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Abstract
Given the high computational cost of prefer-
ence alignment training of large language mod-
els (LLMs), exploring efficient methods to re-
duce the training overhead remains an impor-
tant and compelling research problem. Moti-
vated by the observation that alignment train-
ing typically involves only small parameter
changes without injecting new knowledge into
models, we propose a straightforward method
called EXPO (model extrapolation) to ex-
pedite LLMs’ alignment with human prefer-
ences. Given a partially-trained model and
its initial SFT checkpoint, EXPO improves
the implicit optimization objective of align-
ment training by simply amplifying the param-
eter change based on a first-order approxima-
tion, without any additional training overhead.
Through controlled experiments, we demon-
strate that EXPO boosts a DPO model trained
with only 20% steps to outperform the fully-
trained one. Moreover, we show that EXPO
notably improves existing open-source LLMs
(ranging from 1.8B to 70B parameters) on the
leading AlpacaEval 2.0 and MT-Bench bench-
marks, which highlights EXPO’s broader utility
in efficiently enhancing LLM alignment.

1 Introduction

After conventional unsupervised pre-training on
massive textual corpora and supervised fine-tuning
(SFT) on high-quality demonstration data, large
language models (LLMs) usually require a ded-
icated training stage to align with human pref-
erences (OpenAI, 2022, 2023; Bai et al., 2022),
as exemplified by the well-known Reinforcement
Learning from Human Feedback (RLHF; Ouyang
et al. 2022; Schulman et al. 2017) and Direct Pref-
erence Optimization (DPO; Rafailov et al. 2023).
However, alignment training still requires expen-
sive computational resources (Ji et al., 2024; Meng
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et al., 2024), particularly for the larger-sized LLMs
(e.g., 70B parameters). This underscores the signif-
icance of exploring more efficient alignment meth-
ods to reduce the training overhead.

Our work is first motivated by the observation
that preference alignment training typically does
not inject new knowledge into models, thereby
likely inducing only small changes of model param-
eters. We support this hypothesis through three ar-
guments. First, mainstream alignment algorithms
like RLHF and DPO incorporate a constraint term
(e.g., the KL divergence term) to prevent exces-
sive deviation from the initial SFT checkpoint.
Second, in recent open-source LLM alignment
projects (Tunstall et al., 2023; Wang et al., 2023;
Ivison et al., 2023), preference alignment training
usually adopts smaller learning rates (e.g., 5e-7)
and fewer training steps (e.g., 400~500 steps) than
SFT. Third, we take the zephyr-7b-dpo model
(Tunstall et al., 2023) trained by HuggingFace as
a specific instance. For any two among the pre-
trained, SFT, and DPO checkpoints and for any
corresponding parameter tensors P1 and P2, we
compute the Frobenius norm ∥P1 −P2∥ (and a
normalized variant)1. In Table 1, we show that
the parameter change of alignment training (i.e.,
from SFT to DPO) is fairly small, whose absolute
value of normalized Frobenius distance is merely
6.348×10−6, and is also significantly smaller than
that of SFT (i.e., from Pre-trained to SFT). There-
fore, in this work we hypothesize that preference
alignment training usually involves only small pa-
rameter changes.

Based on this hypothesis, we formally apply a
first-order approximation to the implicit optimiza-
tion objective of alignment training. We empiri-
cally justify the soundness of this approximation

1The Frobenius norm of tensor P is defined as: ∥P∥ =√∑
i P

2
i , while the normalized variant is defined as: ∥P∥ =√

1
|P|

∑
i P

2
i , where |P| denotes the element number of P.
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Table 1: Parameter changes of zephyr-7b-dpo.

CKPT 1 CKPT 2 Frobenius
Norm

Normalized
Frob Norm

Pre-trained SFT 0.9882 1.955× 10−4

SFT DPO 0.0357 6.348× 10−6

Pre-trained DPO 0.9889 1.965× 10−4

with open-source LLMs, where we show that an
interpolated model between the DPO/RLHF model
and the initial SFT checkpoint generally exhibits in-
termediate alignment performance compared to the
original models. Building upon the first-order ap-
proximation, we propose a straightforward method
called EXPO (model extrapolation) to expedite
LLMs’ alignment with human preferences. EXPO
amplifies the parameter change of alignment train-
ing to improve the implicit optimization objective,
thus bypassing the additional training overhead to
achieve better alignment performance.

We conduct controlled experiments to validate
EXPO’s effectiveness. We show that EXPO no-
tably boosts the DPO models using fewer train-
ing steps (e.g., only 20%) to outperform the fully-
trained one, with the improvement of up to 8.4%
length-controlled win rate on AlpacalEval 2.0 (Li
et al., 2023). We then conduct ablation studies to
identify several key factors influencing EXPO’s
efficacy, including training data quality, training
hyperparameters, and optimizer. Furthermore, we
extend EXPO’s application to twelve open-source
LLMs ranging from 1.8B to 70B parameters, which
have undergone varied alignment training such
as offline DPO, iterative DPO, or online RLHF.
We show that EXPO consistently improves these
LLMs by up to 4.5% on AlpacaEval 2.0 and 0.37
on MT-Bench (Zheng et al., 2023b), suggesting that
EXPO can also serve as a practical and efficient
means to compensate for potential training inade-
quacy of existing, already-aligned LLMs. In sum-
mary, our work demonstrates the efficacy of model
extrapolation in enabling efficient LLM alignment,
which can inspire follow-up studies and broader
applications in future work.

