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Abstract

With the advent of neural language models, the
performance of code generation has been signif-
icantly boosted. However, the problem of repe-
titions during the generation process continues
to linger. Previous work has primarily focused
on content repetition, which is merely a frac-
tion of the broader repetition problem in code
generation. A more prevalent and challenging
problem is structural repetition. In structural
repetition, the repeated code appears in various
patterns but possesses a fixed structure, which
can be inherently reflected in grammar. In this
paper, we formally define structural repetition
and propose an efficient decoding approach
called RPG, which stands for Repetition Penal-
ization based on Grammar, to alleviate the rep-
etition problems in code generation for LLMs.
Specifically, RPG first leverages grammar rules
to identify repetition problems during code gen-
eration, and then strategically decays the like-
lihood of critical tokens that contribute to rep-
etitions, thereby mitigating them in code gen-
eration. To facilitate this study, we construct
a new dataset CodeRepetEval to comprehen-
sively evaluate approaches for mitigating the
repetition problems in code generation. Exten-
sive experimental results demonstrate that RPG
substantially outperforms the best-performing
baselines on CodeRepetEval dataset as well
as HumanEval and MBPP benchmarks, effec-
tively reducing repetitions and enhancing the
quality of generated code. 1

1 Introduction

Code generation seeks to automatically produce
code that aligns with user intents, which is a re-
search hotspot in the fields of artificial intelligence,
natural language processing, and software engi-
neering (Le et al., 2022; Chen et al., 2023; Liu
et al., 2023). In recent years, the emergence of

1Our code and dataset are avaliable at https://github.
com/LYC127/RPG

neural language models has shown remarkable ad-
vancements in code generation (Chen et al., 2021;
OpenAI, 2023). However, even well-trained large
language models (LLMs) may suffer from repe-
tition problems, which hurts the code generation
quality of LLMs substantially (Liu et al., 2024).

Recent studies about repetition problems of
LLMs are primarily focused on content repetition
(Xu et al., 2022; Li et al., 2023a), which refers to
the results of the generation system always contain-
ing duplicate fragments (Fu et al., 2021a). How-
ever, our preliminary investigation of LLM’s repeti-
tion problem in code generation reveals that content
repetition constitutes only a minor portion of them,
as shown in Figure 1. In contrast, a predominant
form of repetition in the generated results involves
the repeated occurrence of similar codes with fixed
structural patterns, which we term ‘structural repeti-
tion’2. Distinct from content repetitions, the pattern
of different structural repetitions varies markedly
(e.g., structural repetitions I-IV), making structural
repetitions hard to detect and handle. Given the
diversity and complexity of structural repetitions,
previous approaches tailored for content repetitions
are insufficient to address them effectively. There-
fore, it is necessary and significant to explore the
structural repetitions in code generation.

In this paper, we propose an effective decoding
approach RPG: Repetition Penalization based on
Grammar, to alleviate repetition problems of LLMs
in code generation. Considering different code
fragments with the same structural patterns can be
represented by identical grammar rules, RPG em-
ploys the pushdown automaton built on grammar
rules to detect repetition problems during the gener-
ation process, and then strategically decreases the
likelihood of key tokens that contribute to repeti-

2Generally, in code generation, content repetition can be
regarded as a special type of structural repetition. However, in
this paper, structural repetition is defined to exclude content
repetition for clarity and distinction.
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...
if n < 0:

return []
elif n == 0:

return []
elif n == 1:

return []
elif n == 2:

return [2]
elif n == 3:

return [2, 3]
elif n == 4:

return [2, 3, 5]
...

elif n == 8:
return [2, 3, 5, 7, 11, 13, 17]

elif n == 9:
return [2, 3, 5, 7, 11, 13, 17, 19]

elif n == 10:
return [2, 3, 5, 7, 11, 13, 17, 19, 23]

...

...
print(will_it_fly([1, 2], 5))
print(will_it_fly([3, 2, 3], 5))
print(will_it_fly([3, 2, 3], 1))
print(will_it_fly([3, 2, 3], 9))
print(will_it_fly([3], 5))
print(will_it_fly([1, 2, 3], 5))
print(will_it_fly([1, 2, 3], 1))
print(will_it_fly([1, 2, 3], 9))
...

...
assert special_factorial(4) == 288
assert special_factorial(5) == 120
assert special_factorial(6) == 720
assert special_factorial(7) == 5040
assert special_factorial(8) == 40320
assert special_factorial(9) == 362880
assert special_factorial(10) == 3628800
...

...
def count_distinct_characters(string: str) -> int:

...

def count_distinct_characters_2(string: str) -> int:
...

def count_distinct_characters_3(string: str) -> int:
return len(set(string.lower(

Structural Repetition I

Structural Repetition II Structural Repetition IVContent Repetition

Structural Repetition III

...
# Hint: use the is_prime function
# Hint: use the is_prime function
# Hint: use the is_prime function
# Hint: use the is_prime function
# Hint: use the is_prime function
# Hint: use the is_prime function
...

The repetition prevents the subsequent 
generation of functionality

Generation does not terminate properly resulting 
in compilation errors

Reuse the inputs of the equivalent class to 
generate meaningless and endless checks

Max. generation length

Stuck in wrong 
pattern, generate
wrong assertion

Figure 1: Examples of repetition problems in code generation, collected from the well-trained LLMs, e.g., CodeL-
lama (Rozière et al., 2023) and ChatGPT (OpenAI, 2022) (Left). The statistical percentage of two repetition forms
occurs in the generated code of LLMs (Right).

tions. RPG offers two main benefits: 1) it curtails
the endless generation of meaningless, repetitive
code, thereby saving tokens and time-consuming;
2) it realigns the LLMs’ generation back to the cor-
rect generation path, enhancing the quality of code
generation. Moreover, we construct a new dataset,
named CodeRepetEval, for evaluating approaches
to mitigate the repetition problems in code genera-
tion. Extensive experimental results and analyses
verify the effectiveness and generality of RPG.

Our main contribution can be summarized as
fourfold. 1) We first formally define structural rep-
etitions, which are more prevalent than content rep-
etitions in code generation. 2) We present RPG, a
novel decoding approach that leverages pushdown
automaton to identify and mitigate repetitive prob-
lems in code generation from grammar perspective.
3) We construct CodeRepetEval dataset covering
three scenarios, with data derived from artificial
synthesis, code generation benchmarks, and real-
world repositories, to facilitate subsequent research
for repetitive problems in code generation. 4) RPG
substantially outperforms the best-performing base-
lines in various scenarios, which alleviates both
structural and content repetitions, and achieves bet-
ter code generation quality.

2 Motivation Example

The repetition problem in code generation remains
an underexplored challenge, usually resulting in re-
dundancy and errors. Figure 2 showcases an exam-
ple where LLMs generate the code containing struc-
tural repetitions. This generated code is plagued
by repetitions with the fixed structural pattern start-
ing with ‘elif’. In each repetition, LLMs generate
different conditions following the start token ‘elif’

and varying statements under these conditions. De-
spite the content of each repetition differing, both
the probability of the start token and the average
probabilities of all tokens in each repetition exhibit
an upward trend as the number of repetitions in-
creases, showing a self-reinforcement effect as the
right side of Figure 2. This phenomenon means that
the start token in each repetition will serve as an
anchor point. As the model continues to generate
code, it relies on this anchor, reinforcing its choice
and making it increasingly difficult to diverge from
the structural repetition. This ultimately leads to
the subsequent generation getting stuck in endless
and meaningless (or even erroneous) repetitions.

