
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 9840–9855
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Attention Entropy is a Key Factor: An Analysis of Parallel Context
Encoding with Full-attention-based Pre-trained Language Models

Zhisong Zhang†, Yan Wang, Xinting Huang, Tianqing Fang
Hongming Zhang, Chenlong Deng, Shuaiyi Li, Dong Yu

Tencent AI Lab
†zhisonzhang@tencent.com

Abstract

Large language models have shown remark-
able performance across a wide range of lan-
guage tasks, owing to their exceptional capa-
bilities in context modeling. The most com-
monly used method of context modeling is full
self-attention, as seen in standard decoder-only
Transformers. Although powerful, this method
can be inefficient for long sequences and may
overlook inherent input structures. To address
these problems, an alternative approach is par-
allel context encoding, which splits the context
into sub-pieces and encodes them parallelly.
Because parallel patterns are not encountered
during training, naively applying parallel en-
coding leads to performance degradation. How-
ever, the underlying reasons and potential mit-
igations are unclear. In this work, we provide
a detailed analysis of this issue and identify
that unusually high attention entropy can be a
key factor. Furthermore, we adopt two straight-
forward methods to reduce attention entropy
by incorporating attention sinks and selective
mechanisms. Experiments on various tasks re-
veal that these methods effectively lower irreg-
ular attention entropy and narrow performance
gaps. We hope this study can illuminate ways
to enhance context modeling mechanisms.

1 Introduction

Large language models (LLMs) have demonstrated
exceptional capabilities across various language
tasks (Achiam et al., 2023; Dubey et al., 2024).
A key factor contributing to this success is their
remarkable ability of context modeling. This ca-
pability forms the basics of instruction following
(Ouyang et al., 2022; Bai et al., 2022) and in-
context learning (ICL; Brown et al., 2020; Dong
et al., 2024), enabling LLMs to comprehend con-
texts effectively. Consequently, LLMs can solve
tasks directly when provided with appropriate
prompts (Liu et al., 2023).

To model contexts, most LLMs adopt a similar
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Figure 1: An overview. The upper sub-figures illustrate
the full attention and parallel context encoding schemes,
with superscripts indicating positional encoding. The
lower sub-figure demonstrates that parallel encoding
can result in irregularly high attention entropy for query
tokens. In this example, the context is divided into
four segments (P1–P4), which are individually encoded
with the parallel encoding scheme (upper right). These
pieces correspond to the sub-regions in the lower sub-
figure. We explore two methods to reduce entropy (§4):
“Sink” means adding attention sinks, and “SEL” means
selective attention.

architectural design: an auto-regressive decoder-
only Transformer with full self-attention (Vaswani
et al., 2017; Radford et al., 2019). This architecture
does not assume contextual independence, allowing
each token to attend to all previous tokens. While
powerful and flexible, this design is not without
concerns. First, full attention requires computa-
tional complexity that scales quadratically with the
input sequence length. This poses challenges for
long sequence processing and necessitates more ef-
ficient alternatives (Tay et al., 2022). Additionally,
in many applications, contexts or prompts exhibit
natural parallel structures, consisting of indepen-
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dent sub-pieces, such as documents in retrieval-
augmented generation (RAG; Lewis et al., 2020)
and demonstrations in ICL. It is intuitive to lever-
age these structures more effectively.

To enhance the efficiency of context encoding
and leverage the input structures, a natural strat-
egy is to divide the context into sub-pieces, en-
code each one in parallel, and then concatenate
them for final use. Figure 1 illustrates the differ-
ences between full attention encoding and parallel
context encoding. Compared to full encoding, the
parallel approach can reduce the computational
complexity since each sub-piece does not interact
with others during the context encoding phase, and
the parallel input structures are directly utilized
for context splitting. However, mainstream LMs
typically rely on full attention and haven’t been
trained with parallel contexts, posing the question
of whether parallel context encoding is compatible
with full-attention-based pre-trained LMs. While
specialized fine-tuning can ensure compatibility,
it can also be computationally costly (Yen et al.,
2024a; Sun et al., 2024; Lu et al., 2024). Recent
studies have explored settings that do not require
additional fine-tuning but these are limited to spe-
cific scenarios, such as restricted numbers of con-
text windows (Ratner et al., 2023) or specific tasks
like ICL (Hao et al., 2022) or RAG (Merth et al.,
2024). In contrast, through detailed evaluations
over various tasks, we provide more comprehen-
sive analyses of this question, showing the connec-
tions between irregular attention entropy and the
final performance.