2 Methodology

2.1 Formulation
We denote the language model’s parameter space
as Θ and suppose that the alignment performance
can be quantified by a continuous scalar function
ω : Θ → R, where the higher ω(θ) indicates the

better alignment with human preferences. In other
words, ω(θ) is the implicit optimization objective
of alignment training. Note that ω(θ) may not
have an analytic form. In practice, we can employ
a reward model as a proxy to compare the relative
values of ω(θ) by calculating the expected reward
score on a development set of instructions. We sup-
pose that the model M1 (parameterized by θ1) has
undergone moderate alignment training, and de-
note its SFT checkpoint as M0 (parameterized by
θ0), which is used for initializing M1 and satisfies
ω(θ0) < ω(θ1).

2.2 First-order Approximation
Based on the aforementioned observation, we sup-
pose that the parameter change from M0 to M1,
denoted as ∥θ1 − θ0∥ = ∥∆θ∥, is small. We can
formally perform a Taylor Expansion of ω at θ0
and retain the first-order term:

ω(θ0 + γ∆θ) ≈ ω(θ0) + γ∇ω(θ0) ·∆θ, (1)

where we define γ ∈ [0, 1] to ensure that ∥γ∆θ∥
remains small. In particular, setting γ = 1 gives:

ω(θ1) ≈ ω(θ0) +∇ω(θ0) ·∆θ, (2)

=⇒ ∇ω(θ0) ·∆θ ≈ ω(θ1)− ω(θ0) > 0. (3)

Thus, the first-order approximation (Equation 1)
essentially predicts that ω(θ0+γ∆θ) will improve
as γ ∈ [0, 1] increases.

To verify this, we conduct experiments using sev-
eral open-source DPO/RLHF LLMs (Tunstall et al.,
2023; Cai et al., 2024; Zhu et al., 2023). We vary γ
within [0, 1] and construct interpolated models pa-
rameterized by θ0+γ∆θ = (1−γ)θ0+γθ1. Their
alignment performance is evaluated on the Ultra-
Feedback (Cui et al., 2023) development set using
two open-source reward models: RM-Mistral-7B
and FsfairX-LLaMA3-RM-v0.1 (detailed experi-
mental setups are described in Section 3.1). No-
tably, when γ = 0 or 1, the constructed models
degenerate to the original SFT checkpoint M0 and
the DPO/RLHF model M1, respectively. The re-
sults in Figure 1 show that the interpolated mod-
els constructed via θ0 + γ∆θ can generate fluent
and coherent responses. Moreover, their alignment
performance always lies between the original SFT
model M0 and the DPO/RLHF model M1, and
improves with increasing γ, which is consistent
with the predictions of the first-order approxima-
tion. We thereby empirically justify the soundness
of the first-order approximation.
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Figure 1: Interpolated models usually exhibit intermediate performance between the original DPO/RLHF models
and the SFT checkpoints, while their performance improves with increasing γ in Equation 1.

2.3 EXPO: Model Extrapolation

In the above first-order approximation, we con-
strain γ ∈ [0, 1] to maintain the approximation’s
validity along the straight-line path between θ0 and
θ1. We now consider extending this approximation
to the “extension” of the line connecting θ0 and θ1
beyond θ1. Let γ > 1 and define α = γ − 1 > 0,
denoting θ2 = θ0 + γ∆θ = θ0 + (1 + α)∆θ. By
choosing appropriate α such that ∥(1 + α)∆θ∥
remains small, we can reformulate the first-order
approximation as:

ω(θ2) ≈ ω(θ0) + (1 + α)∇ω(θ0) ·∆θ (4)

(By Equation 1)

≈ ω(θ1) + α∇ω(θ0) ·∆θ. (5)

(By Equation 2)

According to Equation 3, we approximately have
ω(θ2) > ω(θ1). This suggests that, starting from
a partially-aligned model M1 and its SFT check-
point M0, by selecting appropriate α > 0, we can
construct a new model M2 parameterized by θ2
through amplifying the parameter change ∆θ:

θ2 = θ0 + (1 + α)∆θ = θ1 + α∆θ, (6)

such that M2 achieves better alignment perfor-
mance than M1. Consequently, we improve the
implicit optimization objective ω(θ) of alignment
training without requiring additional training.

Since the process of Equation 6 essentially “ex-
trapolates” the parameters of M1 along the line
connecting θ0 and θ1, we refer to the procedure
defined by Equation 6 as EXPO (model extrap-
olation). Figure 2 illustrates the EXPO method,
where the orange curve from θ0 to θ1 indicates
the actual training trajectory from M0 to M1, and

θ1
α∆θ

θ0

θ2
∆θ

Figure 2: The orange curve indicates the training tra-
jectory from θ0 to θ1, while the orange line denotes the
extrapolation from θ1 along ∆θ, thus producing θ2.

the straight orange line from θ1 to θ2 denotes the
extrapolation from M1 to M2. In practice, the
hyperparameter α in Equation 6 (controlling the
extrapolation length) can be tuned using inference-
level computational resources. For example, hyper-
parameter search for a 7B model requires only a
single A10 24GB GPU, while a 70B model needs
two A100 80GB GPUs. As high-performance LLM
inference frameworks like vLLM (Kwon et al.,
2023) and SGLang (Zheng et al., 2023c) continue
to rapidly develop, the costs of hyperparameter
search will keep decreasing.