According to principles of compilation (Alfred
et al., 2007), we discover that massive patterns
of structural repetition are inherently reflected in
grammar, i.e., the potential positions where code
can be repeated are determined by explicit gram-
mar rules. For example, the structural repetitions of
the code in Figure 2 adhere to (‘elif ’ test ‘:’ suite)*
within if_stmt of grammar, where ∗ denotes that its
preceding expression can be repeated zero or more
times. Although the grammar rules impose no limit
on the number of repetitions, human-written code
does not repeat endlessly, with the higher the num-
ber of repetitions, the lower the likelihood of their
occurrence. Therefore, the prediction confidence
of further repetition ought to decrease with a grow-
ing number of repetitions, rather than exhibiting
the self-reinforcement usually observed in LLMs.

In this paper, we first formally define structural
repetitions, and propose RPG to effectively detect
and alleviate them in code generation, thereby en-
hancing the quality of generated code for LLMs.
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Grammar  if_stmt: 'if' test ':' suite ('elif' test ':' suite)* ['else' ':' suite]

def count_up_to(n):
"""Implement a function that takes an 

non-negative integer and returns an array of 
the first n integers that are prime numbers 
and less than n. 

"""

if n < 0:
return []

elif n == 0:
return []

elif n == 1:
return []

elif n == 2:
return [2]

elif n == 3:
return [2, 3]

elif n == 4:
return [2, 3, 5]

elif n == 5:
return [2, 3, 5, 7]

···

Structural Repetition

Figure 2: A case of structural repetition generated by CodeLlama with temperature = 0, where the dashed-underline
text is the prompt (Left). The corresponding grammar rules of structural patterns (Top). LLM’s probabilities of
generated tokens in each repetition (Right).

3 Definition of Structural Repetition

Given a token sequence X = [x1, x2, · · · , x|X|],
where xi denotes the i-th token and |X| rep-
resents the length of X . We denote Xp:q =
[xp, xp+1, · · · , xq], where (1 ≤ p < q ≤ |X|), as
a continuous subsequence of X . Given a mapping
function G to represent the underlying structure of
X , the mapped sequence R̂ = G(X) is obtained by
applying G to X , where R̂ = [r̂1, r̂2, · · · , r̂|R̂|]. In
this paper, G indicates the context-free grammar3,
which can be defined as a quad tuple (N,Σ, P, S),
where N is a set of non-terminal symbols, Σ is a
set of terminal symbols, representing the basic sym-
bols of the language, P is a set of production rules,
with each rule in the form A → β, where A ∈ N
and β is a sequence of elements from N ∪ Σ, and
S ∈ N is the start symbol, used to begin deriva-
tions of strings.

Specifically, the generated sequence X will be
reduced in accordance with G, ensuring that the
reduction of X does not exceed the statement levels
of grammar rules, which includes twelve simple
statements and nine compound statements4. Thus,
the patterns of structural repetitions within X can

3Programming languages (such as Python, Java, C++, etc.)
belong to context-free languages, which means that they are
governed by context-free grammars.

4For instance, simple statements contain ‘expr_stmt’,
‘return_stmt’, ‘raise_stmt’, ‘import_stmt’, ‘assert_stmt’,
etc. Compound statements contain ‘if_stmt’, ‘while_stmt’,
‘for_stmt’, ‘try_stmt’, ‘funcdef’, ‘classdef’, etc. Detailed de-
scriptions can be found in Appendix F.

be defined as:

SR(X) = {R̂p:q|∃1 ≤ p < q ≤ |R̂| − q + p,

∀i ∈ [p, q], r̂i+q−p = r̂i}, (1)

where structural repetitions exist in X , if SR(X) ̸=
∅, and the elements in SR(X) represent the patterns
of structural repetitions. For example, if X denotes
the generated code in Figure 2, then R̂ would be
“· · · ‘elif’ test ‘:’ suite ‘elif’ test ‘:’ suite · · · ”.
Thus, R̂p:q can be the subsequence of R̂, i.e., “‘elif ’
test ‘:’ suite”, where ∀i ∈ [p, q], r̂i+q−p = r̂i. Note
that for the same input, G has a unique output, i.e.,
if content repetitions exist in X , the repetitions
will be preserved in G(X) as well, which implies
content repetitions can also be detected by Eq. (1).

Structural repetition negatively impacts code
generation in the following two ways: 1) it fails to
terminate properly, rendering the code uncompil-
able. As repetition persists, the generation of LLMs
becomes meaningless or incorrect gradually; 2) it
disrupts the generation of code, leading to the ab-
sence of a portion of functionality, thereby severely
hurting the quality of generated code.

4 Methodology

In this section, we will introduce RPG in detail,
including three parts, i.e., Reduction to Grammar
Rules (§ 4.1), Detection of Repetition (§ 4.2), and
Penalization of Repetition (§ 4.3).
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4.1 Reduction to Grammar Rules
In problems of structural repetition, while the forms
of repeated statements vary, their underlying gram-
mar rules demonstrate similarities. Following the
previous work (Dong et al., 2023b), we employ
the pushdown automaton (PDA) for the reduction
of generated codes into their underlying grammar
rules during code generation5. A PDA can be de-
fined as a seven tuple (Q,Σ,Γ, δ, q0, Z, F ), where
Q,Σ,Γ are finite sets representing the states, input
symbols, and stack symbols, respectively. q0 is the
initial state, z0 is the initial stack symbol, and A
is the set of accepting states, with q0 ∈ Q, z0 ∈ Γ,
and A ⊆ Q. δ : Q×(Σ∪{ϵ})×Γ → P(Q×Γ∗) is
the transition function, where ϵ denotes the empty
string, and Γ∗ represents all sequences of stack
symbols. Based on δ of PDA, we have

qt, zt = δ(qt−1, xt, zt−1), (2)

where qt is the state of t-th time step, zt is the stack
symbol of t-th time step, and xt is the generated
token of t-th time step. According to qt and zt, xt
can be reduced to its corresponding grammar rule
uniquely, which is expressed as:

x̂t = g(xt) = [qt, zt], (3)

We merge the same adjacent parts in X̂1:t =
[x̂1, x̂2, · · · , x̂t] to get the final reduction sequence
of grammar rules for xt.

R̂1:t = merge(X̂1:t), (4)

For example, multiple adjacent generated tokens
in Figure 2 belong to the same terms such as ‘test’
and ‘suite’, the adjacent ones will be merged into a
single entity for each term.

4.2 Detection of Repetition
Considering that once repetition problems arise in
code generation, they tend to persist until the end
of the generation process, we need to detect these
repetition problems as they emerge during code
generation. To detect the repetitions in R̂1:t, we
employ suffix arrays and longest common prefix
(LCP) arrays, which are efficient with the time
complexity of O(n log n) and the space complexity
of O(n). The pseudo-code for suffix arrays and the
LCP array is provided in Appendix D.

5We adapt PDA to accommodate the Byte-Pair Encoding
(BPE) (Sennrich et al., 2016) tokenization used by LLMs.
Detailed descriptions can be found in Appendix E.

Suffix Array: The suffix array is an array of in-
tegers representing the starting indices of the suf-
fixes of R̂1:t, sorted in lexicographical order. Thus,
Suf[i] points to the starting index of the i-th small-
est suffix in R̂1:t.

Longest Common Prefix Array: The LCP ar-
ray is defined such that LCP[i] is the length of the
longest common prefix between suffixes starting
at Suf[i − 1] and Suf[i] for all 1 ≤ i < n (with
LCP[0] typically set to 0 for convenience).

Using the LCP array, we identify all positions of
R̂1:t where LCP[i] > 0. These positions indicate
the presence of repetitions of length at least LCP[i].
Therefore, the repetition patterns within X1:t can
be expressed as:

Rep(X1:t) = {R̂Suf[i]:Suf[i]+LCP[i] | ∀i ∈ [1, t− 1],

LCP[i] > 0 ∧ Suf[i− 1] = Suf[i] + LCP[i]},
(5)

4.3 Penalization of Repetition
Given the identified repetitions, RPG applies a
penalization mechanism to discourage the model
from generating them in future outputs. The pe-
nalization mechanism integrates into the code gen-
eration model’s scoring function, modifying how
tokens are weighted during the generation process.

