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Abstract

Supervised fine-tuning (SFT) enables large lan-
guage models to align with training data for
better performance in many aspects. Neverthe-
less, the gap between the distribution of current
datasets from human annotations or model gen-
erations and the real-world data distribution
heavily limits the capacities and potentials of
models. As a result, we propose a new SFT
technique, ATLANTIS, to bridge the gap. We
adopt importance sampling to estimate the op-
timal data distribution in the real world from
existing training datasets because the former
is hard to sample from. Furthermore, we in-
troduce an extra small model and reference
model to estimate the sampling ratio through
the probability gap between them. We eval-
uate our method with benchmarks in knowl-
edge & understanding and preference aspects.
The experiment results prove that ATLANTIS
can bring consistent and significant improve-
ments to models’ performance. What’s more,
our method can be flexibly transferred among
models with different structures. Our analyses
demonstrate that our method is well-compatible
with other SFT techniques to further enhance
models’ capacities and has great potential to be
combined with existing training frameworks.

1 Introduction

With the proliferation of strong large language mod-
els (LLM), supervised fine-tuning (SFT) becomes
a more and more important technique to allow base
models to follow human instructions (Wei et al.,
2021; Ouyang et al., 2022; Chung et al., 2024),
align with data in specific domains (Yang et al.,
2023; Tu et al., 2024), or alleviate bias existing in
themselves (Guo et al., 2022; Zhou et al., 2023a).
As a result, LLMs can serve as strong assistants for
us to solve problems in different domains (OpenAI,
2022; Achiam et al., 2023).

The performance of the finetuned model heavily
relies on the quality of the training dataset (Zhou

et al., 2024). In order to train a human-like lan-
guage model with strong capacities, we hope the
training data can contain all the knowledge in the
world and completely cover the chatting patterns
of all human beings. We call this ideal dataset
the optimal dataset and its corresponding distribu-
tion is the optimal distribution p∗. In theory, p∗ can
fully reflect the distribution of any natural language
in the real world and fit the patterns of talking or
writing for everyone, which is impossible for the
current training technique because we can never
collect all potential training data around the whole
world. Alternatively, we choose to construct large-
scale SFT datasets with high quality to train strong
models. The datasets collected from human an-
notations provide approaches to aligning models
with actual human behaviors (Mishra et al., 2021;
Conover et al., 2023). Considering the high cost
of human annotations, many corpora consisting of
real conversations between users and LLMs spring
up (Teknium, 2023; Taori et al., 2023). However,
neither kind of training dataset can fit the optimal
distribution p∗ perfectly, since the training samples
are not collected from the real world and are too
limited in size to cover all possible cases in life. In
other words, the target of fitting the distribution of
the training datasets deviates from the optimal p∗

at the very beginning.
As a result, the gaps between training dataset

distribution pd and p∗ will heavily limit the capac-
ities and potentials of LLMs, especially with the
rapid increase in model scales and capacities. Con-
tinuous increase of training data size is a possible
solution but is too costly. Many approaches to
selecting training data can alleviate this problem
to some extent (Li et al., 2023a, 2024a). Though
improving models’ capacities through discarding
training data with low quality, these methods fail
to pay enough attention to the distribution gap and
hardly make any efforts to bridge it.

Inspired by weak-to-strong generalization
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Figure 1: Demonstrations of the difference in naive fine-tuning and ATLANTIS. Naive fine-tuning (left) forces the
language model to fit pd (the sad-faced robot) that deviates from p∗ (the smiling robot wearing a graduation cap).
ATLANTIS (right) optimizes the language model along a different direction, which is estimated through the gap
between the reference model and the optimal distribution, and finally fits the optimal distribution.