Connection to Model Averaging/Interpolation
It is worth noting that the idea of “model averag-
ing” has been explored in prior work. Specifically,
previous work has discovered that deep neural net-
works often exhibit mode connectivity (Garipov
et al., 2018; Entezari et al., 2022; Zhao et al., 2020;
Frankle et al., 2020). This property implies that
between two local optima in the parameter space,
there typically exists a path where model perfor-
mance (e.g., validation accuracy or loss) does not
degrade significantly during traversal. Empirical
studies (Izmailov et al., 2018; Lin et al., 2024;
Wortsman et al., 2022) have shown that even with
simple linear interpolation paths between two lo-
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cal optima, the loss along the path remains low,
and performance often lies between the original
models, which is consistent with our observations
in Figure 1. Recent LLM research (Lin et al.,
2023; Yu et al., 2024; Akiba et al., 2024; God-
dard et al., 2024) has further explored interpolation
across multiple fine-tuned models (i.e., models ini-
tialized from the same pre-trained checkpoint but
fine-tuned on different data) to create new models
with combined capabilities. Note that Equation 6
can be rewritten as: θ2 = (1− γ)θ0 + γθ1, which
means EXPO can be viewed as a generalized form
of model interpolation with weights exceeding 1.
Hence, the hypothesis we formulated based on the
characteristics of preference alignment (i.e., small
parameter changes) and the derived EXPO method
essentially extend the weight range of traditional
model interpolation (from [0, 1] to (1,+∞)).

In the following sections, we will conduct ex-
tensive experiments to validate the effectiveness
of EXPO in reducing the computational costs of
preference alignment training.

3 Controlled Experiments

3.1 Setup and Evaluation Protocol

Models and Training Recipe Our controlled
experiments are based on the training recipe of
the zephyr-7b-dpo model. Specifically, we use
the UltraFeedback (Cui et al., 2023) dataset for
model training, which contains diverse instruction-
response pairs with GPT-4-annotated preference la-
bels and is split into 61K and 1K data as the training
and development sets, respectively. For DPO train-
ing, we use zephyr-7b-dpo’s SFT checkpoint for
model initialization and as the reference model. We
adopt the global batch size of 128, the learning rate
of 5e-7, and the AdamW optimizer (Loshchilov and
Hutter, 2019). Note that while zephyr-7b-dpo is
trained for 478 steps in total (i.e., one epoch), in
§ 3.2 we will vary the training steps, or equiva-
lently, the training data size. We train the models
on 8 A100 80GB GPUs.

Inference Details We employ the vLLM (Kwon
et al., 2023) library for high-throughput model in-
ference. We use top-k (k = 40) and nucleus sam-
pling (Holtzman et al., 2020) (p = 0.9) with a tem-
perature of 0.7. To avoid repetition in generated
texts, we set both the factors of presence penalty
and frequency penalty to 0.1. We set the sampling
random seed to 42.

Hyperparameter Search To determine the op-
timal α value in EXPO, we use a combination of
binary search and grid search with manually tuned
intervals (see Appendix B for details). We select
the α giving the highest expected reward on the Ul-
traFeedback development set (1K instructions), as
calculated by the reward model RM-Mistral-7B.

Evaluation Protocol We resort to AlpacaEval
2.0 (Li et al., 2023) for model evaluation, which is a
leading benchmark that assesses LLMs’ instruction-
following ability and their alignment with human
preferences. It contains a fixed set of 805 instruc-
tions chosen to be representative of real user cases.
For each instruction, it calculates the probability
that a GPT-4 Turbo evaluator prefers the output
of the evaluated model over the GPT-4 baseline,
thus providing an affordable and replicable alterna-
tive to human annotation. The win rate over the
GPT-4 baseline is computed as the expected prefer-
ence probability, while the length-controlled (LC)
win rate (Dubois et al., 2024) alleviates the length
bias of the GPT-4 Turbo evaluator (i.e., the prior
preference toward longer responses).

In § 3.2, we report both the raw and LC win
rates, as well as the expected reward score over
the 805 instructions calculated. For subsequent ex-
periments, unless otherwise stated, we report the
expected reward score on the UltraFeedback devel-
opment set (1K instructions) for ease of analysis.

3.2 Analysis of Varying Training Steps

We first investigate whether EXPO can enhance
LLMs with limited alignment training. Given that
the full training of zephyr-7b-dpo consists of 478
steps (one epoch over the UltraFeedback training
data), we initialize from the same SFT checkpoint
(M0) and use the aforementioned training configu-
ration to train DPO models (M∗

1) with 10%, 20%,
and 40% of the full training steps. We directly use
zephyr-7b-dpo as the 100%-step (full-training)
model M100%

1 . For these DPO models, we apply
EXPO to derive extrapolated models M∗

2.

Main Results As shown in Table 2, while fewer
training steps generally yield lower alignment
performance, EXPO effectively bridges the gap
caused by reduced training steps. For example,
EXPO boosts M10%

1 ’s LC win rate from 10.4% to
M10%

2 ’s 16.3% and M20%
1 from 12.9% to M20%

2 ’s
21.3%, enabling these extrapolated models to
match or even surpass the fully-trained M100%

1 .
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Table 2: Evaluation results on AlpacaEval 2.0 of applying EXPO to DPO models trained with varying steps (M∗
1).

Reward Win Rate LC Win Rate

SFT (M0) 3.42 4.7% 8.7%

DPO, 10% training steps (M10%
1 ) 3.97 5.9% 10.4%

+ EXPO (M10%
2 ) 6.57 (+2.60) 17.9% (+12.0%) 16.3% (+5.8%)

DPO, 20% training steps (M20%
1 ) 4.70 8.6% 12.9%

+ EXPO (M20%
2 ) 6.95 (+2.25) 22.7% (+14.2%) 21.3% (+8.4%)

DPO, 40% training steps (M40%
1 ) 5.77 12.1% 14.6%

+ EXPO (M40%
2 ) 6.75 (+0.98) 17.7% (+5.6%) 16.6% (+2.0%)

DPO, 100% training steps (M100%
1 ) 6.16 14.7% 17.3%

+ EXPO (M100%
2 ) 6.52 (+0.36) 18.0% (+3.3%) 20.2% (+2.8%)
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Figure 3: Reward distribution on UltraFeedback (development set) for the extrapolated models in Table 2.

Figure 4: M2’s reward scores and response lengths on UltraFeedback (development set) varying with α (x-axis) for
the partially-trained DPO models in § 3.2. Dashed vertical lines correspond to the optimal α values. α = 0 indicates
that EXPO is not applied (i.e., M1).

