moreover, as different responses generated from
the same model to the same instruction typically
do not vary significantly, it is difficult to create
effective contrast samples with real negativity.

4platform.openai.com/docs/models/gpigpt-40
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Settin Method CF-Bench FollowBench ComplexBench AlpacaEval2
g CSR ISR PSR HSR SSR Overall LC (%) Avg. Len
Results on LLaMA-3-8B-Instruct
LLaMA-3-8B-Instruct ‘ 0.64 024 034 6239 73.07 61.49 ‘ 21.07 1702
Self-Reward 0.65 026 035 61.20 7222 62.45 19.21 1824
Self-Reward w/ BSM | 0.68 0.28 0.39 64.30 73.84 64.13 19.03 1787
Selffnst Self-Reward w/ GPT-4 | 0.66 0.25 0.37 62.18 73.34 64.05 19.55 1767
Self-Correct 0.52 020 0.27 5438 67.19 55.91 7.97 1919
ISHEEP 0.60 0.29 040 6277 72.86 62.67 22.00 1707
MuSC 0.70 032 044 66.71 74.84 65.98 23.87 1708
Self-Reward 0.66 0.27 0.37 60.88 72.17 62.03 19.93 1789
Self-Reward w/ BSM | 0.68 0.29 0.40 63.96 73.78 64.3 20.98 1829
Self-Reward w/ GPT-4 | 0.66 0.26 0.37 64.02 73.26 63.52 18.02 1804
Prelnst Self-Correct 0.60 0.23 032 60.11 70.94 60.79 6.20 1593
ISHEEP 0.67 029 040 6354 7321 62.92 20.23 1703
SFT 0.56 020 0.26 50.06 6648 53.93 10.00 1079
MuSC 0.69 030 042 6690 75.11 64.73 23.74 1631
Results on Qwen2-7B-Instruct
Qwen2-7B-Instruct 0.74 036 049 5981 71.69 67.24 15.53 1688
Self-Reward 0.75 038 0.50 5536 69.71 66.98 16.81 1756
Self-Reward w/ BSM | 0.75 0.38 0.50 57.83 70.53 67.02 16.94 1710
SelfInst Self-Correct 0.67 0.28 0.38 5198 67.89 64.41 14.01 1497
ISHEEP 0.76 040 0.52 57.01 69.88 67.32 16.99 1619
MuSC 0.78 042 0.54 62.60 72.57 69.39 20.08 1595
Self-Reward 0.75 037 049 56.45 70.00 66.45 15.98 1796
Self-Reward w/ BSM | 0.75 0.37 0.49 58.02 70.62 67.43 17.17 1764
Prelnst Self-Correct 0.66 0.28 0.37 4947 66.35 64.32 14.46 1737
emns ISHEEP 0.77 041 0.52 5552 69.62 67.13 16.52 1627
SFT 0.72 035 046 4736 64.67 65.89 9.52 979
MuSC 079 0.44 0.55 62.73 73.09 70.00 20.29 1613

Table 1: Experiment results of different groups of methods on instruction following benchmarks. For more detailed

results on each benchmark, please refer to Appendix D.

The improvement of I-SHEEP also underper-
forms, likely due to its reliance on supervised fine-
tuning for optimization. Previous research also sug-
gests that learning from negative samples is more
effective than learning solely from positive ones
(Yang et al., 2024b). The results of Self-Correct
degrades a large margin, which might be due to
the inability of the model for self-correction on
complex instructions (Palmeira Ferraz et al., 2024).

On general instruction benchmarks, our method
also achieves significant improvement. This aligns
with the previous research, which suggests that
the improvement on complex instruction-following
is beneficial for the overall instruction-following
ability (Xu et al., 2024; Elmadany et al., 2023).

S Analysis
5.1 MuSC on SFT model

In Section 4, our main experiments are conducted
on the Instruction-version models. To exclude the
influence of an initial preference optimization pro-
cess, we apply our method on SFT models.
Specifically, we selected two SFT-versions of
LLaMA models, LLaMA-3-8B-UltraChat-200K
and LLaMA-3-8B-Tulu-330K>. Both models have
gone through and only through SFT process on
open-sourced datasets. As shown in Table 2, our
proposed MuSC can improve both the complex and
general instruction-following ability of SFT mod-
els by a large margin. Notice we only apply 2K
samples when performing preference optimization,
which is roughly 1% of the amount of SFT data.