Dynamic Weight Adjustment: We define a dy-
namic weight function, Pn(·), which applies a de-
creasing factor to the score of a token based on the
frequency and recency of its associated grammar
rule in the sequence R̂1:t. The weight for each
token is adjusted as follows:

Pn(xt|x<t) = λCount(Rep(X1:t)), (6)

where x<t represents X1:t−1, λ is a decay factor be-
tween 0 and 1, and Count(Rep(X1:t)) is the count
of times the repetition patterns in Rep(X1:t) has
appeared. This exponential decay effectively re-
duces the likelihood of selecting tokens associated
with repetitive grammar rules.

Token Scoring Adjustment: During the code
generation, each token’s score is recalculated by
incorporating the dynamic weight:

s′(xt|x<t) = s(xt|x<t) · Pn(xt|x<t), (7)

where s(xt) is the original score of the token xt
provided by the model, and g(xt) is the grammar
rule associated with xt. The adjusted score s′(xt)
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influences the token selection process, guiding the
model toward less repetitive and more diverse code
generation.

Finally, our RPG approach can be defined as:

RPG(xt|x<t) = argmax
xt

s′(xt|x<t) (8)

5 Experiment Setup

In this section, we will provide the setups of our
experiments below. The detailed description of
experiment setups can be found in Appendix C.

5.1 Datasets
Considering the absence of datasets for repetition
problems in code generation, we dedicate more
than 400 hours to constructing and examining
CodeRepetEval dataset. We simulate repetition
problems in code generation covering three scenar-
ios, including artificial synthesis, code generation
benchmarks, and real-world repositories. Specif-
ically, Artificial Synthesis scenario involves 512
test samples. Each sample consists of a correct
code concatenated with its last repetition patterns
5 to 10 times. Code Generation Benchmarks
scenario comprising 512 test samples, which are
selected from the generated repetitive codes of
three LLMs (i.e., CodeLlama (Rozière et al., 2023),
DeepSeek Coder (Guo et al., 2024), CodeGen (Ni-
jkamp et al., 2023), and ChatGPT (OpenAI, 2022))
on HumanEval and MBPP benchmarks. Real-
world Repositories scenario includes 1024 test
samples, picked from the partial code in real-world
repositories, which is identified to induce repetition
problems in the generated outputs of the aforemen-
tioned LLMs. We employ CodeRepetEval to assess
the effectiveness of RPG for addressing repetition
problems in code generation scenarios.

Moreover, We also involve four public bench-
marks to evaluate the RPG’s performance in code
generation, including HumanEval (Chen et al.,
2021), MBPP (Austin et al., 2021), as well as their
extended version HumanEval-ET and MBPP-ET
(Dong et al., 2024a).

5.2 Baselines
As our approach is based on decoding that does
not require modification and training of the model,
we compare it to the four most commonly used de-
coding approaches, including Greedy Sampling,
Topk Sampling (Fan et al., 2018), Temperature
Sampling (Caccia et al., 2019), Topp Sampling
(Holtzman et al., 2020). Furthermore, we also

compare two representative baselines for address-
ing content repetition in text generation, including
Repetition Penalty (Keskar et al., 2019) for the
decoding phase and Repetition Dropout (Li et al.,
2023a) applied on the training phase. These base-
lines follow the settings in their original paper.

5.3 Metrics

We mainly use six metrics to evaluate approaches
for addressing the repetition problems in code
generation. End-of-sentence Generation Per-
centage (EGP) quantifies the frequency with
which a model successfully interrupts repetitive
sequences to conclude generation, which is de-
termined by calculating the proportion of end-of-
sentence (EOS) tokens across all samples gener-
ated by the model. TR-N is calculated to mea-
sure structural repetitions within a generated se-
quence at phrase-level, which is defined as 1.0 −
|{G(x)′|∃p∈[1,|G(x)|−n+1],G(x)′=G(x)p:p+n−1}|

|G(x)|−n+1 , where
|G(x)| means the number of elements in G(x).
It effectively quantifies the proportion of dupli-
cate n-grams present in its underlying grammar
rules, and n = 4 in this paper. In contrast, TR-S
measures structural repetitions within a generated
sequence at statement-level, which is defined as
1.0 − |unique statements in G(x)|

|statements in G(x)| . Compiler Correct-
ness Percentage (CCP) evaluates whether the gen-
erated code is compilable, which is measured by
the proportion of code samples that successfully
compile. We use Time and GenLen to verify the
approaches’ efficiency, which means the average
time of model generation and the average length of
model-generated outputs, respectively.

For HumanEval(-ET) and MBPP(-ET) bench-
marks which contain the test cases, we employ
Pass@k (Li et al., 2022) metric to measure the
functional correctness of the generated code by
executing test cases.

5.4 Implementation Details

In this paper, all experiments are conducted on an
A6000 GPU (48GB). We employ CodeLlama-7B
as our base model. The decay factor λ for the penal-
ization of repetition in RPG is set at 0.9 by default.
The maximum token length of each approach is
set to 1024 in all datasets and scenarios, except for
CodeRepetEval (real-world repository) setting to
4096. Following the previous work (Chen et al.,
2021; Rozière et al., 2023), the default temperature
for the baselines is set at 0.8. To mitigate the insta-
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bility of the model sampling, we report the average
results of five trials in the experiments.

Table 1: Comparison of RPG with commonly used de-
coding approaches and representative content repetition
baselines on CodeRepetEval dataset in three scenarios.

Approach
CodeRepetEval

EGP ↑ TR-N ↓ TR-S ↓ CCP ↑ Time ↓ GenLen

Code Generation Benchmarks
Rep_Penalty 0.721 0.374 0.425 0.413 16.88 689
Rep_Dropout 0 0.569 0.536 0.218 35.65 1024
Greedy 0 0.598 0.637 0.455 33.87 1024
Temp (t=0.1) 0.007 0.599 0.622 0.39 37.72 1019
Temp (t=0.2) 0.03 0.603 0.63 0.413 36.13 950
Temp (t=0.8) 0.578 0.423 0.441 0.433 27.13 755
Topk (k=5) 0.536 0.465 0.484 0.394 20.61 763
Topk (k=10) 0.547 0.441 0.464 0.421 29.11 752
Topk (k=30) 0.628 0.415 0.443 0.442 33.99 737
Topp (p=0.8) 0.046 0.559 0.549 0.379 35.17 995
Topp (p=0.9) 0.102 0.53 0.512 0.391 42.03 966
Topp (p=0.95) 0.114 0.508 0.518 0.399 30.99 959
RPG (Ours) 0.912 0.352 0.391 0.805 13.68 565

Artificial Synthesis
Rep_Penalty 0.679 0.624 0.521 0.467 20.91 615
Rep_Dropout 0 0.713 0.597 0.188 32.89 1024
Greedy 0 0.807 0.789 0.459 40.45 1024
Temp (t=0.1) 0.016 0.798 0.785 0.452 40.16 1010
Temp (t=0.2) 0.018 0.798 0.768 0.438 39.95 982
Temp (t=0.8) 0.522 0.613 0.519 0.433 23.30 675
Topk (k=5) 0.503 0.659 0.558 0.45 24.35 723
Topk (k=10) 0.552 0.636 0.524 0.48 22.42 661
Topk (k=30) 0.561 0.628 0.521 0.475 22.00 653
Topp (p=0.8) 0.097 0.752 0.691 0.431 37.27 946
Topp (p=0.9) 0.146 0.724 0.658 0.501 35.82 915
Topp (p=0.95) 0.201 0.681 0.637 0.454 33.19 868
RPG (Ours) 0.871 0.618 0.556 0.731 17.37 489

