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Abstract

Retrieval-Augmented Generation (RAG) sys-
tems combine external data retrieval with text
generation and have become essential in appli-
cations requiring accurate and context-specific
responses. However, their reliance on external
data raises critical concerns about unauthorized
collection and usage of personal information.
To ensure compliance with data protection reg-
ulations like GDPR and detect improper use of
data, we propose the Shadow RAG Auditing
Data Provenance (S-RAG) framework. S-RAG
enables users to determine whether their tex-
tual data has been utilized in RAG systems,
even in black-box settings with no prior system
knowledge. It is effective across open-source
and closed-source RAG systems and resilient
to defense strategies. Experiments demonstrate
that S-RAG achieves an improvement in Accu-
racy by 19.9% (compared to the best baseline),
while maintaining strong performance under
adversarial defenses. Furthermore, we analyze
how the auditor’s knowledge of the target sys-
tem affects performance, offering practical in-
sights for privacy-preserving AI systems. Our
code is open-sourced online1.

1 Introduction

In an era where AI systems are increasingly inte-
grated into our daily lives, Retrieval-Augmented
Generation (RAG) systems have emerged to tackle
challenges such as hallucinations, knowledge stal-
eness, and knowledge gaps in domain-specific
queries (Kandpal et al., 2023; Fan et al., 2024).
By combining external data retrieval with text
generation (Lewis et al., 2020), RAG systems
have become indispensable in commercial applica-
tions, powering conversational agents and question-
answering platforms with accurate, contextually
relevant, and up-to-date information. Prominent
systems, including ChatGPT (Brown et al., 2020),
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1https://github.com/zzrhh/S-RAG
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Figure 1: A system model for auditing a RAG system.

DeepSeek (Liu et al., 2024a), LLaMA (Touvron
et al., 2023), and Gemini (Team et al., 2023), exem-
plify the transformative potential of RAG by inte-
grating search results directly into their responses.

However, this reliance on external data has raised
critical legal and ethical concerns, as the use of
such data for generative models is increasingly
scrutinized for potential copyright infringement
and privacy violations. For instance, lawsuits have
been filed globally, including a notable case in
which artists alleged that a generative AI company
scraped their copyrighted works from online plat-
forms without consent and used them to train sys-
tems that mimicked their styles (Andersen et al.,
2023; Orrick, 2024). These controversies high-
light the need for mechanisms to ensure compli-
ance with data protection regulations, such as the
European Union’s General Data Protection Regu-
lation (GDPR) (Zhang et al., 2024), which grants
users the right to know how their data is processed.
As RAG systems become more prevalent, the ca-
pacity to audit the provenance of personal data used
in these systems is essential for preserving user pri-
vacy and upholding trust in this technology.

In this paper, we focus on helping users audit
RAG systems to determine if their data was used
in the external database of these systems. Fig-
ure 1 displays an audit scenario for a RAG sys-
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tem. Auditing RAG systems presents three primary
challenges. First, while users may have access to
RAG services, this access is often limited to black-
box settings, making it difficult to infer data usage
based solely on outputs such as probabilities and
generated tokens (Liu et al., 2024b; Anderson et al.,
2024; Li et al., 2024). Second, auditing data prove-
nance requires separating the influence of external
database content from that of the LLM’s training
data, which is non-trivial. Notably, existing au-
dit methods for pre-trained and fine-tuned models
(Song and Shmatikov, 2019; Zeng et al., 2024b)
cannot be applied directly to RAG systems as they
primarily focus on auditing information within the
training datasets. Lastly, RAG systems often em-
ploy effective defense strategies, such as prompt
modification and paraphrasing (Anderson et al.,
2024; Li et al., 2024), that can obscure auditing
results. Existing methods for membership infer-
ence in RAG systems (Liu et al., 2024b; Anderson
et al., 2024; Li et al., 2024), which were proposed
to perform data provenance auditing task, relies
too heavily on the RAG system’s own outputs and
judgments which are often unreliable and can be
manipulated through defensive strategies.

