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Abstract

Lexical relation refers to the way words are re-
lated within a language. Prior work has demon-
strated that pretrained language models (PLMs)
can effectively mine lexical relations between
word pairs. However, they overlook the po-
tential of graph structures composed of lexi-
cal relations, which can be integrated with the
semantic knowledge of PLMs. In this work,
we propose a parameter-efficient fine-tuning
method through graph context, which integrates
graph features and semantic representations for
lexical relation classification (LRC) and lex-
ical entailment (LE) tasks. Our experiments
show that graph features can help PLMs better
understand more complex lexical relations, es-
tablishing a new state-of-the-art for LRC and
LE. Finally, we perform an error analysis, iden-
tifying the bottlenecks of language models in
lexical relation mining tasks and providing in-
sights for future improvements.

1 Introduction

Lexical relation, a fundamental linguistic concept,
refers to how words are related within a language.
The task of lexical relation mining (LRM), which
seeks to identify and classify the specific lexical
relationship between pairs of words, is a challeng-
ing problem in natural language processing (NLP).
This task holds significant value for downstream ap-
plications, including sentiment analysis, ontology
annotation, and analogical reasoning.

Our work focuses on lexical relation classifica-
tion (LRC) and lexical entailment (LE), which are
both subtypes of LRM. LRC is formulated as a clas-
sification problem, whose relations include various
lexical relationships, such as synonymy, antonymy,
and hyponymy. LE aims to annotate the importance
score of the lexical entailment relationship between
two words, which is treated as a regression task.

*Corresponding authors.

Previous works (Moskvoretskii et al., 2024;
Pitarch et al., 2023; Ushio et al., 2021) have ex-
plored the potential of pre-trained language models
(PLMs) in solving both LRC and LE, demonstrat-
ing significant performance improvements com-
pared to traditional pattern-based methods and dis-
tributional models (Yang et al., 2022; Shwartz et al.,
2016; Wang et al., 2019). Specifically, these ap-
proaches first transform word pairs into special-
ized sentences. Then, they use parameter-efficient
fine-tuning (PEFT) methods to introduce additional
training parameters or fully fine-tuned PLM param-
eters to capture latent lexical relation patterns.

However, neither PEFT nor fully fine-tuned
methods account for the influence of graph struc-
tures composed of lexical relations. Incorporating
graph features, which is distinct from semantic
knowledge, enables PLMs to capture knowledge
that is seldom explicitly expressed in natural lan-
guage. Previous work has demonstrated that latent
inference patterns within graph structures can sig-
nificantly aid PLMs in comprehending complex
knowledge across various NLP tasks (Fang et al.,
2024; Sun et al., 2024). However, since PLMs
already contain a vast amount of semantic knowl-
edge, aligning graph-structured knowledge with
semantic knowledge in high-dimensional space is
also a challenging task (Zhu et al., 2024).

To address this gap, we propose a PEFT method
named Efficient Tuning through Graph Context
(GET)1, which captures graph features through a
graph neural network (GNN) module and utilizes
these graph features as additional context for lexi-
cal relation mining. We aim for the model to learn
latent lexical relation inference patterns within the
graph structure through GNN and align them with
the linguistic form of the extra context, thereby
providing additional knowledge to the PLMs. The

1Codes and datasets are available at :https://github.
com/ginwind/GET
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experiments demonstrate that the proposed method
achieves state-of-the-art performance compared to
existing baselines. In addition, we conduct experi-
ments with large-scale PLMs (LLMs) as additional
baselines. Supervised experiments show that fine-
tuning on small-scale PLMs can be highly com-
petitive, even outperforming LLMs with 10 times
the number of parameters. Meanwhile, zero-shot
experiments demonstrate that larger LLMs, such as
GPT-4o, do not acquire enough lexical relational
knowledge.

Our contributions can be concluded as follows:

• We propose a parameter-efficient fine-tuning
method, GET, which first constructs a con-
nected lexical graph, then extracts graph fea-
tures through a relation-sensitive graph neu-
ral network module, and finally transforms
these graph features into language features
understandable by PLMs through multilayer
perceptron (MLP) layers, thereby enhancing
the ability of PLMs to understand lexical rela-
tions.

• The experimental results indicate that graph
features can help PLMs better understand lex-
ical relations, achieving the state-of-the-art
performance in both LRC and LE tasks. Fur-
thermore, our proposed method, when applied
to small-scale PLMs, achieves results compa-
rable to those of LLMs.

• We perform an error analysis to examine the
errors made by PLMs in solving LRC and LE
tasks, as well as to identify the bottlenecks
limiting their performance.

2 Related Works

2.1 Lexical Relation Mining

Early research in lexical relation mining (LRM)
focused on specific syntactic patterns in natural
language, aiming to extract relations based on
frequently occurring syntactic structures or gram-
mar tree paths that could indicate lexical relations
(Washio and Kato, 2018; Hearst, 1992). In con-
texts with limited computational resources and data,
such approaches effectively mined clearly stated
knowledge relations in text. However, their main
drawback is the inability to handle ambiguous nat-
ural language expressions, and they require linguis-
tic expertise to aid in modeling.

Subsequently, the introduction of external pri-
ors into relation extraction has become a major re-
search trend in this field. Depending on the type of
external prior, LRM methods can be classified into
two categories: the first category includes distri-
butional model-based relation extraction methods
(Shwartz et al., 2016; Yang et al., 2022). These
methods outperform traditional pattern-based ap-
proaches, but due to the nature of word vectors,
they cannot distinguish different relations based on
context.