Real-world Repositories
Rep_Penalty 0.828 0.461 0.358 0.395 62.01 1753
Rep_Dropout 0 0.705 0.519 0.074 208.51 4096
Greedy 0 0.738 0.631 0.297 203.96 4096
Temp (t=0.1) 0.031 0.726 0.62 0.292 189.35 3997
Temp (t=0.2) 0.052 0.728 0.627 0.309 185.38 3944
Temp (t=0.8) 0.769 0.496 0.384 0.365 64.72 1926
Topk (k=5) 0.732 0.534 0.427 0.411 64.58 1937
Topk (k=10) 0.783 0.51 0.399 0.381 63.29 1911
Topk (k=30) 0.783 0.495 0.386 0.372 64.72 1940
Topp (p=0.8) 0.128 0.686 0.585 0.344 172.11 3728
Topp (p=0.9) 0.221 0.658 0.55 0.349 155.82 3443
Topp (p=0.95) 0.291 0.642 0.521 0.373 144.96 3270
RPG (Ours) 0.889 0.416 0.335 0.638 60.36 1415

6 Experimenal Results

We systematically evaluate our approach from
two main aspects. First, regarding the effective-
ness of mitigating repetition problem in code gen-
eration, we conduct multi-angle evaluations on
CodeRepetEval dataset: 1) We compare the perfor-
mance of our RPG approach with baselines in three
scenarios: Code Generation Benchmarks, Artifi-
cial Synthesis, and Real-world Repositories; 2) We
valid the effect of RPG on the base LLMs across
different series and sizes; 3) We explore the gen-
eralizability of RPG across different programming

languages (PLs). 4) We evaluate the impact of
different values of hyperparameter λ on the per-
formance of RPG. 5) We conduct a case study to
qualitatively analyze the RPG’s performance (Ap-
pendix A). Second, concerning the effectiveness
of code generation, we evaluate the RPG’s perfor-
mance compared to baselines on HumanEval(-ET)
and MBPP(-ET) benchmarks.

6.1 Repetition Mitigation

Effectiveness of RPG. As illustrated in Tables
1, we assess our RPG approach along with various
baselines on CodeRepetEval dataset. Our analy-
sis of experimental results yields several insights:
1) Enhancing the model’s confidence in its out-
put tends to improve the likelihood of gener-
ating repetitive sequences. Specifically, when
the hyperparameters for temperature, Topk, and
Top-p sampling are set to lower values, the TR-
N and TR-S metrics across the three scenarios of
CodeRepetEval dataset show poorer performance,
and the generation of EOS tokens becomes more
challenging, thereby increasing the generation time
and length of models. 2) The approaches for ad-
dressing content repetition in text generation
are not applicable to the structural repetition
problems in code generation. Although Repeti-
tion Penalty can reduce TR-N and TR-S to a certain
extent, they achieve this at the expense of gener-
ated code quality. Its generated code usually ter-
minates prematurely at a position where it should
not end. Repetition Dropout masks the content
repetitions for self-attention during training, but
it has little effect on the structural repetitions. 3)
RPG substantially outperforms other baselines
on CodeRepetEval dataset, which effectively re-
duces repetitions and enhances the quality of
the generated code. RPG achieves the best per-
formance in terms of EGP and CCP metrics on
CodeRepetEval dataset across three scenarios. For
the TR-N and TR-S metrics, RPG also achieves
the optimal performance except for Artificial Syn-
thesis scenario. This may be attributed to the fact
that although artificially synthesized prompts tend
to induce repetitions, since these prompts are not
inherently natural to the model, the model more
readily escapes these repetitions when sampling
from a smoother distribution.

Performance on different LLMs. We also con-
duct experiments for evaluating the performance of
RPG based on different LLMs across three scenar-
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Table 2: The impact of RPG using different base models
on CodeRepetEval dataset across three scenarios, where
AS, CGB, and RR donate Artificial Synthesis, Code
Generation Benchmarks, and Real-world Repositories.

Approach
AS CGB RR

TR-S ↓ CCP ↑ TR-S ↓ CCP ↑ TR-S ↓ CCP ↑
CodeLlama

Greedy 0.789 0.459 0.637 0.455 0.631 0.297
RPG 0.613 0.731 0.435 0.805 0.379 0.638

CodeGen
Greedy 0.684 0.541 0.657 0.509 0.657 0.369
RPG 0.437 0.841 0.417 0.867 0.375 0.720

DeepSeek-Coder
Greedy 0.453 0.821 0.664 0.479 0.467 0.332
RPG 0.369 0.951 0.515 0.732 0.341 0.585

Llama2
Greedy 0.528 0.758 0.508 0.597 0.542 0.477
RPG 0.422 0.917 0.427 0.912 0.383 0.764
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Figure 3: The performance of RPG applied to LLMs of
different sizes. This result is the average value across
three scenarios on CodeRepetEval dataset.

ios of CodeRepetEval dataset, as presented in Table
2. The experimental results indicate that RPG ex-
hibits consistent and significant enhancements on
different base models, highlighting the robustness
of RPG for base model selections. Moreover, we
find that training LLMs on code is likely to increase
their susceptibility to structural repetitions during
greedy sampling. Given that CodeLlama, although
fine-tuned on Llama2 for coding tasks, demon-
strates markedly worse performance in terms of
structural repetitions in code generation.

As shown in Figure 3, we observe that the rep-
etition also occurs on LLMs larger than 7B, i,e.,
CodeLlama-34B, and RPG is effective for it as well,
which demonstrates the same trends as other LLMs
evaluated in Table 1 and Table 2, indicating the
generalizability across LLMs of varying sizes.

Performance on different PLs. RPG can be ap-
plied to other PLs, requiring only their grammatical

Table 3: The performance of RPG on CodeRepetEval-
Go dataset.

Approach EGP ↑ TR-N ↓ TR-S ↓ CCP ↑ Time ↓
Greedy 0.133 0.750 0.353 0.403 38.28
Temp (t=0.8) 0.601 0.554 0.231 0.396 26.78
RPG (Ours) 0.875 0.518 0.215 0.725 21.07

rules, which are readily obtainable from the web.
To demonstrate the convenience of RPG, we have
extended it to the PL of Go, and the experimental
results are shown in Table 3. We can find that RPG
still achieved substantial improvements in all five
metrics for the PL of Go.

Influence of hyperparamter λ. In our experi-
ments, we fix the hyperparameter λ intuitively for
RPG. As shown in Figure 5 of Appendix B, we
investigate the influence of varying λ empirically
on all scenarios of CodeRepetEval dataset and Hu-
manEval and MBPP benchmarks by changing itself.
The results indicate that the reduction of the hyper-
parameter λ for RPG leads to a more pronounced
suppression of repetition problems in code genera-
tion and decreases the sampling time. Furthermore,
there is still room for further improvements with
the better hyper-parameter setup of λ.

Case Study. In Figure 4 of Appendix A, we show-
case two examples from Code Generation Bench-
marks and Real-World Repository to conduct qual-
itative analysis. In these cases, the original model
falls into a repetition trap, continuing until it ex-
hausts its token budget. Case (a) features a repeti-
tion pattern: num = [i for i in num if i != NUM],
where LLMs repeatedly generate statements that
increment NUM. Case (b)’s repetition pattern in-
volves a sequence of imports, where modules ‘at-
tention’ and ‘conv’ are endlessly added. The code
generated under these repetition patterns is utterly
nonsensical and fails completely. However, our
approach can break out of these loops, returning to
a normal code generation trajectory, and ultimately
succeeding in generating correct code.

