
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 10628–10666
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

DAPEV2: Process Attention Score as Feature Map for Length
Extrapolation

Chuanyang Zheng1, Yihang Gao2, Han Shi3, Jing Xiong4,
Jiankai Sun1, Jingyao Li1, Minbin Huang1, Xiaozhe Ren 3,

Michael NG5, Xin Jiang3, Zhenguo Li3, Yu Li1,
1CUHK, 2NTU, 3Noah’s Ark Lab, 4HKU, 5HKBU

Correspondence: cyzhengme@gmail.com

Abstract

The attention mechanism is a fundamental com-
ponent of the Transformer model, contributing
to interactions among distinct tokens. In gen-
eral, the attention scores are determined sim-
ply by the key-query products. However, this
work’s occasional trial (combining DAPE and
NoPE) of including additional MLPs on atten-
tion scores without position encoding indicates
that the classical key-query multiplication may
limit the performance of Transformers. In this
work, we conceptualize attention as a feature
map and apply the convolution operator (for
neighboring attention scores across different
heads) to mimic the processing methods in com-
puter vision. Specifically, the main contribu-
tion of this paper is identifying and interpret-
ing the Transformer length extrapolation
problem as a result of the limited expressive-
ness of the naive query and key dot product,
and we successfully translate the length ex-
trapolation issue into a well-understood fea-
ture map processing problem, which is called
Convolutional Data-Adaptive Position Encod-
ing (CDAPE). The novel insight, which can
be adapted to various attention-related models,
reveals that the current Transformer architec-
ture has the potential for further evolution. Ex-
tensive experiments demonstrate that treating
attention as a feature map and applying con-
volution as a processing method significantly
enhances Transformer performance.

1 Introduction

Transformer-based models (Vaswani et al., 2017)
have delivered exceptional performances across
widespread applications, including language pro-
cessing (Zhang et al., 2020; Guo et al., 2022;
Ainslie et al., 2023), computer vision (Alexey,
2020; Touvron et al., 2021; Liu et al., 2021a; Chen
et al., 2024; Peebles and Xie, 2023), quantitative
research (Zhou et al., 2024b; Liu et al., 2021b; Wu
et al., 2023), and scientific machine learning (Tay-
lor et al., 2022; Geneva and Zabaras, 2022). How-

ever, the quadratic cost of the key-query multipli-
cation for processing a sequence raised much con-
cern about the modern architecture of Transform-
ers especially for long context inputs. To address
the issue of storage and computation efficiency, re-
cent research delves into developing more efficient
architectures, such as sparse structural attention
(Xiao et al., 2024c; Zhu et al., 2024), adaptive key
selection (Xiao et al., 2024a; Fountas et al., 2024),
and hybrid models (Lieber et al., 2024). While
these adaptations enhance efficiency, they often
involve tradeoffs with model effectiveness.

At the same time, there is another voice advo-
cating for refining the model design for tackling
complex tasks, rather than prioritizing efficiency.
Positional encoding is one of the key components
of the attention mechanism. Although the widely
recognized decoder-based Transformer can implic-
itly incorporate the positional information of to-
kens, growing evidence both theoretically and em-
pirically shows that the well-designed explicit po-
sitional encoding significantly enhances the model
performances, especially in long-context tasks (Su
et al., 2024b; Press et al., 2021; Zhao et al., 2023).
In practice, Transformers depend on positional en-
coding to explicitly incorporate positional informa-
tion, enabling the model to make meaningful token
predictions. Without these encodings, token genera-
tion would lack the necessary contextual order. The
well-recognized RoPE (Su et al., 2024b), which is
adopted in LLaMA (Touvron et al., 2023), distin-
guishes the token order by rotating with different
angles depending on the token position. However,
it demonstrated a notable performance degradation,
failing entirely when the input length is double that
of the training length (Peng et al., 2023b; Chen
et al., 2023a; Ding et al., 2024b). The undesirable
performance degradation is also observed for other
positional encoding methods, e.g., ALiBi (Press
et al., 2021) and Kerple (Chi et al., 2022) . FIRE (Li
et al., 2023c) alleviates the long-context extrapo-
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lation by learnable positional encodings, trying to
capture the suitable positional representation by
MLPs. Recently, the data-adaptive positional en-
coding method, namely DAPE (Zheng et al., 2024),
which adjusts dynamically with context, enhances
the length generalization by incorporating the atten-
tion scores and positional information with a more
complex mechanism.

In this paper, we propose that precise attention
scores are crucial for improving Transformer length
extrapolation, and we introduce a new perspective
on the attention mechanisms. Traditionally, atten-
tion scores are computed through the dot product of
the query and key vectors. As illustrated in Figure
1, further processing these attention scores using a
neural network—a general case of DAPE (Zheng
et al., 2024)—can significantly enhance the length
generalization of Transformers, even in the absence
of positional encoding (NoPE). Therefore, we sug-
gest treating attention scores as feature maps. By
conceptualizing attention as an image feature map
(with dimensions [B,C,W,H] for batch size, chan-
nel size, width, and height), we can achieve more
accurate attention scores by applying techniques
used in image processing. In this work, we em-
ploy different kernel sizes (such as 1×3) to process
attention, finding that the perplexity (ppl) of atten-
tion decreases significantly—from over 600 to just
above 100—when trained on a sequence length of
128 and evaluated on a length of 8192.

In summary, our contributions are as follows:

1. We highlight that the coarse attention mech-
anism, which is the direct result of the query
and key dot product, limits the Transformer’s
ability to extrapolate to longer sequences.
However, Transformers can achieve good
length extrapolation performance with careful
processing of attention scores.

2. Besides developing better position encod-
ing (Vaswani et al., 2017) or position inter-
polation (Chen et al., 2023b) for length ex-
trapolation, we propose the thid direction: by
treating attention scores as feature maps and
refining them using image processing tech-
niques like convolution, we can enhance the
Transformer’s extrapolation capabilities.

3. We conducted extensive experiments on lan-
guage tasks to support our claims and believe
that these insights can significantly improve

the Transformer’s performance in length ex-
trapolation.

2 Related Works

Absolute Positional Encoding. Absolute posi-
tional encoding (APE), introduced by (Vaswani
et al., 2017), enables Transformers to incorporate
positional information. Specifically, at the first
layer, each position i is assigned a real-valued en-
coding ei ∈ Rd, which can be either learnable or
a fixed sinusoidal encoding (Vaswani et al., 2017;
Kiyono et al., 2021; Likhomanenko et al., 2021;
Wang et al., 2020; Liu et al., 2020), and this encod-
ing is then added to the input sequence. Although
this approach is straightforward, Transformers re-
lying on APE tend to struggle with generalizing to
longer sequences (Press et al., 2021).

Relative Positional Encoding. Relative posi-
tional encoding (RPE) offers an alternative for em-
bedding positional information (Shaw et al., 2018;
Raffel et al., 2020; Press et al., 2021). A widely
used RPE method in large language models is ro-
tary positional encoding (RoPE)(Su et al., 2024b;
Chowdhery et al., 2023; Touvron et al., 2023). To
address length extrapolation challenges(Press et al.,
2021; Kazemnejad et al., 2024), positional interpo-
lation (PI) has been introduced (Chen et al., 2023b)
to extend the context window. Building on this ap-
proach, models like LongLora (Chen et al., 2023c),
LongRope (Ding et al., 2024b), YaRN (Peng et al.,
2023b), and CLEX (Chen et al., 2023a) have
emerged. Another notable direction involves ad-
ditive positional encoding (ARPE). Different pa-
rameterizations of ARPE bias matrix give rise to
various RPE variants. Methods supporting arbitrary
sequence lengths include T5’s RPE (Raffel et al.,
2020), ALiBi (Press et al., 2021), Kerple (Chi et al.,
2022), Sandwich (Chi et al., 2023a), and FIRE (Li
et al., 2023c). Recently, DAPE (Zheng et al., 2024)
has been introduced, employing MLPs to dynami-
cally adjust bias values based on the input data.

Data-Adaptive Related Positional Encoding.
Transformer-XL (Dai et al., 2019) introduced the
use of learnable query and key biases for adaptive
positional encodings. Data-Adaptive Positional En-
coding (DAPE)(Zheng et al., 2024) extends this
idea by leveraging MLPs to adjust positional en-
codings based on attention over the head dimension
for length extrapolation, ensuring different input
data receive unique positional encodings. Contex-
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tual Positional Encoding(Golovneva et al., 2024)
further refines this by conditioning position incre-
ments on specific tokens, as determined by the
model, allowing positions to adapt based on con-
text."

3 Method

In this section, we first review the previously devel-
oped Data-Adaptive Positional Encoding method
(DAPE), which incorporates attention scores and
positional information through MLPs. As a proof-
of-concept, our occasional trial on DAPE without
the positional information (as shown in Figure 1)
suggests that regarding attention as a feature map
and processing it with classical operators (e.g., con-
volution) can enhance the Transformers’ behavior.
The two key differences between DAPE (Zheng
et al., 2024) and this work are: 1) Insight: DAPE
attributes length extrapolation performance gains
to adaptive position encoding, while this work finds
DAPE could still improve performance without po-
sition encoding so that we take a broader view, ex-
plaining that the Transformer’s length extrapolation
ability is limited by the expressiveness of the naive
query-key dot product, which can be enhanced us-
ing image processing techniques; 2) Performance:
As shown in Figure 1, DAPE is designed for addi-
tive RPE and may underperform with non-additive
RPE (e.g., RoPE), whereas this work suggests that
increasing kernel size (e.g., with CDAPE) may im-
prove RoPE’s performance. The CDAPE imple-
mentation is shown in Appendix Q.