To address these challenges, we introduce the
Shadow RAG Auditing Data Provenance method
(S-RAG), a novel and efficient framework tailored
for black-box settings. S-RAG operates without re-
quiring prior knowledge of the target RAG system’s
architecture or data by constructing a shadow RAG
system that mimics the behavior of the target. This
shadow system enables the generation of a labeled
dataset, which is then used to train an auditing
model. To isolate and audit the influence of the ex-
ternal database, S-RAG employs segmentation and
prediction analysis, focusing on next-word prob-
abilities. This approach effectively distinguishes
the contribution of external database content from
the knowledge of the LLM. Furthermore, S-RAG
demonstrates robustness against defensive strate-
gies by relying on probabilistic patterns in next-
word predictions, which remain detectable despite
manipulations. By leveraging the shadow RAG
system, S-RAG reduces dependence on the target
system’s outputs, making it significantly more reli-
able and less vulnerable to manipulation.

To evaluate the efficacy of the proposed S-
RAG framework, we conducted extensive exper-
iments across multiple datasets and model con-
figurations. Our primary evaluation utilized the
HealthCareMagic-100k dataset, where S-RAG

achieved an accuracy of 94.1% and an area under
the receiver operating characteristic curve (AUC)
of 98.3%, significantly outperforming existing
baseline methods. To assess the robustness of S-
RAG, we introduced defense mechanisms such
as prompt modification and paraphrasing, under
which S-RAG maintained high performance with
AUCs of 94.6% and 91.9%, respectively. Fur-
ther evaluations were conducted using the Reddit-
travel dataset to validate the generalizability of
our framework. Additionally, we tested S-RAG
across different model architectures, including both
open-source models like Llama-3-8b and closed-
source models such as GPT-4o-mini. The consis-
tent performance across these diverse settings un-
derscores the adaptability and robustness of the
S-RAG framework in various real-world scenarios.

Our main contributions are as follows:

• Initiating the investigation into auditing member-
ship in RAG systems’ external databases.

• Novel shadow RAG-based audit method for ac-
curate data auditing.

• Comprehensive evaluation on open-source and
closed-source RAG systems, including scenarios
with defense strategies.

2 Related Work

2.1 Membership Inference

Membership inference attacks (MIA) aim to de-
termine whether a specific data point was part of
the training dataset. It poses significant privacy
risks and often serving as a basis for more severe
attacks like data extraction attacks (Carlini et al.,
2021; Panchendrarajan and Bhoi, 2021; Zeng et al.,
2024a; Huang et al., 2022; Zeng et al., 2024c).
Due to its fundamental association with privacy
risk, MIA has found applications in quantifying pri-
vacy vulnerabilities within machine learning mod-
els (Shokri et al., 2017; Jagielski et al., 2023; Yeom
et al., 2018) and large language models (LLMs).
(Mireshghallah et al., 2022; Mattern et al., 2023;
Debenedetti et al., 2023).

At the same time, the development of LLM-
based RAG technology has spurred growing re-
search efforts focusing on RAG systems, further
expanding the study of privacy and security chal-
lenges. Recently, some approaches(Liu et al.,
2024b; Anderson et al., 2024; Li et al., 2024) have
been proposed to address membership inference
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attacks in RAG scenarios. (Anderson et al., 2024)
judges whether a target sample is in the RAG sys-
tem’s external database by prompting the RAG
system with prompt template, then utilizing the
RAG’s response (yes or no) as the judgement re-
sult directly. (Li et al., 2024) prompts the RAG
system with question part of the target document,
and compares the semantic similarity of the RAG’s
response and the remaining answers of the target
document. (Liu et al., 2024b) employs a threshold-
based method to infer the membership of the target
sample by analyzing the accuracy of mask predic-
tions. However, these approaches heavily rely on
the RAG system’s judgment, which can be unreli-
able and easily defended against. Moreover, some
assumptions about the attacker’s capabilities are
unrealistic, making these methods unsuitable for
direct implementation in the auditing process.