6.2 Code Generation

In addition to CodeRepetEval dataset, we further
validate the effectiveness of RPG on widely used
code generation benchmarks, i.e., HumanEval(-
ET) and MBPP(-ET), as presented in Table 4.
The results demonstrate that RPG outperforms
both standard decoding approaches and special-
ized approaches aimed at reducing content repeti-
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Table 4: The performance of RPG on code genera-
tion benchmarks HumanEval(-ET) and MBPP(-ET). Im-
provement represents the relative improvement of RPG
compared to Greedy sampling.

Approach HumanEval HumanEval-ET MBPP MBPP-ET

Rep_Penalty 0.092 0.067 0.143 0.115
Rep_Dropout 0.139 0.116 0.167 0.141
Greedy 0.301 0.232 0.396 0.303
Temp (t=0.8) 0.226 0.183 0.305 0.218
RPG (Ours) 0.325 0.258 0.421 0.334
Improvement ↑ 8.0% ↑ 11.3% ↑ 6.4% ↑ 10.3%

tion. Although Repetition Penalty and Repetition
Dropout forcibly reduce content repetition in gen-
erated code, they also significantly impair the per-
formance of code generation. In contrast, RPG not
only effectively eliminates both content and struc-
tural repetition, but also enhances the accuracy of
code generation for LLMs, achieving relative im-
provements of up to 11.3% in Pass@1.

7 Related Work

7.1 Code Generation
Since the advent of artificial intelligence in the
1950s, code generation has been considered the
Holy Grail of computer science research (Gulwani
et al., 2017). With the rapid expansion of codebases
and the increasing capacity of deep learning mod-
els, using deep learning for program generation has
shown great potential and practicality (Raychev
et al., 2014; Ling et al., 2016; Wei et al., 2019; Sun
et al., 2020; Mukherjee et al., 2021; Jiang et al.,
2023; Dong et al., 2023a; Li et al., 2024b; Jiang
et al., 2024; Li et al., 2024a; Zhang et al., 2024). In
recent years, the rise of pre-training techniques has
brought new momentum to the field of code genera-
tion. For example, studies like CodeT5 (Wang et al.,
2021) and UniXcoder (Guo et al., 2022) pre-train
models for code generation tasks. With the con-
tinual increase in model parameters, researchers
have discovered emergent phenomena in LLMs,
leading to new breakthroughs . Against this back-
drop, LLMs such as AlphaCode (Li et al., 2022),
Codex (Chen et al., 2021), CodeGeeX (Zheng et al.,
2023), Starcoder (Li et al., 2023b), CodeLlama
(Rozière et al., 2023), and DeepSeek Coder (Guo
et al., 2024) have emerged.

Some work focuses on grammar-based code gen-
eration approaches (Yin et al., 2018; Sun et al.,
2019; Jiang et al., 2021; Dong et al., 2023b), which
primarily utilize learning or decoding based on
grammar rulers to enhance the grammatical cor-

rectness of generated code. However, given that
all structural repetitions adhere to the grammar,
i.e., they are grammatically correct, merely using
grammar rules during decoding or learning gram-
mar rules during training is not applicable to the
structural repetition problem. Therefore, these ap-
proaches fail to address this problem.

7.2 Repetition in Neural Text Generation.

Repetition problems in neural language models
have drawn increasing attention, with various inter-
pretations and proposed solutions emerging from
recent research, especially in the field of text gen-
eration (Holtzman et al., 2020). Repetition Penalty
(Holtzman et al., 2020) is a commonly used ap-
proach to reduce content repetition, which prevents
words or phrases that have already appeared dur-
ing the generation process from being generated
again. However, there are lots of key tokens that
appear frequently in code generation, such as ‘=’,
‘(’, ‘[’ (Eghbali et al., 2022). Uniformly preventing
these tokens in subsequent generations would be
extremely detrimental to code generation.

Previous work (Fu et al., 2021b) points out that
repetition is caused by the phenomenon of self-
reinforcement. Some works address this problem
during the training phase (Fu et al., 2021b; Xu et al.,
2022; Su et al., 2022). Repetition dropout (Li et al.,
2023a) finds a link between training data degra-
dation and repetition, mitigating it by lowering at-
tention to repeated words. However, compared to
our RPG approach, these approaches have three
primary disadvantages: 1) They require extensive
training and necessitate the construction of a large
amount of data for fine-tuning LLMs, which incurs
substantial costs. 2) They usually hurt the code
generation performance of models obviously. 3)
They only focus on addressing content repetitions
in text generation, without involving the prevalent
issue of structural repetitions in code generation.

8 Conclusion

In this paper, we have formally defined structural
repetition, which is the major repetition problem
in code generation. We have proposed a novel de-
coding approach called RPG to alleviate repetition
problems in code generation from grammar per-
spective for LLMs. By leveraging the grammar
rules, RPG can recognize repetitions and strategi-
cally decay the output probability of critical tokens
that contribute to repetitions. We also construct
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a new dataset CodeRepetEval, designed to pro-
vide a comprehensive evaluation for addressing
repetition problems in code generation. Extensive
experiments demonstrate the effectiveness and gen-
eralization of RPG in repetition mitigation of code
generation. Through our work, we hope to shed
light on this direction and call more attention to
repetition problems in code generation.

9 Limitations

Our work has the following two main limitations.
First, RPG demands slightly more computational

resources than sampling to detect the repetitions.
However, compared to the enormous computational
overhead of LLMs, it is marginal and acceptable.

Second, the potential reasons why LLMs induce
structural repetitions in code generation remain
unclear. Our current analysis has not touched on
this aspect, which we leave for future work.
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A Case Study

Input

def hex_key(num):
"""You have been tasked to write a function that receives 
a hexadecimal number as a string and counts the number of hexadecimal digits that are primes (prime 
number, or a prime, is a natural number greater than 1 that is not a product of two smaller natural 
numbers). Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Prime numbers are 2, 
3, 5, 7, 11, 13, 17,... So you have to determine a number of the following digits: 2, 3, 5, 7, 
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string, and symbols A,B,C,D,E,F are always 
uppercase.
Examples:
For num = "AB" the output should be 1.
For num = "1077E" the output should be 2.
For num = "ABED1A33" the output should be 4.
For num = "123456789ABCDEF0" the output should be 6.
For num = "2020" the output should be 2.
"""

num = [0] + [(ord(i)) for i in num]
num = [i - 55 if i > 64 else i - 48 for i in num]
num = [i for i in num if i != 0]
num = [i for i in num if i != 10]
num = [i for i in num if i != 13]
num = [i for i in num if i != 16]
num = [i for i in num if i != 17]
num = [i for i in num if i != 18]
num = [i for i in num if i != 19]
num = [i for i in num if i != 20]
num = [i for i in num if i != 21]
num = [i for i in num if i != 22]
num = [i for i in num if i != 23]
num = [i for i in num if i != 24]
num = [i for i in num if i != 25]
num = [i for i in num if i != 26]
num = [i for i in num if i != 27]
num = [i for i in num if i != 28]
num = [i ...

num = [0] + [(ord(i)) for i in num]
num = [i - 55 if i > 64 else i - 48 for i in num]
num = [i for i in num if i != 0]
count = 0
for i in num:

if i > 1:
for j in range(2, i):

if i % j == 0:
break

else:
count += 1

return count

Ours Repetition

Unable to escape from repetition !