The second category includes PLM-based lexical
relation mining methods. PLMs provide context-
sensitive knowledge representations for relation
extraction. For instance, RelBERT (Ushio et al.,
2021) applies the parameter-efficient fine-tuning
technique P-Tuning (Liu et al., 2021), arguing
that fine-tuning a learnable prompt on a language
model can mitigate the negative impact of manually
crafted prompts on relation extraction. RelBERT
also uses contrastive learning to train a model that
can be used for both relation extraction and analogy
reasoning. NCGC (Pitarch et al., 2023) argues that
language models acquire the ability to recognize re-
lationships between knowledge during pretraining,
and the primary factor limiting their performance
is the prompt. By fine-tuning the language model
with seven different prompts, they achieved optimal
performance on LRC and LE. With the growing
scale of PLMs, some studies have also explored
the potential of LLMs in addressing LRM tasks
(Moskvoretskii et al., 2024). However, existing
PLM-based research has not explored the impact
of graph features on LRM, and no studies have
attempted to investigate the boundaries of LLMs’
capabilities for LRM.

2.2 Parameter-Efficient Fine-Tuning (PEFT)
PLMs, such as DeBERTa (He et al., 2021) and
Llama (Dubey et al., 2024), acquire fundamen-
tal knowledge about the real world by understand-
ing large-scale corpora during pretraining. To pre-
serve the knowledge learned by PLMs and improve
the efficiency of fine-tuning for downstream tasks,
Parameter-Efficient Fine-Tuning (PEFT) methods
introduce external trainable parameters to PLMs,
keeping the main parameters of PLMs fixed during
fine-tuning. For instance, adapter-based methods
(Houlsby et al., 2019) insert lightweight neural net-
works between layers of PLMs as trainable param-
eters; LoRA (Hu et al., 2022) constructs low-rank
matrices during fine-tuning, which are decomposi-
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tions of the original matrices in the self-attention
modules of PLMs, and updates only these low-
rank matrices; and Prompt Tuning (Liu et al., 2021,
2022) optimizes the input text by introducing train-
able parameters in the form of soft prompts.

Despite these advancements, integrating PEFT
methods with non-Euclidean data, such as graph-
structured data, remains an open challenge. Sev-
eral studies have attempted to combine GNNs with
PLMs on textual graphs (Zhu et al., 2024; Ioanni-
dis et al., 2022). However, aligning random ini-
tialization GNNs with pretrained PLMs poses sig-
nificant difficulties. For example, ENGINE (Zhu
et al., 2024) introduces GNN-based feature fusion
on intermediate outputs of PLMs while keeping
the PLM parameters fixed, achieving efficient fine-
tuning on specific downstream tasks. Note that
these methods primarily focus on using PLMs to
solve graph-related problems. To date, construct-
ing external graphs for NLP tasks and using graph
features to enhance the performance of PLMs are
still being explored.

3 Methodology

3.1 Problem Statement

Let V = {w1, ..., wn} represent a set of words.
A lexical relation r is the relationship that can be
treated as a subset of V ×V . The set of lexical rela-
tions, R = {r1, ..., rm}, is assumed to be mutually
exclusive and complete, meaning that each word
pair corresponds to one and only one lexical rela-
tion. We define a function f : V × V → R that as-
signs a specific relation to each word pair. The task
of relation mining involves estimating the function
f using an approximation f̂ . This study focuses
on two key problems: lexical relation classification
(LRC) and lexical entailment (LE). Specifically,
the LRC task is formulated as a classification prob-
lem, while the LE task is formulated as a regression
problem.

3.2 Graph Construction

Given a set of words V and a lexical relation set
R, we can naturally construct a graph G = (V,R),
where the nodes represent words and the edges rep-
resent lexical relations. Specifically, G is a directed
graph, with the direction of each edge determined
by the corresponding lexical relation. For instance,
edges representing the lexical relation antonymy
are bi-directed, as antonymy is symmetric. Addi-
tionally, to enrich the lexical information in G, we

assign each lexical relation r a detailed description
dr, derived from ConceptNet (Speer et al., 2017),
which can be considered a property of the edges.

However, G is often disconnected due to the
pattern sparsity (Wang et al., 2021). To capture the
structural context based on the local neighborhoods
of each connected component, we first apply the
PageRank algorithm to G to assess each node’s
importance. Next, we connect the most important
nodes within each weakly connected component
by adding an edge e. Notably, e is not an element
of R.

3.3 Efficient Tuning through Graph Context
(GET)

Figure 1: The architecture of proposed method GET.
The backbone parameters of the PLM are fixed.

Based on the hypothesis that language models
can extract correct knowledge from sufficiently rich
contextual information, we propose an efficient tun-
ing method using graph topological features as the
language model’s context. As depicted in Figure
1, we leverage the external knowledge graph con-
structed in Section 3.2 as additional knowledge and
design a relation-sensitive GNN to capture graph
features.

Formally, given a graph G = (V,R) and its
lexical relation detailed description dr, token-level
representations of each wi ∈ V and lexical relation
r ∈ R will be calculated:

H l
V = PLM_Layerl(H(l−1)

V ),

H l
R = PLM_Layerl(H(l−1)

R ),
(1)
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where PLM_Layer(·) denotes the l-th layer of
PLM, and H l

V ∈ R|V |×Q×D, H l
R ∈ R|R|×Q×D de-

notes the token-level representations of each word
and lexical relation. Q and D denote the sequence
length and the dimensionality of the hidden states,
respectively. Especially, H0

V is equal to tokens of
V and H0

R is equal to tokens of dr.
Subsequently, we design a relation-sensitive

graph attention operator to capture graph features
from G and H l:

hl+1
i = λl ·

∑

j∈Ni

αl
ij · hlij + (1− λl) · hli,

αl
ij =

exp(elij)∑
j∈Ni

exp(elij)
,

elij = σ(⃗aT [Whli||Whlij ])

hlij = g(hli, h
l
j , h

l
r)