3.1 Additive Relative Positional Encoding
For most additive relative positional encoding
(ARPE) methods, the computation of pre-softmax
attention logits can be unified under the following
formula:

AARPE(X) = XWQ(XWK)⊤ +B, (1)

where the bias matrix B ∈ Rn×n is induced by the
position encoding function b : N2 → R and the
(i, j)-th entry of B is defined as b(i, j). Various
formulations and parameterizations of b give rise
to different variants of RPE. Examples of additive
RPE include: (1) ALiBi: b(i, j) = −r|i− j|, with
the scaler r > 0 as a hyper-parameter; (2) Kerple:
b(i, j) = −r1log(1 + r2|i − j|) with r1 and r2
are two learnable parameters; (3) FIRE: b(i, j) =
fθ

(
ψ(i−j)

ψ(max{L,i})

)
, where the positional encoding

function fθ parameterized by θ is learned from
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Figure 1: The result of DAPE (Zheng et al., 2024) (equivalent
to kernel 1× 1 in our explanation) and CDAPE (kernel 1× 3
by this work), with baseline NoPE and RoPE. The model is
trained with length 512 respectively. The CDAPE denotes that
we use H × 1 × 3 convolutions kernel size on the attention
score with shape [B,H, T, T ]. We find that DAPE can even
improve the performance of NoPE (without biased position
encoding), suggesting that the explanation in (Zheng et al.,
2024), which attributes the improvement to adaptive position
encoding, may have a more general underlying cause.

data and ψ is a transformation function aimed at
assigning more model capacity to local positions.

Data-Adaptive Position Encoding (DAPE).
The DAPE rewrite the Equation 1 as the follow-
ing:

ADAPE(X) = XWQ(XWK)
⊤

+ f(XWQ(XWK)
⊤
,B). (2)

Here, f : RT×T × RT×T → RT×T is an element-
wise function and T is the sequence length. An-
other variant of DAPE is with residual, which is
the following:

ADAPE(X) = XWQ(XWK)
⊤

+ B + f(XWQ(XWK)
⊤
,B).

(3)

In practice, DAPE (Zheng et al., 2024) utilizes a
two-layer LeakyReLU MLP with hidden dimension
DDAPE (default value is 32) to parameterize f(·)
due to its universal approximability (Leshno et al.,
1993). All parameters are learned directly from
the data during the training process. This architec-
ture allows f(·) to dynamically adjust positional
embeddings based on the input sequence data, en-
suring that the encoding method is both adaptive
and dependent on the input data.

3.2 Special Case of DAPE: Bias is Zero

DAPE was originally designed to dynamically ad-
just the positional encoding by incorporating in-
put data information. Generally, any additive po-
sitional encoding method that includes positional
information can be represented as the matrix B in
the DAPE model, as outlined in Equation 2. No-
tably, No Positional Encoding (NoPE) (Kazemne-
jad et al., 2024) is a special case of additive RPE
that assigns zero value to the matrix B. The mathe-
matical formulation of DAPE equipped with NoPE
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is given by:

ADAPE(X) = XWQ(XWK)⊤ + f(XWQ(XWK)⊤).
(4)

The DAPE (Zheng et al., 2024) is designed for
additive RPE but not trying NoPE or RoPE, and
we present the results of DAPE-NoPE and DAPE-
RoPE in the following.

The result of DAPE-NoPE. Compared with the
standard Transformer architecture, DAPE-NoPE in-
troduces additional MLPs post the key-query mul-
tiplication and prior to the softmax operator. As
shown in Figure 1, experimental evidence suggests
that DAPE with NoPE significantly outperforms
the basic NoPE, prompting a reconsideration of the
behaviors of standard Transformers. The additional
MLPs (i.e., denoted as f(·) in Equation 4) facili-
tate information sharing across attention heads and
complicate the attention calculation with nonlin-
ear transformation beyond the simple key-query
multiplication. This leads to a critical question: Is
the current Transformer architecture, particularly
the attention mechanism, sufficiently expressive
for real-world language tasks? Although numer-
ous studies aim to enhance efficiency by reducing
computation and storage in standard Transformers,
these often come at the cost of effectiveness, po-
tentially hindering the evolution of next-generation
Transformer models. Motivated by these insights
and observations, we enhance the Transformer’s
expressiveness and behavior by regarding attention
as a feature map and applying convolutional opera-
tions, akin to those used in computer vision.

The result of DAPE-RoPE. Building on the
hypothesis that DAPE enhances Transformer
performance by processing pre-softmax scores
with MLPs, we explore its applicability to non-
additive positional encoding methods, specifically
RoPE (Su et al., 2024b). In the DAPE-RoPE con-
figuration, DAPE-RoPE first computes the classic
attention scores of key-query multiplication with
RoPE, which are then refined using the MLPs de-
scribed in Equation 4. The visualized results of the
validation perplexity for DAPE-RoPE and other po-
sitional encoding methods are presented in Figure
1. The results indicate that DAPE-RoPE may de-
grade the performance, while CDAPE-RoPE (with
kernel size 1× 3, proposed by this work) not only
improves overall performance but also excels in
length extrapolation tasks, particularly at larger
sequence lengths. This finding substantiates the

effectiveness of CDAPE-RoPE, confirming its su-
perior performance compared to standard RoPE,
attributing to the additionally introduced convolu-
tion operations to the attention scores.

3.3 CDAPE: Process Attention Scores as
Feature Maps

As discussed above, improving Transformer per-
formance necessitates refining the processing of at-
tention score computation beyond the conventional
key-query multiplication. We propose regarding
the pre-softmax attention scores as feature maps
(4-dimensional tensors) and applying convolutional
operators, which may could additionally involve
position information with zero padding and higher
expressiveness (Kayhan and Gemert, 2020) but
MLP does not involve additional position informa-
tion because there is no zero padding. This ap-
proach facilitates enhanced communication across
neighboring tokens and heads, drawing parallels to
popular techniques used in computer vision. This
novel method aims to leverage the spatial relation-
ships within tokens, potentially unlocking new as-
pects of model capabilities.

Rethink the DAPE formulation for CDAPE. In
DAPE (Zheng et al., 2024), MLPs are utilized to
process and integrate attention and biases. Notably,
these MLP operations can be equated to convolu-
tion operations with 1×1 kernel (Krizhevsky et al.,
2012; Simonyan and Zisserman, 2014; He et al.,
2016), a stride of one, and no padding. Conse-
quently, we can reformulate the DAPE in Equation
3 as the following:

ACDAPE(X) = XWQ(XWK)⊤ +B+

Conv(tril((XWQ(XWK)⊤,B)).
(5)

where X is the input embedding, XWQ gives the
query embedding and the XWK gives the kery em-
bedding. Under such formulation, DAPE employs
convolution operation to process the pre-softmax
attention scores of key-query multiplication. The
tril(·) returns the lower triangular part of the ma-
trix and the other elements of the result tensor out
are set to 0. The resulting attention tensor has a
shape of [B,H, T, T ], where the four dimensions
correspond to the batch size, number of heads, and
the context length for both the query and key. This
mirrors the structure of an image feature tensor
with shape [B,C,H,W ], where the dimensions
represent the batch size, number of channels, im-
age height, and image width, respectively. This
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structural similarity underscores the feasibility of
considering attention scores as a tensor of feature
mappings, where popular and effective convolution
operations can be leveraged for refined processing.

Process attention with more powerful convolu-
tion operation. In computer vision, the limita-
tions of 1×1 kernels for processing image features
are well-recognized. To improve upon the attention
scores processed by these kernels (e.g., DAPE),
we introduce 1 × k kernels with a stride of 1 and
padding of k − 1. This approach allows for wider
and deeper convolution across key dimensions and
heads without information leakage, as we ensure
the attention scores remain lower-triangular. This
mechanism is visualized in Appendix P. The use of
1× k kernels suggests a targeted convolution along
the key dimensions across heads. In general, while
extending this to include the query dimensions as a
standard kernel is theoretically possible, it would
significantly increase computational demands. Our
forthcoming analysis demonstrates that Transform-
ers modified with 1 × k convolution are adept at
associative recall tasks (i.e., the copy task), val-
idating the benefits of integrating convolution in
attention calculation. We left as a future work in-
vestigating the performances and the soundness of
general convolution kernels, such as square sizes.
The key contribution of this work is providing a
novel insight that suggests applying convolution
operations and processing attention as feature maps
to improve Transformers’ performances.