(Burns et al., 2023), we propose ATLANTIS
(WeAk-to-sTrong Learning for sAmpliNg raTIo
eStimation) to adjust the optimization direction to-
wards the optimal distribution. The main difficulty
in aligning models with the optimal distribution
is that it is hard to sample from p∗. Fortunately,
importance sampling provides a solution to this
problem. Importance sampling is a sampling strat-
egy aiming to estimate the expectations of a func-
tion f under a probability density function p from
which is hard to sample through another distribu-
tion q. As a result, we can use an existing training
dataset, whose distribution corresponds to q, from
real conversations or LLM responses to fit the op-
timal distribution. Importance sampling requires
that the probability p(x) is calculable for a specific
x to compute the sampling ratio. However, the
target distribution p∗ is incalculable because we
cannot model the data distribution in the real world
precisely. To tackle this problem, we introduce an
extra small model to estimate the sampling ratio in-
stead of calculating it directly. Specifically, we can
redirect the optimization direction of a large base
model to be finetuned towards p∗ during training
process by calculating the gap between a smaller
base model and its corresponding finetuned check-
point. Figure 1 provides an intuitive illustration of
our method.

The contributions of this work can be summa-
rized as follows:

• To the best of our knowledge, we take the
first step to introduce importance sampling to

SFT to bridge the gap between the optimal
data distribution and the actual training data
distribution.

• We propose ATLANTIS to estimate the sam-
pling ratio through the probability gap be-
tween a small base model and its finetuned
version, which is trained with datasets other
than p∗. The evaluation results prove the ef-
fectiveness of ATLANTIS in both knowledge
& understanding and preference aspects.

• Our further experiments demonstrate that our
method is well-compatible with existing data
selection methods and can be easily applied
to existing training frameworks.

2 Methods

In this section, we will explain our proposed train-
ing technique ATLANTIS in detail. Specifically,
this section will be structured as follows. In § 2.1,
we will introduce relevant preliminaries including
SFT and importance sampling. In § 2.2, we will
illuminate our method step by step. In § 2.3, we
will explore the relationship between our method
and existing training techniques.

2.1 Preliminaries

Supervised Finetuning Assuming that we hope
to align a model with the optimal data distribu-
tion p∗, the training target is to minimize the gap
between model output distribution pθ and p∗:
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L(θ) = −Ex∼q(·),y∼p∗(·|x) log pθ(y|x) (1)

Actually, it is hard to sample training instances
directly from p∗ and another alternative is to con-
struct a high-quality training dataset. Given an SFT
dataset D = {xi, yi}Ni=1, the loss function of SFT
is as follows:

L(θ) = −Ex∼q(·),y∼pd(·|x) log pθ(y|x)
= −

∑

x,y

pd(y|x)[log pθ(y|x)] (2)

where pd represents the distribution of training
data. However, there exists a gap between pd and
the optimal distribution from the real world, which
means we will never align models with the optimal
distribution p∗ with limited training samples. The
gaps between the training target of SFT and the
real-world data distribution will limit the capacities
and potentials of LLMs.

Importance Sampling Importance sampling is
a Monte Carlo method used to estimate the expec-
tation under a probability distribution from which
is hard to sample. For a given probability density
function p(x) and a function f(x), the expectation
of f(x) under p(x) is:

E[f ] =

∫
f(x)p(x)dx (3)

In this situation, we can introduce another distri-
bution q(x) from which we can sample to estimate
the expectation as follows:

E[f ] =

∫
p(x)

q(x)
f(x)q(x)dx (4)

We call the term p(x)
q(x) sampling ratio. In the

traditional scenario to which importance sampling
is applied, p(x) can usually be computed for a
given x. However, it is not calculable anymore in
our settings, which is the problem to be solved.