(2)

where λ and W are learnable parameters, g(·) is
the combination function for a special knowledge
triple. hli, h

l
j are the row vectors of H l

V and hlr is
the row vector of H l

R. After applying the graph
attention operator, we get a vector representation
hi for each word wi ∈ V .

Finally, we select the features of top N nodes
with the highest PageRank scores in the graph
as additional knowledge for the relation extrac-
tion prompts. These features are transformed into
a language representation via MLP layers and
subsequently fed into the language model, along
with the prompt. The prompt is constructed us-
ing the best performing template in previous work
(Pitarch et al., 2023), which transforms the word
pair (wi, wj) into a specialized sentence.
Sub-graph Sampling. However, the computa-
tional cost of the aforementioned algorithm is pro-
hibitively high for large-scale dataset. To reduce
the computation, we adopt the following strategies:
performing GNN computations only on the sub-
graph formed by word pairs within the batch and
their N -hop neighbors.
Inference The graph constructed in Section 3.2
is composed of words and lexical relations from
the training set. To handle the case where words
in the test set do not exist in the training set, we
introduce a special word, "unknown words," into
the set of words V . This special word is treated as
an independent node in graph G, and it is connected
to other connected components through e. When
a new word in the test set does not exist in the
training set, it is mapped to the "unknown words"
node for inference.

4 Experiments

In this section, we implemented our proposed
method on LRC and LE tasks and compare it with
previous best-performance baselines. Then, we
conducted an ablation study to demonstrate that
each component contributes positively to the over-
all performance. Finally, a sensitivity analysis was
performed to examine the impact of different hy-
perparameters under varying conditions.

4.1 Datasets and Baselines

LRC We adopt five commonly used LRC datasets
to evaluate GET: CogALexV (Santus et al., 2016a),
BLESS (Baroni and Lenci, 2011), EVALution (San-
tus et al., 2015), K&H+N (Necsulescu et al., 2015),
and ROOT9 (Santus et al., 2016b). Except for EVA-
Lution, all datasets contain random lexical relation,
which means that there is no lexical relation be-
tween two words. GET is compared with five base-
lines in two different categories. The first category
is the non-contextual distributional model, includ-
ing LexNet (Shwartz et al., 2016) and SphereRE
(Wang et al., 2019). The second category is fully
fine-tuned PLM-based methods, including KEML
(Wang et al., 2021), RelBERT (Ushio et al., 2021),
and NCGC (Pitarch et al., 2023).
LE We use the HyperLex benchmark (Vulic et al.,
2017) for our experiments. This dataset annotates
lexical relations between word pairs as well as their
graded lexical entailment ratings, which are pro-
vided by at least 10 annotators to answer the ques-
tion: To what degree is X a type of Y? HyperLex
is divided into train, validation, and test datasets
in two configurations: the first is a random split,
where word pairs are randomly allocated to the
train, validation, and test datasets; the second is
a lexical split, which ensures that words in the
test dataset do not appear in the train or validation
datasets.

Similar to LRC, we compare GET with two
types of baselines: the first category includes
non-contextual methods using word embeddings,
namely LEAR (Vulic and Mrksic, 2018) and
HF (Yang et al., 2022); the second category
includes context-sensitive PLM-based methods,
namely NCGC (Pitarch et al., 2023) and TaxoL-
lama (Moskvoretskii et al., 2024). The latter is a
Llama version trained on WordNet to address lex-
ical problems, and we follow the authors’ setting
by using a zero-shot approach to evaluate it.
Extra Baselines To facilitate a more compre-
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hensive comparison of the proposed methods, we
introduce two additional baseline categories. The
first category incorporates word embeddings from
PLMs and applies traditional GNN-based methods
for relationship extraction, including GCN (Kipf
and Welling, 2016), GAT (Velickovic et al., 2017),
and SAGE (Hamilton et al., 2017). The second
category fine-tunes Llama3-8B with LoRA (Hu
et al., 2022) both in the sequence classification
setting and the instruction setting. Furthermore,
we compare GET with LoRA and context-based
prompt-tuning-v2 (Liu et al., 2022) on DeBERTa
(He et al., 2021).

4.2 Implement Details
To construct the external knowledge graph, we
use NetworkX to build the original lexical graph
and apply the PageRank algorithm along with the
weakly connected component algorithm to refine
the graph. Subsequently, we obtain token-level
representations from various PLMs using trans-
formers for both traditional GNN-based methods
and our proposed approach. The training module
is implemented by pytorch and dgl. All templates
and instructions used for tuning are provided in
Appendix A.

Our experiments were conducted using an
NVIDIA A100 GPU. The hyperparameters used
for training the different datasets are provided
in Appendix C. We employ a grid search to iden-
tify the optimal hyperparameters for our proposed
method. For each PLM-based method, we train for
10 epochs using a linear growth scheduler followed
by cosine decay.

4.3 Performance Analysis
LRC Table 1 presents the experimental results
comparing our method with non-contextual base-
lines and PLM-based baselines. We report the
weighted F1-score for LRC. In particular, we re-
move the RANDOM relation for the CogALex
dataset before reporting the results as advised by
its authors (Santus et al., 2016a).

The results show that each PLM-based method
demonstrates superior performance compared to
non-contextual baselines. The results on Llama3
show that the difference between sequence clas-
sification and token generation settings has little
effect on the outcomes. Besides, DeBERTa-xlarge
enhanced with GET achieves the best performance
on two datasets. KEML achieved the best perfor-
mance on the K&+N dataset due to its use of pos-

itive and negative examples of metalearning for
the existence of the relationship. When comparing
the results of NCGC (Roberta-355M), DeBERTa-
xlarge (750M), and Llama3-8B, we can conclude
that an increase in model parameters provides lim-
ited benefits for LRC performance. The complete
experimental table can be found in Appendix D.