(a) A case from HumanEval in Code Generation Benchmark.

filename>lib/variables/latent_variables/__init__.py
from .fully_connected import FullyConnectedLatentVariable
from .convolutional import ConvolutionalLatentVariable
from .recurrent import RecurrentLatentVariable

from .base import LatentVariable

__all__ = [
'LatentVariable',
'FullyConnectedLatentVariable',
'ConvolutionalLatentVariable',
'RecurrentLatentVariable',
]

from .lstm import LSTMLatentVariable
from .gru import GRULatentVariable
from .attention import AttentionLatentVariable
from .attention_lstm import AttentionLSTMLatentVariable
from .attention_gru import AttentionGRULatentVariable
from .attention_conv import AttentionConvLatentVariable
from .attention_conv_lstm import AttentionConvLSTMLatentVariable
from .attention_conv_gru import AttentionConvGRULatentVariable
from .attention_conv_attention_lstm import AttentionConvAttentionLSTMLatentVariable
from .attention_conv_attention_gru import AttentionConvAttentionGRULatentVariable
from .attention_conv_attention_conv import AttentionConvAttentionConvLatentVariable
from .attention_conv_attention_conv_lstm import AttentionConvAttentionConvLSTMLatentVariable
from .attention_conv_attention_conv_gru import AttentionConvAttentionConvGRULatentVariable
from .attention_conv_attention_conv_attention_lstm import
AttentionConvAttentionConvAttentionLSTMLatentVariable
from .attention_conv_attention_conv_attention_gru import
AttentionConvAttentionConvAttentionGRULatentVariable
from .attention_conv_attention_conv_attention_conv import
AttentionConvAttentionConvAttentionConvLatentVariable
from .attention_conv_attention_conv_attention_conv_lstm import
AttentionConvAttentionConvAttentionConvLSTMLatentVariable
from .attention_conv_attention_conv_attention_conv_gru import
AttentionConvAttentionConvAttentionConvGRULatentVariable
from .attention_conv_attention_conv_attention_conv_attention_lstm import
AttentionConvAttentionConvAttentionConvAttentionLSTMLatentVariable
from .attention_conv_attention_conv_attention_conv_attention_gru import
AttentionConvAttentionConvAttentionConvAttentionGRULatentVariable
from .attention_conv_attention_conv_attention_conv_attention_conv import
AttentionConvAttentionConvAttentionConvAttentionConvLatentVariable
...

Input

Ours Repetition

Unable to escape from repetition !

(b) A case from Real-world Repository

Figure 4: Two cases of generating structural repetition and the effect of our approach on them. LLMs succumb
to endless loops of repetition. Our proposed approach can effectively break out of these loops, steering back to a
normal code generation trajectory, and ultimately succeeding in producing correct code.
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B The Influence of Hyper-parameters λ

We shown the influence of hyper-parameters λ in Figure 5.
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Figure 5: The influence of hyper-parameters λ on Artificial Synthesis, Code Generation Benchmarks, and Real-
world Repositories scenarios of CodeRepetEval dataset, as well as HumanEval and MBPP benchmarks. We use the
gray dashed line to represent the employed hyper-parameters.

C Details of Experiment Setup

C.1 Dataset Construction and Evaluation Methodology of CodeRepetEval
The purpose of CodeRepetEval datasets is to evaluate the performance of different approaches for avoiding
repetitions in code generation under various scenarios. We provide a detailed description of the dataset
construction process and the evaluation methodology as follows.

The construction processes for three scenarios, i.e., Artificial Synthesis, Code Generation Benchmarks,
and Real-world Repositories, are similar, with mere differences in the source of code samples. For
Artificial Synthesis, we employ Self-instruct (Wang et al., 2023) to construct instruction sets that induce
CodeLlama-7B to generate code samples containing repetitions. For Code Generation Benchmarks, we
use CodeLlama-7B to sample codes on HumanEval and MBPP benchmarks. For Real-world Repositories,
we select code from 100 high-quality open-source projects on GitHub, following the selection criteria of
Starcoder (Li et al., 2023b).

After obtaining the code samples, we employ the TR-S metric to sort them in descending order based
on the degree of repetition. We then select the repetitive code segments from the top 2*N samples, where
N equals 512, 512, and 1024 for the respective scenarios. Subsequently, we randomly truncate the code
samples at positions containing 2 to 4 repeated statements, retain the first half, and combine it with the
original input to generate new prompts. Finally, the researchers conduct a manual evaluation to filter out
N prompts, which are then incorporated into our datasets.

For the evaluation, we employ the constructed prompts as input and generate code using different
approaches. We apply three metrics—TR-S, TR-N, and EGP—to determine the extent to which the code
generated by these approaches continues to manifest repetition issues. Moreover, we apply the CCP
metric to assess the compilability and quality of generated codes.
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C.2 Code Generation Benchmarks

We evaluate our approach using four public code generation benchmarks.
HumanEval (Chen et al., 2021) consists of 164 handwritten programming tasks, proposed by OpenAI.

Each task includes a function signature, NL description, use cases, function body, and several unit tests
(average 7.7 per task).

MBPP (Austin et al., 2021) contains 974 manually verified Python programming tasks, covering
programming fundamentals, standard library functionality, and more. Each task consists of an NL
description, a code solution, and 3 automated test cases.

HumanEval-ET and MBPP-ET (Dong et al., 2024a) are expanded versions of MBPP and HumanEval
respectively, where each includes over 100 additional test cases per task. This updated version enhances
the soundness of code evaluation compared to the original benchmarks.

C.3 Baselines

We detail the baseline approaches compared in this work:

• Greedy Sampling chooses the highest probability token from the model’s output distribution at each
time step, P ′

greedy(w) = 1(w = argmaxw P (w|w<t)).

• Topk Sampling (Fan et al., 2018) limits the next-word selection to the top k most likely candidates
as determined by the model, P ′

topk(w) = P (w|w<t) if w ∈ Topk, otherwise 0.

• Topp Sampling (Holtzman et al., 2020) involves choosing from a smaller set of plausible candidates
by dynamically selecting a variable-sized subset of tokens (the "nucleus") that cumulatively make
up a certain probability mass (e.g., top 90%), P ′

topp(w) = P (w|w<t) if
∑

w′∈S P (w′|w<t) ≤
p, otherwise 0.

• Temperature Sampling (Caccia et al., 2019) controls the randomness of the token selection pro-
cess—higher temperatures lead to more uniform distributions, while lower temperatures make
high-probability tokens even more likely, P ′

temp(w) =
exp(log(P (w|w<t))/T )∑
w′ exp(log(P (w′|w<t))/T ) .

• Repetition Penalty (Keskar et al., 2019) penalizes sampling works by discounting the scores
of previously generated tokens, P ′(w) = exp(log(P (w|w<t))/(T ·I(i∈g))∑

w′ exp(log(P (w′|w<t))/(T ·I(i∈g)) , where I(c) =

θ if c is True else 1. Unless otherwise specified, the settings of baselines follow their original
paper.

• Repetition Dropout (Li et al., 2023a) applies masking vectors to sentences, randomly dropping
out repetitive n-grams based on a pre-specified dropout rate, thereby preventing the model from
over-relying on repetitive patterns during training.

C.4 Metrics

Compiler Correctness Percentage (CCP). CCP is defined as the ratio of the number of code samples
that pass compilation to the total number of samples in the dataset.

