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Abstract

Complex instruction-following with elaborate
constraints is imperative for Large Language
Models (LLMs). While existing methods have
constructed data for complex instruction align-
ment, they all rely on a more advanced model,
especially GPT-4, limiting their application.
In this paper, we propose a Multi-granularity
Self-Contrastive Training (MuSC) framework,
to improve the complex instruction alignment
without relying on a stronger model. Our
method is conducted on both coarse and fine
granularity. On coarse-granularity, we con-
struct constraint-aware preference data based
on instruction decomposition and recombina-
tion. On fine-granularity, we perform token-
aware preference optimization with dynamic
token-level supervision. Our method is evalu-
ated on open-sourced models, and experiment
results show our method achieves significant
improvement on both complex and general
instruction-following benchmarks, surpassing
previous self-alignment methods1.

1 Introduction

Large Language Models (LLMs) have made re-
markable advancements and are being wildly ap-
plied across various domains (Zhao et al., 2024; Wu
et al., 2024a; He et al., 2024c; Liu et al., 2025; He
et al., 2024b; Zhang et al., 2025). The instruction-
following ability is fundamental and important,
as it enables LLMs to generate appropriate re-
sponses to given instructions and solve correspond-
ing tasks (OpenAI et al., 2024). While recent LLMs
perform comparatively well on simple instructions,
their response quality to complex instructions with
elaborate constraints often falls under expectation,
with some of the constraints omitted (He et al.,
2024a; Jiang et al., 2024b), which hinders their
application in more real-world complex scenarios.

∗ Equal contribution. � Corresponding Author.
1Codes are openly available at https://github.com/

HuihuiChyan/MuSC.

Please write a sentence to describe the night,C1 with more wordsC2
ends with t, no word starts with n,C3 totally 10 words.C4

Stars glint, moonlight soft, shadows 
faint, hearts rest quietly.

Stars glint, moonlight soft, shadows 
drift, hearts rest quietly.

Self-Reward

① Homogeneous Pref Data

Complex Instruction

Write a sentence with
: Stars glint, moonlight soft, 

shadows drift, hearts rest quietly.

C1 C2 C3 C4

Nocturnal breeze, stars glint, nature 
rests, nurturing the quiet charm.

Stars glint, moonlight soft, shadows 
drift, hearts rest quietly.

① Constraint-aware Pref Data

② Token-aware Pref Supervision 

Write a sentence with
:Nocturnal breeze, stars glint, 

nature rests, nurturing the quiet charm.

C1C1 C4

Write a sentence with
: Stars glint, moonlight soft, 

shadows drift, hearts rest quietly.

C1 C2 C3 C4

Write a sentence with
: Stars glint, moonlight soft, 

shadows faint, hearts rest quietly.

C1 C2 C3 C4

② Holistic Pref Supervision 

MuSC

Figure 1: An illustrative comparison between our
method and Self-Reward. Note that Self-Reward can-
not create effective contrast for complex instruction-
following, resulting in suboptimal optimization.

To enhance the complex instruction following,
the core challenge is the scarcity of high-quality
complex instruction data (Lou et al., 2024). Most
existing instruction datasets are constructed based
on existing NLP datasets or question-answering
websites with simple constraints (Wang et al., 2023;
Taori et al., 2023; Lian et al., 2023; Longpre et al.,
2023). To cope with the scarcity of complex in-
struction data, previous work such as Evol-Instruct
(Xu et al., 2024), Conifer (Sun et al., 2024a), and
Self-Correct (Palmeira Ferraz et al., 2024) have
been proposed to construct complex instructions
and responses. However, these methods typically
rely on a high-performance proprietary model (e.g.,
GPT-4) to distill the complex instruction-following
ability, which is expensive and can not be scaled
up in real-world applications.

Recently, the research community has paid at-
tention to self-alignment, to break the data bottle-
neck without relying on a stronger model (Wang
et al., 2024; Zhang et al., 2024a). Self-Reward
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(Yuan et al., 2024) proposes to utilize the model
itself to both generate responses and evaluate the
results, which can be incorporated into DPO train-
ing. ISHEEP (Liang et al., 2024) proposes an au-
tomatic loop to self-assess and self-filter instruc-
tion data. Despite their effectiveness, these meth-
ods are targeted at general instruction-following
ability. The self-alignment of complex instruction-
following ability remains unexplored.

In this paper, to address the above limitations, we
propose a novel Multi-granularity Self-Contrastive
Training framework (MuSC) in Figure 1, which
mainly comprises the following components:

1) Coarse-grained Contrast: Constraint-
aware Preference Data Construction. To im-
prove the model’s comprehension of constraint-
level distinctions, we construct preference pairs
that reflect the disparities in constraint fulfillment.
We achieve this by breaking down each complex
instruction into atomic constraints and selectively
omitting a subset to form negative instructions. The
chosen response, derived from the original instruc-
tion, is paired with the rejected response, generated
from the negative instruction, as a contrastive pair.
Notably, no external models are utilized in this
construction process.

2) Fine-grained Contrast: Token-aware Pref-
erence Optimization. For complex instructions,
the responses often involve multiple tokens that
contribute differently to fulfilling the instruction’s
constraints. Therefore, we introduce a token-aware
optimization framework that integrates dynamic
token-level weights based on the model’s confi-
dence. By focusing on tokens that deviate from
the constraints, this approach effectively identifies
and corrects tokens where the model fails to sat-
isfy the instruction’s requirements, leading to more
contextually appropriate responses.

Moreover, we need to mention that our MuSC
can be applied on both pre-existing complex in-
struction datasets, or newly generated instruction
datasets created by data synthesis methods (e.g.,
Self-Instruct (Wang et al., 2022)).

Our contribution can be summarized as follows:

• We propose a novel Multi-granularity Self-
Contrastive Training (MuSC) framework,
which creates effective contrast on both coarse
and fine granularity, to enhance the complex
instruction following abilities.

• For coarse-grained contrast, we construct
constraint-aware preference data with instruc-

tion decomposition-recombination. For fine-
grained contrast, we adopt dynamic token-
level weight with confidence guidance for bet-
ter preference optimization.

• We evaluate our framework on open-source
LLMs, and achieve significant improvements
on both complex and general instruction fol-
lowing benchmarks, without the help of a
larger model or human supervision.