Hyperparameter Search Analysis The optimal
α values for M10%

2 , M20%
2 , M40%

2 , and M100%
2

are 8.0, 2.5, 0.5, and 0.3, respectively. Figure 3
illustrates the reward distributions of these extrapo-
lated models, showing that their response distribu-
tions shift toward higher reward regions compared
to the original M∗

1 models. In Figure 4, we show
that increasing α within a reasonable range con-
sistently improves alignment performance. How-
ever, excessively large α causes sharp performance
drops and abnormal response length increases (e.g.,
generating gibberish or failing to terminate). This
indicates that overly large α violates the first-order
approximation (Equation 4) as ∥(1 + α)∆θ∥ be-

comes too large. Additionally, since more training
steps lead to larger ∥∆θ∥, smaller α values are re-
quired for models with more training steps (e.g.,
M100%

1 ) to maintain the validity of Equation 4,
which is consistent with our hyperparameter search
results.

Computational Cost Analysis The fully-trained
model M100%

1 requires about 12 GPU hours
(A100 80GB). In contrast, M20%

2 ’s hyperparam-
eter search takes about 0.5 GPU hour, and com-
bined with M20%

1 ’s about 2.5-hour training, the
total cost is about 3 GPU hours, leading to a 75%
reduction compared to full training while achiev-
ing comparable or better alignment performance.
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Table 3: Ablation results on UltraFeedback (development set) of adjusting training data quality. “N/A” denotes that
the reward score does not improve after applying EXPO with the smallest α = 0.1.

Training Data
Original (M∗

1) + EXPO (M∗
2)

Reward Length Optimal α Reward Length

10% training steps, random (M10%
∗ ) 3.59 262 8.0 5.82 541

10% training steps, length-biased (M10%,b
∗ ) 4.62 770 0.2 4.69 810

20% training steps, random (M20%
∗ ) 4.37 294 2.5 6.08 567

20% training steps, length-biased (M20%,b
∗ ) 5.05 748 0.4 5.11 875

40% training steps, random (M40%
∗ ) 5.30 407 0.5 5.80 594

40% training steps, length-biased (M40%,b
∗ ) 4.90 671 N/A N/A N/A

Moreover, EXPO’s hyperparameter search, which
only involves model inference, also significantly
reduces hardware requirements, e.g., a 7B model
requires only a single A10 24GB GPU for search,
whereas training typically needs 8 A100 80GB
GPUs. The above results reaffirm the soundness
of the first-order approximation and demonstrate
EXPO’s effectiveness in reducing computational
costs for LLM alignment.

Other Observations We also observe two other
noteworthy phenomena: (1) Extrapolated align-
ment performance does not strictly increase with
training steps. For example, M20%

2 outperforms
M100%

2 , suggesting EXPO’s efficacy depends on
factors like training data and hyperparameters. We
will explore these factors in § 3.3 and 3.4. (2)
Even fully trained models like M100%

1 benefit from
EXPO (LC win rate increases by 2.8%), indicating
that existing already-aligned models may not be
fully optimized, and EXPO can fill this gap. We
will apply EXPO to more existing, already-aligned
models in § 4.1.

3.3 Analysis of Training Data Quality
In the previous section, we observed that align-
ment performance after model extrapolation does
not strictly improve with increased training steps.
We conjecture that this occurs because more train-
ing makes the model more prone to learning spuri-
ous features from data, such as length bias2 (Park
et al., 2024). According to Equation 6, under our
controlled experimental setup where all M1 are
initialized from the same SFT model M0 and θ0,
the highest achievable performance of the extrap-
olated model M2 is uniquely determined by ∆θ.

2In the UltraFeedback training set, preferred and non-
preferred responses have average lengths of 319 and 277 to-
kens, respectively.

θ1θ0

θ2

θ′
1

θ′
2

Figure 5: Increasing training steps (from θ1 to θ′
1) can

make the model more prone to learning spurious fea-
tures from training data, such as length bias. This conse-
quently impairs the direction of ∆θ and the achievable
performance of EXPO (e.g., θ′

2 underperforms θ2).

Hence, EXPO’s effectiveness requires ∆θ to indi-
cate the direction that genuinely improves align-
ment performance. Learning spurious features
like length bias degrades the “quality” of ∆θ, thus
undermining the extrapolation performance. Fig-
ure 5 illustrates this phenomenon: as training steps
increase (from θ1 to θ′

1), the model can learn spu-
rious features from training data, leading to the
degraded alignment performance of extrapolated
models (e.g., θ′

2 underperforms θ2).

To analyze how training data quality affects
EXPO’s effectiveness in a controlled manner, we
take length bias as an example and manually inject
length bias into the training data. Unlike the ran-
dom sampling in § 3.2, we sort the UltraFeedback
training data by the length difference between pre-
ferred and non-preferred responses in descending
order. We then train models on the sorted samples
orderly so that models will prioritize learning from
samples with larger length differences. From Ta-
ble 3, while introducing length bias temporarily
boosts reward scores (M10%,b

1 and M20%,b
1 out-

perform M10%
1 and M20%

1 ), extrapolated models
consistently underperform (M10%,b

2 and M20%,b
2
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Table 4: Ablation results of the training epochs, learning rate, and optimizer on UltraFeedback (development set).