2.2 ATLANTIS

When it comes to calculating SFT loss, we can
convert Eq. 4 into the corresponding discrete form
as follows:

E[f ] =
∑

x

p(x)

q(x)
f(x)q(x) (5)

Supposing a base model pLb which we call the
large model, we hope to train pLb to fit the opti-
mal distribution p∗. To introduce importance sam-
pling to SFT, we should find another appropriate
distribution to estimate p∗. Internet texts, LLM
generations, and human annotations are important
sources of the training corpora, whose distribution
we mark as pr. pr is always weaker than the opti-
mal p∗, but the exact value of it for given x and y is
calculable. As a result, we can estimate the expec-
tation of p∗(y|x) from pr(y|x) through importance
sampling though the latter is not the optimal distri-
bution. The loss function can be rewritten as:

L(pLb ) = −
∑

x,y

p∗(y|x)[log pLb (y|x)]

= −
∑

x,y

p∗(y|x)
pr(y|x)

pr(y|x)[log pLb (y|x)]

= −Ex∼q(·),y∼pr(·|x)[
p∗(y|x)
pr(y|x)

log pLb (y|x)]

(6)

where the additional term p∗(y|x)
pr(y|x) plays the role

of sampling ratio. Different from other scenarios
to which importance sampling is applied, the data
distribution p∗ is not only hard to sample from
but also impossible to calculate as aforementioned.
Thus the sampling ratio is incalculable in this loss
function. As a result, the main problem to solve
in our work is to estimate the importance ratio
appropriately without calculating p∗(x).

Given a base model pSb smaller than pLb , which
we call the small model, and its corresponding
finetuned model, which can serve as the reference
model pr to estimate p∗ in Eq. 6. Note that we do
not require pr to fit p∗ perfectly and the possible
distribution gap between them is allowed. Accord-
ing to the assumption in proxy-tuning (Liu et al.,
2024), the distribution changes before and after
SFT between the small and large model are propor-
tional, which can be presented as:

p∗(y|x)
pLb (y|x)

∝ pr(y|x)
pSb (y|x)

Thus we get the estimation for the importance ratio:

p∗(y|x)
pr(y|x)

∝ pLb (y|x)
pSb (y|x)

Replacing the sampling ratio term p∗(y|x)
pr(y|x) in Eq. 6,

the final loss function can be rewritten as:

L(pLb ) = −Ex∼q(·),y∼pr(·|x)[
p∗(y|x)
pr(y|x)

log pLb (y|x)]

∝ −Ex∼q(·),y∼pr(·|x)[
pLb (y|x)
pSb (y|x)

log pLb (y|x)]
(7)
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Figure 2: Similar distributions of influence weights
across different models, where red and blue represent
the highest and lowest density, respectively.

Compared to the vanilla loss function of SFT,
we suppose that the training data is sampled from
pr in Eq. 7 and add an extra term pLb

pSb
to measure the

distribution gap between the large and small mod-
els. The procedures of our method are illustrated
in Algorithm 1.

Algorithm 1 ATLANTIS

Input pLb , pSb , pr, D = {xi, yi}Ni=1, max training
steps M , learning rate α

Output p∗

1: W ← {p
L
b (yi|xi)

pSb (yi|xi)
pr(yi|xi)}Ni=1

2: pθ0 ← pLb
3: for m = 1 to M do
4: B ← next(D)
5: WB ← next(W )
6: L(θm−1)← −

∑
i∈B

W i
B

|B| log pθm−1(yi|xi)

7: θm ← θm−1 − α∂L(θm−1)
∂θm−1

8: end for
9: p∗ ← pθM

2.3 Relationship with Proxy-tuning
We can transform Eq. 7 into the following format:

L(pLb ) ∝ −Ex∼q(·),y∼pr(·|x)[
pLb (y|x)
pSb (y|x)

log pLb (y|x)]

= −
∑

x,y

pLb (y|x)
pSb (y|x)

pr(y|x) log pLb (y|x)

= −Ex∼q(·),y∼pL
b
(·|x)[

pr(y|x)
pSb (y|x)

log pLb (y|x)]

(8)

Compared to Eq. 1, we add an extra item pr(y|x)
pSb (y|x)