We conduct experiments on a variety of language
tasks, including language modeling (LM), ICL,
RAG and synthetic tasks. Through fair and direct
comparisons between full-attention and parallel en-
coding schemes, we demonstrate that naively apply-
ing parallel encoding results in significant perfor-
mance declines. By analyzing the attention patterns
of both schemes, we find that parallel encoding
leads to higher attention entropy on the final query
tokens (Figure 1 shows a typical example). Fur-
thermore, we discover strong correlations between
attention entropy and model performance, suggest-
ing that attention entropy can be an indicator of
irregular performance. To address this, we adopt
two straightforward methods to reduce attention
entropy: attention sinks (Xiao et al., 2024), which
adds a shared prefix to the context that each sub-
piece can attend to, and selective attention, which
incorporates a hard selection mechanism into the

attention operation. Experimental results show that
both methods can reduce the irregular attention en-
tropy and mitigate the performance gaps, verifying
our hypothesis. Additionally, we provide a detailed
analysis of how different selective attention choices
affect performance across various tasks. We hope
that our analysis could offer insights into exploring
alternative context-modeling mechanisms beyond
the full attention scheme.

2 Preliminaries and Settings

2.1 Attention Entropy

One central metric in our analysis is attention en-
tropy, defined as H(p) = −∑

i pi · log pi, where
p represents the attention probability distribution
(attention weights). This metric quantifies the di-
versity of an attention head’s focus over previous
contexts. A higher entropy value indicates that the
query token distributes its attention broadly across
many prior tokens, suggesting a more global con-
textual understanding. On the other hand, a lower
entropy value reflects a more concentrated atten-
tion pattern, which is crucial for tasks requiring
precise retrieval.

2.2 Parallel Context Encoding

In a vanilla Transformer-based LM, to encode a
context sequence of N tokens (assuming the use
of a decoder-only model with causal masks), each
token needs to attend to all preceding tokens in
the context. Consequently, we need to calculate
the attention scores for 1

2 ·N(N + 1) token pairs.
With parallel context encoding, we split the context
into P sub-pieces.1 In this scheme, each piece is
encoded separately, and tokens within one piece do
not attend to tokens in other pieces. Assuming that
we evenly split the context for simplicity, the token-
pair calculation requirement is P · 12 · NP (NP +1) =
1
2P ·N(N + P ), which is approximately 1

P of the
computations needed in full attention. Therefore,
the more pieces the context is split into, the more
computational savings can be achieved.

The parallel scheme is intuitive in many applica-
tions, such as RAG and ICL. This is because each
piece, such as a document in RAG or a demon-
stration in ICL, is self-contained and does not re-
quire additional information in its encoding phase.
The main phase where we need to check full con-
texts and aggregate information across pieces is the

1We refer to the number of sub-pieces as parallel degree,
which is one of the main variables examined in this study.
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LM (PPL↓) ICL (Acc↑) RAG (SubEM↑) Synthetic (SubEM↑)
4K 8K 16K 4K 8K 16K 4K 8K 16K 4K 8K 16K

Full 5.54 5.35 5.19 55.20 66.00 72.20 61.25 60.25 60.25 99.88 99.50 97.25

P=2 5.83 5.66 5.47 50.80 63.60 70.20 61.50 59.50 57.50 93.81 94.81 95.25
P=4 6.29 6.16 6.04 36.40 57.20 67.80 59.25 50.75 52.50 79.19 81.56 82.44
P=8 6.91 6.92 6.96 29.20 44.40 60.20 53.50 48.75 44.50 25.94 41.00 41.44
P=16 7.69 7.97 8.54 21.00 34.00 46.40 49.00 41.75 40.00 3.38 2.19 2.00
P=32 8.54 9.24 10.87 10.80 17.40 33.60 45.00 39.25 35.25 0.31 0.00 0.00
P=64 9.35 10.46 13.18 5.00 10.80 19.80 45.00 33.00 26.75 0.00 0.00 0.00

Table 1: Comparisons between full-attention and naive parallel encoding with LLAMA-3.1-8B (results are macro-
averaged over all sub-tasks). Here, “P” indicates the parallel degree (the number of context sub-pieces). For each
task, we also vary the total sequence lengths (considering 4K, 8K and 16K). With larger “P” (larger than 10), the
results are much worse than those of full attention.

query-encoding phase. At this stage, we can let the
querying tokens attend to the all preceding tokens
to gather information.

While there can be minor variations, the basic
methodology for parallel context encoding remains
largely the same in previous research. Following
Ratner et al. (2023), we provide a brief introduc-
tion of the two main modifications to full attention:
position encoding and attention masking.

For position encoding, each piece is parallel to
each other and uses its own position counting mech-
anism. If the pieces have different lengths, we take
the maximum length as the target context length
and evenly distribute the position encoding of the
tokens within each piece accordingly.2 For ex-
ample, assume we have three context pieces with
lengths of L1, L2, and L3. With full attention,
we need to arrange them sequentially and assign
positions ranging from 0 to L1 + L2 + L3 to all
the tokens. With parallel encoding, we no longer
need a specific order among different pieces; each
piece independently counts its own tokens’ posi-
tions starting from 0 to the target length.