Realizing associate recall tasks through convo-
lution. As pointed out in some previous works
(Arora et al., 2024), the perplexity scores of Trans-
formers mostly result from the performances on
associate recall tasks (i.e., the copy tasks). Numer-
ous studies have explored the mechanism of asso-
ciative recall within Transformers, both from the-
oretical perspectives and experimental validations
(Arora et al., 2024; Bietti et al., 2024; Golovneva
et al., 2024). Here, we theoretically prove that
the proposed model can realize the associative re-
call tasks. Notably, this capability is achieved
independently of positional encodings, marking
a significant advancement in the flexibility and
applicability of the proposed architecture. By
integrating convolutional operations, we enable
the model to handle associative tasks more effec-
tively, leveraging spatial relationships inherent in
the data, similar to methods used in image pro-
cessing. To explain the associative recall mech-

anism, (Bietti et al., 2024) proved that the first
layer of the Transformer is responsible for the pre-
vious token mechanism through the positional en-
coding. More specifically, given a sequence of
input tokens X = [x1,x2, · · · ,xN ] with corre-
sponding orthogonal positional encoding vectors
[p1,p2, · · · ,pN ], the first layer primarily facili-
tates the copying of the previous token to the cur-
rent token (e.g., xi +W 1

V xi−1, where W 1
V is the

value matrix at the first layer of the Transformer).
The input tokens are combined with positional en-
codings xi + pi and the key-query weight matrix
is defined as W 1⊤

K W 1
Q =

∑N
i=1 pi−1p

⊤
i . The or-

thogonality of positional encoding vectors and the
special choices of the key-query matrix ensure that
attention scores predominantly focus on the previ-
ous token. In contrast to this implicit mechanism in
standard Transformers, our proposed method lever-
ages a convolution operation to explicitly realize as-
sociative recall. This approach not only simplifies
the process but also enhances its effectiveness by di-
rectly manipulating the spatial relationships within
tokens and attention scores. Consider a scenario
where the word “Hakuna" is consistently followed
by “Matata" within a lengthy paragraph. With-
out the loss of generality, we assume that x1 and
x2 represent the tokens of “Hakuna” and “Matata”
respectively, and xN = x1 implies that the N-th
token in the sequence is “Hakuna”. Then we expect
that the Transformer can predict and output the next
token xN+1 as “Matata”. For simplicity, we con-
sider a one-head Transformer without positional
encoding. We employ a convolution operation with
a kernel size of 1×2 and weights [1,−1]. Note that
the convolution is linear and processing the atten-
tion scores along the key dimensions is effectively
equivalent to applying convolutions directly to the
key vectors themselves. Consequently, the key vec-
tor of x2 can be expressed as W 1

K (−x2 + x1) and
the query vector for xN admits W 1

QxN . By con-
figuring the matrix W 1⊤

K W 1
Q to be I , the attention

mechanism after the convolution predominantly
allocates the attention values of xN to the token
x2. This ensures that the token values of x2 are
effectively copied to xN , resulting in the model
outputting “Matata" following “Hakuna".

Proposition 1. Transformers incorporating con-
volution operations can perform associative recall
tasks without the need for positional encoding.

We have discussed the key idea and the sketch
of the proof above. For a more detailed compari-
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son between CDAPE and the vanilla Transformer,
along with a discussion of CDAPE’s advantages,
we present the main ideas and detailed proof in
Appendix A. Additionally, we construct a CDAPE
model that successfully performs the simple asso-
ciative recall task. The results demonstrate that
CDAPE, through explicit convolution operations
for communication between neighboring tokens,
achieves the task more efficiently than the vanilla
Transformer, which relies on positional encodings
and causal attention to propagate information from
neighboring tokens.

Comparisons with hybrid models of convolu-
tion and Transformers. Recent developments
in hybrid architectures have seen the integration
of convolutional and Transformer models to cap-
italize on the strengths of both. For instance, (Fu
et al., 2022) introduced the FlashConv layer, which
combines the efficiency of State Space Models
(SSMs) with the capabilities of attention-based
models. Similarly, (Arora et al., 2024) developed a
gated convolution layer, noted for its effectiveness
in addressing associative recall tasks. These mod-
els typically stack convolution layers directly with
standard Transformer layers, resulting in modifica-
tions to the token values through convolution. In
contrast, our model adopts a distinctive approach
by applying convolution along the key dimension
during the computation of attention scores. This
method preserves the original token values while
still leveraging the convolution’s benefits for pro-
cessing attention.

4 Experiment

Baselines. We evaluate the proposed CDAPE
against several well-established baselines, includ-
ing NoPE (Kazemnejad et al., 2024), RoPE (Su
et al., 2024b), T5’s Bias (Raffel et al., 2020), AL-
iBi (Press et al., 2021), Kerple (Chi et al., 2022),
FIRE (Li et al., 2023c), CoPE (Golovneva et al.,
2024), and DAPE (Zheng et al., 2024). As our
kernels are applied across all heads, we simplify
by omitting the kernel size description at the head
dimension. For example, CDAPE indicates the use
of a H × 1× k (the k is 3 by default) convolution
kernel size on the attention scores, with a shape of
[B,H, T, T ].

Datasets. Our analysis is based on training lan-
guage models using the Arxiv and Books3 datasets,
commonly employed benchmarks for assessing

model performance (Press et al., 2021; Chi et al.,
2022; Li et al., 2023c; Ding et al., 2024b). In ad-
dition to perplexity, we also leverage downstream
datasets with randomized positional encoding (Ru-
oss et al., 2023) to further assess CDAPE.

Experiment settings. Initially, we compare
CDAPE with other baselines at training lengths
of 128, 512, and 1024, using 125M decoder-only
Transformers (Brown et al., 2020), with model con-
figurations detailed in Appendix L.

4.1 Compare with Baselines
CDAPE-Kerple improves performance within
and beyond training length. As shown in Figure
5, when the training length is set to 128 and the eval-
uation length is extended to 8192, CDAPE-Kerple
achieves a perplexity score of 4.60 on the arXiv
dataset and 23.52 on the Books3 dataset. These
scores are significantly better than those achieved
by DAPE-Kerple, which records perplexity scores
of 4.97 and 25.01 on the arXiv and Books3 datasets,
respectively. Similarly, CoPE performs poorly with
perplexity scores of 29.86 on the arXiv dataset and
90.66 on the Books3 dataset under the same con-
ditions. Furthermore, when the training duration
is increased to 512, CDAPE-Kerple continues to
deliver the best performance, further validating its
superior generalization capabilities. These findings
highlight the scalability and robustness of CDAPE-
Kerple, which is attributed to the introduced con-
volution operator, making it a promising approach
for diverse data scenarios and lengths.

4.2 Performance with Same Training tokens
and Different Training Length
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AliBi (Length 128 & Batch 32)
CDAPE-Kerple(Length 128 & Batch 32)
CDAPE-Kerple(Length 256 & Batch 16)
CDAPE-Kerple(Length 512 & Batch 8)
CDAPE-Kerple(Length 1024 & Batch 4)
CDAPE-Kerple(Length 2048 & Batch 2)
CDAPE-Kerple(Length 4096 & Batch 1)

Figure 2: The performance with same training tokens
and different training length. With the same training tokens,
CDAPE with training length 512 could even achieve better
performance than RoPE with training length 4096.

Compared to RoPE, with the same training to-
kens, CDAPE-Kerple with a training length of
128 achieves performance comparable to RoPE
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with a training length of 4096, for varying eval-
uation length. As shown in Figure 2, on the
Books3 dataset, CDAPE-Kerple trained with a
length of 128 achieves a ppl of 31.07 at an evalua-
tion length of 128 and 23.19 at an evaluation length
of 4096, while RoPE trained with a length of 4096
achieves 38.36 and 24.58, respectively. This sug-
gests the superiority of the proposed CDAPE with
the introduced convolution operators among heads
and neighboring tokens.

With the same training tokens, compared to
CDAPE with longer training lengths, CDAPE
with shorter training lengths can achieve compa-
rable performance, indicating that CDAPE en-
hances the model’s understanding of text struc-
ture. On the arXiv dataset, CDAPE-Kerple with
training lengths of 512 demonstrates performance
close to that of training with a length of 4096 when
the evaluation length is 4096. Moreover, the per-
formance curves for training lengths of 1024, and
2048 are almost identical. This trend is also ob-
served with the Books3 dataset. These results in-
dicate that CDAPE-Kerple effectively helps the
model comprehend text structure, enabling it to
extend to longer lengths.

4.3 The Effect of Larger Model Size
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Figure 3: The Effect of Larger Model Size 350M. We show
the results with training length 128 and training length 512 on
Arxiv dataset.

CDAPE performs well with larger model sizes,
such as 350M and 2.7B. As illustrated in Fig-
ure 3, the proposed CDAPE shows superior perfor-
mance at varying evaluation lengths with a model
size of 350M. For a training length of 128, CDAPE-
Kerple achieves a perplexity (ppl) of 7.63 at an
evaluation length of 128 and 4.43 at an evaluation

length of 8192, compared to DAPE’s 7.69 and 4.69,
respectively. Similarly, for a training length of
512, CDAPE-Kerple achieves a ppl of 4.10 at an
evaluation length of 128 and 3.35 at an evaluation
length of 8192, whereas DAPE achieves 4.14 and
3.44, respectively. We also present the 2.7B model
size result in Appendix E. Therefore, the proposed
CDAPE demonstrates excellent performance with
larger model sizes, showing the potential of includ-
ing the proposed processing techniques in existing
large language models.