Models pLb pSb pr

Llama2 13B Base 7B Base 7B-chat

Qwen2
7B Base 1.5B Base 1.5B-Instruct

72B Base 7B Base 7B-Instruct

Gemma2
9B Base 2B Base 2B-it

27B Base 9B Base 9B-it

Table 1: The settings of models in our experiments. pLb
and pSb are all base models without SFT. pr are all the
official versions of finetuned models.

in our proposed loss function Eq. 8, which also
provides another point of view to comprehend our
method. In our method, we assume that the distri-
bution moving direction from the base model to the
finetuned model can be transferred from the small
model to the large model. This core idea is similar
to the motivation of proxy-tuning (Liu et al., 2024),
whose method can be described as follows:

p∗(y|x) = softmax
(
sLb (y|x) + sr(y|x)− sSb (y|x)

)
(9)

where s(y|x) represents the logit scores of a
model given input x. Proxy-tuning adds the gap
between the reference model and the small model
to the large model so that the latter can capture
the knowledge and abilities in the training data
without finetuning. We show the performance com-
parison of proxy-tuning and ATLANTIS in the Ap-
pendix. Instead of directly transferring the distri-
bution change to larger models, we choose to use
the distribution gap to measure the importance of
samples during training. Thus we call the extra
term pr(y|x)

pSb (y|x)
“influence weight”. In Figure 2, we

show the distribution of influence weights for dif-
ferent models. We can regard this extra term as a
weight for each training sample. For those samples
whose probabilities rise more significantly from the
base model to the finetuned model, we will endow
them with higher weights. As a result, our methods
can be seen as measuring the influence of training
samples on optimization direction during SFT.

3 Experiments

3.1 Training Settings
We adopt three different series of models to conduct
our experiments: Llama2 (Touvron et al., 2023),
Qwen2 (Yang et al., 2024), and Gemma2 (Team
et al., 2024). The specific settings are shown
in Table 1. In order to further study the influ-
ence of model scales, we prefer model series with
at least three different versions in size. We use
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Model Size Method
Open LLM

Leaderboard 2
TruthfulQA MT-Bench AlpacaEval Arena-

Hard-AutoMC1 MC2 Single Pairwise Easy Hard

Llama2 13B
SFT 32.37 36.23 53.36 6.60 19.06 77.58 6.81 3.9
ATLANTIS 33.50 36.96 54.07 6.90 21.56 80.37 7.80 5.4

Qwen2 7B
SFT 36.22 35.37 51.45 7.44 25.63 72.57 6.41 9.9
ATLANTIS 38.19 35.62 52.65 7.53 26.25 75.40 6.51 9.5

Gemma2 9B
SFT 33.51 36.47 52.85 6.68 20.31 72.67 6.28 5.2
ATLANTIS 33.86 39.41 55.23 6.98 27.50 76.31 6.92 5.6

Table 2: Evaluation results for vanilla SFT and our ATLANTIS in knowledge & understanding and preference
aspects. The better results for each model are highlighted in bold.

Figure 3: The specific evaluation results of Open LLM Leaderboard 2. We have stretched the scales in different
dimensions for better visualization.

OpenHermes-2.5 (Teknium, 2023) as the training
dataset. The implementation details are demon-
strated in the Appendix.

3.2 Evaluation Benchmarks

We evaluate our methods in two aspects for a more
comprehensive and promising conclusion:

Knowledge & Understanding We hope to eval-
uate the knowledge that models capture through
SFT and their abilities to follow human instruc-
tions. We use Open LLM Leaderboard 2 (Fourrier
et al., 2024), and TruthfulQA (Lin et al., 2021)
for the evaluation. In specific, Open LLM Leader-
board 2 consists of six tasks including BBH (Suz-
gun et al., 2022), GPQA (Rein et al., 2023), IFE-
val (Zhou et al., 2023b), MATH-Hard (Hendrycks
et al., 2021), MMLU-Pro (Wang et al., 2024), and
MUSR (Sprague et al., 2024). For both bench-
marks, we use the evaluation scripts from lm-
evaluation-harness1. All metrics for the two bench-
marks are accuracy (or similar metrics) ranging
from 0 to 1, and the higher the better.