Original (M1) + EXPO (M2)

Reward Length Optimal α Reward Length

Training Epochs
1 (Default) 4.37 294 2.5 6.08 567
2 (×2) 4.93 338 0.3 5.06 362
3 (×3) 4.47 323 N/A N/A N/A

Learning Rate
5e-7 (Default) 4.37 294 2.5 6.08 567
1e-6 (×2) 5.20 374 0.5 5.54 495
2e-6 (×3) 5.33 365 0.4 5.52 434

Optimizer
AdamW (Default) 4.37 294 2.5 6.08 567
AdaGrad 3.42 246 15.0 6.25 603
RMSprop 4.88 344 0.4 5.08 381

are worse than M10%
2 and M20%

2 ). Moreover,
the optimal α values for M10%,b

2 and M20%,b
2 are

0.2 and 0.4, which are far smaller than those for
M10%

2 (8.0) and M20%
2 (2.5). For M40%,b

1 , EXPO
even fails to yield any improvement. These results
demonstrate that training on biased or low-quality
data (e.g., with length bias) causes ∆θ to fail to
indicate the direction that genuinely improves align-
ment performance, thereby diminishing the benefits
of model extrapolation.

3.4 Analysis of Training Configurations

Next, we analyze how specific training hyperpa-
rameters influence EXPO’s effectiveness. Since
EXPO amplifies the parameter change ∆θ from
M0 to M1, we investigate whether EXPO is equiv-
alent to directly increasing the magnitude of pa-
rameter changes, such as by raising the training
epochs or learning rate. Additionally, since the
training trajectory from M0 to M1 (and the re-
sulting ∆θ) is closely tied to the gradient descent
algorithm, we also explore the impact of the opti-
mizer on EXPO’s effectiveness. All experiments
use the model trained with 20% steps in § 3.2 as
the baseline and follow the default training data
and configurations.

Training Epochs and Learning Rate We in-
crease the training epochs or learning rate for M1.
Table 4 shows that while both adjustments im-
prove M1’s performance, they also reduce the
benefits of model extrapolation (lower M2 perfor-
mance) and yield smaller optimal α values. Mean-
while, the M1 models trained with more epochs or
larger learning rates generate significantly longer
responses compared to the default setup. This sug-
gest that both adjustments also make models prone

to learning the length bias in training data, thereby
degrading ∆θ’s quality and the gains from EXPO.
Notably, when training epochs are set to 3, M1

cannot benefit from EXPO, likely because the first-
order approximation (Equation 4) no longer holds
as ∥∆θ∥ becomes too large.

Optimizer We train M1 using three popular op-
timizers: AdamW (Loshchilov and Hutter, 2019)
(default), AdaGrad (Duchi et al., 2011), and
RMSprop (Hinton, 2012). Table 4 shows that
while AdaGrad converges slowest (lowest M1 per-
formance), it achieves the highest extrapolated
alignment performance (M2), slightly surpassing
AdamW. Conversely, RMSprop, while yielding
the best M1 performance, results in the poorest
M2 performance. AdamW, as the dominant opti-
mizer in modern LLM training, strikes a balance
between convergence efficiency and extrapolated
performance. These results highlight that differ-
ent optimizers significantly affect ∆θ’s quality and
extrapolation outcomes.

4 Extended Applications of EXPO

4.1 Applying EXPO to More Existing,
Already-aligned LLMs

In § 3.2, we observed that EXPO also brings no-
ticeable performance improvements to the fully-
trained zephyr-7b-dpo. This motivates us to ap-
ply EXPO to more existing, already-aligned LLMs.
As hypothesized in § 1, the normally-trained mod-
els should also satisfy the first-order approximation
premise, i.e., ∥∆θ∥ is small. We select twelve
open-source models from HuggingFace for experi-
ments (see Appendix C for their model IDs):

• Five models trained via offline DPO, including

1031



Table 5: Evaluation results on AlpacaEval 2.0 and MT-Bench of applying EXPO to existing DPO/RLHF LLMs.

Original (M1) + EXPO (M2)

WR LC WR MT-Bench Win Rate LC Win Rate MT-Bench

M1 is trained via Offline DPO

zephyr-7b-alpha 6.7% 10.0% 6.85 10.6% (+3.8%) 13.6% (+3.6%) 6.87 (+0.02)
zephyr-7b-beta 10.2% 13.2% 7.02 11.1% (+0.9%) 14.0% (+0.8%) 7.06 (+0.04)
tulu2-7b 8.5% 10.2% 6.35 11.5% (+3.0%) 11.7% (+1.5%) 6.38 (+0.03)
tulu2-13b 11.2% 15.5% 7.00 15.6% (+4.3%) 17.6% (+2.1%) 7.26 (+0.26)
tulu2-70b 15.4% 21.2% 7.79 23.0% (+7.6%) 25.7% (+4.5%) 8.03 (+0.24)

M1 is trained via Iterative DPO

snorkel-7b-iter 24.7% 24.0% 7.63 28.8% (+4.1%) 26.4% (+2.4%) 7.69 (+0.07)
llama3-8b-iter 29.2% 36.0% 8.08 32.7% (+3.5%) 37.8% (+1.8%) 8.45 (+0.37)

M1 is trained via Online RLHF

starling-7b-alpha 15.0% 18.3% 7.82 18.2% (+3.2%) 19.5% (+1.2%) 7.91 (+0.09)
starling-7b-beta 26.6% 25.8% 8.10 29.6% (+3.0%) 26.4% (+0.7%) 8.18 (+0.08)
internlm2-1.8b 3.8% 4.0% 5.17 5.2% (+1.5%) 4.3% (+0.3%) 5.26 (+0.08)
internlm2-7b 20.5% 18.3% 7.72 28.1% (+7.6%) 22.7% (+4.4%) 7.80 (+0.08)
internlm2-20b 36.1% 24.9% 8.13 46.2% (+10.1%) 27.2% (+2.4%) 8.26 (+0.13)

zephyr-7b-alpha/beta (Tunstall et al., 2023)
and tulu2-7/13/70b (Wang et al., 2023);

• Two models trained via iterative DPO, includ-
ing snorkel-7b-iter (Tran et al., 2023) and
llama3-8b-iter (Dong et al., 2024);

• Five models trained via online RLHF, including
starling-7b-alpha/beta (Zhu et al., 2023)
and internlm2-1.8/7/20b (Cai et al., 2024).