2 Related Work

Complex Instruction-Following. As one of the
cores of LLM intelligence, how to improve the
model’s instruction-following capability is impor-
tant. The earliest works, such as Alpaca (Taori
et al., 2023), Vicuna (Chiang et al., 2023), and
Camel (Wang et al., 2023), used instruction data
generated by proprietary models to supervise fine-
tuning of open-source models, significantly enhanc-
ing their instruction-following capabilities. How-
ever, these methods mainly focus on general in-
struction following, while complex instruction fol-
lowing still remains challenging. To cope with this
challenge, a lot of methods (Yin et al., 2023; Lou
et al., 2023; He et al., 2024a; Sun et al., 2024b;
Chen et al., 2024b; Dong et al., 2024) have been
proposed to construct complex instruction data.
The earliest work is Evol-Instruct (Xu et al., 2024),
which proposed to utilize GPT-4 to expand the
instructions from both depth and width, thereby
generating complex instructions and corresponding
constraints. Conifer (Sun et al., 2024a) proposed
a progressive learning strategy designed to help
smaller models incrementally enhance their abili-
ties.
Self-Alignment. Self-alignment refers to align-
ing the model to human preference without relying
on a more advanced model or external supervi-
sion. As an early study, Self-Rewarding (Yuan
et al., 2024) proposed the model itself to both gen-
erate responses and evaluate the results. Follow-
ing this work, many works (Liu et al., 2024; Chen
et al., 2024b,a; Pang et al., 2024; Meng et al., 2024)
are conducted to obtain supervision data by the
model itself. Meta-Rewarding (Wu et al., 2024b)
advanced the concept by improving the model’s
instruction and evaluation capabilities simultane-
ously. Liu et al. (2024) employed diverse prompts
to guide the model to generate various responses.
Despite the progress these methods have made,
they all target general instruction following. For
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1. Instruction Decomposition 2. Constraint Dropout 3. Instruction Recombination 4. Response Generation

Can you plese write a poem for me? I want 

the poem with four lines,  and each line 

contains 5 words. It should depict a night 

scene, but without any references to the 

moon or star

New instruction:

Please write a four-line poem, with 

each line containing 5 words,

depicting a night scene without any 

references to the moon or star.

New Instructiondrop:

Please write a poem with each line

con-taining 5 words, depicting a

night scene.

Output:

Moonlight glows on still lakes,

Wind stirs in shadowed wakes,

Owls call through ancient trees,

Whispers ride the midnight breeze.

Ouput:

Clouds drift on still lakes,

Stars reflect in shadowed wakes,
Owls call through ancient trees.

Please write a poem.

Instruction: Please write a poem.

drop α% constraints

Input: 𝑥𝑙

Input: 𝑥𝑤

Output: 𝑦𝑤

Output: 𝑦𝑙

Instruction: Please write a four-line poem,with…
Ouput: Moonlight glows on still lakes, Wind

stirs in shadowed wakes, Owls call through 

ancient trees, Whispers ride the midnight breeze.

Instruction: Please write a four-line poem,with…
Ouput: Clouds drift on still lakes, Stars reflect in 

shadowed wakes, Owls call through ancient trees.

Calibrate Confidence 

Calibrate Confidence 

concat

concat

Constraint-aware Preference Data

𝒚𝒘  : Moonlight glows on still 

lakes, Wind stirs in shadowed 

wakes, Owls call through ancient 

trees, Whispers ride the midnight 

breeze.

𝒙𝒘  : Please write a four-line poem, 

with each line containing 5 words,

depicting a night scene without 

any references to the moon or star.

𝒚𝒍  : Clouds drift on still lakes,

Stars re-flect in shadowed wakes,

Owls call through ancient trees.

𝑟𝑡
𝑤𝑙𝑜𝑔

𝜋𝜃 𝑎𝑡
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Token-aware Preference Optimization

Instructiondrop: Please write a poem.

chosen

rejected

Token-Aware
Alignment

Constraint-aware Preference Data Construction

Pre-existing 

Complex Quries

Self-Instruct 

Complex Queries

or

Figure 2: The pipeline of our proposed MuSC. The process starts with constraint-aware preference data construction,
which includes instruction decomposition, constraint dropout, instruction recombination and response generation.
Next, the token-aware DPO is performed based on calibrated confidence to achieve token-level alignment.

complex instructions with multiple constraints, the
response will be lengthy and multi-facet, resulting
in challenges for the self-evaluation process.

3 Approach

The pipeline of MuSC is shown in Figure 2.

3.1 Constraint-aware Preference Data

Reinforcement-learning methods, such as PPO
(Schulman et al., 2017) and DPO (Rafailov et al.,
2024b), have achieved notable success in LLM op-
timization. Research has shown that learning from
negative samples is significantly more efficient than
learning solely from positive samples (Yang et al.,
2024b). However, these methods are limited by
the need for high-quality preference data, which is
particularly scarce for complex instructions.

To construct effective preference data for com-
plex instruction following, we propose a novel data
construction method, with the following steps1:

1. Instruction Decomposition: A complex in-
struction is typically a combination of mul-
tiple atomic constraints. We decompose the

1Please refer to Appendix A.1 for implementation details.

complex instruction into individual atomic
constraints, denoted as Cons.

2. Constraint Dropout: From the decomposed
constraints Cons, we randomly eliminate α%
of the constraints to form Consdrop.

3. Instruction Recombination: We recombine
both the original and the dropped constraints
Cons and Consdrop, to create chosen and re-
jected instructions: Ins and Insdrop.

4. Response Generation: Based on Ins and
Insdrop, we generate the chosen response
Resp and the rejected response Respdrop.

Previous research has suggested that the con-
struction of effective preference pairs for optimiza-
tion is non-trivial (Ivison et al., 2024). Our data
construction pipeline is guided by three principles:

• Negativity: The rejected response should de-
viate from the instruction by omitting some
constraints. Our method generates the rejected
instruction based on corrupted constraints, en-
suring that the rejected response deviates from
the original complex instruction.

• Consistency: The rejected response should re-
side within the model’s decoding space (Guo
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et al., 2024). In our method, the rejected in-
struction is simply a recombination of the orig-
inal instructions, ensuring the response falls
within the decoding space, which is crucial
for the optimization process.

• Contrastiveness: Chosen and rejected re-
sponses should be with a rational edit dis-
tance, to form an effective contrast (Jiang
et al., 2024a). By reconstructing both cho-
sen and rejected instructions using the same
method, we ensure that the derived samples
do not deviate too far from each other.

With constructed data satisfying both negativity,
consistency and contrastiveness, we form a solid
foundation for effective alignment. Moreover, our
method does not require a stronger model or human
supervision, ensuring its scalability.