4.4 The Effect of CDAPE

128 256 512 1024 2048 4096 8192
Validation sequence length

4

6

8

10

12

14

Va
lid

at
io

n 
pe

rp
le

xi
ty

Effect of CDAPE (Length 128)

512 1024 2048 4096 8192
Validation sequence length

2

4

6

8

10

12

14

Va
lid

at
io

n 
pe

rp
le

xi
ty

Effect of CDAPE (Length 512)
ALiBi
Kerple
FIRE
DAPE-ALiBi
DAPE-Kerple
DAPE-FIRE
CDAPE-ALiBi
CDAPE-Kerple
CDAPE-FIRE

Figure 4: The effect of CDAPE. Whatever the baseline is
ALiBi, Kerple or FIRE, the proposed CDAPE can all improve
their performance. The Figure 1 also proves that the proposed
CDAPE is effective for NoPE and RoPE.

CDAPE enhances performance within and be-
yond the training length, while DAPE does not
works well with RoPE. As demonstrated in
Figure 4, for varying additive positional encod-
ing such as ALiBi, Kerple, and FIRE, their in-
corporations with CDAPE (i.e., CDAPE-ALiBi,
CDAPE-Kerple, and CDAPE-FIRE) consistently
improve performance, while CDAPE-ALiBi may
needs longer training length to achieve better per-
formance than DAPE-ALiBi. As illustrated in Fig-
ure 1, CDAPE enhances the performance of RoPE,
both within and beyond the training length. In
contrast, naive DAPE reduces the performance of
RoPE, with training lengths of 128 and 512. This
indicates that the proposed CDAPE is a versatile
and widely applicable method with the potential to
be applied to various position encoding techniques
on the language modeling task.
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4.5 Compare DAPE and CDAPE with
Approximate Computational Cost

CDAPE achieves even better performance at
a lower computational cost. As shown in Ap-
pendix H, when the training length is set to 128,
CDAPE-Kerple with DDAPE as 10 achieves a per-
plexity (ppl) of 8.16 at an evaluation length of 128
and 4.74 at an evaluation length of 8192. This
performance is notably better than that of DAPE-
Kerple with DDAPE as 64, which achieves perplex-
ities of 8.21 and 4.87, respectively. Moreover,
when the training length is extended to 512 and
the evaluation length is smaller or equal to 4096,
CDAPE-Kerple with DDAPE as 10 continues to sur-
pass the performance of DAPE-Kerple with DDAPE
as 64. Also, CDAPE-Kerple with DDAPE as 21
always achieves better performance than DAPE-
Kerple with DDAPE as 64. This demonstrates that
CDAPE not only maintains its performance advan-
tage across different training lengths but also re-
quires a lower computational cost.

4.6 The Performance with Different Kernel
Sizes

Table 1: The performance with different kernel sizes,
with training length 128 and evaluation from length 128
to 8192. For different datasets and training length, the
optimal kernel size may not always be the largest one,
especially when the evaluation length is larger.

Dataset Method 128 256 512 1024 2048 4096 8192

Arxiv

Kerple 8.30 7.10 5.85 6.91 9.17 11.48 12.59

DAPE-Kerple (Kernel Size 1x1) 8.21 6.98 5.38 5.20 5.33 5.26 4.97

CDAPE-Kerple (Kernel Size 1x3) 8.15 6.92 5.29 5.05 5.11 4.95 4.60

CDAPE-Kerple (Kernel Size 1x5) 8.13 6.91 5.27 5.04 5.10 4.91 4.57

CDAPE-Kerple (Kernel Size 1x7) 8.12 6.89 5.26 5.02 5.09 4.91 4.57

Books3

Kerple 32.10 29.09 28.10 35.75 44.68 56.39 66.23

DAPE-Kerple (Kernel Size 1x1) 31.49 28.27 24.93 24.31 23.34 24.38 25.01

CDAPE-Kerple (Kernel Size 1x3) 31.07 27.81 24.38 23.57 22.40 23.19 23.52

CDAPE-Kerple (Kernel Size 1x5) 31.02 27.79 24.36 23.57 22.41 23.32 23.71

CDAPE-Kerple (Kernel Size 1x7) 30.98 27.76 24.31 23.47 22.30 23.00 23.57

Different experiment settings may have differ-
ent optimal kernel sizes. Appendix I shows the
performance of CDAPE with various kernel sizes,
including with kernel size 1 (equivalent to a 1× 1
kernel size) to kernel size 7. For the Arxiv dataset,
larger kernel sizes consistently achieve better per-
formance, evaluating with training lengths of 128
or 512. However, for the Books3 dataset, CDAPE
(with kernel size 3) performs best when the train-
ing length is 128 and evaluated at 8192, whereas
CDAPE (with kernel size 5) performs best at the
same evaluation level when the training length is
512. These results suggest that the optimal ker-

nel size may vary depending on the experimental
setting, ranging from 1 × 1 to larger kernel sizes.
Although larger kernel sizes contribute to stronger
expressiveness from intuition, we conjecture that
the performance degradation for overly large kernel
sizes results from optimization challenges.

4.7 The Performance on CHE Benchmark
with Accuracy Evaluation Metrics

Different tasks have different optimal kernel
sizes, as shown in Appendix J and Appendix
I. For example, on MISSING DUPLICATE task,
the CDAPE-Kerple improves the 87.57 of DAPE-
Kerple to 99.65. However, on the STACK MANIP-
ULATIONtask, the CDAPE-Kerple decreases the
72.04 of DAPE-Kerple to 68.18. Also, as shown
in Appendix I, the larger kernel size does not al-
ways lead to better performance. Overall, larger
kernel size provides a potential way to improve
the Transformer length extrapolation performance,
and we usually could find a suitable kernel size
(ranging from 1×1 to larger kernel sizes) to achieve
better performance than without further processing
attention score.

The large kernel size performance improvement
is related to the baseline bias matrix. As shown
in Appendix J, the best performance is usually
achieved by further processing attention scores via
kernel size 1 or 3. Moreover, on 11 permutation-
variant tasks, the CDAPE-Kerple achieves better
performance on 8 of 11 tasks compared to Kerple.
And the CDAPE-FIRE achieves better performance
on 6 of 11 tasks compared to FIRE. This suggests
that the large kernel size performance improvement
is related to the baseline bias matrix.

4.8 The Time Cost

As the model size increases, the additional com-
putational cost ratio gradually decreases. As
shown in Appendix K, when the model size is
350M, the time cost for Kerple is 189.91 ms,
while DAPE-Kerple takes 224.22 ms, and CDAPE-
Kerple requires 252.84 ms. Compared to CDAPE-
Kerple, the time cost ratios for Kerple and DAPE-
Kerple are 0.7511 and 0.8868, respectively. As the
model size increases from 350M to 2.7B and 6.7B,
the time cost ratio for Kerple rises from 0.7511 to
0.8205 and 0.8918, respectively. Similarly, the time
cost ratio for DAPE-Kerple increases from 0.8868
to 0.9361 and 0.9677. Therefore, as the model
size increases, the time cost ratio also increases,
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indicating that the additional computational cost
decreases progressively.

5 Conclusion

In this paper, we point out that the key of Trans-
former length extrapolation is the better and more
accurate attention score. Therefore, we develop and
analyze CDAPE by processing the attention score
as feature maps via convolution operation. Theo-
retically, we show that the associative recall tasks,
which account for the most perplexity scores, can
be realized by the proposed Transformer with con-
volution, in contrast to the vanilla Transformer. We
conducted comprehensive experiments on Arxiv,
Books3, and CHE to validate the effectiveness of
the proposed method, where the proposed method
exhibits significant superiority.

Limitations

The proposed method utilizes convolution so that
the cost is relatively higher than the previous DAPE.
Therefore, there may be additional costs.
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A Theoretical Analysis on Associative
Recall

As pointed out in some previous works (Arora et al.,
2024), the perplexity scores of Transformers mostly
result from the performances on associate recall
tasks (i.e., the copy tasks). Numerous studies have
explored the mechanism of associative recall within
Transformers, both from theoretical perspectives
and experimental validations (Arora et al., 2024; Bi-
etti et al., 2024; Golovneva et al., 2024). Therefore,
theoretical analysis of how the proposed model per-
forms on associative recall tasks is essential and
fundamental for understanding its mechanism and
superiority over the vanilla Transformer architec-
ture. In this section, we theoretically compare the
CDAPE with the vanilla Transformer in solving a
simple associative recall task.

Bietti et al. (2024) considers a simple associative
recall task in which, given an input sequence of
tokens [x1,x2, · · · ,xN ], the last token serves as a
trigger that has previously appeared in the context.
The model is then expected to predict a specific
token that should follow this trigger. Without the
loss of generality, we assume that the trigger token
also appears at position x1 (i.e., xN = x1) and
that token x2 follows x1 in the whole sequence.
Therefore, the model is expected to predict xN+1

as x2. Bietti et al. (2024) theoretically show that a
two-layer vanilla Transformer can solve this task
with the help of positional encodings.

Proposition 2. A two-layer vanilla Transformer
model solves the simple associative recall task by
making use of positional encodings.

Proof. Detailed proof can be found in Bietti et al.
(2024). To clearly compare the mechanisms and
capabilities of the proposed CDAPE model with
those of the vanilla Transformer, we summarize
and present their key ideas and results below.