Shttps://huggingface.co/Magpie-Align
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Settin Method CF-Bench FollowBench ComplexBench AlpacaEval2
& CSR ISR PSR HSR SSR Overall LC (%) Avg. Len
LLaMA-3-8B-Ultrachat-200K | 0.54 0.18 0.25 33.64 51.37 44.89 ‘ 5.94 861
Self-Reward w/BSM | 0.58 0.2 0.28 39.24 56.82 53.69 9.64 1099
Prelnst Self-Correct 0.32 0.08 0.01 18.59 36.88 36.38 3.47 575
ISHEEP 0.57 0.19 026 4222 58.87 52.95 10.35 1283
MuSC 0.66 0.25 034 4893 61.54 56.24 11.13 1112
LLaMA-3-8B-Tulu-330K 0.56 0.20 027 36.26 54.66 54.52 6.00 992
Self-Reward w/BSM | 0.60 0.22 030 41.71 58.68 55.84 9.71 1307
Prelnst Self-Correct 0.31 0.08 0.10 24.67 39.94 40.44 321 623
ISHEEP 0.61 022 030 43.16 59.21 58.20 10.77 1402
MuSC 0.70 0.28 0.40 51.26 63.94 62.98 13.20 1341
Table 2: Experiment results of different methods on supervised fine-tuned models.
CF-Bench AlpacaEval2 CF-Bench AlpacaEval2
Baseline | 0.64 024 034 | 21.07 1702 Bascline | 0.64 024 034 | 21.07 1702
Perplexity | 0.70 032 043 | 22.99 1744 Results on Selflnst
PMI 0.69 0.29 041 | 2192 1713 DPOpsusc | 0.70 032 0.44 | 23.87 1708
KLDiv 0.69 031 042 | 21.86 1686 w/o fgct 0.68 028 0.39 | 2149 1735
Entropy | 0.71 034 044 | 23.74 1631 SimPOpsusc | 0.70 031 042 | 22.92 1716
w/ocalib | 0.68 028 0.39 | 2149 1735 wio fgct 0.67 030 040 | 19.59 1637
IPOprusc | 073 037 048 | 23.18 1650
Table 3: Results of different confidence metrics as the wlo fgct 070 033 044 | 2042 1686
fine-grained weight on LLaMA-3-8B-Instruct.
Results on Prelnst
) . . . . DPOyrusc | 0.69 030 042 | 23.74 1631
This again verifies that learning from negative sam- wio fect 0.69 030 041 | 2096 1671
ples is comparatively more efficient than learning ;
solelv from positive samples SimPOpsusc | 0.69 031  0.42 | 23.28 1625
y P ples. wiofget | 0.67 031 041 | 2202 1570
5.2 The Influence of Confidence Metrics IPOy1us0 0.68 0.32 044 | 24.56 1601
Various confidence metrics have been established wio fget 068 030 042 ]22.04 1531

in the domain of LLM (Geng et al., 2024). This sec-
tion aims to provide a comparison across different
metrics as the token weight, under the framework
of MuSC. We include the following metrics:

* Perplexity: The exponential of the negative
log-likelihood of the token.

e PMI: Pointwise Mutual Information as de-
fined in Takayama and Arase (2019).

» KIDiv: Kullback—Leibler divergence between
the token probability distribution under cho-
sen and rejected instructions.

As shown in Table 3, entropy-based token weight
achieves the best result among all metrics, verify-
ing its effectiveness. Both the perplexity and PMI-
based score underperforms, as they only consider
the probabilities of the selected tokens instead of

Table 4: Results of our method on different preference
optimization methods on Llama-3-8B-Instruct.

the whole distribution, leading to biased evalua-
tion®. KLDiv-based score also underperforms, this
is because KLDiv is essentially a distance measure-
ment instead of a confidence measurement, which
is not adapted to our scenario.