Pass@k. We use the unbiased version (Chen et al., 2021) of Pass@k, where n >= k samples are
generated for each problem, count the number of correct samples c <= n which pass test cases and
calculate the following estimator, i.e.,

Pass@k = E
Problems


1−


n− c

k





n
k





 . (9)
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D Pseudo-code of Suffix Array and LCP Array

def constructSuffixArray(S):
n = length of S
Create an array suffixes[n] where each element is a tuple (index, suffix)
for i from 0 to n-1:

suffixes[i] = (i, S[i:n]) // Store index and suffix starting at index
i

Sort suffixes based on the suffix part of each tuple
Initialize SA[n]
for i from 0 to n-1:

SA[i] = suffixes[i].index
return SA

def constructLCPArray(S, SA):
n = length of S
Initialize LCP[n] with zeros
Initialize rank[n] to store the rank of each suffix in SA
for i from 0 to n-1:

rank[SA[i]] = i
h = 0 // Length of the longest common prefix
for i from 0 to n-1:

if rank[i] > 0:
j = SA[rank[i] - 1] // Index of the previous suffix in the sorted

list
while i + h < n and j + h < n and S[i + h] == S[j + h]:

h += 1
LCP[rank[i]] = h
if h > 0:

h -= 1 // Decrease h for the next calculation
return LCP

def findConsecutiveRepetitions(S):
SA = constructSuffixArray(S)
LCP = constructLCPArray(S, SA)
repetitions = set()
for i from 1 to length of S - 1:

if LCP[i] > 0:
duplicate_substring = S[SA[i]:SA[i] + LCP[i]]
# Check for consecutive occurrence
previous_suffix_length = SA[i-1]
current_suffix_length = SA[i]
if previous_start == current_start + LCP[i]:

repetitions.add(duplicate_substring)
return repetitions

E PDA for LLMs

LLMs usually employ Byte-Pair Encoding (BPE) (Sennrich et al., 2016) for tokenization, which causes
the tokens in the vocabulary of LLMs to deviate from the terminal symbols in grammar. Specifically, this
discrepancy manifests in three primary scenarios, i.e., one token corresponds to one terminal symbol, one
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token corresponds to multiple terminal symbols, and multiple tokens correspond to one terminal symbol.
Therefore, to effectively utilize PDA with LLMs, it is essential to develop an approach that adapts PDA
operations to accommodate these tokenization scenarios.

E.1 One Token to One Terminal Symbol

In scenarios where one token directly corresponds to one terminal symbol, the adaptation of PDA is
relatively straightforward. The PDA can process each token as a single unit that matches exactly one
terminal symbol in the grammar of the language being parsed. Here, the transition functions of PDA
can be directly applied without modification. For instance, if a token from the LLM’s output matches a
terminal symbol in a programming language’s grammar, the PDA can push, pop, or transition based on
this token following standard PDA rules. This case represents the simplest form of interaction between
LLM outputs and grammar-based parsing.

E.2 One Token to Multiple Terminal Symbols

This scenario arises when a single token encapsulates multiple grammatical elements, due to a compact
or compressed representation of the language. For example, “[]”, “),”, “)\n”, and so on. To handle this,
we should first decompose the token into its constituent terminal symbols. Then, we sequentially check
whether each terminal symbol is in the PDA candidate set of its prefixes. Finally, the tokens that all
constitute terminal symbols satisfying the condition are retained. This approach ensures that even complex
tokens can be seamlessly integrated into the grammar-based processing framework of the PDA.

E.3 Multiple Tokens to One Terminal Symbol

In contrast, when multiple tokens collectively represent a single terminal symbol, we should aggregate
these tokens before using the transition function of PDA. This scenario typically occurs with the token-
types in terminal symbols, such as NAME, NUMBER, and STRING. In this case, we constructed a lexical
grammar PDA to accumulate tokens until a complete terminal symbol is formed. The PDA operations
then proceed based on these aggregated terminal symbols.

F Full Grammar specification

For example, the full Python grammar is shown as follows:

# Grammar for Python

# NOTE WELL: You should also follow all the steps listed at
# https://devguide.python.org/grammar/

# Start symbols for the grammar:
# single_input is a single interactive statement;
# file_input is a module or sequence of commands read from an input file

;
# eval_input is the input for the eval() functions.
# func_type_input is a PEP 484 Python 2 function type comment
# NB: compound_stmt in single_input is followed by extra NEWLINE!
# NB: due to the way TYPE_COMMENT is tokenized it will always be followed by

a NEWLINE
single_input: NEWLINE | simple_stmt | compound_stmt NEWLINE
file_input: (NEWLINE | stmt)* ENDMARKER
eval_input: testlist NEWLINE* ENDMARKER

decorator: '@' dotted_name [ '(' [arglist] ')' ] NEWLINE
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decorators: decorator+
decorated: decorators (classdef | funcdef | async_funcdef)

async_funcdef: ASYNC funcdef
funcdef: 'def' NAME parameters ['->' test] ':' [TYPE_COMMENT] func_body_suite

parameters: '(' [typedargslist] ')'

# The following definition for typedarglist is equivalent to this set of
rules:

#
# arguments = argument (',' [TYPE_COMMENT] argument)*
# argument = tfpdef ['=' test]
# kwargs = '**' tfpdef [','] [TYPE_COMMENT]
# args = '*' [tfpdef]
# kwonly_kwargs = (',' [TYPE_COMMENT] argument)* (TYPE_COMMENT | [',' [

TYPE_COMMENT] [kwargs]])
# args_kwonly_kwargs = args kwonly_kwargs | kwargs
# poskeyword_args_kwonly_kwargs = arguments ( TYPE_COMMENT | [',' [

TYPE_COMMENT] [args_kwonly_kwargs]])
# typedargslist_no_posonly = poskeyword_args_kwonly_kwargs |

args_kwonly_kwargs
# typedarglist = (arguments ',' [TYPE_COMMENT] '/' [',' [[TYPE_COMMENT]

typedargslist_no_posonly]])|(typedargslist_no_posonly)"
#
# It needs to be fully expanded to allow our LL(1) parser to work on it.

typedargslist: (
(tfpdef ['=' test] (',' [TYPE_COMMENT] tfpdef ['=' test])* ',' [

TYPE_COMMENT] '/' [',' [ [TYPE_COMMENT] tfpdef ['=' test] (
',' [TYPE_COMMENT] tfpdef ['=' test])* (TYPE_COMMENT | [',' [

TYPE_COMMENT] [
'*' [tfpdef] (',' [TYPE_COMMENT] tfpdef ['=' test])* (TYPE_COMMENT |

[',' [TYPE_COMMENT] ['**' tfpdef [','] [TYPE_COMMENT]]])
| '**' tfpdef [','] [TYPE_COMMENT]]])

| '*' [tfpdef] (',' [TYPE_COMMENT] tfpdef ['=' test])* (TYPE_COMMENT | [','
[TYPE_COMMENT] ['**' tfpdef [','] [TYPE_COMMENT]]])

| '**' tfpdef [','] [TYPE_COMMENT]]] )
| (tfpdef ['=' test] (',' [TYPE_COMMENT] tfpdef ['=' test])* (TYPE_COMMENT |

[',' [TYPE_COMMENT] [
'*' [tfpdef] (',' [TYPE_COMMENT] tfpdef ['=' test])* (TYPE_COMMENT | [','

[TYPE_COMMENT] ['**' tfpdef [','] [TYPE_COMMENT]]])
| '**' tfpdef [','] [TYPE_COMMENT]]])
| '*' [tfpdef] (',' [TYPE_COMMENT] tfpdef ['=' test])* (TYPE_COMMENT | [','

[TYPE_COMMENT] ['**' tfpdef [','] [TYPE_COMMENT]]])
| '**' tfpdef [','] [TYPE_COMMENT])

)
tfpdef: NAME [':' test]
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# The following definition for varargslist is equivalent to this set of rules:

#
# arguments = argument (',' argument )*
# argument = vfpdef ['=' test]
# kwargs = '**' vfpdef [',']
# args = '*' [vfpdef]
# kwonly_kwargs = (',' argument )* [',' [kwargs]]
# args_kwonly_kwargs = args kwonly_kwargs | kwargs
# poskeyword_args_kwonly_kwargs = arguments [',' [args_kwonly_kwargs]]
# vararglist_no_posonly = poskeyword_args_kwonly_kwargs |

args_kwonly_kwargs
# varargslist = arguments ',' '/' [','[(vararglist_no_posonly)]] | (

vararglist_no_posonly)
#
# It needs to be fully expanded to allow our LL(1) parser to work on it.

varargslist: vfpdef ['=' test ](',' vfpdef ['=' test])* ',' '/' [',' [ (
vfpdef ['=' test] (',' vfpdef ['=' test])* [',' [