For attention masking, we design special atten-
tion masks in accordance with the parallel encod-
ing scheme. Each token within a context piece is
restricted to attend only to the preceding tokens
within this piece but not to other pieces. However,
the final query tokens can attend to all preceding
tokens across all context pieces to aggregate infor-
mation. This approach results in inherently sparse
attention calculations, for which sparse attention

2We explore models that utilize RoPE (Su et al., 2024),
which allows for the assignment of real-valued position IDs.
There can be other options for position encoding, including us-
ing the harmonic mean as the target length (Merth et al., 2024)
or retaining natural integer counting (Ratner et al., 2023). Our
choice is based on its overall good performance in preliminary
experiments with our settings.

tools, such as FlexAttention3 and block-sparse at-
tention in FlashAttention (Dao et al., 2022), can be
used to enhance efficiency.

2.3 Setups
Task. We experiment with a variety of language
tasks to evaluate the influence of parallel context
encoding, including LM, ICL, RAG and synthetic
recall tasks. For LM, we use the PG19 (Rae
et al., 2020) and Proof-Pile (Azerbayev et al., 2023)
datasets for evaluation. For the remaining tasks,
we take the corresponding datasets from the HEL-
MET benchmark (Yen et al., 2024b) and follow its
processing protocols. Specifically, these include
TREC-coarse and TREC-fine (Li and Roth, 2002),
BANKING77 (Casanueva et al., 2020), CLINC150
(Larson et al., 2019) and NLU (Liu et al., 2019) for
ICL; Natural Question (Kwiatkowski et al., 2019),
TriviaQA (Joshi et al., 2017), HotpotQA (Yang
et al., 2018) and PopQA (Mallen et al., 2023) for
RAG; and three typical needle-in-a-haystack tasks
(Kamradt, 2023) from RULER (Hsieh et al., 2024)
as well as a JSON retrieval task (Liu et al., 2024a)
for synthetic recall.

Evaluation. For all tasks, we assume that an in-
put instance consists of a context and a query. The
context can be further split into sub-pieces, for
which we can apply parallel encoding, and the
query can always attend to all previous contexts.
For non-LM tasks, this scheme is natural: each
instance already contains a query and a context
consisting of a collection of items (documents in
RAG, demonstrations in ICL, and haystack items
in synthetic recall). Note that for parallel encoding,
we can group multiple items into one sub-piece
when we want a parallel degree (i.e., the number

3https://pytorch.org/blog/flexattention/
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Figure 2: The scales of attention logits (averaged absolute values) and key states (L2 norm) with different methods.
The irregularities of these scales may explain why attention entropy is higher with parallel context encoding.

of parallel sub-pieces) that is smaller than the num-
ber of available items. For LM, we simulate this
scheme by designating the final 1K tokens in a text
segment as the query. The preceding tokens are
considered as the context and are evenly divided
into sub-pieces for parallel encoding. To evaluate
the performance, we measure the perplexity (PPL)
of the query tokens for LM. For other tasks, we fol-
low HELMET and measure substring exact match
for RAG and synthetic recall, and accuracy for ICL
by comparing the model’s generated output (with
greedy decoding) to the gold answers.

Model. We use LLAMA-3.1-8B as the primary
model in our main experiments. Results from
other models, including the INSTRUCT version,
MISTRAL-7B-V0.3 and QWEN2-7B, exhibit simi-
lar overall trends and are detailed in Appendix A.
These models share a similar architecture design
with RoPE-based positional encoding, which is
adaptable and facilitates modifications for parallel
encoding. Our experiments utilize the pre-trained
models as they are, without any fine-tuning. How-
ever, modifications to the internal attention layers
are necessary, which is why we cannot evaluate
closed-source LLMs.

3 Attention Entropy as an Indicator of
Irregularities

Naively applying parallel encoding leads to
poorer performance. Table 1 presents the main
results of directly applying parallel context encod-
ing to different tasks. Across all tasks, the direct
application leads to worse results, and the perfor-
mance degradation becomes more pronounced as
the parallel degree increases. Notably, we can ob-
serve a dramatic decline for synthetic recall tasks:
from nearly perfect accuracy with full attention to
nearly complete failure when the context is split
into tens of sub-pieces. This outcome is some-

3.0 3.5 4.0 4.5 5.0 5.5
Attention-Entropy

1.6

1.8

2.0

2.2

2.4

2.6

Lo
g-

PP
L

LM-4K
LM-8K
LM-16K

Figure 3: An illustration of the correlations between
model performance and attention entropy (with the LM
task and LLAMA-3.1-8B).

what expected, as LLMs are trained with full atten-
tion and are thus unaccustomed to parallel contexts.
This suggests that there could be some irregulari-
ties in the internal states of LLMs that are likely
causing this failure.