Furthermore, to investigate the generalization
capability of larger LLMs, we conduct zero-shot
experiments on the LRC task using GPT-4o, apply-
ing the same instruction-tuning prompts as used
for Llama-8B-Instruct. However, GPT-4o performs
worse than even the least effective supervised mod-
els, suggesting that larger model size does not guar-
antee the acquisition of lexical relational knowl-
edge. We argue that the limitation arises from the
data, as the lexical relation knowledge contained in
the corpora used for PLM pretraining is not explic-
itly expressed.
How does graph features perform in non-
contextual baselines?

When comparing with non-contextual baselines,
we observe that GNN-based methods underperform
all baselines. This suggests that directly applying
GNNs to the LRC domain does not yield satisfac-
tory results. We hypothesize that, for LRC tasks,
topological features do not effectively assist word
embeddings in understanding lexical relations be-
tween terms. In contrast, SphereRE, which learns
embeddings in a three-dimensional space, outper-
forms GNN-based methods. The suboptimal per-
formance of GNN-based methods on CogALexV
can be primarily attributed to their tendency to over-
fit the RANDOM relation category while we do not
account for this relation in the evaluation metrics.
How does the performance of GET compare
with other PLM-based approaches?

We further analyze that incorporating graph fea-
tures as contextual inputs to language models posi-
tively impacts LRC tasks. This is particularly ev-
ident when comparing with PT2, which also uses
contextual inputs as additional trainable parame-
ters. This indicates that the latent reasoning pat-
terns within graph topological features can enhance
the PLM’s ability to generalize lexical relations.
Transforming graph topological features into tex-
tual contexts for language models shows greater
potential for LRC tasks compared to directly using
GNNs to obtain word embeddings.
LE Table 2 presents the experimental results com-
paring our proposed methods with baselines using
the Spearman ρ correlation metric, which evaluates
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Methods BLESS CogALexV EVALution K&H+N ROOT09

GCN 0.508 0.045 0.240 0.911 0.591
GAT 0.485 0.024 0.427 0.912 0.642
SAGE 0.845 0.148 0.538 0.964 0.726
LexNET 0.893 0.445 0.600 0.985 0.813
SphereRE 0.938 0.471 0.620 0.990 0.861

KEML 0.944 0.500 0.660 0.993 0.878
RelBERT 0.921 0.664 0.701 0.949 0.910
NCGC 0.956 0.762 0.771 0.989 0.937

+ Verbalizer 0.951 0.756 0.746 0.985 0.926
Llama3-8B 0.953 0.790 0.772 0.989 0.947
Llama3-8B-Instruct 0.963 0.777 0.756 0.991 0.945

DeBERTa-xlarge* 0.957 0.761 0.784 0.987 0.945
+ LoRA 0.955 0.757 0.799 0.988 0.937
+ PT2 0.951 0.669 0.775 0.987 0.938
+ GET 0.959 0.765 0.805 0.988 0.954

GPT-4o 0.234 0.081 0.202 0.397 0.368

Table 1: The weighted F1-score of the LRC experimental results is reported. + Verbalizer refers to the application
of a manual verbalizer, which transforms labels into tokens to formulate the token prediction problem. Llama3-8B
is trained using a sequence classification setting, while Llama3-8B-Instruct is trained with instruction tuning. *
means that the language model is fully fine-tuned. We use boldface and underlining to denote the best and the
second-best performance, respectively.

Methods lexical random

GCN — 0.391
GAT — 0.119
SAGE — 0.242
LEAR 0.174 0.686
HF — 0.690

NCGC 0.755 0.774
+ Verbalizer 0.794 0.828

Llama3-8B 0.873 0.905

TaxoLlama 0.702 0.593

DeBERTa-xlarge* 0.881 0.898
+ LoRA 0.876 0.904
+ PT2 0.864 0.882
+ GET 0.887 0.901

IAA 0.864

Table 2: Results for HyperLex dataset. We report the
Spearman ρ correlation for both lexical and random
settings.

how well the relationship between the model’s pre-
dicted regression values and the median of human-
annotated values can be described using a mono-

tonic function. The authors of HyperLex provide
the Inter-Annotator Agreement (IAA), calculated
as the average Spearman ρ correlations of an anno-
tator with the average of all other raters. The IAA
represents the level of consistency among annota-
tors when grading lexical entailment ratings.

Similar to LRC, PLM-based methods generally
outperform non-contextual methods, Except for
TaxoLlama, which was tested in a zero-shot setting,
all other fully trained PLM-based methods exhibit
superior results. Our experiments on Llama3-8B
and DeBERTa-xlarge achieve performance exceed-
ing the IAA. The graph features introduced by GET
have a positive impact on the model’s performance.
Compared to other fine-tuning methods, DeBERTa
fine-tuned with GET achieved the best performance
on the lexical setting and the second-best perfor-
mance on the random setting.
How does graph features perform in non-
contextual baselines?

When comparing non-contextual methods, we
observe significant limitations. For instance, GNN-
based baselines are ineffective in the lexical setting
because the test dataset’s words are not modeled as
graph nodes, making it impossible for the model to
distinguish different test dataset words. Addition-
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ally, LEAR, which can operate in the lexical set-
ting, also performs poorly. Similar to the LRC task,
GNN-based baselines fail to capture clear graded
lexical entailment features, resulting in poor perfor-
mance even when directly applied to the random
setting.
What are the advantages of PLMs in solving the
LE task?

We hypothesize that the LE task can be un-
derstood as determining whether a word can be
substituted by another in a given context, which
aligns closely with the masked language model and
causal language model objectives during PLM pre-
training. This allows the model to learn substitution
relationships from the corpus, which can then be
applied to the LE task. Due to page limitations,
the analysis of performance bottlenecks in prior
works and the analysis of results surpassing IAA
are provided in Appendix E.