After applying additive positional encoding, the
input sequence becomes [x1 + p1, · · · ,xN + pN ],
where [p1,p2, · · · ,pN ] are orthogonal positional
encoding vectors. We assume that both the to-
ken vectors and positional encodings are nearly
orthogonal. For simplicity, we consider a two-
layer, single-head vanilla Transformer model with-
out the feedforward layers, focusing merely on the
attention mechanism. Let {W 1

K ,W
1
Q,W

1
V } and

{W 2
K ,W

2
Q,W

2
V }denote the key, query, and value

projection matrices for the first and second layers,
respectively. Let the key and query projection ma-

trices as W 1⊤
K W 1

Q =
∑N

i=1 pi−1p
⊤
i . Under this

setup, the (i − 1)-th token representation in the
first layer becomes xi + pi +W 1

V xi−1. The key
idea is that the first layer uses causal attention and
positional encodings to copy information from the
previous token to the current one, enabling associa-
tive recall through attention layers.

In the second layer, since token x2 now con-
tains information about the trigger token x1, the
attention mechanism enables the trigger token xN
to attend to x2, which effectively embeds the trig-
ger token’s context. As a result, the model is able
to predict the next token as x2. Specifically, we
set W 2

KW 2
Q = W 1

V so that the attention mecha-
nism guides xN to attend to x2, using the approx-
imate orthogonality of the token vectors. More
concretely, the key vector W 2

Kxi ≈ W 1
V xi−1 and

the query vector W 2
Qxi ≈ W 1

V xi. For the trig-
ger token xN , the query vector becomes W 1

V xN ,
and the keys for the other tokens are approximately
W 1

V xi−1. In particular, the key vector correspond-
ing to token x2 is W 1

V x1, which closely matches
the query vector of xN (since xN = x1). Conse-
quently, after softmax normalization, most of the
attention weight is concentrated on token x2. As
a result, the representation of xN in the second
layer incorporates the information from x2 through
W 2

V x2. In the output layer, the model then predicts
the next token as x2, successfully completing the
associative recall task.

In summary, the two-layer and single-head
vanilla Transformer model realizes the simple asso-
ciative recall task by making use of the positional
encoding and setting parameters as follows:

• W 1
V is randomly generated, and W 1⊤

K W 1
Q =∑N

i=1 pi−1p
⊤
i ;

• W 2
V is randomly generated, and W 2

KW 2
Q =

W 1
V .

We now analyze how the proposed CDAPE
model solves the simple associative recall task.

Proposition 3. A one-layer, single-head CDAPE
model is capable of performing the simple asso-
ciative recall task without relying on positional
encodings.

Proof. Compared to the vanilla Transformer
model, CDAPE primarily introduces convolution
over attention scores. For simplicity, we similarly
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focus on an attention-only version of the model,
incorporating linear convolution without any non-
linear activation.

The main modification in CDAPE is the use of
convolution, a local operation over neighboring to-
kens, to copy information from previous tokens,
replacing the role of positional encodings in the
vanilla Transformer, as discussed before. In this set-
ting, the input token sequence is [x1,x2, · · · ,xN ].
We set W 1

K = I and W 1
Q = I , so that the query

vector for xN is simply xN itself, and each key
vector is equal to the corresponding input token
vector, i.e., xi. The key vector for each token xi
is also xi. The convolution over attention scores is
equivalently implemented by applying convolution
directly to the key vectors, if without nonlinear ac-
tivation. Specifically, we adopt a 2× 1 kernel with
weights [1,−1], so that the key vector after the con-
volution for the i-th token becomes xi− 1 − xi.
As a result, the key vector for token x2 becomes
x1 − x2, which closely matches the query vector
xN = x1 (recall xN is the trigger token). There-
fore, when computing attention for xN , most of
the attention weight is assigned to token x2. After
the attention layer, the representation at position
N becomes xN +W 1

V x2, effectively copying in-
formation from x2 to xN . In the output layer, the
model then predicts the next token as x2, realizing
the simple associative recall task.

We further elaborate on the procedure. If we
set the query transformation matrix as W 1

Q = I ,
then the query vector for token N is simply xN .
Similarly, setting the key transformation matrix as
W 1

K = I gives the sequence of key vectors as:

[x1,x2, · · · ,xN ] .
Applying a 2×1 convolutional kernel with weights
[1,−1] to the key sequence results in the following
transformed key vectors:

[−x1,−x2 + x1, · · · ,−xi + xi+1, · · · ,−xN + xN−1] .

From the key vectors above, we observe that the
query vector xN = x1 closely matches the key
vector corresponding to the second token. As a
result, after softmax normalization, the attention
mechanism assigns the highest weight to the sec-
ond token when computing the output for the N -th
position.

Compared to the vanilla Transformer, CDAPE
replaces the first layer of neighboring token com-
munication with a convolutional operator. As a

result, a one-layer, single-head CDAPE model is
capable of solving the simple associative recall task
without relying on positional encodings. While
the vanilla Transformer implicitly integrates in-
formation from neighboring tokens through posi-
tional encodings and attention, CDAPE achieves
this through explicit convolution, enabling more di-
rect and computationally efficient communication
between neighboring tokens.

B ∆ Perplexity for Length Extrapolation
Evaluation

Table 2: The ∆P on Book dataset with training length
512, compared to baselines.

Method RoPE ALiBi Kerple DAPE-Kerple CDAPE-Kerple

P (M(x512), Ttrain) 19.74 20.04 19.83 19.25 18.95

P (M(x1024), Ttrain) 261.39 19.74 19.19 18.28 17.92

P (M(x1024[−Ttrain] :), Ttrain) 19.51 19.79 19.58 19.03 18.74
∆P1024 -241.88 0.05 0.39 0.75 0.82

P (M(x2048), Ttrain) 411.23 20.17 20.48 17.20 16.79
P (M(x2048[−Ttrain] :), Ttrain) 18.74 19.03 19.84 18.28 18.01

∆P2048 -392.49 -1.14 -0.64 1.08 1.22

P (M(x4096), Ttrain) 635.80 20.50 28.33 17.58 17.05
P (M(x4096[−Ttrain] :), Ttrain) 19.11 19.35 19.07 18.59 18.19

∆P4096 -616.69 -1.15 -9.26 1.01 1.14

P (M(x8192), Ttrain) 762.86 21.30 40.94 17.85 17.20
P (M(x8192[−Ttrain] :), Ttrain) 19.78 20.02 19.85 19.38 18.98

∆P8192 -743.08 -1.28 -21.09 1.53 1.78

In this discussion, we explore how to effectively
use perplexity as a metric, incorporating concepts
of information gain and entropy. Let L(·) represent
the process for calculating loss, and M(x) denote
the logit output generated by the model after pro-
cessing an input sequence x. For evaluating model
performance, we define P (M(x),K) as follows:

1. Process the entire sequence x using M(x).

2. Compute the perplexity on the last K tokens
of the sequence.

To interpret information gain, we consider the
training sequence length Ttrain. Given an input x,
we calculate the change in loss/perplexity, ∆P , as:

∆P = P (M(x[−Ttrain :]), Ttrain)−P (M(x), Ttrain)
(6)

The term ∆P provides insights into the model’s
information gain relative to local and global con-
text, allowing us to quantify entropy in terms of
model uncertainty reduction. We interpret ∆L as
follows:

• When ∆P = 0: The model’s information gain
from the full sequence is negligible, indicating
an entropy level comparable to local attention
(e.g., models like ALiBi when the evaluation
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length is 1024). This suggests the model does
not leverage context beyond a limited range.

• When ∆P < 0: Processing the entire se-
quence increases entropy, resulting in worse
performance than focusing only on the last
Ttrain tokens. This implies negative informa-
tion gain and limited extrapolation capability
(e.g. such as RoPE), as the model may over-
fit to recent tokens without capturing broader
context effectively.

• When ∆P > 0: The model benefits from
the information within x[: Ttrain], achieving
a reduction in entropy that reflects positive
information gain. This suggests the model
leverages contextual information beyond the
training sequence, indicating extrapolation ca-
pability.

• Our suggestion of bias matrix. The Kerple
is a good choice for almost all settings, the
FIRE may need longer training length/tokens
to present its ability, and do not use ALiBi
unless necessary . It is easy to train Ker-
ple, as Kerple usually has few trainable pa-
rameters compared to FIRE. If you do not
know which one to use, directly use Kerple.
FIRE may have better performance, but may
need longer training length (diverges at 128
but works well at 512, with DAPE). FIRE
b(i, j) = fθ

(
ψ(i−j)

ψ(max{L,i})

)
so that we may

need longer training length or more training
tokens to well-train the neural network fθ. Do
not use ALiBi unless necessary. The ALiBi
will quickly become local attention as the se-
quence length increases.

By examining ∆P , we can evaluate the model’s
ability to reduce entropy and gain information from
extended sequences, providing a measure of its
extrapolative power.

C Compare with Baselines

128 256 512 1024 2048 4096 8192
Validation sequence length

4

6

8

10

12

14

Va
lid

at
io

n 
pe

rp
le

xi
ty

Arxiv Dataset (Length 128)

512 1024 2048 4096 8192
Validation sequence length

2

4

6

8

10

12

14

Va
lid

at
io

n 
pe

rp
le

xi
ty

Arxiv Dataset (Length 512)

128 256 512 1024 2048 4096 8192
Validation sequence length

20.0
22.5
25.0
27.5
30.0
32.5
35.0
37.5
40.0

Va
lid

at
io

n 
pe

rp
le

xi
ty

Books3 Dataset (Length 128)

512 1024 2048 4096 8192
Validation sequence length

15

20

25

30

35

40

Va
lid

at
io

n 
pe

rp
le

xi
ty

Books3 Dataset (Length 512)
NoPE
RoPE
T5's bias
CoPE
ALiBi
Kerple
FIRE
DAPE-Kerple
CDAPE-Kerple

Figure 5: Comparisons with baselines: performance with
training lengths 128 and 512 on Arxiv and Books3 datasets.