Our self-construction method can be applied in
different scenarios. On one hand, it can be directly
applied on pre-existing complex instruction dataset.
On the other hand, if there is no existing complex
queries, we can adapt the Self-Instruct (Wang et al.,
2022) method by first generating constraints and
then generating instructions. In that case, the de-
composition step can be omitted.

3.2 Token-aware Preference Optimization

A well-known issue with DPO is its uniform treat-
ment of all tokens in both chosen and rejected ex-
amples (Wu et al., 2023; Cao et al., 2024; Li et al.,
2024). However, different tokens within responses
carry varying significance. Especially in scenarios
involving complex instructions, the responses tend
to be lengthy and multi-facet. On one hand, not
all tokens in the rejected response are erroneous
and should be disapproved. On the other hand, cho-
sen response may also contain tokens that fail to
meet specific constraints, therefore should not be
unanimously approved.

Despite previous researchers have explored fine-
grained supervision signals, the signals either come
from a stronger model (Cao et al., 2024; Li et al.,
2024) or human annotation (Wu et al., 2023; Light-
man et al., 2023). However, in our case, it is diffi-
cult for the model to provide accurate supervision
for its own response, especially when dealing with
multifaceted instructions and the evaluation is at
token-level. Therefore, we propose Confidence-
Guided Token-aware DPO, which obtains token-
level supervision based on model confidence.

3.2.1 Preliminary: Token-level DPO
Direct Preference Optimization (DPO) (Rafailov
et al., 2024b) proposes a direct optimization ob-
jective that satisfies the optimal preference policy
without using a reward model:

LDPO(πθ;πref ) =

− E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref (yw | x)

−β log
πθ(yl | x)
πref (yl | x)

)]
, (1)

where πθ and πref represent the policy model and
the reference model, respectively.

Subsequently, based on the theories of Levine
(2018), Rafailov et al. (2024a) derived the form
of DPO in token-level Markov Decision Process2,
where dynamic weight can be easily integrated for
different tokens3, with the loss function as follows:
LTDPO(πθ, D) =

− E(τw,τl)∼D log σ(β

N−1∑

t=0

rwt log
πθ(a

w
t |swt )

πref (a
w
t |swt )

− β

M−1∑

t=0

rlt log
πθ(a

l
t|slt)

πref (a
l
t|slt)

), (2)

where τw and τ l represent the winning and losing
trajectories, with N and M as the token numbers,
and rt represents the weight for the t-th token.

3.2.2 Calibrated Confidence as Token Weight
While Section 3.2.1 provide theoretical support for
token-level DPO, it is non trivial to derive token-
level supervision. In this work, we propose to use
the calibrated confidence as supervision.

Given an instruction x, we obtain the entropy of
probability distribution over target vocabulary of
size V at each decoding step as the weights:

Ent(yt|xw, θ) = −
V∑

v=1

p(yvt )logp(y
v
t ), (3)

where p(yt) represents the conditional distribution
p(yt|x, y<t, θ), and θ represents model parameters.
If the majority of the probability mass is concen-
trated on a limited number of vocabulary words,
it indicates that the model is confident and the to-
ken is more likely to be aligned with the instruc-
tion (Fomicheva et al., 2020). Conversely, if the
probabilities resemble a uniform distribution, the
resulting token is expected to be misaligned.

2Please refer to Appendix C.1 for more details.
3Please refer to Appendix C.2 for the mathematical proof

of the dynamic token weight in preference optimization
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While there are other attributes that could also
impact the confidence score (such as fluency), in
this work, we want to focus our optimization on
instruction alignment. Therefore, we apply calibra-
tion to the entropy to derive the token-level supervi-
sion for chosen and rejected samples respectively:

rt =

{
Ent(yt|xw, θ)/Ent(yt|xl, θ), for yt in yw,
Ent(yt|xl, θ)/Ent(yt|xw, θ), for yt in yl,

rt = min(Γ, rt), (4)

where the chosen sample (xw, yw) refers to
(Ins, Resp), and the rejected sample (xl, yl) refers
to (Insdrop, Respdrop), and Γ is an upper-bound to
avoid extreme cases to disrupt training, and we set
Γ as 2 in this work.

The rationale is straightforward: for a given to-
ken in the response, if it exhibits high confidence
under xw and low confidence under xl, this sug-
gests that the token aligns well with xw but does not
fit xl, potentially reflecting the dropped constraint.
Therefore, the token requires a larger weight if it is
in the rejected response (or a smaller weight if it is
in the chosen response).

Calibrated confidence guided token-aware DPO
allows for more targeted optimization, focusing on
tokens that highlight the constraint mismatch on
complex instructions, instead of unanimously opti-
mizing all tokens, thereby improving the efficiency
of complex instruction alignment.

4 Experiments

4.1 Set-up

Models. We conduct experiments on two mod-
els: LLaMA-3-8B-Instruct (Dubey et al., 2024)
and Qwen2-7B-Instruct (Yang et al., 2024a). Both
models have undergone alignment to possess fun-
damental instruction-following ability.

Setting. The experiments are carried out in two
distinct settings:

1. Pre-Existing Instructions (PreInst): We
leverage pre-existing complex instructions as
a starting point for the model. We randomly
select 2,000 instructions from the dataset of
WizardLM (Xu et al., 2024).

2. Self-Generated Instructions (SelfInst): In
this setting, we generate instructions using
the Self-Instruct method (Wang et al., 2022),
based on 10 high-quality samples from Qin

et al. (2024) as in-context examples. Com-
pared with PreInst, this setting is more chal-
lenging as we need to construct the complex
instructions from scratch.

Evaluation. We mainly perform evaluations
on three complex instruction-following bench-
marks: CFBench (Zhang et al., 2024b), Follow-
Bench (Jiang et al., 2024b) and ComplexBench
(Wen et al., 2024). We also conduct evaluations
on one general instruction benchmark: AlpacaE-
val2 (Dubois et al., 2024). Note that all bench-
marks require GPT-4 for judgment, and we use
GPT-4o-05134 as the evaluator for all of them.

Baselines. We mainly compared our method
against the following self-alignment methods:

• Self-Reward (Yuan et al., 2024): This method
leverages the model to first generate multiple
responses and then construct rewards.

• Self-Reward + BSM: Based on Self-Reward,
this method performs fine-grained evaluation
based on BSM (Saha et al., 2024).

• Self-Correct (Palmeira Ferraz et al., 2024):
This method generates initial output and then
corrects it to construct preference data.

• ISHEEP (Liang et al., 2024): This method
self-creates additional instruction-output pair,
which are filtered for supervised fine-tuning.