4.4 Ablation Study

In this section, we design two variants to evaluate
the impact of components in the proposed method:
(1) w/o PLM: utilizing the node embeddings ob-
tained directly from Equation 2 as the final repre-
sentation; (2) w/o λ: removing the learnable param-
eter λ from Equation 2. It should be noted that the
removal of GNN components can be represented
by PT2 or fully fine-tuned models, which will not
be discussed in detail here.

As demonstrated in Table 3, results show that
each component contributes positively to the over-
all performance. Particularly, when removing the
PLM component (w/o PLM), the model degener-
ates into a conventional GNN architecture, which
exhibits several inherent limitations for LRM. Per-
formance degradation in variant w/o λ can be at-
tributed to disrupted information flow between
different PLM layers, resulting in inferior perfor-
mance compared to our proposed method.

4.5 Sensitivity Analysis

The Dimension of GNN. Figure 2 presents the re-
sults. Since the hidden size of the PLMs we use is
1024, setting the GNN dimension too low limits the
model’s capacity to capture semantic and graph fea-
tures effectively. On the other hand, a large GNN
dimension may lead to model degradation (Zhang
et al., 2021), restricting its ability to integrate graph
features into contextual representations. For our
experimental datasets, an appropriately balanced
GNN dimension achieves the best performance.

Figure 2: The impact of the dimension of GNN.

The Number of GNN Layers. Figure 3 illus-
trates that the optimal number of GNN layers varies
across different datasets. We hypothesize that this
variation is related to the complexity of the datasets.
Since the number of GNN layers determines how
many hops of neighboring nodes can be accessed
in a forward pass, more complex datasets, such
as CogALexV and EVALution, require a greater
number of GNN layers to effectively capture graph
features. In contrast, for simpler datasets like Hy-
perLex and ROOT09, a single-layer GNN is suffi-
cient to achieve strong performance.

Figure 3: The impact of the number of GNN layers.

5 Error Analysis

This section presents a comprehensive error analy-
sis of model predictions and investigate the under-
lying causes of these errors.
LRC The experimental results in Table 1 re-
veal that both CogALexV and EVALution datasets
exhibit inferior performance compared to other
datasets. Since CogALexV is a subset of EVA-
Lution, we focus our analysis on EVALution for
deeper insights. Figure 4 presents the confusion
matrices of the top four performing methods in
the EVALution dataset. All models demonstrate
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Methods
LRC LE

BLESS CogALexV EVALution K&H+N ROOT09 lexical random

DeBERTa-xlarge (+GET) 0.959 0.765 0.805 0.988 0.954 0.887 0.901
w/o PLM 0.711 0.207 0.524 0.924 0.682 — 0.207
w/o λ 0.945 0.749 0.742 0.986 0.944 0.864 0.897

Table 3: Experimental results of ablation study.

Figure 4: Confusion matices of EVALution.

significant challenges in distinguishing between
Synonym and IsA categories, frequently misclassi-
fying Synonyms as IsA and vice versa. The χ2 test
confirms a statistically significant relationship be-
tween prediction accuracy and category type. And
there is a great difference in the predictions for
Synonym, as detailed in Appendix F. This phe-
nomenon is most evident in Llama3-8B-Instruction,
which misclassifies over half of Synonym pairs as
IsA. In contrast, LoRA and GET exhibit the lowest
misclassification rates between Synonym and IsA,
contributing to their superior performance. While
previous work (Pitarch et al., 2023) identified Syn-
onym and Antonym as the most challenging cate-
gories, our proposed method successfully mitigates
this specific issue.

Through analysis of misclassified Synonym and
IsA instances, we observe that certain annotations
in the dataset exhibit inherent ambiguity. For in-
stance, word pairs like (jacket, coat) and (study,

learn) are labeled as IsA but predicted as Syn-
onym by our method, while (dot, point) and (cre-
ate, make), annotated as Synonym, are classified
as IsA. These cases may not represent errors but
rather reflect the nuanced semantic relationships
between words, where both classifications could
be considered valid. This observation suggests that
reformulating the LRC benchmark as a multi-label
classification task could potentially address such
ambiguities and provide more nuanced evaluation
of lexical relations.

LE Figure 5 illustrates the scatter plot of stan-
dard deviations and squared residuals for each word
pair in the random and lexical test sets of Hyper-
Lex. The standard deviation is calculated based on
annotator-provided labels, while the squared resid-
uals are derived from the differences between the
model’s predicted values and the mean value of an-
notations. It is evident that the standard deviation
is positively correlated with the squared residuals,
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meaning that word pairs with higher annotator dis-
agreement tend to have larger prediction errors. We
hypothesize that for word pairs with high standard
deviation, the mean of the ten annotated values still
carries some bias. Introducing lexical entailment
(LE) into specific semantic contexts and formulat-
ing it as a multi-label classification task may help
mitigate this issue.

Figure 5: Standard deviation and squared residuals. The
red line represents the linear regression line.

6 Conclusion

In this paper, we propose a parameter-efficient fine-
tuning method named Efficient Tuning through
Graph Context (GET), which integrates graph fea-
tures and semantic representations via a relation-
sensitive graph neural network module. We apply
this method to the tasks of lexical relation clas-
sification (LRC) and lexical entailment (LE). Ex-
periments show that incorporating graph features
has a positive impact for PLMs on both LRC and
LE tasks. Finally, we conduct an Error Analysis
to explore the performance limitations of language
models in LRM, and suggest constructing LRC and
LE benchmarks as multi-label classification tasks
to avoid potential ambiguities.