1https://github.com/EleutherAI/lm-evaluation-harness

Preference The preference of humans for the re-
sponses from a model is also an important metric.
Thus we adopt MT-Bench (Zheng et al., 2023),
AlpacaEval (Li et al., 2023b), and Arena-Hard-
Auto (Li et al., 2024b) to evaluate human prefer-
ence to models’ generations. In MT-Bench (single
mode) and Arena-Hard-Auto, the metric is the av-
erage score from an LLM on the model’s responses.
In MT-Bench (pairwise mode) and AlpacaEval, the
metric is the winning rate of the model’s responses
to a fixed baseline model’s responses judged by
another LLM. All metrics are the higher the better.

3.3 Results

Our experiment results are shown in Table 2. In
general, ATLANTIS brings steady and significant
improvements in most cases. Our method not only
enhances models’ capacities in general knowledge
but also increases human preference for models’
responses. In the evaluation for knowledge & un-
derstanding, the benchmarks contain both multi-
choice tasks and generation tasks. The exhaus-
tive evaluations fully reflect the comprehensive im-
provements brought by ATLANTIS in capturing
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Data Selection Method IFD Score Superfiltering

Model Sample rate Method
TruthfulQA MT-Bench TruthfulQA MT-Bench

MC1 MC2 Single Pairwise MC1 MC2 Single Pairwise

Qwen2

0.05
SFT 35.01 52.59 6.83 24.06 35.13 52.78 7.42 26.56
ATLANTIS 35.99 54.15 7.54 28.75 33.90 52.98 7.37 29.69

0.10
SFT 32.68 51.35 7.19 24.53 34.03 51.08 7.64 32.19
ATLANTIS 35.86 54.89 7.86 32.81 35.99 54.65 7.38 30.00

0.15
SFT 35.37 53.93 7.38 32.50 34.03 52.15 7.42 30.63
ATLANTIS 34.52 52.40 7.72 32.50 35.50 54.54 7.56 32.19

No selection ATLANTIS 35.62 52.65 7.53 26.25 35.62 52.65 7.53 26.25

Gemma2

0.05
SFT 31.33 49.79 3.93 6.60 33.41 50.92 6.63 25.00
ATLANTIS 28.76 44.24 2.73 6.88 32.93 51.68 6.61 20.63

0.10
SFT 32.59 50.32 5.23 7.50 32.31 51.39 6.85 24.06
ATLANTIS 35.13 53.33 5.32 11.25 35.01 53.47 7.03 25.31

0.15
SFT 32.59 51.72 5.77 10.63 33.17 52.17 6.75 21.88
ATLANTIS 34.76 53.83 5.69 11.25 34.15 53.74 6.90 21.56

No selection ATLANTIS 39.41 55.23 6.98 27.50 39.41 55.23 6.98 27.50

Table 3: Results of ATLANTIS with data selection methods. The best results for each model are highlighted in bold.

knowledge, logical reasoning, following instruc-
tions, and solving problems. In the evaluation for
preference, ATLANTIS shows better performance
in both response scores and winning rates. Specifi-
cally, the improvement in winning rates (MT-Bench
pairwise mode and AlpacaEval) is more significant.
Since selecting the better one from two given an-
swers is easier and more objective than giving a
score to a single response without any comparison,
it makes sense that ATLANTIS is more effective in
raising winning rates.

To further analyze the specific advantages
brought by ATLANTIS, we demonstrate the de-
tailed results of all six tasks from Open LLM
Leaderboard 2 in Figure 3. We use different scales
in different dimensions for better visualization ef-
fects. Generally, Llama2 and Qwen2 get more ben-
efits from ATLANTIS than Gemma2 on this bench-
mark. For Llama2 and Qwen2, the improvements
in GPQA, IFEval, and MUSR are comparably more
obvious and steady. Considering that the metrics
in MATH are originally low, the corresponding
improvements may be not that meaningful. The
metrics change pattern is quite different when it
comes to Gemma2. ATLANTIS causes a slight
drop in performance in GPQA and IFEval, which
are the main sources of improvements for the other
two models. Because the distribution of training
data used in the SFT and RLHF steps for different
reference models may vary a lot, the moving direc-
tion from pSb to pr heavily relies on concrete model

structures and parameter distributions, causing the
performance change patterns of different models to
be distinct from each other.