We also experiment with removing the calibra-
tion proposed in Section 3.2.2. As can be seen,
calibration is important for the effectiveness of
confidence-based fine-grained weight, as it can ex-
clude other factors such as fluency, thereby focus-

%As the model would always select (one of) the tokens with
the highest probability at each step, relying only on the the
selected tokens for evaluation will result in overconfidence.
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Method MMLU GSMS8K HumanEval | Avg.
Results on Meta-LLaMA-3-8B-Instruct
Baseline | 6829  79.08 59.15 | 51.63
MuSCgseifrnst | 6824 79.23 62.20 52.42
w/o fgct
MuSCprernst | 68.17 77.41 62.80 52.10
w/o fgct 67.80 77.71 60.98 51.62
Results on Qwen2-7B-Instruct
Baseline | 7076  83.09 7561 | 57.37
MuSCgseifrnst | 70.63 84.09 75.61 57.58
w/o fgct 70.81 82.94
MuSCpyernst | 70.46 84.38 75.78 57.66
w/o fgct 70.63 84.53

Table 5: Experiment results of our methods on funda-
mental capability benchmarks. Bolded results denote
improvements, while grayed results denote degradation.

ing the contrast on instruction alignment.

5.3 Can MuSC Scale to Other xPO Method?

While our experiments primarily focus on the DPO
method, the overall framework is not limited to a
single preference optimization technique. There-
fore, we extended our framework to two additional
xPO methods: SimPO (Meng et al., 2024) and
IPO (Azar et al., 2024). We utilized the same con-
structed preference data and applied the entropy-
based score as the token-level supervision’. Note
that for “w/o fgct”, we just remove the fine-grained
contrast in the MuSC method. In Table 4, our ap-
proach has shown consistent improvements across
both SimPO and IPO, validating its scalability.
While IPO showed the best performance among
different xPO methods, these performance differ-
ences were not statistically significant. Our method
is not limited to DPO; instead, it’s a general frame-
work applicable to most xPO-style methods. Given
the popularity of DPO, we primarily report our
experiments based on DPO in this work.

5.4 Is Fundamental Capability Harmed?

Previous research have proposed that during the
alignment process, the fundamental ability of
model may suffer degradation due to alignment
tax (Ouyang et al., 2022). Therefore, we eval-
uated our proposed method on three fundamen-
tal capability benchmarks: MMLU (Hendrycks
et al., 2021), GSM8K (Cobbe et al., 2021) and
HumanEval (Chen et al., 2021).

"Please refer to Appendix A.2 for detailed implementation.
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Figure 3: Different statistical indicators during the train-
ing steps, upon different methods.

As shown in Table 5, while the results of naive
MuSC may suffer slight degradation, the introduc-
tion of fine-grained contrast mitigates the degrada-
tion, which verifies the significance of token-level
supervision. Under the scenario of complex in-
struction, the response is lengthy and should not
be uniformly approved or disapproved. With fine-
grained supervision, we focus the optimization on
complex instruction alignment, thereby avoiding
the disruption of other capabilities.

5.5 The Variation of Statistical Indicators

As different methods start from the same group of
instructions, training statistics can be comparable
as a quality indicator. Therefore, we display the
variation of both loss and reward margins between
chosen and rejected samples on different methods.

As shown in Figure 3, Self-Reward presents both
higher loss and lower reward margin during train-
ing. This is because there is too much noise be-
tween the chosen and rejected pairs, making the
model unable to capture the contrast related to
constraint alignment. Notice that both indicators
start to change drastically at the 2nd epoch, which
means the learned knowledge cannot transfer be-
tween different samples at the 1st epoch. On the
other hand, the optimization based on MuSC con-
verges faster and more smoothly, verifying the ef-
fectiveness of the contrast samples.

Comparing the indicators of MuSC with and
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CFBench AlpacaEval2

Model CSR ISR PSR LC Len
Qwen2.5-1.5B-Inst 0.59 0.21 0.28 10.10 1507
+MuSC 0.69 032 041 1144 1346
Qwen2.5-3B-Inst  0.72 034 045 2744 2188
+MuSC 076 041 0.52 30.64 1873
Qwen2.5-14B-Inst  0.82 0.49 0.60 46.05 1792
+MuSC 0.85 0.56 0.67 47.61 1770
Qwen2.5-32B-Inst  0.87 0.60 0.70 48.63 1785
+MuSC 0.89 0.65 0.75 49.34 1772

Table 6: Experiment results of MuSC on Qwen2.5-
Instruct of different model sizes.

without fine-grained supervision, it can also be
noticed that with the introduction of fine-grained
supervision, both indicators converge faster. The
introduction of token-level supervision is a cheap
yet effective method to improve xPO methods.