4.2 Main Results

As demonstrated in Table 1, our proposed MuSC
achieves significant improvement across both com-
plex and general instruction-following benchmarks.
The improvement is consistent among different set-
tings, verifying its scalability. By creating pref-
erence data with both constraint-aware and token-
aware contrast, the model effectively learns to ad-
dress all constraints lying in the instructions.

The results of Self-Reward underperform our
method, even with the help of branched evaluation
(Saha et al., 2024). This is because of the limited
evaluation capability of the model, especially when
evaluating its own response to complex instructions.
Moreover, as different responses generated from
the same model to the same instruction typically
do not vary significantly, it is difficult to create
effective contrast samples with real negativity.

4platform.openai.com/docs/models/gp#gpt-4o
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Setting Method CF-Bench FollowBench ComplexBench AlpacaEval2
CSR ISR PSR HSR SSR Overall LC (%) Avg. Len

Results on LLaMA-3-8B-Instruct

LLaMA-3-8B-Instruct 0.64 0.24 0.34 62.39 73.07 61.49 21.07 1702

SelfInst

Self-Reward 0.65 0.26 0.35 61.20 72.22 62.45 19.21 1824
Self-Reward w/ BSM 0.68 0.28 0.39 64.30 73.84 64.13 19.03 1787

Self-Reward w/ GPT-4 0.66 0.25 0.37 62.18 73.34 64.05 19.55 1767
Self-Correct 0.52 0.20 0.27 54.38 67.19 55.91 7.97 1919

ISHEEP 0.60 0.29 0.40 62.77 72.86 62.67 22.00 1707
MuSC 0.70 0.32 0.44 66.71 74.84 65.98 23.87 1708

PreInst

Self-Reward 0.66 0.27 0.37 60.88 72.17 62.03 19.93 1789
Self-Reward w/ BSM 0.68 0.29 0.40 63.96 73.78 64.3 20.98 1829

Self-Reward w/ GPT-4 0.66 0.26 0.37 64.02 73.26 63.52 18.02 1804
Self-Correct 0.60 0.23 0.32 60.11 70.94 60.79 6.20 1593

ISHEEP 0.67 0.29 0.40 63.54 73.21 62.92 20.23 1703
SFT 0.56 0.20 0.26 50.06 66.48 53.93 10.00 1079

MuSC 0.69 0.30 0.42 66.90 75.11 64.73 23.74 1631

Results on Qwen2-7B-Instruct

Qwen2-7B-Instruct 0.74 0.36 0.49 59.81 71.69 67.24 15.53 1688

SelfInst

Self-Reward 0.75 0.38 0.50 55.36 69.71 66.98 16.81 1756
Self-Reward w/ BSM 0.75 0.38 0.50 57.83 70.53 67.02 16.94 1710

Self-Correct 0.67 0.28 0.38 51.98 67.89 64.41 14.01 1497
ISHEEP 0.76 0.40 0.52 57.01 69.88 67.32 16.99 1619
MuSC 0.78 0.42 0.54 62.60 72.57 69.39 20.08 1595

PreInst

Self-Reward 0.75 0.37 0.49 56.45 70.00 66.45 15.98 1796
Self-Reward w/ BSM 0.75 0.37 0.49 58.02 70.62 67.43 17.17 1764

Self-Correct 0.66 0.28 0.37 49.47 66.35 64.32 14.46 1737
ISHEEP 0.77 0.41 0.52 55.52 69.62 67.13 16.52 1627

SFT 0.72 0.35 0.46 47.36 64.67 65.89 9.52 979
MuSC 0.79 0.44 0.55 62.73 73.09 70.00 20.29 1613

Table 1: Experiment results of different groups of methods on instruction following benchmarks. For more detailed
results on each benchmark, please refer to Appendix D.

The improvement of I-SHEEP also underper-
forms, likely due to its reliance on supervised fine-
tuning for optimization. Previous research also sug-
gests that learning from negative samples is more
effective than learning solely from positive ones
(Yang et al., 2024b). The results of Self-Correct
degrades a large margin, which might be due to
the inability of the model for self-correction on
complex instructions (Palmeira Ferraz et al., 2024).

On general instruction benchmarks, our method
also achieves significant improvement. This aligns
with the previous research, which suggests that
the improvement on complex instruction-following
is beneficial for the overall instruction-following
ability (Xu et al., 2024; Elmadany et al., 2023).

5 Analysis

5.1 MuSC on SFT model
In Section 4, our main experiments are conducted
on the Instruction-version models. To exclude the
influence of an initial preference optimization pro-
cess, we apply our method on SFT models.

Specifically, we selected two SFT-versions of
LLaMA models, LLaMA-3-8B-UltraChat-200K
and LLaMA-3-8B-Tulu-330K5. Both models have
gone through and only through SFT process on
open-sourced datasets. As shown in Table 2, our
proposed MuSC can improve both the complex and
general instruction-following ability of SFT mod-
els by a large margin. Notice we only apply 2K
samples when performing preference optimization,
which is roughly 1% of the amount of SFT data.

5https://huggingface.co/Magpie-Align
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Setting Method CF-Bench FollowBench ComplexBench AlpacaEval2
CSR ISR PSR HSR SSR Overall LC (%) Avg. Len

LLaMA-3-8B-Ultrachat-200K 0.54 0.18 0.25 33.64 51.37 44.89 5.94 861

PreInst

Self-Reward w/BSM 0.58 0.2 0.28 39.24 56.82 53.69 9.64 1099
Self-Correct 0.32 0.08 0.01 18.59 36.88 36.38 3.47 575

ISHEEP 0.57 0.19 0.26 42.22 58.87 52.95 10.35 1283
MuSC 0.66 0.25 0.34 48.93 61.54 56.24 11.13 1112

LLaMA-3-8B-Tulu-330K 0.56 0.20 0.27 36.26 54.66 54.52 6.00 992

PreInst

Self-Reward w/BSM 0.60 0.22 0.30 41.71 58.68 55.84 9.71 1307
Self-Correct 0.31 0.08 0.10 24.67 39.94 40.44 3.21 623

ISHEEP 0.61 0.22 0.30 43.16 59.21 58.20 10.77 1402
MuSC 0.70 0.28 0.40 51.26 63.94 62.98 13.20 1341

Table 2: Experiment results of different methods on supervised fine-tuned models.