D Compare with Baseline on Arxiv
Dataset with Training Length 1024
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Table 3: The performance (ppl) on Arxiv dataset with
training length 1024, compared to baselines.

Method 1024 2048 4096 8192

NoPE (Kazemnejad et al., 2024) 4.16 42.27 1854.73 17167.32

RoPE (Su et al., 2024b) 4.07 86.20 237.67 256.12

T5’s bias (Raffel et al., 2020) 4.03 4.28 13.07 79.55

ALiBi (Press et al., 2021) 4.09 4.53 4.45 4.22

Kerple (Chi et al., 2022) 4.06 4.09 4.68 6.951

FIRE (Li et al., 2023c) 4.06 9.21 236.18 440.60

DAPE-Kerple (Zheng et al., 2024) 3.98 3.91 3.68 3.41

CDAPE-Kerple 3.93 3.86 3.61 3.37

E Large Model Size

Table 4: The performance (ppl) under large model size
2.7B on Books3 dataset.

Method 512 1024 2048 4096

RoPE 21.01 25.00 48.13 160.59

T5’s bias 21.10 21.88 23.59 33.23

Kerple 21.14 22.08 23.38 27.21

DAPE-Kerple 20.52 21.01 20.23 19.67

CDAPE-Kerple (kernel size 1x3) 20.16 20.54 19.80 19.02

F The validation on downstream tasks

Table 5: The performance under large model size 125M
on FineWeb-Edu (Lozhkov et al., 2024) 50B tokens.
The acc_norm is the accuracy norm.

Method Metric RoPE DAPE CDAPE

Pile_10K byte_perplexity 2.4967 2.4684 2.4473

Pile_10K word_perplexity 459.0249 425.2719 397.0870

ARC_Challenge acc_norm 25.17 25.43 26.02

ARC_Easy acc_norm 48.02 48.23 49.62

Boolq ACC 56.02 59.05 57.40

Hellaswag acc_norm 33.15 34.35 34.52

PIQA acc_norm 62.30 61.48 62.35

SocialIQA acc 35.93 38.02 38.59
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G The Performance of CDAPE with
Information Leakage

The CDAPE can utilize attention data, which
is supported by almost zero loss (perplexity is
1) under information leakage. To prevent the
information leakage, we use the torch.tril be-
fore CDAPE to make the attention score lower-
triangular matrix. For the cheating version, we
do not use the torch.tril. As shown in Fig-
ure 6, whatever CDAPE-ALiBi, CDAPE-Kerple
or CDAPE-FIRE, their cheating version can all
achieve about zero loss within evaluation length
1024. Furthermore, the CDAPE-Kerple can even
aachievezero loss when the evaluation length is
extended to 8096. This suggest that the proposed
CDAPE can really realize and utilize the informa-
tion of attention score.
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Figure 6: Result with information leakage.

H Compare DAPE and CDAPE with
Approximate Computational Cost

CDAPE achieves even better performance at
a lower computational cost. As shown in Ap-
pendix H, when the training length is set to 128,
CDAPE-Kerple with DDAPE as 10 achieves a per-
plexity (ppl) of 8.16 at an evaluation length of 128
and 4.74 at an evaluation length of 8192. This
performance is notably better than that of DAPE-
Kerple with DDAPE as 64, which achieves perplex-
ities of 8.21 and 4.87, respectively. Moreover,
when the training length is extended to 512 and
the evaluation length is smaller or equal to 4096,
CDAPE-Kerple with DDAPE as 10 continues to sur-
pass the performance of DAPE-Kerple with DDAPE
as 64. Also, CDAPE-Kerple with DDAPE as 21
always achieves better performance than DAPE-
Kerple with DDAPE as 64. This demonstrates that
CDAPE not only maintains its performance advan-
tage across different training lengths but also re-
quires a lower computational cost.
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Figure 7: Compare CDAPE and DAPE with the approxi-
mately same cost on Arxiv Dataset. We compare the CDAPE
and DAPE with approximate cost and different DDAPE. As
the kernel size of is 1× 3, the proposed CDAPE is the triple
computation cost of DAPE, with the same DDAPE.

I The Performance with Different Kernel
Size

Table 6: The performance with different kernel size,
with training length 512 and evaluation from length 512
to 8192. For different datasets and training length, the
optimal kernel size may not always be the largest one,
especially when the evaluation length is larger.

Dataset Method 512 1024 2048 4096 8192

Arxiv

Kerple 4.57 4.37 5.09 6.80 9.08

DAPE-Kerple (Kernel Size 1x1) 4.49 4.20 4.17 3.95 3.70

CDAPE-Kerple (Kernel Size 1x3) 4.44 4.14 4.09 3.87 3.58

CDAPE-Kerple (Kernel Size 1x5) 4.44 4.14 4.10 3.85 3.59

CDAPE-Kerple (Kernel Size 1x7) 4.43 4.13 4.08 3.85 3.57

Books3

Kerple 19.83 19.19 20.48 28.33 40.94

DAPE-Kerple (Kernel Size 1x1) 19.25 18.28 17.20 17.58 17.85

CDAPE-Kerple (Kernel Size 1x3) 18.95 17.92 16.79 17.05 17.20

CDAPE-Kerple (Kernel Size 1x5) 18.89 17.87 16.76 17.09 17.10

CDAPE-Kerple (Kernel Size 1x7) 18.86 17.82 16.70 17.01 17.16
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J The Performance of CDAPE on CHE
Benchmark

Table 7: Train on length 40 with 200k steps, and test
from lengths 41 to 500. The random accuracy is 50%,
except for MODULAR ARITHMETIC (SIMPLE), CYCLE
NAVIGATION, BUCKET SORT, SOLVE EQUATION and
MODULAR ARITHMETIC, where it is 20%. ††† de-
notes permutation-invariant tasks, which are expected
to be solved without positional information. The dataset
comes from (Choromanski et al., 2021), with experi-
ment setting from Randomized PE(Ruoss et al., 2023).

Baseline CDAPE (Kernel Size 1) CDAPE (Kernel Size 3)

Level Task RoPE Relative ALiBi Kerple FIRE ALiBi Kerple FIRE ALiBi Kerple FIRE

R

EVEN PAIRS 99.98 96.60 73.52 57.50 73.86 99.99 99.58 100 99.99 100 100
MODULAR ARITHMETIC (SIMPLE) 21.35 20.84 20.02 21.79 21.09 23.58 24.47 24.46 21.48 23.90 23.43
PARITY CHECK††† 50.05 50.09 50.09 50.07 50.97 50.30 50.07 50.04 50.13 52.51 50.11
CYCLE NAVIGATION††† 27.63 26.95 24.64 29.47 28.41 22.99 34.53 27.54 24.43 24.32 24.34

DCF

STACK MANIPULATION 61.49 64.73 66.42 66.93 69.33 68.18 72.04 70.90 58.90 68.18 60.90
REVERSE STRING 65.23 65.59 71.09 71.54 65.89 73.37 70.74 76.40 56.61 81.84 70.11
MODULAR ARITHMETIC 31.25 31.74 30.56 24.79 30.92 31.34 32.37 31.50 29.46 26.13 27.00
SOLVE EQUATION 21.85 22.93 19.92 21.15 22.06 20.03 22.49 22.42 20.26 23.95 23.62

CS

DUPLICATE STRING 64.97 67.66 65.13 66.72 69.03 70.84 72.95 72.71 52.96 57.03 66.01
MISSING DUPLICATE 63.37 72.34 74.21 79.06 79.27 83.41 87.57 89.17 59.33 99.65 74.83
ODDS FIRST 61.00 61.57 59.88 62.59 63.28 63.78 67.08 66.34 57.35 56.87 56.57
BINARY ADDITION 55.59 56.96 54.72 56.35 55.70 59.71 60.88 56.62 57.49 55.32 57.86
COMPUTE SQRT 51.88 51.63 50.63 51.11 50.80 51.64 51.33 52.46 52.08 51.76 51.93
BUCKET SORT††† 98.12 99.31 98.45 99.38 99.57 99.38 98.81 99.37 96.61 99.06 98.56

K CDAPE Time Cost

Table 8: The time cost (millisecond) under different
testing lengths, with DDAPE as 32 and default batch size
1, with training length 512.

Method 350M Total Ratio 2.7B Total Ratio 6.7B Total Ratio

RoPE (Su et al., 2024b) 210.01 0.8306 472.63 1.0472 635.57 0.8564

T5’s bias (Raffel et al., 2020) 355.16 1.4046 537.62 1.1912 808.85 1.0899

ALiBi (Press et al., 2021) 172.60 0.6826 325.95 0.7222 596.77 0.8041

Kerple (Chi et al., 2022) 189.91 0.7511 370.32 0.8205 661.82 0.8918

FIRE (Li et al., 2023c) 248.13 0.9813 432.63 0.9586 797.68 1.0748

DAPE-Kerple (Zheng et al., 2024) 224.22 0.8868 422.48 0.9361 717.46 0.9667

CDAPE-Kerple 252.84 1.0000 451.29 1.0000 742.10 1.0000

L Model Configuration

All experiments are conducted on 8 GPUs. The
125M and 350M model configuration is the follow-
ing.