For the analysis of different instruction nois-
ing schemes and the visualization of token-level
weight, please refer to Appendix B and D.

5.6 Can MuSC Scale among Model Sizes

To verify the scalability of our proposed method on
models with larger sizes, we conducted extensive
experiments on Qwen-2.5-Instruct models ranging
from 1.5B to 32B parameters. As shown in Table
6, the results demonstrate consistent improvements
across both smaller and larger models, confirming
that our method is effective regardless of model
size. This robust scalability is attributed to our
approach being inherently self-improving and not
requiring external models, which holds significant
promise for advancing LLM capabilities.

6 Conclusion

In this work, we propose a Multi-granularity Con-
trastive Training framework, to perform complex
instruction alignment without the introduction of
external supervision. Experiment results show our
method achieves significant improvement on in-
struction alignment benchmarks, surpassing previ-
ous self-improvement methods by a large margin.
In the future, we will apply our MuSC on the im-
provement of other capabilities, such as long-form
generation, multi-modal generation, etc.

Limitations

Our work still has some limitations: 1) Due to time
and resource limitation, we did not validate our
method on larger models, such as LLaMA-70B.
Validation on larger models could help to improve

the credibility of our method. 2) We mainly re-
lied on GPT-4 based LLLM-as-a-Judge to evaluate
the results. Despite it has been verified that GPT-
4 based evaluation achieves high correlation with
human evaluators (Zheng et al., 2023), incorporat-
ing human evaluation would further improve the
credibility of our methods. 3) We did not scale our
method to PPO-based optimization methods, which
are also wildly used in recent alignment practice.
The application of our method on traditional RL
methods could further improve its utility.

Ethical Considerations

Since the aligned data is generated based on the
Instruct version model, the chances of generating
toxic content are low. To further validate this, we
randomly selected 200 samples in total—100 sam-
ples for Llama-3-8B-Instruct and 100 samples for
Qwen-2-7B-Instruct—and employed three gradu-
ate students to annotate them. The results showed
no instances of toxic instructions or responses.
However, there is potential risk of knowledge
forgetting related to safety alignment. To address
this, we recommend incorporating additional safe
alignment samples during MuSC training to rein-
force the model’s safety-related knowledge. We
will include these recommendations in the ethical
considerations section of the revised manuscript.
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A Implementation Details

A.1 Token-aware Preference Data Construction

For all models that used for preference data construction, we adopt the following prompts presented in
Figure 5, 7, 6, 8, 9 and 8. We set the temperate as 0.5 for all steps to ensure diversity. To ensure the data
quality, we filter instructions with less than three constraints and more than ten constraints. We also filter
preference pairs with the same chosen and rejected responses.

For constraint dropout, we set the dropout ratio « to 0.3 to ensure that negative examples are sufficiently
negative, meanwhile not deviate too much from the positive sample. We avoid dropout on the first
constraint, as it often establishes the foundation for the task, and dropping the first one would make the
recombined instruction overly biased.

A.2 Token-aware Preference Optimization

Our experiments are based on Llama-Factory (Zheng et al., 2024), and we trained all models on 8 A100-
80GB SXM GPUs. The per_device_train_batch_size wassetto 1, gradient_accumulation_steps
to 8, leading to an overal batch size as 64, and we used bfloat16 precision. The learning rate is set as
1e-06 with cosine decay,and each model is trained with 2 epochs. We set 3 to 0.2 for all DPO-based
experiments, 3 as 3.0 and y as 1.0 for all SimPO-based experiments, g as 1.0 for all IPO-based methods
referring to the settings of Meng et al. (2024). All of the final loss includes 0.1x of the SFT loss.

B The Influence of Noising Scheme

Previous work has proposed various noising strategies in contrastive training (Lai et al., 2021). While
we leverage Constraint-Dropout for negative sample generation, to make a fair comparison with other
strategies, we implement the following strategies: 1) Constraint-Negate: Leverage the model to generate
an opposite constraint. 2) Constraint-Substitute: Substitute the constraint with an unrelated constraint.