'*' [vfpdef] (',' vfpdef ['=' test])* [',' ['**' vfpdef [',']]]
| '**' vfpdef [',']]]

| '*' [vfpdef] (',' vfpdef ['=' test])* [',' ['**' vfpdef [',']]]
| '**' vfpdef [',']) ]] | (vfpdef ['=' test] (',' vfpdef ['=' test])* [','

[
'*' [vfpdef] (',' vfpdef ['=' test])* [',' ['**' vfpdef [',']]]

| '**' vfpdef [',']]]
| '*' [vfpdef] (',' vfpdef ['=' test])* [',' ['**' vfpdef [',']]]
| '**' vfpdef [',']

)
vfpdef: NAME

stmt: simple_stmt | compound_stmt
simple_stmt: small_stmt (';' small_stmt)* [';'] NEWLINE
small_stmt: (expr_stmt | del_stmt | pass_stmt | flow_stmt |

import_stmt | global_stmt | nonlocal_stmt | assert_stmt)
expr_stmt: testlist_star_expr (annassign | augassign (yield_expr|testlist) |

[('=' (yield_expr|testlist_star_expr))+ [TYPE_COMMENT]] )
annassign: ':' test ['=' (yield_expr|testlist_star_expr)]
testlist_star_expr: (test|star_expr) (',' (test|star_expr))* [',']
augassign: ('+=' | '-=' | '*=' | '@=' | '/=' | '%=' | '&=' | '|=' | '^=' |

'<<=' | '>>=' | '**=' | '//=')
# For normal and annotated assignments, additional restrictions enforced by

the interpreter
del_stmt: 'del' exprlist
pass_stmt: 'pass'
flow_stmt: break_stmt | continue_stmt | return_stmt | raise_stmt | yield_stmt
break_stmt: 'break'
continue_stmt: 'continue'
return_stmt: 'return' [testlist_star_expr]
yield_stmt: yield_expr
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raise_stmt: 'raise' [test ['from' test]]
import_stmt: import_name | import_from
import_name: 'import' dotted_as_names
# note below: the ('.' | '...') is necessary because '...' is tokenized as

ELLIPSIS
import_from: ('from' (('.' | '...')* dotted_name | ('.' | '...')+)

'import' ('*' | '(' import_as_names ')' | import_as_names))
import_as_name: NAME ['as' NAME]
dotted_as_name: dotted_name ['as' NAME]
import_as_names: import_as_name (',' import_as_name)* [',']
dotted_as_names: dotted_as_name (',' dotted_as_name)*
dotted_name: NAME ('.' NAME)*
global_stmt: 'global' NAME (',' NAME)*
nonlocal_stmt: 'nonlocal' NAME (',' NAME)*
assert_stmt: 'assert' test [',' test]

compound_stmt: if_stmt | while_stmt | for_stmt | try_stmt | with_stmt |
funcdef | classdef | decorated | async_stmt

async_stmt: ASYNC (funcdef | with_stmt | for_stmt)
if_stmt: 'if' namedexpr_test ':' suite ('elif' namedexpr_test ':' suite)* ['

else' ':' suite]
while_stmt: 'while' namedexpr_test ':' suite ['else' ':' suite]
for_stmt: 'for' exprlist 'in' testlist ':' [TYPE_COMMENT] suite ['else' ':'

suite]
try_stmt: ('try' ':' suite

((except_clause ':' suite)+
['else' ':' suite]
['finally' ':' suite] |
'finally' ':' suite))

with_stmt: 'with' with_item (',' with_item)* ':' [TYPE_COMMENT] suite
with_item: test ['as' expr]
# NB compile.c makes sure that the default except clause is last
except_clause: 'except' [test ['as' NAME]]
suite: simple_stmt | NEWLINE INDENT stmt+ DEDENT

namedexpr_test: test [':=' test]
test: or_test ['if' or_test 'else' test] | lambdef
test_nocond: or_test | lambdef_nocond
lambdef: 'lambda' [varargslist] ':' test
lambdef_nocond: 'lambda' [varargslist] ':' test_nocond
or_test: and_test ('or' and_test)*
and_test: not_test ('and' not_test)*
not_test: 'not' not_test | comparison
comparison: expr (comp_op expr)*
# <> isn't actually a valid comparison operator in Python. It's here for the
# sake of a __future__ import described in PEP 401 (which really works :-)
comp_op: '<'|'>'|'=='|'>='|'<='|'<>'|'!='|'in'|'not' 'in'|'is'|'is' 'not'
star_expr: '*' expr
expr: xor_expr ('|' xor_expr)*
xor_expr: and_expr ('^' and_expr)*
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and_expr: shift_expr ('&' shift_expr)*
shift_expr: arith_expr (('<<'|'>>') arith_expr)*
arith_expr: term (('+'|'-') term)*
term: factor (('*'|'@'|'/'|'%'|'//') factor)*
factor: ('+'|'-'|'~') factor | power
power: atom_expr ['**' factor]
atom_expr: [AWAIT] atom trailer*
atom: ('(' [yield_expr|testlist_comp] ')' |

'[' [testlist_comp] ']' |
'{' [dictorsetmaker] '}' |
NAME | NUMBER | STRING+ | '...' | 'None' | 'True' | 'False')

testlist_comp: (namedexpr_test|star_expr) ( comp_for | (',' (namedexpr_test|
star_expr))* [','] )

trailer: '(' [arglist] ')' | '[' subscriptlist ']' | '.' NAME
subscriptlist: subscript (',' subscript)* [',']
subscript: test | [test] ':' [test] [sliceop]
sliceop: ':' [test]
exprlist: (expr|star_expr) (',' (expr|star_expr))* [',']
testlist: test (',' test)* [',']
dictorsetmaker: ( ((test ':' test | '**' expr)

(comp_for | (',' (test ':' test | '**' expr))* [','])) |
((test | star_expr)
(comp_for | (',' (test | star_expr))* [','])) )

classdef: 'class' NAME ['(' [arglist] ')'] ':' suite

arglist: argument (',' argument)* [',']

# The reason that keywords are test nodes instead of NAME is that using NAME
# results in an ambiguity. ast.c makes sure it's a NAME.
# "test '=' test" is really "keyword '=' test", but we have no such token.
# These need to be in a single rule to avoid grammar that is ambiguous
# to our LL(1) parser. Even though 'test' includes '*expr' in star_expr,
# we explicitly match '*' here, too, to give it proper precedence.
# Illegal combinations and orderings are blocked in ast.c:
# multiple (test comp_for) arguments are blocked; keyword unpackings
# that precede iterable unpackings are blocked; etc.
argument: ( test [comp_for] |

test ':=' test |
test '=' test |
'**' test |
'*' test )

comp_iter: comp_for | comp_if
sync_comp_for: 'for' exprlist 'in' or_test [comp_iter]
comp_for: [ASYNC] sync_comp_for
comp_if: 'if' test_nocond [comp_iter]

# not used in grammar, but may appear in "node" passed from Parser to
Compiler
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encoding_decl: NAME

yield_expr: 'yield' [yield_arg]
yield_arg: 'from' test | testlist_star_expr

# the TYPE_COMMENT in suites is only parsed for funcdefs,
# but can't go elsewhere due to ambiguity
func_body_suite: simple_stmt | NEWLINE [TYPE_COMMENT NEWLINE] INDENT stmt+

DEDENT

func_type_input: func_type NEWLINE* ENDMARKER
func_type: '(' [typelist] ')' '->' test
# typelist is a modified typedargslist (see above)
typelist: (test (',' test)* [','

['*' [test] (',' test)* [',' '**' test] | '**' test]]
| '*' [test] (',' test)* [',' '**' test] | '**' test)
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