Limitations

We find that the main limitations of our work are
as following:

• Although our method has shown success on
small-scale PLMs, its application to LLMs has
not yielded satisfactory results.The main rea-
son, as we analyze, is that after GNN captures

the latent lexical relation knowledge from the
graph structure, it struggles to map it into a
language-based context that LLMs can under-
stand. This issue arises due to the larger hid-
den state in LLMs, where feature learning be-
comes increasingly difficult, and convergence
is even harder to achieve. A detailed analysis
can be found in the Appendix G.

• We analyzed the bottlenecks faced by PLMs
in the LRC and LE tasks, as well as the po-
tential ambiguities that might arise from the
current problem definitions. We believe that
framing the LRC and LE tasks as multi-label
classification problems could help mitigate
the ambiguity issues. However, we did not
construct any lexical relation multi-label clas-
sification benchmarks in this work.

• The LRC and LE datasets we use have cer-
tain limitations, primarily in two aspects: (1)
As analyzed in Section 5, in the LRC task,
the same word pair can be associated with
multiple lexical relations. However, due to
the constraints of multi-class tasks, the model
is forced to select only one lexical relation
as the label. This leads to the model learn-
ing the biases present in the annotator’s la-
beling process. (2) In the EVALution dataset
(Santus et al., 2015), there are word pairs that
are identical but labeled with different lexi-
cal relations. Similarly, the HyperLex (Vulic
et al., 2017) dataset also contains word pairs
with the same wording but different label val-
ues. Upon analyzing the source code of prior
works, we found that they did not address
these noisy data, and we have continued with
their settings. However, the existence of these
noisy data points can negatively impact the
model’s performance.

• Our experiments focused solely on the LRC
and LE tasks and did not encompass all lexical
relation-related tasks.

• Our experiments were conducted only for the
English language.

Ethical Statement

This work does not pose any ethical issues. In
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A Templates and Instructions

Templates for sequence classifiction Accord-
ing to prior works, we select the best-performing
template to transform a specific word pair into a
prompt. For the sequence classification setting in
our experiments, we use the following template:

Today, I finally discovered the relation
between <A> and <B>.

<A> and <B> represent the head and tail words of
a word pair, respectively. We then use the special
token of different PLMs to classify the prompt. For
Deberta, we select the <CLS> token. For Llama, fol-
lowing its classification setting similar to GPT, we
choose the rightmost token (excluding the <PAD>
token) as the classification token.
Instructions for Instruction-Tuning For Llama3-
8B-Instruct, we formulate the LRC task as a to-
ken generation task and employ a causal language
model (LM) to solve LRC. To prompt the model
to produce human-comprehensible outputs, we use
the following instruction:

<SYSTEM>:
You are a linguistics expert. Please
give the semantic relationship between
the following two words A and B. You
can only answer with these few relations:
<R>.
Here are the descriptions of each
relation.
<r1>: <dr1>
<r2>: <dr2>
...
<rm>: <drm>
<USER>:
A:<wi>, B:<wj>
<SYSTEM>:
Answers:

<SYSTEM> and <USER> tokens are replaced by
the built-in chat template of the model. <R> rep-
resents specific lexical relations such as HasA and
IsA. Unlike previous works, the causal LM does
not require a verbalizer to construct lexical rela-
tions. Each lexical relation ri and its correspond-
ing description dri are obtained from ConceptNet2.
Finally, during tuning, we batch every 10 examples
into a single instruction to accelerate training.

2https://github.com/commonsense/conceptnet5/wiki/relations

Dataset train validation test

BLESS 18582 1327 6637
CogALexV 3054 - 4260
EVALution 5160 372 1846
K&H+N 40256 2876 14377
ROOT09 8933 638 3191
HyperLex (lexical) 1133 85 269
HyperLex (random) 1831 130 655

Table 4: Datasets statistics: Number of pairs for each
dataset in the train/validation/test splits.

B Datasets Description

For the LRC datasets3, except for the K&H+N
dataset, the other four datasets used for LRC are,
to some extent, extensions and modified versions
of the BLESS dataset. The BLESS dataset was de-
signed to study analogy reasoning through distribu-
tional models and additionally incorporates Word-
Net and ConceptNet as supplementary data sources,
with random relations from crowdsourcing adding
noise. The EVALution dataset is an extension of
BLESS, introducing synonymy and antonymy re-
lations and adding domain-independent linguistic
data. CogALexV is a challenging subset of the
EVALution dataset provided at the 2016 ACL work-
shop on lexical relation classification. On the other
hand, the K&H+N dataset was derived from hi-
erarchical relationships in WordNet, specifically
focusing on word relations in the fields of animals,
plants, and transportation. All of the above datasets
avoid the use of multi-word phrases during con-
struction.

For the LE datasets4, this dataset annotates lexi-
cal relations between word pairs along with their
graded lexical entailment ratings, which are pro-
vided by at least 10 annotators to answer the ques-
tion: To what degree is X a type of Y? Although the
dataset provides additional lexical relations, they
are not utilized in our method. Table 4 shows the
dataset statistics.

C Hyperparameters and Detailed
Experimental setup

For DeBERTa, the hyperparameters of GET are
shown in Table 5. In addition to the hyperparame-
ters listed in the table, the remaining settings are as
follows: the initial learning rate is set to 1e-4, with

3https://huggingface.co/datasets/relbert/lexical_relation_
classification

4https://github.com/cambridgeltl/hyperlex
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a maximum learning rate of 5e-4. For the ROOT09
dataset, the warm-up rate is 0.3, while for all other
datasets, it is set to 0.2.

For fully fine-tuned models, we use an initial
learning rate of 5e-6 and a maximum learning rate
of 2e-5. For LoRA, we set the LoRA alpha and
LoRA rank to 16 and 64, respectively, with a LoRA
dropout rate of 0.1. For PT2, we use 20 prefix
tokens. The learning rate settings for LoRA and
PT2 are the same as those for GET. All DeBERTa
models are trained with a batch size of 32.