0.80 24 0.90

0.70 r22 0.80
17

0.60 20 0.70 15
0.1 0.2 0.4 0.5 0.1 0.2 0.3 0.4 0.5

0.3
llama3 qwen2
—e— CFBench —e— AlpacaEval2

Figure 4: The variation of results on CFBench and AlpacaEval2 with different dropout ratios.

As shown in Table 7, both the negation and substitution applied on the constraints would lead to
performance degradation. After a thoroughly inspect of the derived data, we realize that instructions
derived from both dropout and negation would lead to instructions too far from the positive instruction,
therefore the derived negative response would also deviate too much from the original instruction. An
effective negative sample should fulfill both negativity, consistency and contrastiveness, and constrait-
dropout is a simple yet effective method to achieve this goal.

We also provide the variation of the results on CF-Bench and AlpacaEval2 with different constraint
dropout ratios. As shown in Figure 4, with the dropout ratio increased from 0.1 to 0.5, the results on
CF-Bench firstly increases and then slightly decreases. On the other hand, the results on AlpacaEval2
declines a lot with a higher dropout ratio. This denotes that a suboptimal droout ratio is essential for the
balance between complex instruction and general instruction following abilities, with lower ratio may
decrease the effectiveness of general instruction alignment, while higher ratio may be harmful for complex
instruction alignment. Finally, we set the constraint dropout ratio as 0.3 in all experiments.
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Meta-LLaMA-3-8B-Instruct Qwen-2-7B-Instruct

Scenario Method CF-Bench AlpacaEval2 CF-Bench AlpacaEval2
CSR ISR PSR LC% AvglLen | CSR ISR PSR LC% AvglLen
baseline 0.64 024 034 21.07 1702 0.74 036 049 1553 1688

Constraint-Drop 071 034 045 2343 1682 0.79 043 054 1931 1675
Constraint-Negate 0.68 0.28 0.39 1894 1688 075 037 050 17.82 1663

Prelnst - straint-Substitute | 0.68 028 040 2048 1706 | 076 039 051 19.05 1709

Table 7: Experiment results of different noising strategies on instruction following benchmarks.

C Mathematical Derivations

C.1 Preliminary: DPO in the Token Level Marcov Decision Process

As demonstrated in Rafailov et al. (2024a), the Bradley-Terry preference model in token-level Marcov
Decision Process (MDP) is:

7' Y exp <Z@]\L1 r(s?, a%”))
P ( z ) exp (Zf\ilr(sﬁ-",ag’)) + exp (Zij\iﬂ” (S§7a§)>

The formula using the )-function to measure the relationship between the current timestep and future
returns:

®)

. (¢, ar) + Blog mrer(atse) + V*(si41), if 8441 is not terminal
Q" (s, ar) = . . . (6)
(8¢, at) + Blog Trer(at|se), if 411 is terminal
Derive the total reward obtained along the entire trajectory based on the above definitions:
T-1 T-1
r(st,ar) = Y (Q(st,ar) — Blog met(at|st) — V7™ (st+1)) (7
t=0 t=0

Combining this with the fixed point solution of the optimal policy (Ziebart, 2010; Levine, 2018), we
can further derive:

_ T—1
Z r(st,at) = Q" (s0,a0) — Blog mrer(aolso) + Z “(styat) — V7*(st) — Blog me(at|st))  (8)
— t=1
T-1 7T*(CL ’S )
e B ARt
= Q*(s0,a0) — Blog myes(ao|so) + ; Blog Tret(az|st) ®
T-1 TI'*(CL ‘S )
= V*(s0) + Y flog ~— "

=0 7'f'ref(alt‘st)

By substituting the above result into Eq. 5, we can eliminate V*(.Sy) in the same way as removing the
partition function in DPO, obtaining the Token-level BT model that conforms to the MDP:

N-1 l)
(v - l): 1 ay’ | s’) 1 at|st 1
pee (T =T ”<§5°gmef Eary Zﬂo (11)

Tref at | Sf&)

Thus, the Loss formulation of DPO at the Token level is:

*(ay | sp) ey w* (al | s)
L (m9, D) = ~E(r,,.7)~p |logo § mgw c@r ey ) | 2 Bles—
re t