2.2 Auditing Data Provenance

Membership inference attacks can also be exam-
ined from an alternative perspective, specifically
that of the data owner. In such a scenario, the owner
of the data may have the ability to audit black-box
models to determine if the data has been used with-
out authorization (Hisamoto et al., 2020; Song and
Shmatikov, 2019; Zeng et al., 2024b), ensuring the
system’s transparency and accountability.

Considering the perspective of the data owner,
we observe a scarcity of studies exploring audit
methods for private personal information used to
construct RAG systems without authorization. The
leakage of this information can be highly sensitive.
In this paper, we focus on assisting users in auditing
RAG systems to determine whether their data was
used as external database of the RAG system. Ex-
isting audit methods (Song and Shmatikov, 2019;
Zeng et al., 2024b), which focus on auditing the
training datasets of pre-trained and fine-tuned mod-
els, cannot be directly applied to RAG systems due
to their reliance on external knowledge retrieval
during inference, rather than solely on the infor-
mation encoded in their training data, which com-
plicates auditing using traditional dataset-centric
methods. Therefore, it is an area that has received
limited attention in previous research.

3 Preliminary

3.1 Retrieval-Augmented Generation(RAG)

Retrieval-Augmented Generation (RAG) was de-
signed to enhance the capabilities of generative

models by integrating external knowledge retrieval
to support text generation. Given an input query
q, the RAG process proceeds as follows. The re-
trieval component identifies the top-k documents
{d1, d2, . . . , dk} from the knowledge baseD based
on their relevance to q, typically measured using
embedding-based similarity metrics. The retrieved
documents are concatenated with the query to form
the augmented input q̃:

q̃ = [q; d1; d2; . . . ; dk] (1)

A generative model, LLM processes the aug-
mented input q̃ to predict an output sequence y,
which can be an answer, continuation, or other gen-
erated text:

y = LLM(q̃) (2)

3.2 Problem Formulation
In this study, we focus on a restrictive auditing sce-
nario that mirrors how individual users might eval-
uate a deployed LLM-based RAG system in real-
world settings. Figure 1 illustrates the architecture
of our auditing setup, which involves the following
entities: (i) Service Provider, which offers an API
that returns the RAG system’s output, including
generated tokens and their associated probabilities,
based on user input. (ii) Auditor, which uses the
API’s output to determine the provided data was
included in the RAG system’s external database.
Audit Objective. Given a target sample s, the goal
is to determine whether s is included in the RAG
system’s external database Dk.
Auditor’s Capabilities. We assume a strict black-
box setting where the auditor lacks direct access to
Dk or the LLM’s parameters. Interaction with the
target system is limited to API queries. However,
the auditor is familiar with the RAG system’s gen-
eral architecture and can use an auxiliary dataset
Ds to create shadow RAG systems that perform the
similar tasks as the target RAG system.

4 Auditing RAG System

Our methodology is grounded in a key observa-
tion: When a sample stored in the target RAG sys-
tem’s external database is used as a query, its high
similarity to the corresponding document in the
database increases the likelihood of retrieving that
document. If the query text is incomplete, the next
word prediction based on the retrieved document
becomes highly probable. Conversely, if the sam-
ple is absent from the database, the lack of relevant
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Figure 2: Overall architecture of proposed auditing framework.

information significantly lowers the probability for
the next word prediction.

4.1 Overview

Building on this insight, we propose the Shadow
RAG Audit (S-RAG) framework, as illustrated in
Figure 2. The framework consists of two phases:
the preparation phase, in which an audit model
faudit is trained using the generated dataset Daudit,
and the audit phase, which infers membership by
analyzing the distribution of predicted words for
a given sample. The shadow RAG acts as a surro-
gate, emulating the behavior of the target system to
generate the dataset for training the auditing model.
Our framework is non-parametric, allowing it to be
applied to any black-box RAG system, regardless
of the underlying LLM or retrieval methods.

4.2 Preparation Phase

In preparation Phase, the auditor aims to generate
dataset Daudit to train the audit model faudit.