These models cover a diverse range of model sizes
(from 1.8B to 70B) and span three mainstream
alignment algorithms widely used in practice.

Based on our hyperparameter search experience
for zephyr-7b-dpo in § 3.2 (Appendix B), for
the twelve models above, we conduct a simple
grid search for the optimal α, using the interval
of 0.1 within [0.1, 0.5]. In addition to AlpacaEval
2.0, we also evaluate these models on MT-Bench
(Zheng et al., 2023b), another leading benchmark
for assessing instruction-tuned LLMs’ general and
multi-turn ability. It contains a set of challenging
multi-turn open-ended questions covering topics
such as writing, role-playing, math, coding, and
more. The model-generated answers are judged by
GPT-4 via a scalar score (from 1 to 10).

In Table 5, we show that EXPO consistently im-
proves the evaluated LLMs, with notable improve-
ments of up to 10.1% win rate and 4.5% LC win
rate on AlpacaEval 2.0 (for internlm2-20b and

tulu2-70b, respectively) and 0.37 on MT-Bench
(for llama3-8b-iter). This suggests that exist-
ing, already-aligned LLMs may still not have been
trained to optimality or “saturation”. EXPO offers
a practical and efficient means to compensate for
potential inadequate training of existing LLMs (or,
squeeze more alignment performance out of these
models), as it only requires inference-level hard-
ware resources and bypasses the costly additional
training overhead.

4.2 Applying EXPO to More Alignment
Algorithms

So far, we have primarily applied EXPO to models
trained via the dominant DPO or RLHF algorithms
(§ 3 and 4.1). Since EXPO does not assume the
specific training method for M1, we expect that
EXPO can be applied to models trained via other
algorithms than DPO or RLHF. To this end, we use
a series of Mistral/LLaMA-3 models released by
Meng et al. (2024), which are trained via various
alignment algorithms and are all initialized from
the same SFT checkpoints. These algorithms in-
clude: RRHF (Yuan et al., 2023), SLiC-HF (Zhao
et al., 2023a), IPO (Azar et al., 2024), CPO (Xu
et al., 2024), KTO (Ethayarajh et al., 2024), R-
DPO (Park et al., 2024), and SimPO (Meng et al.,
2024). We refer readers to Meng et al. (2024) for
elaboration on these algorithms’ optimization ob-
jectives as well as the models’ training configu-
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Table 6: Evaluation results on UntraFeedback of applying EXPO to models trained via different algorithms.

M0 is SFTed from Mistral M0 is SFTed from LLaMA-3

Original (M1) + EXPO (M2) Original (M1) + EXPO (M2)

Reward Optimal α Reward Reward Optimal α Reward

SFT (M0) 2.97 - - 1.93 - -

RRHF 4.71 0.1 4.73 (+0.02) 3.02 0.5 3.15 (+0.13)
SLiC-HF 4.90 0.4 5.16 (+0.26) 4.06 0.5 4.68 (+0.62)
IPO 4.97 0.5 5.44 (+0.47) 4.75 0.3 4.86 (+0.11)
CPO 4.86 0.3 5.01 (+0.15) 4.04 0.5 4.75 (+0.71)
KTO 3.84 N/A N/A 4.48 0.4 4.67 (+0.19)
R-DPO 5.53 0.3 5.73 (+0.20) 4.25 0.5 4.64 (+0.39)
SimPO 5.88 0.1 5.95 (+0.07) 4.89 0.4 5.21 (+0.32)

rations. Following the previous experience, we
search the optimal α value within the range of [0.1,
0.5] with the interval of 0.1.

As shown in Table 6, EXPO effectively com-
plements various alignment training algorithms.
While these models have been carefully tuned ac-
cording to Meng et al. (2024), they still benefit from
model extrapolation. This indicates that EXPO
does not rely on specific alignment algorithms but
instead generalizes across diverse methods, show-
casing its broad compatibility and practical utility.

4.3 Discussion on Failure Cases

Finally, we discuss the failure cases we encoun-
tered when applying EXPO to more various mod-
els. (1) EXPO supposes M0 is an SFT model
and M1 is one that further undergoes alignment
training. However, when we attempted with a pre-
trained model as M0 and an SFT one as M1, we
found that model extrapolation usually cannot im-
prove alignment performance and can even lead
to model collapse (e.g., the extrapolated model
struggles to generate the EOS token or mistakenly
generates special tokens). We speculate that this is
because SFT typically adopts a larger learning rate
and more training steps, and serves to adapt models
to the chat templates (Zheng, 2024), so new knowl-
edge is actually injected into models. (2) Another
type of failure cases is also related to model overfit-
ting. For example, the Storm-7B model (Liu et al.,
2024a) is trained via iterative DPO for three iter-
ations. When experimenting with this model, we
found that applying EXPO with even the very small
α = 0.1 results in severe model collapse, probably
because the model overfits to its employed reward
model during iterative DPO training.

In both cases, EXPO’s underlying first-order ap-

proximation can become invalidated as the result-
ing ∥∆θ∥ is too large. Therefore, we suggest that
more deliberate strategies are needed when apply-
ing EXPO to models with large parameter changes,
e.g., by leveraging the intermediate checkpoints.
We note that recent work has made promising ex-
ploration (Lin et al., 2025) and expect more follow-
up studies in future work.