For Llama, the sequence classification setting
follows the same configuration as LoRA, with a
batch size of 8. For instruction tuning, the batch
size is set to 2, and every 10 examples are merged
into a single prompt, requiring the model to learn
and predict the lexical relations for all ten examples
in one forward pass.

All methods above are trained for 10 epochs
using a scheduler with linear growth followed by
cosine decay.

Datasets dim layers context nodes

BLESS 128 3 12
CogALexV 128 4 20
EVALution 256 3 20

K&H+N 128 3 20
ROOT09 256 3 20

lexical 128 2 20
random 128 1 20

Table 5: Hyperparameters of GET. dim indicates the di-
mension of GNN. layers indicates the number of layers
of GNN. context nodes indicates the number of context
nodes used for prompting as the graph context.

For GNN-based methods, since GNNs are not
pre-trained, we train them for 30 epochs. For
SGAE, we use an LSTM to embed the vectors of
adjacent nodes.

All our experiments are conducted using the
set_seed function from the transformers library,
with the seed set to 42. The reported results corre-
spond to a single run with this seed. For datasets
with a validation set, we perform hyperparameter
search using the validation set to determine the
optimal hyperparameters, and the validation set re-
sults corresponding to the reported experimental
outcomes can be found in Table 6, 7. The training
time for all models is approximately 40 hours, with
GNN-based methods taking around 10 hours and

the Llama3-8B model requiring an additional 10
hours.

D Complete Results

The complete experimental results for LRC on
test datasets can be found in Table 8. Similar
to the results presented in the main text, after in-
corporating weighted precision and weighted re-
call, the best performance is still achieved by De-
BERTa and Llama3-8B. Notably, some of our ex-
periments on DeBERTa-large (390M) even outper-
form DeBERTa-xlarge (750M) and Llama3-8B. We
attribute this to the limitations in the lexical rela-
tion knowledge contained in the training corpora
of PLMs, suggesting that model size is not the pri-
mary constraint on performance.

Moreover, the proposed PEFT method, GET,
which incorporates graph context, demonstrates a
clear advantage over PT2, which constructs prefix
tokens using MLP layers. However, the experi-
mental results of GET are highly similar to those
of LoRA and full fine-tuning (FT). This indicates
that for LRM tasks, semantic knowledge plays a
dominant role, while graph features provide only a
limited positive impact on lexical relation mining.

E Detailed Performance Analysis

An analysis of performance bottlenecks in prior
works.

In addition, previous work consider the lexical
relation types in HyperLex when modeling regres-
sion tasks, which contributes to a better understand-
ing of the lexical relations but results in a lower
Spearman ρ correlation. For example, NCGC first
classifies lexical relations and then trains an addi-
tional regression module to fit the LE task. In addi-
tion, PEFT methods allow training without altering
the PLM’s original parameters, enabling us to di-
rectly regress on the PLM’s hidden states, bypass-
ing the LRC component. As a result, we achieve
a performance improvement of over 5 points com-
pared to prior works, even surpassing the IAA.
An analysis of the results surpassing IAA.

The results surpassing IAA indicates that the
model’s predicted scores are closer to the median
of the annotated scores. If the LE task is viewed
purely as a regression task, our experiments achieve
the best performance. Furthermore, we observe
that different PEFT methods show minimal differ-
ences in the LE task, and the graph features used
in GET do not have as consistently positive an im-
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Methods BLESS EVALution K&H+N ROOT09

GCN 0.504 0.275 0.908 0.596
GAT 0.493 0.484 0.909 0.646
SAGE 0.847 0.581 0.965 0.731

Llama3-8B 0.958 0.820 0.989 0.959
Llama3-8B-Instruct 0.956 0.776 0.992 0.957

DeBERTa-xlarge* 0.960 0.796 0.989 0.953
+ LoRA 0.959 0.827 0.990 0.956
+ PT2 0.954 0.819 0.988 0.949
+ GET 0.961 0.818 0.990 0.947

Table 6: The weighted F1-score of the LRC experimental results on validation datasets.

Figure 6: Pearson Residuals of EVALution.

Methods lexical random

GCN — 0.378
GAT — 0.212
SAGE — 0.301

Llama3-8B 0.903 0.920

DeBERTa-xlarge* 0.925 0.921
+ LoRA 0.908 0.931
+ PT2 0.883 0.903
+ GET 0.913 0.922

IAA 0.864

Table 7: Results for HyperLex validation dataset.

pact as they do in LRC. Therefore, we conclude
that LE, compared to LRC, is a task more reliant
on semantic knowledge. Increasing the volume of
pre-training data may help models achieve better
performance, while graph features provide limited
assistance in LE tasks.

Through detailed experimental analysis, we iden-
tify two potential reasons for this: (1) GET can
infer some latent patterns from the graph, thereby
enhancing performance in LRC and LE; (2) small-
scale PLMs already store sufficient lexical relation
knowledge from massive corpora. We also per-
form a sensitivity analysis to examine the effects
of different hyperparameters on various datasets.
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F Detailed Error Analysis

Figure 6 presents the results of the χ2 test con-
ducted on the transformed confusion matrix from
Figure 4, where the x-axis represents lexical rela-
tions and the y-axis indicates prediction correctness.
Our null hypothesis posits that prediction accuracy
is independent of lexical relation categories. The
obtained p-values are consistently significant (p
<< 0.01), leading us to reject the null hypothesis
and conclude that prediction accuracy is signifi-
cantly associated with specific lexical relations.

To further quantify the nature of these associ-
ations, we employ Pearson residuals to measure
the discrepancy between observed and expected
frequencies of correct predictions across different
lexical relations. The analysis reveals distinct pat-
terns across models: for DeBERTa, the largest dis-
crepancies are observed in predicting Synonym
and Antonym relations, while for Llama, the most
pronounced differences occur in classifying Syn-
onym and IsA relations. These findings suggest
model-specific patterns in handling different types
of lexical relationships, potentially reflecting inher-
ent architectural biases or limitations in capturing
specific semantic nuances.