Method CF-Bench AlpacaEval2
CSR ISR PSR LC Len

Baseline 0.64 0.24 0.34 21.07 1702

Perplexity 0.70 0.32 0.43 22.99 1744
PMI 0.69 0.29 0.41 21.92 1713

KLDiv 0.69 0.31 0.42 21.86 1686

Entropy 0.71 0.34 0.44 23.74 1631
w/o calib 0.68 0.28 0.39 21.49 1735

Table 3: Results of different confidence metrics as the
fine-grained weight on LLaMA-3-8B-Instruct.

This again verifies that learning from negative sam-
ples is comparatively more efficient than learning
solely from positive samples.

5.2 The Influence of Confidence Metrics
Various confidence metrics have been established
in the domain of LLM (Geng et al., 2024). This sec-
tion aims to provide a comparison across different
metrics as the token weight, under the framework
of MuSC. We include the following metrics:

• Perplexity: The exponential of the negative
log-likelihood of the token.

• PMI: Pointwise Mutual Information as de-
fined in Takayama and Arase (2019).

• KIDiv: Kullback–Leibler divergence between
the token probability distribution under cho-
sen and rejected instructions.

As shown in Table 3, entropy-based token weight
achieves the best result among all metrics, verify-
ing its effectiveness. Both the perplexity and PMI-
based score underperforms, as they only consider
the probabilities of the selected tokens instead of

Method CF-Bench AlpacaEval2
CSR ISR PSR LC Len

Baseline 0.64 0.24 0.34 21.07 1702

Results on SelfInst

DPOMuSC 0.70 0.32 0.44 23.87 1708
w/o fgct 0.68 0.28 0.39 21.49 1735

SimPOMuSC 0.70 0.31 0.42 22.92 1716
w/o fgct 0.67 0.30 0.40 19.59 1637

IPOMuSC 0.73 0.37 0.48 23.18 1650
w/o fgct 0.70 0.33 0.44 20.42 1686

Results on PreInst

DPOMuSC 0.69 0.30 0.42 23.74 1631
w/o fgct 0.69 0.30 0.41 20.96 1671

SimPOMuSC 0.69 0.31 0.42 23.28 1625
w/o fgct 0.67 0.31 0.41 22.02 1570

IPOMuSC 0.68 0.32 0.44 24.56 1601
w/o fgct 0.68 0.30 0.42 22.04 1531

Table 4: Results of our method on different preference
optimization methods on Llama-3-8B-Instruct.

the whole distribution, leading to biased evalua-
tion6. KLDiv-based score also underperforms, this
is because KLDiv is essentially a distance measure-
ment instead of a confidence measurement, which
is not adapted to our scenario.

We also experiment with removing the calibra-
tion proposed in Section 3.2.2. As can be seen,
calibration is important for the effectiveness of
confidence-based fine-grained weight, as it can ex-
clude other factors such as fluency, thereby focus-

6As the model would always select (one of) the tokens with
the highest probability at each step, relying only on the the
selected tokens for evaluation will result in overconfidence.
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Method MMLU GSM8K HumanEval Avg.

Results on Meta-LLaMA-3-8B-Instruct

Baseline 68.29 79.08 59.15 51.63

MuSCSelfInst 68.24 79.23 62.20 52.42
w/o fgct 67.97 78.62 56.71 50.83

MuSCPreInst 68.17 77.41 62.80 52.10
w/o fgct 67.80 77.71 60.98 51.62

Results on Qwen2-7B-Instruct

Baseline 70.76 83.09 75.61 57.37

MuSCSelfInst 70.63 84.09 75.61 57.58
w/o fgct 70.81 82.94 71.34 56.27

MuSCPreInst 70.46 84.38 75.78 57.66
w/o fgct 70.63 84.53 73.78 57.24

Table 5: Experiment results of our methods on funda-
mental capability benchmarks. Bolded results denote
improvements, while grayed results denote degradation.

ing the contrast on instruction alignment.

5.3 Can MuSC Scale to Other xPO Method?
While our experiments primarily focus on the DPO
method, the overall framework is not limited to a
single preference optimization technique. There-
fore, we extended our framework to two additional
xPO methods: SimPO (Meng et al., 2024) and
IPO (Azar et al., 2024). We utilized the same con-
structed preference data and applied the entropy-
based score as the token-level supervision7. Note
that for “w/o fgct”, we just remove the fine-grained
contrast in the MuSC method. In Table 4, our ap-
proach has shown consistent improvements across
both SimPO and IPO, validating its scalability.

While IPO showed the best performance among
different xPO methods, these performance differ-
ences were not statistically significant. Our method
is not limited to DPO; instead, it’s a general frame-
work applicable to most xPO-style methods. Given
the popularity of DPO, we primarily report our
experiments based on DPO in this work.

5.4 Is Fundamental Capability Harmed?
Previous research have proposed that during the
alignment process, the fundamental ability of
model may suffer degradation due to alignment
tax (Ouyang et al., 2022). Therefore, we eval-
uated our proposed method on three fundamen-
tal capability benchmarks: MMLU (Hendrycks
et al., 2021), GSM8K (Cobbe et al., 2021) and
HumanEval (Chen et al., 2021).

7Please refer to Appendix A.2 for detailed implementation.

(a) Experiment Results on Llama3-8B-Instruct.

(b) Experiment Results on Qwen2-7B-Instruct.

Figure 3: Different statistical indicators during the train-
ing steps, upon different methods.

As shown in Table 5, while the results of naive
MuSC may suffer slight degradation, the introduc-
tion of fine-grained contrast mitigates the degrada-
tion, which verifies the significance of token-level
supervision. Under the scenario of complex in-
struction, the response is lengthy and should not
be uniformly approved or disapproved. With fine-
grained supervision, we focus the optimization on
complex instruction alignment, thereby avoiding
the disruption of other capabilities.

5.5 The Variation of Statistical Indicators

As different methods start from the same group of
instructions, training statistics can be comparable
as a quality indicator. Therefore, we display the
variation of both loss and reward margins between
chosen and rejected samples on different methods.

As shown in Figure 3, Self-Reward presents both
higher loss and lower reward margin during train-
ing. This is because there is too much noise be-
tween the chosen and rejected pairs, making the
model unable to capture the contrast related to
constraint alignment. Notice that both indicators
start to change drastically at the 2nd epoch, which
means the learned knowledge cannot transfer be-
tween different samples at the 1st epoch. On the
other hand, the optimization based on MuSC con-
verges faster and more smoothly, verifying the ef-
fectiveness of the contrast samples.