5 Conclusion

This work demonstrates the efficacy of the EXPO
(model extrapolation) method in enabling more ef-
ficient LLM alignment with human preferences.
EXPO builds upon the hypothesis that alignment
training typically involves only small changes of
model parameters. Given a partially-trained model
M1 and its initial SFT checkpoint, EXPO im-
proves the implicit optimization objective of align-
ment training by simply amplifying the parameter
change based on a first-order approximation, thus
directly achieving better alignment performance
without additional training overhead. We empiri-
cally validate EXPO’s effectiveness through con-
trolled experiments, where we show that the DPO
model trained with 20% steps can be boosted to
outperform the fully-trained one. Furthermore,
we extend EXPO’s application to twelve existing,
already-aligned LLMs, showing that EXPO con-
sistently improves their performance on the main-
stream LLM benchmarks AlpacaEval 2.0 and MT-
Bench. This suggests that EXPO can also serve as
a practical and efficient means to compensate for
potential inadequate alignment training of existing
LLMs. Overall, our work highlights the utility of
model extrapolation in efficient LLM alignment,
which can inspire future research in this direction.
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6 Limitations

Hyperparameter Search The current EXPO
adopts the simplest form of uniform extrapolation
and requires manual hyperparameter search for α.
Future work could explore how to determine the
optimal α automatically and adaptively (i.e., using
different α values for different model modules).
For example, the information from optimizer states
and parameter gradients during the later phase of
alignment training could be useful for this purpose.

Alignment Tax While EXPO makes substantial
improvements in instruction-following ability and
alignment with human preferences, this seems not
“free” and can instead incur an additional align-
ment tax, a widely observed issue in human prefer-
ence optimization algorithms (Ouyang et al., 2022;
Dong et al., 2024; Meng et al., 2024), which in-
dicates the possible fluctuations or drops in down-
stream task performance after alignment training.
We evaluate the models in § 3.2 and 4.1 on the
six downstream tasks (Clark et al., 2018; Zellers
et al., 2019; Hendrycks et al., 2021; Lin et al., 2022;
Sakaguchi et al., 2021; Cobbe et al., 2021) from
the Open LLM Leaderboard3 (v1; Beeching et al.
2023). We find that in most cases, EXPO ampli-
fies the alignment tax introduced by the alignment
training (from M0 to M1). For example, for the
partially-trained models in § 3.2 (Appendix D, Fig-
ure 6), the original DPO models (M1) show im-
provements over the initial SFT model (M0) on
TruthfulQA and declines on GSM8K, while apply-
ing EXPO (M2) leads to further improvements or
declines, respectively. For the existing, already-
aligned LLMs in § 4.1, the amplification of the
alignment tax by EXPO is usually smaller as shown
in Figure 7 in Appendix D, suggesting a trade-off
between the alignment training overhead (from M0

to M1) and the additional alignment tax brought
by EXPO (from M1 to M2).
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A Related Work

LLM Alignment Modern large language models (LLMs) are first pre-trained on massive textual corpora
with the unsupervised language modeling objective (Brown et al., 2020; Touvron et al., 2023b; Dubey
et al., 2024), and then fine-tuned to learn to follow human instructions (OpenAI, 2022, 2023; Ji et al.,
2023). The current fine-tuning paradigm typically contains two steps: supervised fine-tuning (SFT) and
human preference optimization. Our work focuses on the later step, which aims to adjust the model’s
response distribution to better align with human preferences. In this process, the model is usually trained
on preference data (“A is better than B”; Zhao et al. 2023b; Zheng et al. 2023a), thus learning to assign
higher probabilities to human-preferred responses over the disfavored ones. Common implementations for
human preference optimization include Reinforcement Learning from Human Feedback (RLHF; Ouyang
et al. 2022; Schulman et al. 2017), Direct Preference Optimization (DPO; Rafailov et al. 2023), and many
other DPO’s variants or competitors (Azar et al., 2024; Xu et al., 2024; Ethayarajh et al., 2024; Park et al.,
2024; Meng et al., 2024). Given LLMs’ gigantic parameters, the processes from pre-training to SFT
and the alignment training still require expensive computational resources. Therefore, exploring more
efficient alignment methods to reduce training overhead has always been an important and compelling
research challenge (Ji et al., 2024). To address this challenge, we propose the EXPO method, which has
demonstrated promising efficacy in expediting LLM alignment.

There is another line of work that attempts to bypass the expensive alignment training by blending
multiple models’ token predictions during the inference time (Liu et al., 2021; Lu et al., 2024; Liu et al.,
2024b), usually referred to as inference-time alignment methods. In comparison to EXPO, these inference-
time methods often require more complex and varied implementations of model inference, which are
not typically supported by existing high-performance LLM inference infrastructures (e.g., vLLM). This
inconvenience not only reduces the practical efficiency of model inference but also significantly increases
the cost of their hyperparameter search processes. In contrast, EXPO only involves regular inference of a
single model, which can be seamlessly supported by existing infrastructures, thereby inheriting the merit
in inference efficiency.

Model Averaging/Interpolation Model averaging/interpolation is a commonly used technique in
machine learning. It utilizes multiple models trained with different random initializations or data subsets
and interpolates the weights of these models to obtain a new model with stronger out-of-distribution
generalization (Izmailov et al., 2018; Lin et al., 2024; Wortsman et al., 2022; Lin et al., 2023). This
technique is based on the mode connectivity of neural networks (Garipov et al., 2018; Entezari et al.,
2022; Zhao et al., 2020; Frankle et al., 2020). Specifically, prior work found that multiple local optima
in the parameter space can often be connected by low-loss (linear) paths, particularly for models with
residual connection structures (He et al., 2016). This can explain why model interpolation can produce
new, functional models when applied to LLMs (as our observations in Figure 1), as residual connection
has become a dominant choice of architecture design in modern LLMs like LLaMA (Touvron et al.,
2023a). We notice that recent LLMs have widely adopted model interpolation, as exemplified by Gemma-
2 (Gemma et al., 2024) and LLaMA-3 (Dubey et al., 2024), possibly also for further enhancement in
out-of-distribution generalization.
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B Hyperparameter Search Details

We use the experiments in Table 2 as an example to illustrate how we conduct hyperparameter search.