Attention entropy can be an indicator of irregu-
larities. Inspired by recent studies in LLM length
extrapolation (Han et al., 2024), we examine and
compare the attention values of different context
encoding schemes. In length extrapolation, it is in-
tuitive that longer sequences result in higher atten-
tion entropy values. Interestingly, we also observe
irregularly high attention entropy for the query to-
kens when attending to parallel contexts. The lower
part of Figure 1 shows a typical example: it shows
the averaged attention entropy values for the PG19
LM task (4K) with LLAMA-3.1-8B4 and a parallel
degree of four. It demonstrates that when attend-
ing to parallel contexts, the attention entropy is
much higher than that with vanilla full attention.
Higher entropy usually denotes a higher level of un-

4Results are averaged over all layers and heads. Results
with other models and tasks show similar patterns.
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certainty and confusion, which might explain why
LLMs struggle to accurately retrieve information
from the parallelly encoded contexts. Figure 3 il-
lustrates the relationship between attention entropy
and model performance, revealing strong correla-
tions (PEARSONR≈0.95) between them.

Irregularly high entropy can be attributed to
irregularities in hidden state scales. We further
investigate5 the causes of irregularly high attention
entropy. Firstly, we examine the scales of attention
logits – the input to the attention softmax opera-
tion. As shown in the left sub-figure of Figure 2,
we again find irregularities: the averaged absolute
values of attention logits are smaller with paral-
lel encoding. To examine what causes the irregu-
lar logit scales, we further inspect the key states
– the inputs to the MATMUL operation that pro-
duces the attention logits. As illustrated in the right
sub-figure of Figure 2, the norm of the key states
generally increases along the sequence dimension.
With parallel context encoding, where the context
pieces are encoded individually, the key states have
smaller norms than those in full attention. Espe-
cially, the initial tokens in each piece, which are
known as sink tokens (Xiao et al., 2024), have dra-
matically smaller norms (Gu et al., 2024). While
it would be interesting to further investigate the
cause of the irregular hidden state patterns, we find
that this involve complex interactions with various
Transformer layers, such as LayerNorm and MLP;
a complete explanation of this phenomenon would
require a deeper understanding of the underlying
working mechanisms of Transformers, which we
leave to future exploration.

4 Reducing Entropy with Attention Sinks
and Selective Attention

4.1 Methods

Our prior analysis indicates a strong correlation
between model performance and attention entropy.
However, correlation does not imply causation. To
investigate whether the irregular attention entropy
is a key factor of performance degradation, we
adopt two straightforward methods to adjust the
attention entropy, attention sinks and selective at-
tention, as depicted in Figure 4.

5For this analysis, we again average over all the layers
and heads. Note that, for these scales, we observe larger
variations among different heads than those in the entropy
analysis. Nevertheless, we think that the averaged results can
still meaningfully provide an overall explanation.
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Figure 4: Illustrations of our methods to reduce atten-
tion entropy: adding shared attention sinks (Sink) and
adopting selective attention (SEL).

4.1.1 Attention Sinks

Recent studies on attention sinks have demon-
strated that initial tokens significantly influence
the internal dynamics of Transformers (Xiao et al.,
2024; Han et al., 2024; Gu et al., 2024). As shown
in Figure 2, we also observe that the sinking to-
kens exhibit abnormal hidden state scales, poten-
tially leading to irregular attention entropy. When
naively applying parallel context encoding, each
sub-piece contains its own sinks, which are sub-
sequently attended to by later query tokens. The
model has never encountered such multi-sink pat-
terns in LM training and thus produces irregular
hidden states. To mitigate this problem, we prepend
a shared prefix to all the context sub-pieces to elim-
inate attention sinks inside each sub-piece. Inter-
estingly, preliminary experiments indicate that the
specific content of the shared prefix is not crucial;
even adding tokens of linebreaks can be effective,
indicating that their main functionality is to absorb
unneeded attention values. Without loss of general-
ity, we manually write simple instructions6 as the
shared prefixes.

The impact of incorporating shared attention
sinks can be examined by analyzing LM’s internal
states. As shown in Figure 2, attention sinks can
avoid the extremely irregular tokens in each sub-
piece (the original sink tokens) and lead to higher
attention logit values, which lead to lower attention
entropy as depicted in Figure 1. As discussed in
the following subsection, this can indeed enhance
performance, suggesting that shared attention sinks
can help the model to be more familiar with the
hidden state patterns of parallel context encoding.