Table 9: Model Configurations.

125M 350M

Training sequence length 512 512
Batch size 32 × 8 32 × 8

Numer of iterations 50k 50k
Dropout prob. 0.0 0.0

Attention dropout prob. 0.0 0.0
Attention head 12 16

Feature dimension 768 1024
Layer number 12 24

Optimizer Adam Adam
Optimizer parameter betas [0.9, 0.95] [0.9, 0.95]

Learning rate 6e− 4 3e− 4
Precision float16 float16

M Data-Adaptive Related Position
Encoding Performance Comparison

Table 10: The performance comparison between data-
related position encoding, with dataset Books3 and train-
ing length 128.

Method 128 256 512 1024 2048 4096 8192

Transformer-XL 31.57 28.49 26.07 26.98 27.90 32.76 41.12

CoPE 31.61 28.41 25.79 27.96 33.80 54.08 90.66

DAPE-Kerple (Kernel Size 1x1) 31.49 28.27 24.93 24.31 23.34 24.38 25.01

CDAPE-Kerple (Kernel Size 1x3) 31.07 27.81 24.38 23.57 22.40 23.19 23.52

N The Error Bar and Significance Value

Table 11: The perplexity performances on the Books3
dataset when the training length is 512 and running
with three random seeds.

Method 512 1024 2048 4096 8192

RoPE
mean 19.6805 244.6191 369.1415 528.3689 616.7107
std 0.1552 36.3003 30.7471 79.5782 107.1226

Alibi
mean 19.9721 19.9142 20.3743 19.9823 20.7975
std 0.0278 0.0990 0.1246 0.1845 0.2196

Kerple
mean 19.7681 19.2457 21.8713 29.8706 42.2081
std 0.1687 0.1575 1.6713 4.5761 5.8176

FIRE
mean 19.6919 21.4867 107.1641 312.2332 499.9489
std 0.1237 0.4015 5.3597 14.1547 20.0708

DAPE-Kerple
mean 19.2322 18.2911 17.5365 17.2084 17.7459
std 0.1634 0.0315 0.2383 0.4791 0.1845

CDAPE-Kerple
mean 18.9193 17.9277 17.1339 16.6910 17.1153
std 0.1627 0.0197 0.2431 0.4695 0.2261

According to Table 11, the performances of dif-
ferent methods are evaluated based on perplexity
across various validation lengths ranging from 512
to 8192. The results indicate that ALiBi, Kerple
and FIRE consistently outperform the RoPE for
the length extrapolation, all with p-values less than
0.05. CDAPE-Kerple surpasses DAPE-Kerple, sug-
gesting significant improvements.

O Risk

This work focuses on language modeling so that
there is no specific risk. Also, this work use AI
assistants for writing.
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P CDAPE Visualization

P.1 Visualization on length 512
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Example 1: CDAPE Bias (Layer 1)
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Example 1: CDAPE Bias (Layer 2)
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Example 1: CDAPE Bias (Layer 4)

Figure 8: Evaluation Length 512 Example 1: Part 1. From Left to Right: (1) The Attention is XWQ(XWK)⊤; (2) The
Kerple bias is B; (3) The CDAPE (with Kerple) bias is f(XWQ(XWK)⊤,B).
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Example 1: CDAPE Bias (Layer 5)
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Example 1: Attention (Layer 9)
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Example 1: CDAPE Bias (Layer 9)

Figure 9: Evaluation Length 512 Example 1: Part 2. From Left to Right: (1) The Attention is XWQ(XWK)⊤; (2) The
Kerple bias is B; (3) The CDAPE (with Kerple) bias is f(XWQ(XWK)⊤,B).
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Example 1: CDAPE Bias (Layer 10)
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Example 1: Attention (Layer 11)
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Example 1: CDAPE Bias (Layer 11)
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Example 1: Kerple Bias (Layer 12)
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Example 1: CDAPE Bias (Layer 12)

Figure 10: Evaluation Length 512 Example 1: Part 3. From Left to Right: (1) The Attention is XWQ(XWK)⊤; (2)
The Kerple bias is B; (3) The CDAPE (with Kerple) bias is f(XWQ(XWK)⊤,B).
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Example 2: Attention (Layer 2)
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Example 2: Attention (Layer 4)
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Example 2: Kerple Bias (Layer 4)
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Example 2: CDAPE Bias (Layer 4)
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Example 2: Attention (Layer 5)
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Example 2: Kerple Bias (Layer 5)
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Example 2: CDAPE Bias (Layer 5)

Figure 11: Evaluation Length 512 Example 2: Part 1. From Left to Right: (1) The Attention is XWQ(XWK)⊤; (2)
The Kerple bias is B; (3) The CDAPE (with Kerple) bias is f(XWQ(XWK)⊤,B).
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Example 2: Kerple Bias (Layer 6)
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11
Head-12

0 100 200 300 400 500
Relative Distance

8

6

4

2

0

2

4

6

DA
PE

1x
3 P

os
iti

on
al

 B
ia

s

Example 2: CDAPE Bias (Layer 6)
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Example 2: CDAPE Bias (Layer 7)
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Example 2: Attention (Layer 8)
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Example 2: Kerple Bias (Layer 8)
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Example 2: CDAPE Bias (Layer 8)
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Example 2: Attention (Layer 9)
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Example 2: Kerple Bias (Layer 9)
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Example 2: CDAPE Bias (Layer 9)
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Example 2: Attention (Layer 10)
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Example 2: Kerple Bias (Layer 10)
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Example 2: CDAPE Bias (Layer 10)

Figure 12: Evaluation Length 512 Example 2: Part 2. From Left to Right: (1) The Attention is XWQ(XWK)⊤; (2)
The Kerple bias is B; (3) The CDAPE (with Kerple) bias is f(XWQ(XWK)⊤,B).
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Example 2: Kerple Bias (Layer 10)
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Example 2: CDAPE Bias (Layer 10)
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Example 2: Kerple Bias (Layer 11)
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Example 2: CDAPE Bias (Layer 11)
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Example 2: Attention (Layer 12)
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Example 2: Kerple Bias (Layer 12)
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Example 2: CDAPE Bias (Layer 12)

Figure 13: Evaluation Length 512 Example 2: Part 2. From Left to Right: (1) The Attention is XWQ(XWK)⊤; (2)
The Kerple bias is B; (3) The CDAPE (with Kerple) bias is f(XWQ(XWK)⊤,B).
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P.2 Visualization on length 2048
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Example 1: Attention (Layer 1)
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Example 1: Kerple Bias (Layer 1)
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Example 1: CDAPE Bias (Layer 1)
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Example 1: Attention (Layer 2)
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Example 1: Kerple Bias (Layer 2)
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Example 1: CDAPE Bias (Layer 2)
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Example 1: Attention (Layer 3)
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Example 1: Kerple Bias (Layer 3)
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Example 1: CDAPE Bias (Layer 3)

0 500 1000 1500 2000
Relative Distance

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

At
te

nt
io

n 
Va

lu
e

Example 1: Attention (Layer 4)
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Example 1: Kerple Bias (Layer 4)
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Example 1: CDAPE Bias (Layer 4)
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Example 1: Attention (Layer 5)
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Example 1: Kerple Bias (Layer 5)
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11
Head-12

0 500 1000 1500 2000
Relative Distance

10

5

0

5

DA
PE

1x
3 P

os
iti

on
al

 B
ia

s

Example 1: CDAPE Bias (Layer 5)

Figure 14: Evaluation Length 2048 Example 1: Part 1. From Left to Right: (1) The Attention is XWQ(XWK)⊤; (2)
The Kerple bias is B; (3) The CDAPE (with Kerple) bias is f(XWQ(XWK)⊤,B).
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Example 1: Attention (Layer 6)
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Example 1: Kerple Bias (Layer 6)
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11
Head-12

0 500 1000 1500 2000
Relative Distance

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

DA
PE

1x
3 P

os
iti

on
al

 B
ia

s

Example 1: CDAPE Bias (Layer 6)
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Example 1: Attention (Layer 7)
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Example 1: Kerple Bias (Layer 7)
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Example 1: CDAPE Bias (Layer 7)
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Example 1: Attention (Layer 8)
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Example 1: Kerple Bias (Layer 8)
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Example 1: CDAPE Bias (Layer 8)
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Example 1: Attention (Layer 9)
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Example 1: Kerple Bias (Layer 9)
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Example 1: CDAPE Bias (Layer 9)
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Example 1: Attention (Layer 10)
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Example 1: Kerple Bias (Layer 10)
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Example 1: CDAPE Bias (Layer 10)

Figure 15: Evaluation Length 2048 Example 1: Part 2. From Left to Right: (1) The Attention is XWQ(XWK)⊤; (2)
The Kerple bias is B; (3) The CDAPE (with Kerple) bias is f(XWQ(XWK)⊤,B).
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Example 1: Kerple Bias (Layer 11)
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Example 1: CDAPE Bias (Layer 11)
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Example 1: Attention (Layer 12)
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Example 1: Kerple Bias (Layer 12)
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Example 1: CDAPE Bias (Layer 12)