G Apply GET on LLMs

In the main body of the text, the proposed method
GET was not applied to LLMs in the LRE exper-
iments for the following reasons: (1) The experi-
ments demonstrated that the LRE results on small-
scale PLMs could match or even surpass those
on LLMs, suggesting that increasing the scale of
LLMs does not significantly improve LRE perfor-
mance. We hypothesize that the implicit knowledge
of lexical relations is already stored within the pa-
rameters of smaller PLMs, and therefore, does not
require a larger model size. (2) Applying context-
based PEFT methods, such as PT, PT2, and GET,
to LLMs presents inherent disadvantages, as ex-
plained below:

The cost and benefit of applying context-based
PEFT methods to LLMs do not align proportion-
ally. This is because mapping a neural network to
a context and prompt that LLMs can understand
is challenging due to the large parameter sizes of
LLMs. Smaller networks are unable to accomplish
this task, while larger networks lead to a significant
increase in training costs, contradicting the origi-
nal goal of PEFT methods to reduce computational
overhead.

We attempted to use the best hyperparameter set-
tings from the DeBERTa experiments on Llama3-
8B-Instruction, but the model’s outputs were essen-
tially garbled. We suspect that this is due to PEFT
methods (PT2, GET) failing to generate a context
form that LLMs can comprehend, which, in turn,
interferes with the LLM’s inherent causal LM capa-
bilities. Furthermore, experiments on Llama3-8B
had difficulty converging. Increasing the GNN di-
mension and the number of GNN layers yielded
some improvements, but the associated training
cost was prohibitive. For these reasons, we did not
extend GET to LLMs.
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Methods
BLESS CogALexV EVALution

pre rec F1 pre rec F1 pre rec F1

GCN 0.518 0.598 0.508 0.051 0.038 0.045 0.269 0.314 0.240
GAT 0.471 0.561 0.485 0.049 0.075 0.024 0.443 0.433 0.427
SAGE 0.849 0.846 0.845 0.173 0.140 0.148 0.550 0.544 0.538
LexNET 0.894 0.893 0.893 — — 0.445 0.601 0.607 0.600
SphereRE 0.938 0.938 0.938 — — 0.471 0.860 0.862 0.861

KEML 0.944 0.943 0.944 — — 0.500 0.663 0.660 0.660
RelBERT — — 0.921 — — 0.664 — — 0.701
NCGC 0.956 0.955 0.956 — — 0.762 0.773 0.771 0.771

+ Verbalizer 0.951 0.950 0.951 — — 0.756 0.774 0.754 0.746
Llama3-8B 0.955 0.953 0.953 0.792 0.791 0.790 0.782 0.775 0.772
Llama3-8B-Instruct 0.963 0.963 0.963 0.784 0.768 0.777 0.772 0.763 0.756

DeBERTa-xlarge* 0.957 0.957 0.957 0.760 0.768 0.761 0.791 0.784 0.784
+ LoRA 0.955 0.955 0.955 0.782 0.732 0.757 0.800 0.803 0.799
+ PT2 0.954 0.951 0.951 0.714 0.645 0.669 0.776 0.775 0.775
+ GET 0.959 0.958 0.959 0.771 0.769 0.765 0.806 0.804 0.805

DeBERTa-large* 0.955 0.953 0.954 0.738 0.797 0.761 0.789 0.785 0.786
+ LoRA 0.955 0.953 0.954 0.803 0.722 0.743 0.792 0.795 0.793
+ PT2 0.956 0.954 0.955 0.647 0.662 0.654 0.588 0.599 0.584
+ GET 0.958 0.958 0.958 0.760 0.740 0.744 0.783 0.785 0.784

Methods
K&H+N ROOT09

pre rec F1 pre rec F1

GCN 0.911 0.924 0.911 0.615 0.584 0.591
GAT 0.916 0.920 0.912 0.643 0.640 0.642
SAGE 0.966 0.968 0.964 0.734 0.720 0.726
LexNET 0.985 0.986 0.985 0.813 0.814 0.813
SphereRE 0.990 0.989 0.990 0.860 0.862 0.861

KEML 0.993 0.993 0.993 0.878 0.877 0.878
RelBERT — — 0.949 — — 0.910
NCGC 0.989 0.989 0.989 0.938 0.937 0.937

+ Verbalizer 0.986 0.986 0.985 0.926 0.926 0.926
Llama3-8B 0.989 0.989 0.989 0.946 0.947 0.947
Llama3-8B-Instruct 0.991 0.991 0.991 0.946 0.945 0.945

DeBERTa-xlarge* 0.987 0.987 0.987 0.945 0.945 0.945
+ LoRA 0.988 0.988 0.988 0.937 0.937 0.937
+ PT2 0.988 0.987 0.987 0.939 0.938 0.938
+ GET 0.988 0.988 0.988 0.955 0.954 0.954

DeBERTa-large* 0.989 0.989 0.989 0.943 0.943 0.943
+ LoRA 0.987 0.987 0.987 0.943 0.943 0.943
+ PT2 0.987 0.987 0.987 0.944 0.947 0.944
+ GET 0.987 0.987 0.987 0.941 0.939 0.940

Table 8: Complete results of LRC. + Verbalizer refers to the application of a manual verbalizer, which transforms
labels into tokens to formulate the token prediction problem. Llama3-8B is trained using a sequence classification
setting, while Llama3-8B-Instruct is trained with instruction tuning. * means that the language model is fully
fine-tuned. We use boldface and underlining to denote the best and the second-best performance, respectively.
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