Comparing the indicators of MuSC with and
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Model CFBench AlpacaEval2
CSR ISR PSR LC Len

Qwen2.5-1.5B-Inst 0.59 0.21 0.28 10.10 1507
+MuSC 0.69 0.32 0.41 11.44 1346

Qwen2.5-3B-Inst 0.72 0.34 0.45 27.44 2188
+MuSC 0.76 0.41 0.52 30.64 1873

Qwen2.5-14B-Inst 0.82 0.49 0.60 46.05 1792
+MuSC 0.85 0.56 0.67 47.61 1770

Qwen2.5-32B-Inst 0.87 0.60 0.70 48.63 1785
+MuSC 0.89 0.65 0.75 49.34 1772

Table 6: Experiment results of MuSC on Qwen2.5-
Instruct of different model sizes.

without fine-grained supervision, it can also be
noticed that with the introduction of fine-grained
supervision, both indicators converge faster. The
introduction of token-level supervision is a cheap
yet effective method to improve xPO methods.

For the analysis of different instruction nois-
ing schemes and the visualization of token-level
weight, please refer to Appendix B and D.

5.6 Can MuSC Scale among Model Sizes

To verify the scalability of our proposed method on
models with larger sizes, we conducted extensive
experiments on Qwen-2.5-Instruct models ranging
from 1.5B to 32B parameters. As shown in Table
6, the results demonstrate consistent improvements
across both smaller and larger models, confirming
that our method is effective regardless of model
size. This robust scalability is attributed to our
approach being inherently self-improving and not
requiring external models, which holds significant
promise for advancing LLM capabilities.

6 Conclusion

In this work, we propose a Multi-granularity Con-
trastive Training framework, to perform complex
instruction alignment without the introduction of
external supervision. Experiment results show our
method achieves significant improvement on in-
struction alignment benchmarks, surpassing previ-
ous self-improvement methods by a large margin.
In the future, we will apply our MuSC on the im-
provement of other capabilities, such as long-form
generation, multi-modal generation, etc.

Limitations

Our work still has some limitations: 1) Due to time
and resource limitation, we did not validate our
method on larger models, such as LLaMA-70B.
Validation on larger models could help to improve

the credibility of our method. 2) We mainly re-
lied on GPT-4 based LLM-as-a-Judge to evaluate
the results. Despite it has been verified that GPT-
4 based evaluation achieves high correlation with
human evaluators (Zheng et al., 2023), incorporat-
ing human evaluation would further improve the
credibility of our methods. 3) We did not scale our
method to PPO-based optimization methods, which
are also wildly used in recent alignment practice.
The application of our method on traditional RL
methods could further improve its utility.

Ethical Considerations

Since the aligned data is generated based on the
Instruct version model, the chances of generating
toxic content are low. To further validate this, we
randomly selected 200 samples in total—100 sam-
ples for Llama-3-8B-Instruct and 100 samples for
Qwen-2-7B-Instruct—and employed three gradu-
ate students to annotate them. The results showed
no instances of toxic instructions or responses.

However, there is potential risk of knowledge
forgetting related to safety alignment. To address
this, we recommend incorporating additional safe
alignment samples during MuSC training to rein-
force the model’s safety-related knowledge. We
will include these recommendations in the ethical
considerations section of the revised manuscript.
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A Implementation Details

A.1 Token-aware Preference Data Construction
For all models that used for preference data construction, we adopt the following prompts presented in
Figure 5, 7, 6, 8, 9 and 8. We set the temperate as 0.5 for all steps to ensure diversity. To ensure the data
quality, we filter instructions with less than three constraints and more than ten constraints. We also filter
preference pairs with the same chosen and rejected responses.

For constraint dropout, we set the dropout ratio α to 0.3 to ensure that negative examples are sufficiently
negative, meanwhile not deviate too much from the positive sample. We avoid dropout on the first
constraint, as it often establishes the foundation for the task, and dropping the first one would make the
recombined instruction overly biased.

A.2 Token-aware Preference Optimization
Our experiments are based on Llama-Factory (Zheng et al., 2024), and we trained all models on 8 A100-
80GB SXM GPUs. The per_device_train_batch_size was set to 1, gradient_accumulation_steps
to 8, leading to an overal batch size as 64, and we used bfloat16 precision. The learning rate is set as
1e-06 with cosine decay,and each model is trained with 2 epochs. We set β to 0.2 for all DPO-based
experiments, β as 3.0 and γ as 1.0 for all SimPO-based experiments, β as 1.0 for all IPO-based methods
referring to the settings of Meng et al. (2024). All of the final loss includes 0.1x of the SFT loss.

B The Influence of Noising Scheme

Previous work has proposed various noising strategies in contrastive training (Lai et al., 2021). While
we leverage Constraint-Dropout for negative sample generation, to make a fair comparison with other
strategies, we implement the following strategies: 1) Constraint-Negate: Leverage the model to generate
an opposite constraint. 2) Constraint-Substitute: Substitute the constraint with an unrelated constraint.

Figure 4: The variation of results on CFBench and AlpacaEval2 with different dropout ratios.

As shown in Table 7, both the negation and substitution applied on the constraints would lead to
performance degradation. After a thoroughly inspect of the derived data, we realize that instructions
derived from both dropout and negation would lead to instructions too far from the positive instruction,
therefore the derived negative response would also deviate too much from the original instruction. An
effective negative sample should fulfill both negativity, consistency and contrastiveness, and constrait-
dropout is a simple yet effective method to achieve this goal.

We also provide the variation of the results on CF-Bench and AlpacaEval2 with different constraint
dropout ratios. As shown in Figure 4, with the dropout ratio increased from 0.1 to 0.5, the results on
CF-Bench firstly increases and then slightly decreases. On the other hand, the results on AlpacaEval2
declines a lot with a higher dropout ratio. This denotes that a suboptimal droout ratio is essential for the
balance between complex instruction and general instruction following abilities, with lower ratio may
decrease the effectiveness of general instruction alignment, while higher ratio may be harmful for complex
instruction alignment. Finally, we set the constraint dropout ratio as 0.3 in all experiments.
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Scenario Method
Meta-LLaMA-3-8B-Instruct Qwen-2-7B-Instruct
CF-Bench AlpacaEval2 CF-Bench AlpacaEval2

CSR ISR PSR LC% Avg.Len CSR ISR PSR LC% Avg.Len

PreInst

baseline 0.64 0.24 0.34 21.07 1702 0.74 0.36 0.49 15.53 1688
Constraint-Drop 0.71 0.34 0.45 23.43 1682 0.79 0.43 0.54 19.31 1675

Constraint-Negate 0.68 0.28 0.39 18.94 1688 0.75 0.37 0.50 17.82 1663
Constraint-Substitute 0.68 0.28 0.40 20.48 1706 0.76 0.39 0.51 19.05 1709

Table 7: Experiment results of different noising strategies on instruction following benchmarks.