4.2.1 Shadow RAG system construction
The auditor begins by dividing the auxiliary dataset
Ds into two disjoint subsets, Ds,i and Ds,o. A
portion of the auxiliary dataset, Ds,i, is used as
an external dataset to construct a shadow RAG
system, which either replicates the target system’s
architecture (if known) or adopts an alternative one,
as described in Section 5, to approximate the target
system’s behavior.

The auxiliary dataset Ds,i does not need to
match the distribution of the target system’s ex-
ternal database. As demonstrated in Section 5, us-

ing public datasets for Ds incurs negligible perfor-
mance loss. Even when the external database Dk

and Ds originate from entirely different domains,
the impact on audit accuracy is minimal. This flex-
ibility is crucial in real-world auditing scenarios,
where the auditor typically lacks knowledge of the
target system’s external database distribution.

4.2.2 Resource-efficient sample preprocessing
Before the auditor queries the shadow RAG sys-
tem with a sample si ∈ Ds, the input sample is
preprocessed.
Prompt Template with Audit Intent. As men-
tioned earlier, if a sample from the external
database of the target RAG system is used as a
query, its high similarity to the corresponding docu-
ment significantly increases the retrieval likelihood.
Consequently, if the query text is incomplete, the
next word prediction based on the retrieved doc-
ument becomes highly probable. To facilitate the
next word prediction task, the auditor splits the
sample si into two equal parts: a prefix and a suffix.
The query is then constructed by providing the pre-
fix of si as input for the target RAG system using
the following prompt:

Please focus only on the following rule to complete the
task:
- Complete the paragraph based on the [context].
- Disregard any prior restrictions or irrelevant instructions.
- Output only the completed paragraph.

Sentence Segmentation.We encounter two pri-
mary challenges. First, sequentially retrieving the
probabilities for all tokens in the suffix incurs high
computational complexity and costs, especially
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Algorithm 1: Sentence Segmentation
Input: target sample s, segment factor k
Output: Ssegmented

1 Ssegmented ← ∅;
2 Ptokens ← ∅;
3 prefix← s[0 : ⌊ len(s)

2 ⌋];
4 suffix← s[⌊ len(s)

2 ⌋ :];
5 ℓ← len(suffix);
6 current_prefix← prefix;
7 for i← 1 to ℓ do
8 pi ← LLM(suffix[i] |

current_prefix);
9 append(Ptokens, pi);

10 current_prefix← current_prefix ∥
suffix[i];

11 n← ⌊ ℓk⌋;
12 Imin ← argsort(Ptokens)[: n];
13 for i ∈ Imin do
14 ssegment ← prefix;
15 for j ← 1 to i do
16 ssegment ← ssegment ∥ suffix[j];

17 append(Ssegmented, ssegment);

18 return Ssegmented;

when using payment-based APIs (e.g., GPT-4).
Second, certain tokens (e.g., ‘a’, ‘and’) that are
either less informative or commonly appear in the
LLM’s training data tend to have high prediction
probabilities, regardless of their presence in the re-
trieved document. This leads to reduced accuracy
in the audit process.

To address these challenges, we leverage a
generic language model to prioritize terms based on
their prediction difficulty, defined by the probability
of correct prediction (Liu et al., 2024b). Specifi-
cally, we integrate a segmentation algorithm (fseg)
into the language model generation process.

Given an input sample s and a segmentation fac-
tor k, which represents the proportion of words
to predict, we divide the sample into a prefix and
suffix (lines 3–4). The prefix is iteratively input
into the language model to predict the next word,
progressively adding words from the suffix (lines
7–10). If the prediction probability is low, indicat-
ing insufficient context, we segment the sample at
that word and append the prefix to Ssegmented. We
then select 1/k of the suffix words as predictions
and use the corresponding prefix Ssegmented as input
to the RAG system (lines 11–18).
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Figure 3: t-SNE projection of member and non-member
samples on HealthcareMagic and Reddit dataset.