—~ T ref (at | st)
(12)
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C.2 Proof of Dynamic Token Weight in Token-level DPO

In classic RLHF methods, the optimization objective is typically formulated with an entropy bonus,
expressed through a Kullback-Leibler (KL) divergence constraint as follows:

T
max B,y (fs) X7 (5t,20) = BDxcr[mo(@rlse) | mres (arse)]] (13)
t=0
d mo(ar|st)
= maxE — Blog — P 14
H}%X atwﬂgcl&);[r(sz‘/’ag 50g7r7"ef(at‘st) (9

This can be further rewritten by separating the terms involving the reference policy and the entropy of
the current policy:

T

max g, vy (fs1) ) (s, a) + Blog mres(alsy)) + BH(mg)|so ~ plso)]
t=0

When the coefficient [ is treated as a variable that depends on the timestep ¢ (Li et al., 2024), the
objective transforms to:

T

IEF%XECLtNWg(-‘Sz) Z[(T(Su a;) + B log Wref(atfst)) — By log mo(a[st)] (15)
t=0

where (3; depends solely on a; and s;. Following the formulation by Levine (2018), the above expression
can be recast to incorporate the KL divergence explicitly:

T

max Eg, v (Js:) > [(r(se,ar) + Brlog mrep(arlse)) — Brlog mo(aylsy)] (16)
=0

where the value function V (s;) is defined as:

at)

V(st) = Bilog /A[exp (st Tref(ae|se)] day (17)

B

When the KL divergence term is minimized—implying that the two distributions are identical—the
expectation in Eq. (14) reaches its maximum value. Therefore, the optimal policy satisfies:

1 (st & log mre r(ayls
mo(a]se) = —a) exp( (st,ar) +5tﬁtg ref (@l t)) (18)
Based on this relationship, we define the optimal Q-function as:
r(s¢,a log e r(at]s V*(s , 1if s441 is not terminal
@ (sea0) = {T‘ESZ, aZ; igz loi W::;EaleZ;,+ e if sii is terminal (19
Consequently, the optimal policy can be expressed as:
To(agls)) = e(Q(st,a) =V (st))/ B (20)

By taking the natural logarithm of both sides, we obtain a log-linear relationship for the optimal policy
at the token level, which is expressed with the optimial Q-function:

Brlogmg(as | s¢) = Qo(se, ar) — Vi(se) (21)
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This equation establishes a direct relationship between the scaled log-ratio of the optimal policy to the
reference policy and the reward function r(s¢, a;):

™ (a | st)

Bt log
Tref (at | St)

= T'(St, at) + V* (St+1) — V*(St) (22)
Furthermore, following the definition by Rafailov et al. (2024a)’s definition, two reward functions
r(s¢, a;) and 1/ (s, a;) are considered equivalent if there exists a potential function ®(s), such that:

T/(St, at) = T‘(St, at) =+ (P(St+1) — (I)(St) (23)

This equivalence implies that the optimal advantage function remains invariant under such transfor-
mations of the reward function. Consequently, we derive why the coefficient beta in direct preference
optimization can be variable, depending on the state and action, thereby allowing for more flexible and
adaptive policy optimization in RLHF frameworks.

D Detailed Experiment Results

In this section, we presented detailed experiment results which are omitted in the main body of this
paper due to space limitation. The detailed experiment results of different methods on ComplexBench,
FollowBench and AlpacaEval2 are presented in Table 8, 10 and 9. The detailed results for the ablative
studies of confidence metrics is presented in Table 11. The detailed results for the ablative studies of
confidence metrics is presented in Table 7. We also present a case study in Table 12, which visualize the
token-level weight derived from calibrated confidence score.