As a result, ATLANTIS can boost models’ per-
formance in different aspects and is a promising
training technique that can be easily adopted never-
theless model structures or application domains.

3.4 Comparison with Data Selection Methods

The main advantage of our method is that it can
be easily combined with other approaches, such
as data selection. We choose two data selection
methods, IFD (Li et al., 2023a) and superfilter-
ing (Li et al., 2024a), as the baselines and use the
samples selected by them to train models with our
ATLANTIS. The experiment results are shown in
Table 3.

We are glad to see that ATLANTIS is generally
beneficial when combined with data selection meth-
ods and almost all the best results are achieved with
it. When it comes to specific models, the effect of
data selection methods heavily depends on model
structures. Both IFD and superfiltering benefit
Qwen2 on the evaluation benchmarks and achieve
improvements compared to only using ATLANTIS
without any data selection. However, Gemma2
fails to improve the evaluation results through data
selection. All results with IFD or superfiltering fail
to surpass our ATLANTIS with no data selection.
Taking a look at specific benchmarks, the improve-
ments brought by ATLANTIS to data selection are
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Model
Structure of
Ref/Small Model

TruthfulQA MT-Bench
MC1 MC2 Single Pairwise

Qwen2
N/A 35.37 51.45 7.44 25.63
Qwen2 35.62 52.65 7.53 26.25
Gemma2 36.23 52.76 6.89 21.56

Gemma2
N/A 36.47 52.85 6.68 20.31
Gemma2 39.41 55.23 6.98 27.50
Qwen2 38.07 55.40 7.31 25.00

Table 4: Results of ATLANTIS-cross. The best results
for each model are highlighted in bold.

comparably more stable and significant on Truth-
fulQA than on MT-Bench, which means the effect
of ATLANTIS is more outstanding in improving
models’ knowledge and understanding when using
a small number of selected training samples.

Considering the influence of the number of train-
ing samples, increasing training data size cannot
always benefit models. In general, models perform
the best on all benchmarks when the sample rate is
set to 0.1. On one hand, insufficient training sam-
ples (when the sample rate is set to 0.05) are not
enough to train a model that can well follow the
instructions and cater to human preferences. On
the other hand, models may be influenced by low-
quality samples if we further include more training
data (when the sample rate is set to 0.15).

In conclusion, our ATLANTIS has great poten-
tial to be combined with other training techniques
and can play an important role in current SFT
frameworks. The combination of ATLANTIS with
more and more training techniques can bring steady
improvements and deserves further exploration.

4 Analyses

4.1 Analysis on Model Scale

To prove the effectiveness of ATLANTIS on mod-
els of different sizes, we further conduct exper-
iments using Qwen2-72B and Gemma2-27B, of
which the corresponding reference models and
small models can be referred to Table 1. We use
TruthfulQA and MT-Bench as the evaluation bench-
marks. The results are shown in Table 5.

As we have expected, the evaluation results
prove that ATLANTIS still works for larger models
in most cases and we receive appreciable improve-
ments on both benchmarks, especially in the pair-
wise mode of MT-Bench. The only performance
drop happens in Gemma2 on TruthfulQA, but the
decrease is acceptable considering the significantly
increasing scores in other situations. When we fine-