6For LM, we use “Given the following partial context,
predict the next sequence of words:”; for other tasks, we
use “Given the following contexts, answer the final question
accordingly:”.
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Algorithm 1 Selective Attention.
Input: Original attention probability tensor pin.
Output: Modified attention probability tensor pout.

1: sgroup ← group_key(pin) ▷ Obtain grouped scores
2: isel ← top_k(sgroup) ▷ Group selection
3: m ← expand_mask(isel) ▷ Expand SEL mask
4: pm ← pin ·m ▷ Apply mask
5: pout ← pm/pm.sum(−1) ▷ Re-normalization
6: return pout

4.1.2 Selective Attention
An alternative method to reduce attention entropy
is to directly sharpen the attention distribution
through hard selection. Specifically, we group the
context tokens according to the splitting of the par-
allel sub-pieces. A sub-piece score is then calculate
for each group, followed by a top-K selection pro-
cess for each attention operation. For instance, in
the scenario of four context pieces as depicted in
Figure 4, we select the top-2 scored sub-pieces
and exclude the remaining two from the attention
calculation. As shown in Figure 1, this selective
mechanism can directly reduce entropy.

The overall procedure is outlined in Algorithm 1.
It can be easily understood by examining the shapes
of the intermediate tensors.

• Input. The input attention probability tensor pin
has the shape of [Nlayer, Nhead, Lquery, Lkey].

• Grouping. We first compute the group score
for each sub-piece along the “Key” dimension:
each group has a piece of attention probabilities,
which are reduced into one group score. We use
the sum of the top-5 values7 as the reduction func-
tion, which is found to be better than using sum
or average. Assuming there are P sub-pieces, the
final group score sgroup will have the shape of
[Nlayer, Nhead, Lquery, P ].

• Selection. The selection is performed along the
group dimension, where only the top-K8 scored
groups are selected as valid. We obtain the se-
lected group indexes isel, which has the shape of
[Nlayer, Nhead, Lquery,K].

• Masking. The selected indexes are expanded
to obtain the selection mask over the original
tokens. Tokens within parallel contexts that do
not belong to any selected groups will be masked
out. This mask m has the same shape as pin.

7Preliminary experiments indicate that the results are not
very sensitive to the number of top values used in this step.

8We choose K=2 as the default value since earlier results
(see Table 1) demonstrate that using two parallel contexts does
not significantly impact the outcomes.

• Output. Finally, the mask m is applied to the
input probability tensor (attention weights), and
the final output attention probability tensor is
obtained after a final re-normalization step to
ensure that each row sums up to one.

Between the grouping and selection step, an op-
tional reduction operation can be performed to
aggregate information among tokens, heads or
even layers. For example, if aggregating over
the query-token dimension, sgroup is reduced from
[Nlayer, Nhead, Lquery, P ] to [Nlayer, Nhead, 1, P ].
This reduction is useful in scenarios where the
most relevant information comes from the same
sub-piece for all tokens in the current query. If
aggregating over heads, it can help to identify the
most salient information-seeking head, such as the
retrieval head (Wu et al., 2024). A more aggressive
reduction can be performed across the first three
dimensions, reducing the group score to [1, 1, 1, P ],
which is exactly the same as a retrieval procedure.
Notice that if we choose the layer dimension for
aggregation,9 we need to forward the model twice
since attention scores at later layers are not avail-
able when calculating previous layers; for other di-
mensions, the selective attention modification can
be applied immediately after each attention score is
calculated. We again use the sum of top-5 values as
the reduction function to identify the most salient
attention scores.

We do not apply aggregation for the LM task
since it often requires diverse information from
their contexts; for other tasks where there are clear
queries and information sources, we reduce on the
head and query dimensions by default, which is
found to perform well overall. We provide further
analyses on the specifications of selection attention
for different tasks in §4.3.1.

4.2 Main Results
Figure 5 illustrates the effectiveness of the entropy
reduction methods (with LLAMA-3.1-8B and 8K
lengths). The overall trends are consistent across
different tasks. First, both shared sink tokens and
selective attention can reduce attention entropy and
enhance performance compared to the naive paral-
lel scheme, especially with higher parallel degrees.
Additionally, these two methods impact attention

9For other cases (without layer aggregation), this operation
will bring only slight overhead, since we incrementally apply
the selection mechanism for each layer (first performing soft-
max to obtain the attention scores, then performing selection,
and finally re-normalizing).
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Figure 5: Results of entropy reduction methods (with LLAMA-3.1-8B and 8K lengths). The x-axis denotes the
parallel degree P . The upper figures illustrate the model’s performance: PPL for LM (the lower the better) and
Accuracy or SubEM for other tasks. The lower figures denote the averaged attention entropy over the query tokens.
Additional results for more models and settings are presented in Appendix A.

entropy differently: with sinks, the entropy is lower
than the naive scheme, but still grows larger than
that of full attention (P=1); with selective attention,
the entropy decreases and can sometimes become
even lower than that of full attention. Lastly, the
benefits of these methods vary depending on the
task. Selective attention is more helpful for RAG
and synthetic recall tasks, which is intuitive be-
cause of the retrieval nature of these tasks. On the
other hand, attention sinks seem to be more ben-
eficial for ICL tasks, since these tasks may need
information from more demonstration examples
than our default selective top-K value (K=2). Com-
bining both techniques offers a balanced approach
and yields overall effective performance.