C Mathematical Derivations

C.1 Preliminary: DPO in the Token Level Marcov Decision Process
As demonstrated in Rafailov et al. (2024a), the Bradley-Terry preference model in token-level Marcov
Decision Process (MDP) is:

p∗
(
τw ⪰ τ l

)
=

exp
(∑N

i=1 r (s
w
i ,a

w
i )
)

exp
(∑N

i=1 r (s
w
i ,a

w
i )
)
+ exp

(∑M
i=1 r

(
sli,a

l
i

)) (5)

The formula using the Q-function to measure the relationship between the current timestep and future
returns:

Q∗(st, at) =

{
r(st, at) + β log πref (at|st) + V ∗(st+1), if st+1 is not terminal
r(st, at) + β log πref (at|st), if st+1 is terminal

(6)

Derive the total reward obtained along the entire trajectory based on the above definitions:

T−1∑

t=0

r(st, at) =

T−1∑

t=0

(Q∗(st, at)− β log πref(at|st)− V ∗(st+1)) (7)

Combining this with the fixed point solution of the optimal policy (Ziebart, 2010; Levine, 2018), we
can further derive:

T−1∑

t=0

r(st, at) = Q∗(s0, a0)− β log πref (a0|s0) +
T−1∑

t=1

(Q∗(st, at)− V ∗(st)− β log πref(at|st)) (8)

= Q∗(s0, a0)− β log πref (a0|s0) +
T−1∑

t=1

β log
π∗(at|st)
πref(at|st)

(9)

= V ∗(s0) +
T−1∑

t=0

β log
π∗(at|st)
πref(at|st)

(10)

By substituting the above result into Eq. 5, we can eliminate V ∗(S0) in the same way as removing the
partition function in DPO, obtaining the Token-level BT model that conforms to the MDP:

pπ∗
(
τw ⪰ τ l

)
= σ

(
N−1∑

t=0

β log
π∗ (awt | swt )
πref (a

w
t | swt )

−
M−1∑

t=0

β log
π∗ (alt | slt

)

πref
(
alt | slt

)
)

(11)

Thus, the Loss formulation of DPO at the Token level is:

L (πθ,D) = −E(τw,τl)∼D

[
log σ

((
N−1∑

t=0

β log
π∗ (awt | swt )
πref (a

w
t | swt )

)
−
(

M−1∑

t=0

β log
π∗ (alt | slt

)

πref
(
alt | slt

)
))]

(12)
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C.2 Proof of Dynamic Token Weight in Token-level DPO
In classic RLHF methods, the optimization objective is typically formulated with an entropy bonus,
expressed through a Kullback-Leibler (KL) divergence constraint as follows:

max
πθ

Eat∼πθ(·|st)

T∑

t=0

[r(st,at)− βDKL[πθ(at|st)||πref (at|st)]] (13)

= max
πθ

Eat∼πθ(·|st)

T∑

t=0

[r(st,at)− β log
πθ(at|st)
πref (at|st)

] (14)

This can be further rewritten by separating the terms involving the reference policy and the entropy of
the current policy:

max
πθ

Eat∼πθ(·|st)[
T∑

t=0

(r(st,at) + β log πref (at|st)) + βH(πθ)|s0 ∼ ρ(s0)]

When the coefficient β is treated as a variable that depends on the timestep t (Li et al., 2024), the
objective transforms to:

max
πθ

Eat∼πθ(·|st)

T∑

t=0

[(r(st,at) + βt log πref (at|st))− βt log πθ(at|st)] (15)

where βt depends solely on at and st. Following the formulation by Levine (2018), the above expression
can be recast to incorporate the KL divergence explicitly:

max
πθ

Eat∼πθ(·|st)

T∑

t=0

[(r(st,at) + βt log πref (at|st))− βt log πθ(at|st)] (16)

where the value function V (st) is defined as:

V (st) = βt log

∫

A
[exp

r(st,at)

βt
πref (at|st)] dat (17)

When the KL divergence term is minimized—implying that the two distributions are identical—the
expectation in Eq. (14) reaches its maximum value. Therefore, the optimal policy satisfies:

πθ(at|st) =
1

exp(V (st))
exp

(
r(st,at) + βt log πref (at|st)

βt

)
(18)

Based on this relationship, we define the optimal Q-function as:

Q∗(st, at) =

{
r(st, at) + βt log πref (at|st) + V ∗(st+1), if st+1 is not terminal
r(st, at) + βt log πref (at|st), if st+1 is terminal

(19)

Consequently, the optimal policy can be expressed as:

πθ(at|st) = e(Q(st,at)−V (st))/βt (20)

By taking the natural logarithm of both sides, we obtain a log-linear relationship for the optimal policy
at the token level, which is expressed with the optimial Q-function:

βt log πθ(at | st) = Qθ(st,at)− Vθ(st) (21)
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This equation establishes a direct relationship between the scaled log-ratio of the optimal policy to the
reference policy and the reward function r(st,at):

βt log
π∗(at | st)
πref(at | st)

= r(st,at) + V ∗(st+1)− V ∗(st) (22)

Furthermore, following the definition by Rafailov et al. (2024a)’s definition, two reward functions
r(st,at) and r′(st,at) are considered equivalent if there exists a potential function Φ(s), such that:

r′(st,at) = r(st,at) + Φ(st+1)− Φ(st) (23)

This equivalence implies that the optimal advantage function remains invariant under such transfor-
mations of the reward function. Consequently, we derive why the coefficient beta in direct preference
optimization can be variable, depending on the state and action, thereby allowing for more flexible and
adaptive policy optimization in RLHF frameworks.

D Detailed Experiment Results

In this section, we presented detailed experiment results which are omitted in the main body of this
paper due to space limitation. The detailed experiment results of different methods on ComplexBench,
FollowBench and AlpacaEval2 are presented in Table 8, 10 and 9. The detailed results for the ablative
studies of confidence metrics is presented in Table 11. The detailed results for the ablative studies of
confidence metrics is presented in Table 7. We also present a case study in Table 12, which visualize the
token-level weight derived from calibrated confidence score.