Model Size Method
TruthfulQA MT-Bench

MC1 MC2 Single Pairwise

Qwen2
7B

SFT 35.37 51.45 7.44 25.63
ATLANTIS 35.62 52.65 7.53 26.25

72B
SFT 41.62 61.07 8.14 31.88
ATLANTIS 42.59 61.73 8.17 36.88

Gemma2
9B

SFT 36.47 52.85 6.68 20.31
ATLANTIS 39.41 55.23 6.98 27.50

27B
SFT 43.82 61.24 7.71 26.56
ATLANTIS 43.82 59.30 7.74 32.50

Table 5: Evaluation results with models in larger scales.
The best results for each model are highlighted in bold.

tune Qwen2-72B and Gemma2-27B, distributions
of model parameters may differ more considerably
between the large and small models than when we
finetune smaller models. In such cases, ATLANTIS
still helps models achieve steady improvements,
strongly proving its effectiveness and stability.

4.2 ATLANTIS-cross: Exchanging the
Reference and Small Models

In all our previous experiments, the reference
model, small model, and large model share the
same model structure. Since Li et al. (2024a) finds
that models with different sizes or structures have
a similar distribution in IFD scores, we can sup-
pose that the influence weights in our ATLANTIS
can also be transferred among models with differ-
ent structures. Specifically, we train Qwen2 and
Gemma2 with the influence weights calculated by
the reference and small models of each other. We
call this method ATLANTIS-cross. The evaluation
results are shown in Table 4.

Surprisingly, using models with different struc-
tures to calculate influence weights does not result
in a disastrous loss in performance. In most cases,
ATLANTIS-cross can bring a comparable increase
in evaluation results, even surpassing ATLANTIS
in some metrics. The results verify that models can
benefit from the probability changes in other mod-
els with different structures and our method can be
transferred among different model structures.

We must notice that ATLANTIS-cross loses ef-
fect in Qwen2 on MT-Bench, especially in the pair-
wise mode. This phenomenon may be relative to
the parameter distribution of Gemma2. The change
of distribution between the reference model and
the small model of Gemma2 is only beneficial in
guiding the optimization direction for higher hu-
man preference using the same model structure,
thus causing a loss in performance when applied to
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(a) Qwen2-1.5B

(b) Gemma2-2B

Figure 4: The visualization of different distributions
in influence weight of Qwen2-1.5B and Gemma2-2B,
according to randomly selected 2000 samples.

other models.
In general, models can benefit from the distribu-

tion change of other models with different struc-
tures to some extent. Figure 4 illustrates the dif-
ference in influence weight distribution between
Qwen2 and Gemma2, where they share a close
mean but different variance. To be specific, data
points from Qwen2 are highly concentrated in a
narrow range, with a higher peak at the center,
while those from Gemma2 showcase a larger vari-
ance. This difference further results in distinc-
tions of positive/negative predictions. For example,
if we set 1.0 of influence weights as the border
of such predictions, the rate of disagreement in
Qwen2 and Gemma2 is 46.78%, providing an in-
sight into the harm brought by Gemma2 to Qwen2
in ATLANTIS-cross.

5 Related Work

Supervised Finetuning Supervised finetuning is
the follow-up training step after pretraining and
allows models to fit on specific datasets for spe-
cific capacities, e.g. following human instructions,
and learning knowledge from special domains. The
successively proposed SFT techniques, e.g. prompt
tuning (Brown et al., 2020), prefix tuning (Li and
Liang, 2021; Liu et al., 2021), and instruction tun-
ing (Wei et al., 2021; Ouyang et al., 2022; Muen-
nighoff et al., 2022), greatly promote the devel-
opment of LLMs. In our work, we conduct all
experiments with instruction tuning.