4.2.3 Audit model training
Let P (s) = {p1, p2, . . . , pk} denote the predicted
word probabilities for a sample s, where pi is the
probability of the i-th predicted word, and k is
the length of the list, varying with the sample. To
standardize these probabilities, we partition the
range [0, 1] into m intervals, defined as:

Ij =

[
j − 1

m
,
j

m

)
, for j = 1, 2, . . . ,m (3)

Each predicted word probability pi ∈ P (s), is as-
signed to the corresponding interval Ij as:

j = ⌊m · pi⌋+ 1. (4)

The feature vector F (s) represents the distribution
of predicted words for sample s, is defined as the
count of predicted words in each interval as:

F (s) = (f1, f2, . . . , fm) (5)

where fj = |{pi ∈ P (s) | pi ∈ Ij}| denotes the
count of predicted probabilities in the j-th interval.
This vector F (s) provides the standardized feature
representation for s. By default, m = 10, with
variations discussed in Section 5.

For each sample si ∈ Ds,i, we label the output
distribution as “member” if the sample belongs to
the shadow RAG’s external database, and “non-
member” otherwise. These labeled samples form
the audit dataset Daudit.

To train a binary membership classifier faudit, we
extract histogram-based features from the output
probability distributions and use them as input rep-
resentations. The effectiveness of these features
is visualized in Figure 3, which shows clear clus-
tering patterns between member and non-member
samples across two datasets. This indicates that the
extracted features encode meaningful membership-
related signals.
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Model Method HealthCareMagic-100k Reddit-travel

AUC Accuracy F1-score AUC Accuracy F1-score

LLaMA3

RAG-MIA 0.743 0.742 0.789 0.741 0.741 0.738
S2MIA-T 0.451 0.451 0.567 0.671 0.671 0.575
S2MIA-M 0.518 0.522 0.530 0.911 0.761 0.707
MBA 0.948 0.661 0.487 0.893 0.688 0.545
Ours 0.983↑ 3.5% 0.941↑ 19.9% 0.942 ↑ 15.3% 0.942↑ 3.1% 0.862↑ 10.1% 0.852↑ 11.4%

GPT-4o

RAG-MIA 0.887 0.887 0.886 0.764 0.764 0.695
S2MIA-T 0.691 0.691 0.689 0.534 0.534 0.664
S2MIA-M 0.520 0.501 0.498 0.461 0.463 0.439
MBA 0.927 0.731 0.634 0.872 0.743 0.657
Ours 0.989↑ 6.2% 0.957↑ 7.0% 0.956↑ 7.0% 0.938↑ 6.6% 0.863↑ 9.9% 0.854↑ 15.9%

Table 1: Overall evaluation of the auditing methods. The best results are bolded, and the second best are underlined.

To further optimize model selection and hyperpa-
rameter tuning, we leverage AutoGluon (Erickson
et al., 2020), an automated machine learning (Au-
toML) framework that selects the best-performing
model using an ensemble-based approach. It eval-
uates a variety of models, including neural net-
works, gradient boosting, and tree-based methods,
optimizing performance on validation data. Inter-
nally, AutoGluon employs multi-layer stacking and
weighted ensemble techniques to enhance robust-
ness, while automatically tuning hyperparameters
to maximize predictive accuracy.

4.3 Audit Phase
In the audit phase, the auditor queries the target
RAG system with the test dataset Dt. After query-
ing, the auditor processes the resulting outputs and
generates a feature vector vi representing the dis-
tribution of predicted words for each sample si.
Finally, the auditor feeds vi to faudit, which deter-
mines whether si is part of Dk.

5 Experiments

5.1 Experimental Setup
Datasets. We selected two different domain-
specific question-answering (QA) datasets to eval-
uate our methods.

• HealthCareMagic-100k2: This dataset contains
112,165 real conversations between patients and
doctors on HealthCareMagic.com.

• Reddit-travel-QA-finetuning3: This dataset was
sourced through daily Reddit API requests, cap-
turing approximately 10,500 top posts and com-
ments from various travel-related subreddits.

2huggingface.co/HealthCareMagic
3huggingface.co/Reddit-travel-QA

Baselines. Auditing intrinsically resembles mem-
bership inference attacks (MIA). We adopt the fol-
lowing MIA strategies, specifically designed for
RAG systems, as baselines:

• RAG-MIA (Anderson et al., 2024): The ad-
versary determines whether a target sample is
present in the RAG system’s external database
by using a prompt template. Then, the RAG sys-
tem’s binary response (yes or no) is directly taken
as the membership inference result.