Figure 16: Evaluation Length 2048 Example 1: Part 3. From Left to Right: (1) The Attention is XWQ(XWK)⊤; (2)
The Kerple bias is B; (3) The CDAPE (with Kerple) bias is f(XWQ(XWK)⊤,B).
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Example 2: Attention (Layer 1)
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Example 2: Kerple Bias (Layer 1)
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Example 2: CDAPE Bias (Layer 1)
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Example 2: CDAPE Bias (Layer 2)
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Example 2: Attention (Layer 3)
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Example 2: Kerple Bias (Layer 3)
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Example 2: CDAPE Bias (Layer 3)
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Example 2: Attention (Layer 4)
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Example 2: Kerple Bias (Layer 4)
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Example 2: CDAPE Bias (Layer 4)
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Example 2: Attention (Layer 5)
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Example 2: Kerple Bias (Layer 5)
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Example 2: CDAPE Bias (Layer 5)

Figure 17: Evaluation Length 2048 Example 2: Part 1. From Left to Right: (1) The Attention is XWQ(XWK)⊤; (2)
The Kerple bias is B; (3) The CDAPE (with Kerple) bias is f(XWQ(XWK)⊤,B).
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Example 2: Attention (Layer 6)
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Example 2: Kerple Bias (Layer 6)
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Example 2: CDAPE Bias (Layer 6)
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Example 2: Kerple Bias (Layer 8)
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Example 2: CDAPE Bias (Layer 8)

0 500 1000 1500 2000
Relative Distance

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

At
te

nt
io

n 
Va

lu
e
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Example 2: Kerple Bias (Layer 9)
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Example 2: CDAPE Bias (Layer 9)
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Example 2: Kerple Bias (Layer 10)
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Example 2: CDAPE Bias (Layer 10)

Figure 18: Evaluation Length 2048 Example 2: Part 2. From Left to Right: (1) The Attention is XWQ(XWK)⊤; (2)
The Kerple bias is B; (3) The CDAPE (with Kerple) bias is f(XWQ(XWK)⊤,B).
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Example 2: Kerple Bias (Layer 11)
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Example 2: CDAPE Bias (Layer 11)
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Example 2: Attention (Layer 12)
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Example 2: Kerple Bias (Layer 12)
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Example 2: CDAPE Bias (Layer 12)

Figure 19: Evaluation Length 2048 Example 3: Part 2. From Left to Right: (1) The Attention is XWQ(XWK)⊤; (2)
The Kerple bias is B; (3) The CDAPE (with Kerple) bias is f(XWQ(XWK)⊤,B).
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P.3 Visualization on length 8192
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0 2000 4000 6000 8000
Relative Distance

4

2

0

2

4

6

At
te

nt
io

n 
Va

lu
e

Example 1: Attention (Layer 2)

0 2000 4000 6000 8000
Relative Distance

5

4

3

2

1

0
Ke

rp
le

 P
os

iti
on

al
 B

ia
s
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Example 1: CDAPE Bias (Layer 2)
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Example 1: Kerple Bias (Layer 3)
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Example 1: Kerple Bias (Layer 4)
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Example 1: Attention (Layer 5)

0 2000 4000 6000 8000
Relative Distance

5

4

3

2

1

0

Ke
rp

le
 P

os
iti

on
al

 B
ia

s

Example 1: Kerple Bias (Layer 5)
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Example 1: CDAPE Bias (Layer 5)

Figure 20: Evaluation Length 8192 Example 1: Part 1. From Left to Right: (1) The Attention is XWQ(XWK)⊤; (2)
The Kerple bias is B; (3) The CDAPE (with Kerple) bias is f(XWQ(XWK)⊤,B).
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Example 1: CDAPE Bias (Layer 6)
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Example 1: Kerple Bias (Layer 7)

Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11
Head-12

0 2000 4000 6000 8000
Relative Distance

20

15

10

5

0

5

DA
PE

1x
3 P

os
iti

on
al

 B
ia

s

Example 1: CDAPE Bias (Layer 7)
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Example 1: Kerple Bias (Layer 8)
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Example 1: CDAPE Bias (Layer 8)
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Example 1: Kerple Bias (Layer 9)
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Example 1: CDAPE Bias (Layer 9)
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Example 1: Kerple Bias (Layer 10)
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Example 1: CDAPE Bias (Layer 10)

Figure 21: Evaluation Length 8192 Example 1: Part 2. From Left to Right: (1) The Attention is XWQ(XWK)⊤; (2)
The Kerple bias is B; (3) The CDAPE (with Kerple) bias is f(XWQ(XWK)⊤,B).
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Example 1: Kerple Bias (Layer 12)
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Example 1: CDAPE Bias (Layer 12)

Figure 22: Evaluation Length 8192 Example 1: Part 3. From Left to Right: (1) The Attention is XWQ(XWK)⊤; (2)
The Kerple bias is B; (3) The CDAPE (with Kerple) bias is f(XWQ(XWK)⊤,B).
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Example 2: Kerple Bias (Layer 1)
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Example 2: Kerple Bias (Layer 4)
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Example 2: Kerple Bias (Layer 5)
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Example 2: CDAPE Bias (Layer 5)

Figure 23: Evaluation Length 8192 Example 2: Part 1. From Left to Right: (1) The Attention is XWQ(XWK)⊤; (2)
The Kerple bias is B; (3) The CDAPE (with Kerple) bias is f(XWQ(XWK)⊤,B).
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Example 2: CDAPE Bias (Layer 6)
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Example 2: CDAPE Bias (Layer 8)

0 2000 4000 6000 8000
Relative Distance

7.5

5.0

2.5

0.0

2.5

5.0

7.5

At
te

nt
io

n 
Va

lu
e
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Example 2: CDAPE Bias (Layer 9)
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Example 2: Kerple Bias (Layer 10)
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Example 2: CDAPE Bias (Layer 10)

Figure 24: Evaluation Length 8192 Example 2: Part 2. From Left to Right: (1) The Attention is XWQ(XWK)⊤; (2)
The Kerple bias is B; (3) The CDAPE (with Kerple) bias is f(XWQ(XWK)⊤,B).
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Example 2: Attention (Layer 11)
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Example 2: Kerple Bias (Layer 11)
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Example 2: CDAPE Bias (Layer 11)
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Example 2: Attention (Layer 12)
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Example 2: Kerple Bias (Layer 12)
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Example 2: CDAPE Bias (Layer 12)

Figure 25: Evaluation Length 8192 Example 2: Part 2. From Left to Right: (1) The Attention is XWQ(XWK)⊤; (2)
The Kerple bias is B; (3) The CDAPE (with Kerple) bias is f(XWQ(XWK)⊤,B).
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Q Implementation

In this section, we present the implementation of the proposed CDAPE module in PyTorch for the research
purpose, which is consistent with intended use (Paszke et al., 2019).

import t o r c h
import t o r c h . nn as nn

class CDAPE( nn . Module ) :
def _ _ i n i t _ _ ( s e l f , head_number =12 , mlp_width =32 , k e r n e l _ s i z e =3) :

"""
CDAPE attention bias module.

Args:
num_heads: number of attention heads.
mlp_width: Width of MLP.
kernel_size: convolution kernel size.

"""
super (CDAPE, s e l f ) . _ _ i n i t _ _ ( )

s e l f . mlp = nn . S e q u e n t i a l (
nn . Conv2d ( i n _ c h a n n e l s =head_number *2 , o u t _ c h a n n e l s =mlp_width ,

k e r n e l _ s i z e = ( 1 , k e r n e l _ s i z e ) , s t r i d e = ( 1 , 1 ) , padd ing = (0 , k e r n e l _ s i z e
/ / 2 ) , d i l a t i o n = ( 1 , 1 ) ) ,

nn . LeakyReLU ( ) ,
nn . Conv2d ( i n _ c h a n n e l s =mlp_width , o u t _ c h a n n e l s =head_number ,

k e r n e l _ s i z e = ( 1 , k e r n e l _ s i z e ) , s t r i d e = ( 1 , 1 ) , padd ing = (0 , k e r n e l _ s i z e
/ / 2 ) , d i l a t i o n = ( 1 , 1 ) ) )

def f o r w a r d ( s e l f , a t t e n t i o n : t o r c h . Tensor , b i a s : t o r c h . Tensor ) :
"""
Args:

attention: input sequence , which is q^T * k,
shape [bsz , num_heads , seq_len , seq_len]

bias: bias matrix , which can be generated by ALiBi , Kerple
FIRE or other additive position encodings

shape [1,num_heads , seq_len , seq_len]

Returns:
attention with DAPEV2 ,
shape [bsz , num_heads , seq_len , seq_len]

"""
b i a s _ t i l e = t o r c h . t i l e ( f i r e _ b i a s , ( x . shape [ 0 ] , 1 , 1 , 1 ) )
a t t e n t i o n _ b i a s _ c o n c a t = t o r c h . c a t ( ( a t t e n t i o n , b i a s _ t i l e ) , dim =1)
a t t e n t i o n _ b i a s _ c o n c a t = t o r c h . t r i l ( a t t e n t i o n _ b i a s _ c o n c a t )
a t t e n t i o n _ b i a s _ c o n c a t = s e l f . mlp ( a t t e n t i o n _ b i a s _ c o n c a t )

return a t t e n t i o n + b i a s + a t t e n t i o n _ b i a s _ c o n c a t
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