4.3 Analyses

4.3.1 Variations on Selection Attention
We provide detailed ablation studies on various
choices in the selection attention procedure. Since
there are no clear query tokens in the LM task, our
analysis primarily focuses on the other three tasks.
We consider a typical scenario as the case study:
using LLAMA-3.1-8B and 8K lengths, and adopt-
ing a difficult parallel degree of P=64. Firstly, we
start with our default setting of aggregating over
the Head and Token dimensions (denoted as “HT”),
and vary the K value in sub-piece top-K selection
process. The results indicate that the optimal set-

ting varies by task: synthetic recall tasks benefit
from a small K value, since they require precise
information from a few pieces, while ICL10 and
RAG perform better with slightly larger K values,
since additional context information can be helpful.
Next, we examine different ways of information
aggregation (with TopK=5 for ICL and RAG, and
TopK=2 for synthetic tasks). Once again, differ-
ent tasks exhibit distinct patterns: aggregating over
all layers, as in a retrieval setting, yields the best
results for RAG, layer-wise selection is more effec-
tive for synthetic tasks, and query-level selection
is not crucial for ICL. While a universal and con-
sistent method that performs well across all tasks
would be ideal, achieving this may be difficult and
costly. One advantage of our method is its flexibil-
ity, allowing dynamic adjustment of configurations
to suit the specific nature of each task.

4.3.2 Effects of Value-only Parallel Encoding

In our experiments, we mainly examine the atten-
tion patterns and methods to reduce attention en-
tropy. In parallel context encoding, the value states
are also influenced. To investigate the impact of

10Breaking down on ICL tasks, we further find some pat-
terns: for example, for coarse-grained TREC (6 labels), the
performance of “K=1” is closer to that of the best performing
“K=5” (0.45 vs 0.48), while for other ICL tasks where there
are tens of labels, “K=1” usually lags behind for more.
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ICL RAG Synthetic

TopK=1 26.00 45.75 21.56
TopK=2 33.00 48.50 24.88
TopK=5 36.00 48.75 14.69
TopK=10 28.60 44.50 5.25

No Aggr. 35.40 42.75 17.62
Aggr.=T 36.20 45.00 21.00
Aggr.=HT 36.00 48.75 24.88
Aggr.=LHT 22.40 49.50 17.31

Table 2: Ablation studies on selection attention (with
LLAMA-3.1-8B, 8K lengths and P=64). “TopK” de-
notes how many sub-pieces to select for each attention,
“Aggr.” means the dimensions on which we apply aggre-
gation (Layer, Head or Token).

value states, we consider an oracle setting11 where
we replace the key states with those from full atten-
tion encoding; in this way, we have a mixed setting
of value-only parallel encoding. Figure 6 illustrates
the results. Except for LM, using oracle key states
does not always perform better than our methods,
indicating that value states also play an important
role in contextual encoding.

5 Related Work

Parallel Context Modeling. Recent research has
explored parallel context encoding for various tasks.
Ratner et al. (2023) present parallel context win-
dow to extend LLMs for handling longer contexts,
which is beneficial for ICL and RAG tasks. Sim-
ilarly, Hao et al. (2022) scale ICL to accommo-
date thousands of demonstrations with a similar
approach. Yen et al. (2024a) train an additional con-
text encoder and cross-attention layers to achieve
enhanced context encoding, albeit at a higher com-
putational cost. Furthermore, parallel encoding
has been applied to RAG (Merth et al., 2024; Sun
et al., 2024; Lu et al., 2024), where the retrieved
documents are naturally parallel to each other. Be-
yond encoding, the decoding process can be also
made parallel, as explored in non-autoregressive
generation (Stern et al., 2018; Ghazvininejad et al.,
2019) and more efficient LLM prompting tech-
niques (Ning et al., 2024).

Efficient Attention. In addition to parallel con-
text encoding, there has been considerable work on
the topics of efficient attention (Tay et al., 2022).
Adopting sparse attention patterns is a typical ap-
proach that selects certain tokens in the attention
mechanism with either fixed (Child et al., 2019;

11We’ve also tried only replacing value states, which leads
to significantly worse and meaningless results.
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Figure 6: Performance with the oracle setting of value-
only parallel encoding.