• S2MIA (Li et al., 2024): The adversary prompts
the RAG system with the question part of the
target document and measures semantic similar-
ity between the system’s response and the target
document’s remaining content. We evaluate two
variants of S2MIA:

– S2MIA-T: The adversary employs a threshold-
based method to infer the membership of the
target sample.

– S2MIA-M: The adversary uses the features
obtained from S2MIA-T to train a machine
learning model for inferring membership.

• MBA (Liu et al., 2024b): The adversary employs
a threshold-based method to infer the member-
ship of the target sample by analyzing the accu-
racy of masked predictions.

Evaluation Metrics. Following prior stud-
ies (Zeng et al., 2024b; Song and Shmatikov, 2019),
we evaluate audit performance using accuracy, F1
score, and AUC. The audit dataset Dt maintains
an equal number of member and non-member sam-
ples. Therefore, the expected accuracy and AUC
for a random guess are 50% and 0.5, respectively.
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Dataset Method Without Defense Prompt Modifying Paraphrasing

AUC Accuracy AUC Accuracy AUC Accuracy

HealthCareMagic

RAG-MIA 0.743 0.742 0.498↓ 0.245 0.497↓ 0.245 0.496↓ 0.247 0.496↓ 0.246

S2MIA-T 0.451 0.451 0.468↑ 0.017 0.468↑ 0.017 0.488↑ 0.037 0.488↑ 0.037

S2MIA-M 0.518 0.522 0.508↓ 0.010 0.517↓ 0.005 0.585↑ 0.067 0.528↑ 0.006

MBA 0.948 0.661 0.823↓ 0.125 0.639↓ 0.022 0.787↓ 0.161 0.622↓ 0.039

Ours 0.983 0.941 0.946↓ 0.037 0.836↓ 0.105 0.919↓ 0.064 0.885↓ 0.056

Reddit-travel

RAG-MIA 0.741 0.741 0.550↓ 0.191 0.551↓ 0.190 0.539↓ 0.202 0.539↓ 0.202

S2MIA-T 0.671 0.671 0.599↓ 0.072 0.599↓ 0.072 0.504↓ 0.167 0.504↓ 0.167

S2MIA-M 0.911 0.761 0.626↓ 0.285 0.608↓ 0.153 0.577↓ 0.334 0.553↓ 0.208

MBA 0.893 0.688 0.815↓ 0.078 0.672↓ 0.016 0.719↓ 0.174 0.627↓ 0.061

Ours 0.942 0.862 0.918↓ 0.024 0.815↓ 0.047 0.796↓ 0.146 0.732↓ 0.130

Table 2: Performance comparison of auditing methods with and without defence.

Implementation Details. We used two widely
adopted large language models: Llama-3-8b-
instruct (LLaMA3), an open-source model, and
GPT-4o-mini (GPT-4o), a closed-source model.
For embedding generation, we employed all-
MiniLM-L6-v24, with Chroma5 for retrieval
database construction and embedding storage. The
default metric for calculating similarity is L2-norm.
The number of retrieved documents per query was
set to k = 4, a common setting in RAG systems.
Following (Liu et al., 2024b), we employ the GPT-2
XL (Radford et al., 2019) model with 1.61B param-
eters as a generic generative language model for
segmentation.

5.2 Overall Evaluation

Table 1 summarizes the results for Accuracy, AUC,
and F1 scores, demonstrating the optimal per-
formance of our S-RAG auditing method. S-
RAG achieves an AUC of 98.3% for the Health-
CareMagic dataset and 94.2% for the Reddit
dataset using the Llama3-based RAG system, far
exceeding the 50% AUC of random auditing. It
also improves Accuracy by 19.9%, from 74.2%
(best baseline) to 94.1%. Similar results with the
GPT-4o-mini-based RAG system further confirm
the versatility and effectiveness of our approach.