ComplexBench
Scenario Method Meta-Llama3-8B-Instruct Qwen2-7B-Instruct
Overall And Chain Selection | Overall And Chain Selection
baseline 6149 5722 5722 53.55 67.24 6258 62.58 58.97

Self-Reward | 6245  58.23 58.23 54.07 6698  63.02 63.02 57.75
w/ BSM 64.13  58.01 58.01 56.62 67.02 6237 6237 57.85
w/ GPT-4 64.05 59.44 59.44 54.78 — — — —

Self-Correct | 5591 49.85 49.85 46.91 64.41 59.59 59.59 55.04
ISHEEP 62.67 57779 57.79 54.63 67.32 6195 6195 59.64

MuSC 6598 6345 6345 55.96 69.39 6545 6545 59.79

Self-Reward | 62.03 5694 56.94 53.09 66.45 6137 61.37 57.64
w/ BSM 64.30 57.58 57.58 56.47 6743 6295 6295 58.41
w/ GPT-4 63.52 59.08 59.08 53.91 — — — —

PreInst  Self-Correct | 60.79  55.65 55.65 52.02 64.32 60.16 60.16 54.63
ISHEEP 6292 5637 56.37 54.83 67.13 6445 64.45 57.54

SFT 53.93 4577 45.77 44.09 65.89 60.16 60.16 57.39

MuSC 64.73 59.23 59.23 5591 70.00 66.88 66.88 61.38

SelfInst

Table 8: Detailed experiment results of different methods on ComplexBench.
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FollowBench

Scenario Method Meta-Llama3-8B-Instruct Qwen2-7B-Instruct
HSR SSR CSL HSR SSR CSL
baseline 62.39 73.07 2.76 59.81 71.69 246
Self-Reward | 61.20 72.22 2.56 55.36 69.71 2.34
w/ BSM 64.30 73.84 2.80 57.83 70.53 241

w/ GPT-4 | 62.18 73.34 2.66 — — —
Self-Correct | 54.38 67.19 2.02 5198 67.89 2.16
ISHEEP 62.77 72.86 2.52 57.01 69.88 2.36
MuSC 66.71 74.84 2.92 62.60 72.57 2.82
Self-Reward | 60.88 72.17 2.64 56.45 70.00 244
w/ BSM 63.96 73.78 2.66 58.02 70.62 242

w/ GPT-4 | 64.02 73.26 2.64 — — —
Prelnst  Self-Correct | 60.11 70.94 2.70 4947 66.35 1.98
ISHEEP 63.54 73.21 2.64 55.52 69.62 228
SFT 50.06 66.48 2.04 4736 64.67 1.96
MuSC 66.90 75.11 2.99 62.73 73.09 2.86

Selflnst

Table 9: Detailed experiment results of different methods on FollowBench.

Please break down the instruction into multiple constraints and an input, following the provided
examples. Do not generate any other openings, closings or other uncessary explanations.
Examples:

*¢Instruction:x*
{instruction_body}
*kConstraints:*x
{constraint_body1}
{constraint_body2}
{constraint_body3}

*x¢Instruction:sk
{instruction_body}
*+¥Constraints:x*
{constraint_body1}
{constraint_body2}
{constraint_body3}

Below is the instruction that needs to be broken down:
*kInstruction:sx
{instruction_body}
*x*¥Constraints:x*

Figure 5: The prompt template used for instruction decomposition.

AlpacaEval2
Scenario Method Meta-Llama3-8B-Instruct Qwen2-7B-Instruct
LC (%) WR (%) Avg.Len LC (%) WR (%) Avg. Len

baseline 21.07 18.73 1702 15.53 13.70 1688
Self-Reward | 19.21 19.18 1824 16.81 15.66 1756
w/ BSM 19.03 18.34 1787 16.94 15.09 1710

Selffnst w/ GPT-4 19.55 18.53 1767 — — —
Self-Correct 7.97 9.34 1919 14.01 10.92 1497
ISHEEP 22.00 19.50 1707 16.99 14.04 1619
MuSC 23.87 2091 1708 20.08 15.67 1595
Self-Reward 19.93 19.04 1789 15.98 15.62 1796
w/ BSM 20.98 20.75 1829 17.17 16.21 1764

w/ GPT-4 18.02 17.74 1804 — — —
Prelnst  Self-Correct 6.20 5.81 1593 14.46 14.02 1737
ISHEEP 20.23 17.86 1703 16.52 13.36 1627

SFT 10.00 6.22 1079 9.52 5.25 979
MuSC 23.74 19.53 1631 20.29 1591 1613

Table 10: Detailed experiment results of different methods on AlpacaEval2.
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Meta-Llama-3-8B-Instruct Qwen-2-7B-Instruct
Scenario Method CF-Bench AlpacaEval2 CF-Bench AlpacaEval2
CSR ISR PSR LC(%) Avg.Len | CSR ISR PSR LC (%) Avg. Len