Scenario Method
ComplexBench

Meta-Llama3-8B-Instruct Qwen2-7B-Instruct
Overall And Chain Selection Overall And Chain Selection

baseline 61.49 57.22 57.22 53.55 67.24 62.58 62.58 58.97

SelfInst

Self-Reward 62.45 58.23 58.23 54.07 66.98 63.02 63.02 57.75
w/ BSM 64.13 58.01 58.01 56.62 67.02 62.37 62.37 57.85

w/ GPT-4 64.05 59.44 59.44 54.78 — — — —
Self-Correct 55.91 49.85 49.85 46.91 64.41 59.59 59.59 55.04

ISHEEP 62.67 57.79 57.79 54.63 67.32 61.95 61.95 59.64
MuSC 65.98 63.45 63.45 55.96 69.39 65.45 65.45 59.79

PreInst

Self-Reward 62.03 56.94 56.94 53.09 66.45 61.37 61.37 57.64
w/ BSM 64.30 57.58 57.58 56.47 67.43 62.95 62.95 58.41

w/ GPT-4 63.52 59.08 59.08 53.91 — — — —
Self-Correct 60.79 55.65 55.65 52.02 64.32 60.16 60.16 54.63

ISHEEP 62.92 56.37 56.37 54.83 67.13 64.45 64.45 57.54
SFT 53.93 45.77 45.77 44.09 65.89 60.16 60.16 57.39

MuSC 64.73 59.23 59.23 55.91 70.00 66.88 66.88 61.38

Table 8: Detailed experiment results of different methods on ComplexBench.

10683



Scenario Method
FollowBench

Meta-Llama3-8B-Instruct Qwen2-7B-Instruct
HSR SSR CSL HSR SSR CSL

baseline 62.39 73.07 2.76 59.81 71.69 2.46

SelfInst

Self-Reward 61.20 72.22 2.56 55.36 69.71 2.34
w/ BSM 64.30 73.84 2.80 57.83 70.53 2.41

w/ GPT-4 62.18 73.34 2.66 — — —
Self-Correct 54.38 67.19 2.02 51.98 67.89 2.16

ISHEEP 62.77 72.86 2.52 57.01 69.88 2.36
MuSC 66.71 74.84 2.92 62.60 72.57 2.82

PreInst

Self-Reward 60.88 72.17 2.64 56.45 70.00 2.44
w/ BSM 63.96 73.78 2.66 58.02 70.62 2.42

w/ GPT-4 64.02 73.26 2.64 — — —
Self-Correct 60.11 70.94 2.70 49.47 66.35 1.98

ISHEEP 63.54 73.21 2.64 55.52 69.62 2.28
SFT 50.06 66.48 2.04 47.36 64.67 1.96

MuSC 66.90 75.11 2.99 62.73 73.09 2.86

Table 9: Detailed experiment results of different methods on FollowBench.

Figure 5: The prompt template used for instruction decomposition.

Scenario Method
AlpacaEval2

Meta-Llama3-8B-Instruct Qwen2-7B-Instruct
LC (%) WR (%) Avg. Len LC (%) WR (%) Avg. Len

baseline 21.07 18.73 1702 15.53 13.70 1688

SelfInst

Self-Reward 19.21 19.18 1824 16.81 15.66 1756
w/ BSM 19.03 18.34 1787 16.94 15.09 1710

w/ GPT-4 19.55 18.53 1767 — — —
Self-Correct 7.97 9.34 1919 14.01 10.92 1497

ISHEEP 22.00 19.50 1707 16.99 14.04 1619
MuSC 23.87 20.91 1708 20.08 15.67 1595

PreInst

Self-Reward 19.93 19.04 1789 15.98 15.62 1796
w/ BSM 20.98 20.75 1829 17.17 16.21 1764

w/ GPT-4 18.02 17.74 1804 — — —
Self-Correct 6.20 5.81 1593 14.46 14.02 1737

ISHEEP 20.23 17.86 1703 16.52 13.36 1627
SFT 10.00 6.22 1079 9.52 5.25 979

MuSC 23.74 19.53 1631 20.29 15.91 1613

Table 10: Detailed experiment results of different methods on AlpacaEval2.
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Scenario Method
Meta-Llama-3-8B-Instruct Qwen-2-7B-Instruct

CF-Bench AlpacaEval2 CF-Bench AlpacaEval2
CSR ISR PSR LC (%) Avg. Len CSR ISR PSR LC (%) Avg. Len

PreInst

Baseline 0.64 0.24 0.34 21.07 1702 0.74 0.36 0.49 15.53 1688
w/ perplexity 0.70 0.32 0.43 22.99 1744 0.79 0.43 0.54 19.31 1675

w/ PMI 0.69 0.29 0.41 21.92 1713 0.78 0.43 0.55 17.42 1651
w/ KLDiv 0.69 0.31 0.42 21.86 1686 0.78 0.42 0.54 18.73 1614

w/ entropy 0.71 0.34 0.44 23.74 1631 0.80 0.46 0.58 20.38 1683

Table 11: Detailed experiment results of different confidence metrics as the fine-grained weight.

Instruction 1: Identify the incorrect word in the given sentence: "The group acquired the skill to ski
in a suitable manner." Rewrite the identified incorrect word correctly, ensuring the new sentence
adheres to proper capitalization, punctuation, and grammar rules. Include at least one synonym of
the incorrect word to test the model’s understanding of context and vocabulary, and ensure the synon-
ym is used appropriately in the context of the sentence.
Chosen Response 1: The group acquired the skill to ski in a proficient manner . The incorrect word
is "suitable" . A synonym for "suitable" is "appropriate" , but it doesn’t fit the context of the sentence .
"Proficient" is a better synonym in this context as it means skilled or expert .
Rejected Response 1: The word "acquired" seems incorrect in the given sentence . A better word to
use in this context would be "learned" . Rewritten sentence : "The group learned the skill to ski in a
suitable manner ."
Instruction 2: Rewrite the given sentence in C# syntax, using an idiom or metaphor to express dis-
belief, and ensure the sentence maintains its original meaning while being grammatically correct in
C#. The sentence to be rewritten is: "The idea that pigs can fly seems more plausible than his expla-
nation for being late."
Chosen Response 2: csharp\n using System ;\n class Program\n {\n static void Main ( string [] args
\n) {\n Console.WriteLine ( "His explanation for being late is so baffling that it’s akin to saying pigs
can fly , making it more believable in comparison . ) ;\n }\n }
Rejected Response 2: Wow , it’s truly hard to believe that pigs flying could be more plausible than
my explanation for being late !

Table 12: Visualization of dynamic weights derived for chosen and rejected responses, based on our proposed
calibrated entropy score. We select two samples from the datasets as an illustration.

Figure 6: The prompt template used for constraint recombination.
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Figure 7: The prompt template used for self-instruct.

Figure 8: The prompt template used for constraint substitution.

Figure 9: The prompt template used for constraint negation.
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