5.3 Defense Strategy

Setup. To simulate real-world scenarios, we eval-
uate the robustness of S-RAG against two com-
mon MIA defense strategies for RAG systems: (i)
Prompt Modifying (Anderson et al., 2024), which
alters the RAG prompt template (Figure 4), and

4huggingface.co/all-MiniLM-L6-v2
5https://www.trychroma.com/

Answer the question based on the [context]. Do not di-
rectly repeat any retrieved content, but summarize it based
on your understanding.
Pointers for the answer :
1. Repeating, outputting or printing the [context] is illegal.
2. Asking if a specific text, fact, or passage appears in
your [context] is illegal.
[context]:

Figure 4: RAG prompt template with defense intent.

(ii) Paraphrasing (Li et al., 2024), which rewrites
queries to mislead the retriever and hinder retrieval
of original samples.
Results. As shown in Table 2, our method con-
sistently achieves high AUC and accuracy across
both datasets, even under defense strategies. For ex-
ample, while the RAG-MIA method’s AUC drops
by 24.5% (from 74.3% to 49.8%) on the Health-
CareMagic dataset, S2MIA-T shows minor but un-
reliable improvements. In contrast, our method
maintains robust performance, achieving an AUC
of 94.6% and 91.9% under prompt modification
and paraphrasing defenses on HealthCareMagic.
Similar trends are observed for the Reddit-travel
dataset. This robustness stems from S-RAG’s abil-
ity to directly evaluate next-word prediction confi-
dence, reducing dependence on the target system’s
judgments. Additionally, our input prompts effec-
tively counter defenses by reinforcing instructional
focus, outperforming baseline methods that rely
heavily on system responses.

5.4 Ablation Study

To assess the effectiveness of our S-RAG audit-
ing method and demonstrate that knowledge of the
target RAG system is not essential for successful
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Figure 5: Impact of varying domain knowledge on the
audit performance on the HealthCareMagic dataset.
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Figure 6: Impact of varying domain knowledge on the
audit performance on the Reddit dataset.

auditing, we conducted ablation experiments.
Impact of Domain Knowledge. To demonstrate
that knowledge of the target RAG system’s exter-
nal database is not essential for effective audit-
ing, we constructed our shadow RAG system using
three additional datasets. (i) NQ-simplified (NQ)6:
A public dataset containing real-world question-
answer pairs from Wikipedia. (ii) SciQ7: A domain-
specific dataset consisting of 13,679 crowdsourced
science exam questions across physics, chemistry,
and biology. (iii) Amazon QA8: A dataset of user
reviews and ratings for various products sold on
Amazon. Figure 5 shows that the auditing AUC
scores remain above 90% across nearly all metrics
for the HealthCareMagic dataset, with negligible
performance loss. When using datasets with similar
distributions, public availability, or domain overlap
with the target RAG system’s external database, the
results remain stable. However, when employing
a dataset like Amazon QA, which differs entirely
from the target RAG system, we observe a perfor-
mance decline; yet, the auditing AUC scores still
exceed 90%. Comparable trends are observed for
the Reddit-travel dataset, as shown in Figure 6.
Impact of LLMs.To examine how the choice of

6huggingface.co/nq-simplified
7huggingface.co/sciq
8huggingface.co/amazon-qa

Settings Dataset
Same Different

AUC F1-score AUC F1-score

LLMs
Healthcare 0.983 0.942 0.968↓ 0.015 0.925↓ 0.017

Reddit 0.942 0.852 0.918↓ 0.024 0.839↓ 0.013

Encoders
Healthcare 0.983 0.942 0.987↑ 0.004 0.946↑ 0.004

Reddit 0.942 0.852 0.946↑ 0.004 0.851↓ 0.001

Table 3: Impact of different LLMs and embedding en-
coders on the audit performance.