Baseline 064 024 034 21.07 1702 074 036 049 15.53 1688
w/ perplexity | 0.70 032 043  22.99 1744 079 043 054 1931 1675
w/ PMI 069 029 041 2192 1713 0.78 043 0.55 17.42 1651
w/ KLDiv 0.69 031 042 2186 1686 078 042 054 18.73 1614
w/ entropy | 0.71 0.34 044 23.74 1631 080 046 0.58 20.38 1683

Prelnst

Table 11: Detailed experiment results of different confidence metrics as the fine-grained weight.

Instruction 1: Identify the incorrect word in the given sentence: "The group acquired the skill to ski
in a suitable manner." Rewrite the identified incorrect word correctly, ensuring the new sentence
adheres to proper capitalization, punctuation, and grammar rules. Include at least one synonym of
the incorrect word to test the model’s understanding of context and vocabulary, and ensure the synon-
ym is used appropriately in the context of the sentence.

Chosen Response 1: ' The group acquired the skill to ski in a proficient manner . The incorrect word
is "suitable" . A synonym for "suitable" is "appropriate"|, but it doesn’t fit the context of the sentence .
"Proficient"|is a better synonym in this context as it means skilled or expert .

Rejected Response 1: The word "acquired" seems incorrect in the given sentence . A better word to
use in this context would be | "learned" . Rewritten sentence : "The group learned the skill to ski in a
suitable manner ."

Instruction 2: Rewrite the given sentence in C# syntax, using an idiom or metaphor to express dis-

belief, and ensure the sentence maintains its original meaning while being grammatically correct in

C#. The sentence to be rewritten is: "The idea that pigs can fly seems more plausible than his expla-

nation for being late."

Chosen Response 2: csharp\n using System ;\n class Program\n {\n static void Main ( string [] args
\n) {\n Console.WriteLine ( "His explanation for being late is so baffling that it’s akin to saying pigs
can fly , making it more believable in comparison . ) ;\n }\n }

Rejected Response 2: Wow , it’s truly hard to believe that pigs flying could be more plausible than
my explanation for being late !

Table 12: Visualization of dynamic weights derived for chosen and rejected responses, based on our proposed
calibrated entropy score. We select two samples from the datasets as an illustration.

Please combine the provided input and constraints into an instruction, following the provided examples.
Examples:

*xkxConstraints:xk
{constraint_body1}
{constraint_body2}
{constraint_body3}
*xkxInstruction:x*
{instruction_body}

*xxConstraints:xk
{constraint_body1}
{constraint_body2}
{constraint_body3}
*xxInstruction:xk
{instruction_body}

Below are the input and constraints for constructing your Instruction:

*xxConstraints:x*

{constraint_body1}

{constraint_body2}

{constraint_body3}

Please generate the instruction directly. Please incorporate the content of the input inside the
instruction if it is not None. Do not generate any other openings or closings.

Figure 6: The prompt template used for constraint recombination.
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Please follow the examples to come up with one task with more than 5 constraints. Please list the
constraints first and then provide the task.
Examples:

*kTask: %k

{instruction_body}
**¥Constraints:*k
{constraint_body1}
{constraint_body2}
{constraint_body3}

*xTask:$k

{instruction_body}
**¥Constraints:xk
{constraint_body1}
{constraint_body2}
{constraint_body3}

Figure 7: The prompt template used for self-instruct.

The following is a question used to apply constraint for generating an instruction. Please generate a
new constraint question which specifies a constraint on the contrary.

Please generate the constraint question with the following format: 'sckNew Constraintik: [new constraint
here]. Do not generate any other openings, closings or explanations.

*k0riginal Constraintx*: {constraint_body}

Figure 8: The prompt template used for constraint substitution.

The following is a question used to apply constraint for generating an instruction. Please generate a
new constraint question which specifies a constraint deviates from the original one.

Please generate the constraint question with the following format: 's#New Constraints*: [new constraint
herel. Do not generate any other openings, closings or explanations.

sk0riginal Constraintkxk: {constraint_body}

Figure 9: The prompt template used for constraint negation.
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