Beltagy et al., 2020) or learned (Kitaev et al., 2020;
Roy et al., 2021; Gupta et al., 2021) patterns. Par-
allel context encoding can be viewed as a special
form of sparse attention, which enhances block
sparsity. Another line of work focuses on efficient
approximation of full attention using linear atten-
tion techniques (Katharopoulos et al., 2020; Choro-
manski et al., 2021; Peng et al., 2021). Recently,
with the advent of LLMs, there has been a renewed
interest in efficient attention mechanisms for Trans-
former models to reduce computational and mem-
ory costs. Prompt or KV-cache compression tech-
niques have been widely investigated, and the ap-
proaches mainly include training special compress-
ing tokens (Mu et al., 2023; Chevalier et al., 2023;
Ge et al., 2024b; Qin et al., 2024; Mohtashami and
Jaggi, 2024) or dynamically selecting tokens at in-
ference time (Zhang et al., 2023; Liu et al., 2024b;
Ge et al., 2024a; Li et al., 2024). Our attention se-
lection approach shares similar spirits to the latter
strategies, though we perform the selection over
context blocks.

Attention Analysis. Since the introduction of
self-attention in Transformers, analyzing the roles
the attention mechanism plays has been a popular
topic (Clark et al., 2019; Jain and Wallace, 2019;
Serrano and Smith, 2019; Wiegreffe and Pinter,
2019; Bibal et al., 2022). The most relevant work
to this study includes findings on attention sinks
and specialized attention heads. Attention sinks
refer to the initial tokens that attract most of the
attention weights in many heads, and they have
been utilized to extend LLMs to longer context
lengths (Xiao et al., 2024; Han et al., 2024; Gu
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et al., 2024). These works also inspire our analyses
on attention entropy and hidden state norms. Wang
et al. (2024) also find that adding “sink” tokens
improves performance from the perspective of pre-
cision. Additionally, it has also been shown that
there can be specialized attention heads that per-
form special functions, such as syntactic heads for
encoding syntactical relations (Clark et al., 2019),
retrieval heads for collecting information from long
contexts (Wu et al., 2024), and induction heads that
may constitute the mechanism for ICL (Olsson
et al., 2022). Our reduction operations in selective
attention are also based on the hypothesis that there
is a small portion of information-seeking heads that
can collect the most salient features from the con-
texts. Moreover, (Attanasio et al., 2022) propose
Entropy-based Attention Regularization to mitigate
bias by penalizing tokens with low self-attention
entropy, demonstrating the usefulness of control-
ling attention entropy in a different scenario.

6 Conclusion

In this work, we present a detailed analysis of
parallel context encoding for full-attention-based
LMs without any fine-tuning. We demonstrate that
naively applying parallel encoding leads to notice-
ably worse performance, particularly as the parallel
degree increases. Through our analyses, we dis-
cover a strong correlation between irregularly high
attention entropy and performance degradation. We
adopt two approaches to reduce the entropy, which
can help mitigate the performance gaps. We hope
that our analyses and results can shed light on a
deeper understanding and improvement of attention
mechanisms.

Limitations

This work has several limitations. First, we pri-
marily use the pre-trained LM as it is without ap-
plying any fine-tuning. Clearly, fine-tuning could
mitigate the irregularities in parallel encoding and
enhance performance. However, it will bring ex-
tra computational costs, and selecting appropriate
fine-tuning datasets would require careful consid-
eration to maintain the model’s general capabil-
ities. Second, we mainly focus on performance
analyses in this work, while leaving efficient im-
plementation and related analyses to future work,
which would require kernel-level implementations
to achieve speed improvements. Finally, we have
not found a universal and consistent method to

fully address the performance gaps between full
attention and parallel context encoding schemes.
Further investigation and the incorporation with
lightweight fine-tuning may help to close these
gaps.

Ethics Statement

This research primarily concentrates on analyses
of language models. Consequently, we have not
implemented any extra aggressive filtering tech-
niques on the text data beyond the preprocessing
done by the original dataset sources. We have also
employed open-source language models in their
existing form, without further addressing aspects
such as enhancing safety and debiasing. As a re-
sult, the text data and models we used may contain
issues related to offensiveness, toxicity, fairness, or
bias that we have not identified, as these concerns
are not the main focus of our study. Apart from
these considerations, we do not foresee any addi-
tional ethical concerns or risks associated with our
work.
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A Additional Results

In the appendix, we provide several additional results:

• Table 3 and 4 show the main results of parallel context encoding using MISTRAL-7B-V0.3 and
QWEN2-7B, whose patterns are similar to LLAMA-3.1-8B as shown in Table 1.

• Figure 7 presents the correlations between model performance and attention entropy for other tasks,
and the patterns are similar to those in the LM task as shown in Figure 3.