Data Selection for Instruction Tuning Training
samples can have different impacts on the opti-
mization of language models, encouraging active

exploration of data selection strategies. Similar to
most data selection work, we endow each training
sample with a score to measure its influence or
importance. A typical way is to design a model-
agnostic (Song et al., 2024) or model-aware (Chen
et al., 2023; Bukharin and Zhao, 2023; Du et al.,
2023) scoring formulation. Moreover, instead of
directly using scores from LLMs to measure data
quality, Li et al. (2023a) introduces IDF scores
to calculate the fraction between the perplexities
of outputs with and without chat templates using
a finetuned model. Li et al. (2024a) finds out
that IDF scores calculated by small models can
be transferred to the data selection for larger mod-
els. Focusing on the optimization process, Xia
et al. (2024) adopts the reduction in loss function
to judge the influence of training samples. In our
work, we refer to the ideas in these works and pro-
pose to calculate influence weights by the probabili-
ties of outputs from base models and corresponding
finetuned models.

6 Conclusion

In this work, we propose a new training technique
ATLANTIS to deal with the problem of existing
gaps between training data distribution and the op-
timal distribution. Because the ideal optimal distri-
bution is hard to sample from, we introduce impor-
tance sampling method to fit it. Furthermore, we
adopt an extra reference model and a small model
to estimate the sampling ratio since it cannot be
computed directly. We evaluate ATLANTIS with
benchmarks in two different aspects, knowledge
& understanding and human preference, and the
results prove the effectiveness of our method in
both aspects. We further analyze the potential of
our method to be combined with other SFT tech-
niques. The experiments show that ATLANTIS
is well compatible with data selection methods.
What’s more, ATLANTIS does not require that the
large model and small model must share the same
model structure. The influence weights calculated
by one certain model structure can be easily trans-
ferred to other models.

In conclusion, ATLANTIS can serve as a promis-
ing SFT technique and be attached to existing train-
ing frameworks to adjust the optimization direction
to the theoretically optimal target in the real world.
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Limitations

Though our method can be transferred from one
model structure to another, the distribution differ-
ence in influence weights will affect models’ per-
formances in some cases. To make full use of
ATLANTIS, a smaller model from the same model
series is required, which may limit the application
domains of our method to some extent.

What’s more, the introduction of the reference
model will bring extra computation cost compared
to vanilla SFT. Since the reference model is much
smaller than the base model to be finetuned, the
extra cost is acceptable in most cases, especially
considering the significant improvements brought
by ATLANTIS.
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Parameters Model Value

Hardwares GPUs
≤ 13B 16 × A800
27B 32 × A800
72B 64 × A800

Hyperparams

training steps
≤ 13B 60K
27B 30K
72B 15K

batch size
≤ 13B 2
27B 1
72B 1

learning rate
≤ 13B 2e-5
27B 5e-6
72B 5e-7

gradient accu-
mulation steps

≤ 13B 8
27B 8
72B 4

optimizer
/

AdamW
random seed 0

scheduler

warmup type
/

linear
decay type linear

warmup steps
≤ 13B 6K
27B 3K
72B 1.5K

deepspeed
zero stage

/
3

optimizer offload True
parameter offload True

packages

accelerate
/

0.30.0
deepspeed 0.13.5
torch 2.1.0+cu118

transformers
gemma2 4.43.4
others 4.40.2

Table 6: Implementation details of our experiments.

A Implementation Details

The implementation details of experiments and rel-
evant Python packages are shown in Table 6. All
experiments are conducted with one random seed.

B Comparison with Proxy-tuning

Our method and proxy-tuning share the same as-
sumption that the distribution moving directions

before and after finetuning are proportional for the
small and large models. To compare the effect of
these two methods, we also evaluate proxy-tuning
with the results demonstrated in Table 7.

As we can see, ATLANTIS has obvious advan-
tages to proxy-tuning in both benchmarks, espe-
cially in MT-Bench. Though saving the cost of
further training, proxy-tuning cannot bring a steady
and significant improvement compared to the fine-
tuned model.

Model Method
TruthfulQA MT-Bench

MC1 MC2 Single Pairwise

Qwen2-7B
SFT 35.37 51.45 7.44 25.63
proxy-tuning 33.41 50.36 3.76 7.91
ATLANTIS 35.62 52.65 7.53 26.25

Table 7: Evaluation results of proxy-tuning. The best
results are highlighted in bold.
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