Starting with M10%
2 : (1) First, with an interval of 5, we tried α = 5 and α = 10. We found that

both significantly outperformed M1, but (α = 5) > (α = 10). (2) Then, setting the search range
to [5, 10] with an interval of 1, we applied binary search and tried α = 7 and α = 8. We found that
(α = 8) > (α = 7). We then tried α = 9 and found (α = 8) > (α = 9). (3) We thus determined α = 8
as optimal.

Note that smaller search intervals might yield better results, but we deem this unnecessary in practice.

Then, for M20%
2 : (1) With previous experience, we first tried α = 2 and α = 4 with an interval of 2.

We found that α = 2 significantly outperformed M1, but α = 4 performed worse than M1. (2) Then,
setting search ranges to [1, 2] and [2, 4] with an interval of 1, we applied binary search and tried α = 1
and α = 3. We found that (α = 2) > (α = 3) > (α = 1). (3) Next, with an interval of 0.5 in [2, 3], we
tried α = 2.5 and found (α = 2.5) > (α = 2). (4) We thus determined α = 2.5 as optimal.

This took 5 searches in total, each taking about 5min (using one A100 80GB, including inference on
development set and reward model scoring), totaling about 0.5 GPU hours.

Next, for M40%
2 : (1) Based on previous experience, we first tried α = 0.5 and found it outperformed

M0. (2) Then with an interval of 0.1, we applied grid search and tried α = 0.6 and α = 0.4. We found
that α = 0.6 performed worse than M1, while (α = 0.5) > (α = 0.4). (3) We thus determined α = 0.5
as optimal.

Note that the search experience for M40%
2 is a key motivation for us to use [0.1, 0.5] as search range

with 0.1 interval for M100%
2 and models in § 4.1.

Summary Overall, we (and in practice) do not search blindly, but flexibly combine binary search, grid
search, and dynamically adjusted search intervals. These strategies are simple, practical, and represent
consensus in practice. It is also noteworthy that the above search only requires inference-level GPU
hardware (e.g., A10 24GB). Therefore, compared to the reduced training overhead (from 12 GPU hours
for M100%

1 to 2.5 GPU hours for M20%
1 ) and training-level GPU hardware (from eight A100 80GB to

one A10 24GB), the α search process in EXPO is more economical and efficient.

Table 7: Hyperparameter search results for α in § 3.2 and 4.1.

Search Interval Optimal α

Models in § 3.2
(binary/grid search)

DPO (10% data) 1.0 8.0
DPO (20% data) 0.5 2.5
DPO (40% data) 0.1 0.5
zephyr-7b-dpo 0.1 0.3

Models in § 4.1
(grid search within [0.1, 0.5])

zephyr-7b-alpha/beta 0.1 0.3/0.1
tulu2-7/13/70b 0.1 0.5
snorkel-7b-iter 0.1 0.3
llama3-8b-iter 0.1 0.3
starling-7b-alpha/beta 0.1 0.2/0.5
internlm2-1.8/7/20b 0.1 0.5
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C HuggingFace Models

HuggingFace Model ID

Reward models
weqweasdas/RM-Mistral-7B
sfairXC/FsfairX-LLaMA3-RM-v0.1

zephyr-7b-dpo
M0 alignment-handbook/zephyr-7b-sft-full
M1 alignment-handbook/zephyr-7b-dpo-full

zephyr-7b-{alpha/beta}
M0 HuggingFaceH4/mistral-7b-sft-{alpha/beta}
M1 HuggingFaceH4/zephyr-7b-{alpha/beta}

tulu2-{7/13/70}b
M0 allenai/tulu-2-{7/13/70}b
M1 allenai/tulu-2-dpo-{7/13/70}b

snorkel-7b-iter
M0 mistralai/Mistral-7B-Instruct-v0.2
M1 snorkelai/Snorkel-Mistral-PairRM-DPO

llama3-8b-iter
M0 RLHFlow/LLaMA3-SFT
M1 RLHFlow/LLaMA3-iterative-DPO-final

starling-7b-alpha
M0 openchat/openchat_3.5
M1 berkeley-nest/Starling-LM-7B-alpha

starling-7b-beta
M0 openchat/openchat-3.5-0106
M1 Nexusflow/Starling-LM-7B-beta

internlm2-{1.8/7/20}b
M0 internlm/internlm2-chat-{1_8/7/20}b-sft
M1 internlm/internlm2-chat-{1_8/7/20}b

Mistral-based SFT M0 alignment-handbook/zephyr-7b-sft-full
{RRHF, SLiC-HF, IPO, CPO,
KTO, R-DPO, SimPO}

M1 princeton-nlp/Mistral-7B-Base-SFT-{*}

LLaMA-3-based SFT M0 princeton-nlp/Llama-3-Base-8B-SFT
{RRHF, SLiC-HF, IPO, CPO,
KTO, R-DPO, SimPO}

M1 princeton-nlp/Llama-3-Base-8B-SFT-{*}

D Supplementary Experimental Results of Alignment Tax (§ 6)
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Figure 6: Evaluation results for the models in § 3.2 on downstream tasks. The x-axis denotes the proportions
of training steps. As the “cost” of simply improving instruction-following ability and alignment with human
preferences, EXPO can also amplify the alignment tax introduced by the alignment training.
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Figure 7: Evaluation results for the LLMs in § 4.1 on downstream tasks. For these already-alighed models, the
additional alignment tax brought by EXPO is usually smaller, suggesting a trade-off between the alignment training
overhead (from M0 to M1) and the additional alignment tax brought by EXPO (from M1 to M2).
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