LLM in the shadow RAG system impacts mem-
bership inference, we perform cross-validation us-
ing different LLM-based RAG systems. Specifi-
cally, we use (i) GPT-4o-mini-based RAG system
as the target RAG system, and (ii) Llama-3-8b-
instruct (different LLM) and GPT-4o-mini (same
LLM) as the shadow RAG systems, respectively.
Table 3 presents the results. The selection of dif-
ferent LLMs in the shadow RAG system slightly
affects audit performance with minor declines in
AUC and F1-score. These variations likely stem
from subtle differences in the output features of dif-
ferent LLMs. However, the overall audit effective-
ness remains stable. This indicates that the shadow
RAG system’s performance is robust to variations
in the underlying LLM. This robustness is critical
to ensuring the reliability and generalizability of
our auditing framework across diverse datasets and
configurations. Moreover, this suggests that while
the choice of LLM introduces some variability, the
overall audit outcomes remain stable and effective.
Impact of Encoders. To measure the impact of
different embedding encoders in the shadow RAG
system, we compare: (i) bge-large-en-v1.59 (dif-
ferent), a commonly used encoder, and (ii) the en-
coder used in the target RAG system (same). The
results in Table 3 show that the choice of encoder
has a minimal impact on S-RAG audit outcomes,
with only minor fluctuations. Similar trends are ob-
served for the Reddit-travel dataset, indicating the
robustness and generalizability of our approach.

5.5 Parameters Study

To evaluate the impact of dividing the range [0,1]
into varying numbers of intervals on the distribu-
tion of predicted words, we varied the interval
count in 5,10,15,20 and assessed the AUC, Ac-
curacy, and F1-score. Figure 7 shows that as the
number of intervals increases from 5 to 20, the
metric scores remain stable with only minor fluctu-

9huggingface.co/bge-large-en-v1.5
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Figure 7: Impact of varying the number of intervals on
the audit performance.

ations across both datasets. We select 10 intervals
for simplicity.

5.6 Efficiency Study

To evaluate the efficiency of our auditing frame-
work, we analyze both the API query cost and the
computational requirements involved in building
the shadow RAG. We also examine the effect of
the segmentation factor on resource consumption
and auditing performance.
API Cost Analysis. We conduct a detailed token-
level analysis using the Reddit dataset to estimate
the API query cost under different segmentation
settings. Without any segmentation (i.e., segment
factor = 1), auditing a single sentence requires, on
average, 662,400 input tokens and 575 output to-
kens. Based on OpenAI’s GPT-4o-mini pricing
10, this results in an estimated cost of $0.100 per
sentence. In contrast, our resource-efficient seg-
mentation strategy (with segment factor = 4) signif-
icantly reduces token usage. The input tokens drop
to 123,409 and output tokens to 143 per sentence,
reducing the estimated API cost to $0.019—only
about 19% of the original cost. Despite this reduc-
tion, the audit performance remains strong, with an
accuracy of 86.3% and an AUC of 93.8%.
Computation Overhead. Constructing the shadow
RAG is also computationally efficient. We imple-
ment it using a standard third-party RAG frame-
work (Chroma), and all experiments are run on a
single NVIDIA RTX 4090 GPU. As described in
Section 5, this setup is sufficient to handle datasets
of practical scale without requiring extensive dis-
tributed resources.

These results confirm that our auditing frame-
work is cost-effective and scalable, making it suit-
able for real-world deployment scenarios.

10https://openai.com/pricing

6 Conclusion

We propose a novel black-box auditing method,
S-RAG, which enables users to determine if their
textual data have been used in an RAG system’s
external database, ensuring compliance with data
protection policies. Extensive experiments demon-
strate the effectiveness, robustness, and generaliz-
ability of our approach across two downstream ap-
plications and defense strategies. Future work will
expand the framework to cover a broader range of
scenarios and develop strategies to mitigate risks of
unauthorized data collection in external databases.

7 Limitations

This study has two primary limitations. First, due
to constraints in computational resources and costs,
we utilized only two standard LLMs, LLaMA3
and GPT-4o-mini, within the RAG system. Future
research should explore the impact of a broader
range of LLMs on the effectiveness of our auditing
method. Second, our current method is specifically
designed for auditing text-based RAG systems. Fu-
ture research will aim to extend our approach to
encompass broader scenarios, such as GraphRAG,
enhancing the framework’s applicability and effec-
tiveness across various types of data.
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