• Figure 8, 9, 10, 11, 12 and 13 illustrate more results of entropy reduction methods in different settings.
The overall trends are similar to those in Figure 5.

LM (PPL↓) ICL (Acc↑) RAG (SubEM↑) Synthetic (SubEM↑)
4K 8K 16K 4K 8K 16K 4K 8K 16K 4K 8K 16K

Full 5.00 4.85 4.73 48.00 55.20 68.60 56.75 55.25 56.50 98.31 97.44 89.62

P=2 5.17 5.04 4.92 33.40 50.20 63.00 55.75 53.00 51.25 89.50 87.19 85.50
P=4 5.43 5.33 5.26 19.20 38.20 57.00 50.50 47.25 44.50 64.69 71.19 65.69
P=8 5.88 5.84 5.83 11.00 23.00 44.20 44.00 40.75 39.00 16.06 16.31 18.31
P=16 6.70 6.97 7.35 6.80 10.60 22.00 37.75 34.00 30.00 1.31 0.75 0.56
P=32 8.55 10.09 11.96 6.00 6.60 8.00 34.00 20.75 14.25 0.38 0.06 0.12
P=64 11.45 15.24 20.65 3.60 4.20 6.40 34.00 8.50 2.25 0.00 0.00 0.00

Table 3: Comparisons between full-attention and naive parallel encoding with MISTRAL-7B-V0.3. Notations are
the same as those in Table 1.

LM (PPL↓) ICL (Acc↑) RAG (SubEM↑) Synthetic (SubEM↑)
4K 8K 16K 4K 8K 16K 4K 8K 16K 4K 8K 16K

Full 7.33 7.27 7.01 29.60 42.80 53.20 63.50 66.00 60.75 68.44 60.69 67.50

P=2 7.53 7.50 7.25 34.20 35.20 51.20 62.00 57.50 57.00 67.88 41.06 37.06
P=4 8.15 7.72 7.71 23.20 34.60 44.40 58.25 54.25 51.00 25.38 45.00 13.88
P=8 8.51 8.97 8.13 17.80 28.20 45.60 53.00 48.25 48.50 4.12 3.56 14.06
P=16 9.23 9.62 10.56 12.20 17.40 31.00 46.25 39.75 38.75 0.31 0.50 1.25
P=32 10.40 10.92 11.96 6.40 10.20 21.40 42.75 38.00 33.25 0.00 0.00 0.00
P=64 12.12 13.09 14.67 4.00 5.60 11.40 42.75 29.75 25.50 0.00 0.00 0.00

Table 4: Comparisons between full-attention and naive parallel encoding with QWEN2-7B. Notations are the same
as those in Table 1.
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Figure 7: An illustration of the correlations between model performance and attention entropy on more tasks (with
LLAMA-3.1-8B). Notations are similar to those in Figure 3.
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Figure 8: The influence of the entropy reduction methods (with MISTRAL-7B-V0.3 and 8K lengths). Notations are
the same as those in Table 5.
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Figure 9: The influence of the entropy reduction methods (with QWEN2-7B and 8K lengths). Notations are the
same as those in Table 5. Note that the “Sink” method seems to be less effective for Qwen, probably because it is
less influenced by sink tokens, as evidenced by the less entropy reduction brought by “Sink”.

9853



1 2 4 8 16 32 64

6

7

8

9

LM-Performance

1 2 4 8 16 32 64

10

20

30

40

50

ICL-Performance

1 2 4 8 16 32 64
45

50

55

60

RAG-Performance

1 2 4 8 16 32 64
0

20

40

60

80

100
Synthetic-Performance

1 2 4 8 16 32 64

2.5

3.0

3.5

4.0

4.5

5.0
LM-Att-Entropy

1 2 4 8 16 32 64

2

3

4

5

ICL-Att-Entropy

1 2 4 8 16 32 64
2.0

2.5

3.0

3.5

4.0

RAG-Att-Entropy

1 2 4 8 16 32 64
2.0

2.5

3.0

3.5

4.0

4.5

Synthetic-Att-Entropy

Full Parallel P+Sink P+SEL P+Both

Figure 10: The influence of the entropy reduction methods (with LLAMA-3.1-8B and 4K lengths). Notations are
the same as those in Table 5.
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Figure 11: The influence of the entropy reduction methods (with LLAMA-3.1-8B and 16K lengths). Notations are
the same as those in Table 5.
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Figure 12: The influence of the entropy reduction methods (with LLAMA-3.1-8B-INSTRUCT and 8K lengths).
Notations are the same as those in Table 5.
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Figure 13: The influence of the entropy reduction methods using serialized position encoding (with LLAMA-3.1-8B
and 8K lengths). Notations are the same as those in Table 5.
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